Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network [OSTI]

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

2

Fluidized bed boiler feed system  

DOE Patents [OSTI]

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

3

Evaluation and selection of circulating fluidized bed boilers  

SciTech Connect (OSTI)

The use of circulating fluidized bed (CFB) boilers to generate steam on an industrial scale is increasing. The reasons for this growth include high combustion efficiency, fuel flexibility, and inherent emissions control capability, particularly with regards to control of nitrogen oxides (NO{sub x}) and sulfur oxides (SO{sub x}). However, CFB boiler technology is unique, with operating performance, and construction features that differ significantly from those used in conventional pulverized coal (PC) and stoker-fired boiler technology. An overview of these features is presented by the author.

Marcinek, F.T. (Charles B. Tibbits and Associates, Seattle, WA (US))

1989-05-01T23:59:59.000Z

4

Utilization of ash from fluidized bed boilers  

SciTech Connect (OSTI)

Combustion ash from a fluidized bed combustion (FBC) boiler contains not only carbon, but also silica alumina, quicklime as a sorbent, and a calcium sulfate by-product. These substances react chemically during fluidized bed combustion, and with the addition of water, they start an ettringite reaction and solidify. We determined the conditions necessary for producing hard solids through the study of the composition, curing methods, and characteristics of the solidified ash. We then used two types of road base material, crushed stone and solidified ash from an FBC boiler, to construct a test road at a site with a great deal of heavy traffic. Construction began in 1985, and since then, periodic tests have been performed to evaluate the performance of the road base materials. The testing of the manufacturing techniques centered on the amount and manner that water was added to the mixture and the curing methods of the mixture. Additional testing focused on the handling of the ash powder, the mixtures, and the solidified ash. Since 1991, under the sponsorship of MITI, the Center for Coal Utilization, in conjunction with Naruto Salt Mfg., Ltd., Nippon Hodo Co., Ltd., and Kawasaki Heavy Industries, Ltd., has used the referenced results to undertake a joint research and development project aimed at the eventual practical application of the technology. In 1993, a pilot facility to solidify ash with the fluidized bed boiler of 75 t/h capacity was completed. At present, all the discharged ash from the pilot facility is being solidified, and experiments on solidification and road base application techniques are underway. Actual road base tests are also in progress, and we are continuing research to meet the national certification requirements for road base materials.

Takada, Tomoaki [Kawasaki Heavy Industries Co., Ltd., Akashi (Japan)

1994-12-31T23:59:59.000Z

5

Preliminary design and assessment of circulating-bed boilers. Final report  

SciTech Connect (OSTI)

The circulating bed boiler (CBB) represents an alternative, fluidized bed combustor (FBC) technology which offers distinct advantages over both the current FBC systems, and pulverized-coal boilers with scrubbers. This report describes the findings of a study undertaken to evaluate these advantages. The information obtained made it possible to identify potential CBB design and operating problems and to propose further plans for developing this technology. Several significant determinations resulted from the study. The circulating bed boiler capital costs should not exceed the cost for a conventional atmospheric fluid bed combustor, primarily due to the reduced combustor size; however, any cost advantage for a pressurized circulating bed boiler is questionable. Overall efficiency for an electric utility power plant using an atmospheric CBB should be increased by at least 1% over using a pulverized-coal boiler and the increase would be at least 3% using a pressurized CBB. The circulating bed boiler has several of the advantages of an FBC over pulverized coal, and in addition, it has turndown capabilities, greater throughput, and simplified feeding. Both the atmospheric and the pressurized CBB's can be designed with technology currently available in the process industry, but only after additional study and development has been completed for cyclones, pollution control, solids attrition, feed systems, and combustion reactions. Pilot plant studies are required for these investigations.

Fraley, L.D.; Hsiao, K.H.; Do, L.N.

1980-06-01T23:59:59.000Z

6

Fluidized-bed boiler assessment for Navy applications. Final report, October 1983-September 1985  

SciTech Connect (OSTI)

This report discusses the assessment of one of the most-promising coal-firing technologies - Fluidized-Bed Combustion(FBC) - for Navy stationary boilers. The working principles, physical construction, major and auxiliary components, and system performance of an FBC boiler are described and compared with the conventional stoker and pulverized-coal fired boilers. The advantages of the FBC boiler based on fuel flexibility, operational reliability, economic feasibility, and environmental acceptability are identified, state-of-development and FBC manufacturers are also noted. The problems with the Great Lakes FBC boiler plant were studied and possible remedial measures are given. Considerations for FBC retrofitting have been examined based on boiler size, age, configuration, accessory components, and available space. Recommendations on how to achieve the Navy's goal of coal utilization by the FBC approach are outlined.

Fu, T.T.; Maga, G.F.

1986-11-01T23:59:59.000Z

7

Design and Operation of CFB Boilers with Low Bed Inventory  

Science Journals Connector (OSTI)

In this paper, the challenges and problems of the circulating fluidized bed (CFB) combustion technology are summarized and analyzed. In order to resolve the problems in CFB boiler application, design principals a...

Jun Su; Xiaoxing Zhao; Jianchun Zhang

2010-01-01T23:59:59.000Z

8

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

9

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network [OSTI]

or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

10

User converts gas boiler to fluidized bed to save $1. 5M  

SciTech Connect (OSTI)

Retrofitting a fluidized bed combustion (FBC) system may allow Clayton Foods Inc. to reduce its annual fuel bill by $1.5 million when the system comes on line in 1986. The system will burn low-grade, high-sulfur coal instead of natural gas, and should pay back the $4.1 million investment in under five years. The dual bed design separates the chemical processes of combustion and desulfurization into two chambers, which allows smaller-sized combustors that achieve high efficiencies in less time than conventional, single-bed fluidized bed boilers. Possible limitations prevent other manufacturers from making the dual-bed system. The Wormser unit is the only retrofit application of this technology in an industrial setting.

Springer, N.

1985-07-29T23:59:59.000Z

11

Model-free adaptive control of supercritical circulating fluidized-bed boilers  

DOE Patents [OSTI]

A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

Cheng, George Shu-Xing; Mulkey, Steven L

2014-12-16T23:59:59.000Z

12

An analysis of ilmenite particles used as bed material for combustion of biomass in a CFB boiler.  

E-Print Network [OSTI]

??Combustion of biomass in a fluidized bed boiler with silica sand as bed material is related to problems such as agglomeration of bed material and (more)

Corcoran, Angelica

2013-01-01T23:59:59.000Z

13

Fluidized bed boiler having a segmented grate  

DOE Patents [OSTI]

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

14

Test research of bed ash coolers for a 50 MWe CFB boiler  

SciTech Connect (OSTI)

CFB boilers have been developed and commercialized in China. As one of the main auxiliaries of FBC boilers, the bed ash cooler plays an important role in regular operation of the boilers. A 50 MWe 2-shaped CFB boiler will be put into operation in North China. Many kinds of bed ash cooling systems for this boiler had been designed and compared. Then the optimum bed ash coolers were determined and made. Experimental research and pilot-scale test for the bed ash coolers were also carried out. The result indicates that the bed ash cooler can be operated reliably and can meet the demand for cooling bed ash of the 50 MWe CFB boiler. The test data are very useful for further improving the performance of ash coolers.

Chen, H.P.; Lu, J.D.; Lin, Z.J.; Liu, D.C. [Huazhong Univ. of Science and Technology, Wuhan, Hubei (China). National Lab. of Coal Combustion; Hu, L.L.; Xie, P.J.; Yan, H.X.; Liu, M.C. [Hubei Boiler Auxiliary Factory, Jingshan, Hubei (China)

1995-12-31T23:59:59.000Z

15

DOE cost comparison study: industrial fluidized bed combustion vs conventional coal technology  

SciTech Connect (OSTI)

This study compares the capital and operating costs of two different industrial boiler technologies, each producing 250,000 lbs steam/hr: Fluidized Bed Combustion (FBC) and Pulverized Coal (PC) combustion used in conjunction with a limestone Flue Gas Desulfurization (FGD) system. Three separate turnkey plant designs have been completed. Two of these plant designs incorporate FBC technology and have been designated FBA-16 and FBV-16. The first FBC design (FBA-16) contains two shop assembled, rail-shippable, fluid-bed boilers capable of producing 125,000 lbs/h each. The second plant design (FBV-16) utilizes a single fluid bed boiler shipped by rail in large sections for field assembly. This single unit is capable of producing 250,000 lbs/h. The third plant design utilizes a conventional pulverized coal (PC) boiler used in conjunction with a C-E Air Quaity Control System (AQCS) limestone scrubber. The FBA-16 and FBV-16 fluid bed designs were found to be competitive with the conventional unit. Capital costs were generated for the three turnkey plant designs just described. The FBA-16, FBV-16, and Conventional Unit plant designs have associated capital costs of $24.4, $22.8, and $24.7 million, respectively. A substantial cost reduction can be realized for plant capacities less than 180,000 lbs steam/h by incorporating a single FBA-16 type boiler. The operating costs for the bed designs are close enough to be considered similar when considering the nature of the study. The efficiency of the fluid bed plant designs can be increased and required capital equipment reduced by improvements to the plant design. Some potential design modifications are outlined. Extensive design and background research was prformed to increase the validity and relevance of this report.

Myrick, D.T.

1980-01-02T23:59:59.000Z

16

Standby cooling system for a fluidized bed boiler  

DOE Patents [OSTI]

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

17

DOE cost comparison study industrial fluidized bed combustion vs conventional coal technology  

SciTech Connect (OSTI)

This study compares the capital and operating costs of two different industrial boiler technologies, each producing 250,000 lbs steam/hr. These technologies are: Fluidized Bed Combustion (FBC) and Pulverized Coal (PC) combustion used in conjunction with a limestone Flue Gas Desulfurization (FGD) system. Three separate turnkey plant designs have been completed. Two of these plant designs incorporate FBC technology and have been designated FBA-16 and FBV-16. The first FBC design (FBA-16) contains two shop assembled, rail shippable fluid bed boilers capable of producing 125,000 lbs/hr each. The second plant design (FBV-16) utilizes a single 250,000 lbs/hr fluid bed boiler shipped by rail in large sections for field assembly. The third plant design utilizes a conventional pulverized coal (PC) boiler in conjunction with a C-E Air Quality Control System (AQCS) limestone scrubber. Capital costs were generated for the three turnkey plant designs just described. The FBA-16, FBV-16, and Conventional Unit plant designs have associated capital costs of $24.4, $22.8, and $24.7 million, respectively. Comparisons between plant capital cost estimates are valid and informative. The total operational costs, which include contingencies on new product design for the Fluid Bed Units, were found to vary between four and seven percent higher than the Conventional Unit. When contingencies are not included, the operating costs were found to be between one and three percent higher than the Conventional Unit. As can be seen, the operating costs for the bed designs are close enough to be considered similar when considering the nature of the study. The efficiency of the fluid bed plant designs can be increased and required capital equipment reduced by improvements to the plant design with time and more development. Some potential design modifications are outlined.

Myrick, D.T.

1980-01-02T23:59:59.000Z

18

Fluidized-bed combustion: effectiveness of an SO/sub 2/ control technology for industrial boilers. Final report  

SciTech Connect (OSTI)

Atmospheric fluidized-bed combustion (AFBC) boilers have developed rapidly over recent years and are now offered commercially in several different configurations. SO/sub 2/ reduction levels of 90% and above have been achieved by coal-fired AFBC boilers in the industrial size category. Based on the data available, industrial FBC NOx emissions have been consistently below 0.5 lb/million Btu. PM emissions of less than 0.5 lb/million Btu have been routinely achieved with fabric filters. AFBC boiler system costs were compared with costs for a conventional boiler equipped with an FGD system and with costs for a conventional boiler using low-sulfur compliance coal. The conclusions drawn from the economic analyses are that (1) studied cost difference between AFBC Technology, conventional boiler/FGD systems, and compliance coal combustion are projected to be small over the SO/sub 2/ emission range of 1.7 to 0.8 lb/million Btu and SO/sub 2/ reduction range of 65 to 90%, and (2) that cost competitiveness among these technologies is not expected to change significantly as the emission limitations change over this range. Absolute economic competitiveness among these options will be sensitive to site-specific parameters and decided on a case-by-case basis.

Aul, E.F.; Owen, M.L.; Jones, A.F.

1984-09-01T23:59:59.000Z

19

Failure Analysis of Bed Coil Tube in an Atmospheric Fluidized Bed Combustion Boiler  

Science Journals Connector (OSTI)

The fluidized bed combustion (FBC) technology is being used in thermal power plants for steam generation. FBC plants are more flexible than conventional plants ... fuels may be used for firing. The FBC technology...

M. Venkateswara Rao; S. U. Pathak

2014-06-01T23:59:59.000Z

20

Circulating fluidized-bed boiler makes inroads for waste recycling  

SciTech Connect (OSTI)

Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Heat transfer characteristics of fluidized bed heat exchanger in a 300MW CFB boiler  

Science Journals Connector (OSTI)

In order to investigate the heat transfer characteristics of fluidized bed heat exchanger (FBHE), a series of experiments was carried out in a commercial 300MW circulating fluidized bed (CFB) boiler with FBHE. The parameters of steam, solids and air in FBHE were measured at different boiler loads, based on which the absorbed heat and heat transfer coefficient were calculated. Further study indicates that when the calculated results are applied to the design of large-scale CFB boilers, the bed side heat transfer coefficient in FBHE can be simplified as the function of solids temperature and flow. Therefore, the empirical model of heat transfer coefficient at bed side is put forward. The deviation between calculated results and measured values is acceptable in engineering application. This model provides strong support for the FBHE design in 600MW supercritical CFB boilers.

Man Zhang; Haibo Wu; Qinggang Lu; Yunkai Sun; Guoliang Song

2012-01-01T23:59:59.000Z

22

An assessment of waste fuel burning in operating circulating fluidized bed boilers  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC), today's fastest growing boiler technology, has the flexibility to burn a wide range of fuels, including many waste fuels, while satisfying all present and anticipated environmental regulations. The first generation of FBC--atmospheric fluidized bed combustion (AFBC)--concentrated on ''bubbling'' fluidized bed designs. These systems have inherent limitations and experienced several problems. In response to these problems, circulating fluidized bed (CFB) technology was developed.

Gendreau, R.J.; Raymond, D.L.

1986-01-01T23:59:59.000Z

23

A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler  

Science Journals Connector (OSTI)

A cold model experimental study on the flowing characteristics of bed material between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper. The research results showed that flowing...

Xiaofeng Lu; Yourong Li

2000-12-01T23:59:59.000Z

24

,,,"with Any"," Steam Turbines Supplied by Either Conventional...  

U.S. Energy Information Administration (EIA) Indexed Site

or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,,"...

25

Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers  

E-Print Network [OSTI]

A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

2011-01-01T23:59:59.000Z

26

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect (OSTI)

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

27

Bromine as an ash forming element in a fluidised bed boiler combusting solid recovered fuel  

Science Journals Connector (OSTI)

Plastic materials are the main sources of chlorine in solid recovered fuels (SRF). Chlorine is attributed to be the main initiator of slagging, fouling and corrosion in biomass and waste combustion as it lowers the melting point of ash forming matter and reacts chemically with the heat transfer surface steels. SRF may also contain sources of bromine in the form of brominated flame retardants (BFRs) applied in many plastics and textiles. Results presented in this paper from an experimental campaign at an 80MWth bubbling fluidised bed (BFB) boiler show that bromine is behaving in a similar manner as chlorine: bromine was found at the corrosion front in boiler membrane wall tubes, and as water soluble salts in aerosol samples collected from the furnace and electrostatic precipitator (ESP) ash. It is evident from these results and the data in the literature that most of the salts of bromine are, by both their fate and physical and chemical properties, similar to those of chlorine. It can be concluded that it if there is a source of bromine in the fuel corrosive high vapour pressure bromides can be formed analogously to chlorides.

Pasi Vainikka; Sonja Enestam; Jaani Silvennoinen; Raili Taipale; Patrik Yrjas; Ari Frantsi; Janne Hannula; Mikko Hupa

2011-01-01T23:59:59.000Z

28

Fate of Fuel Nitrogen in the Furnace of an Industrial Bubbling Fluidized Bed Boiler during Combustion of Biomass Fuel Mixtures  

Science Journals Connector (OSTI)

Co-firing biomass with challenging fuels, such as sludge, demolition wood, and solid recovered fuel (SRF), has become an attractive possibility to improve the economy of power production and to reduce the amount of landfill. ... Therefore, the fuel was extremely wet, with a dry solids content below 50 wt %. ... Thus, CS could reduce NOx effectively in devices where other techniques fails, e.g., in kraft recovery boilers, fluidized bed combustors, low-grade fuel combustors, small and domestic boilers, and fast engines. ...

Emil Vainio; Anders Brink; Mikko Hupa; Hannu Vesala; Tuula Kajolinna

2011-11-28T23:59:59.000Z

29

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

30

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents [OSTI]

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

31

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network [OSTI]

from 13 to 15 million BTU per hour for fired boiler efficiencies of 80% to 70% respectively. The savings represents 85 to 90% of the energy entering the waste heat boiler. Equiva lent furnace efficiency increases from 25% to over 60% on high fire... Fired Boiler Efficiency 0.70 0.75 0.80 Energy Savings Furnace Efficiency Corresponding Peak Fuel Equivalent at High (1) . Savi ngs Fire on Melt 4453 kw (15.1x10 6 BTU/hr) 69% 4156 kw (14.1x10 6 BTU/hr) 66% 3896 kw (13.3x10 6 BTU/hr) 63% (1...

Kreeger, A. H.

32

The Agglomeration in the Fluidized Bed Boiler During the Co-Combustion of Biomass with Peat  

Science Journals Connector (OSTI)

The formation of bed material coatings during the co-combustion of peat and biomass is caused by iron, calcium, aluminum ... Thus the bed material agglomeration during peat and biomass co-combustion is due to the...

Ritva E. A. Heikkinen; Mika E. Virtanen

1999-01-01T23:59:59.000Z

33

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

2003-03-26T23:59:59.000Z

34

Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke  

SciTech Connect (OSTI)

The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment

2006-08-15T23:59:59.000Z

35

CFD simulation of hydrodynamics on the dense zone on a 65t/h oil shale-fired highlow bed CFB boiler  

Science Journals Connector (OSTI)

Abstract Gassolid flow behavior in a 65t/h oil shale-fired highlow bed CFB boiler obtained by the revamping of a 75t/h pulverized coal-fired boiler has been simulated using a EulerianEulerian model (EEM) with kinetic theory of granular flow by the commercial CFD software package, Fluent. Two-dimensional (2D) transient and three-dimensional (3D) steady flows were simulated for the gas and the solid phase, respectively. The comparative study with regard to turbulence and drag model was performed by 2D simulation. The simulated results agreed reasonably with the experimental data and showed that Swirl-modified RNG k-?-Per phase model and Gidaspow drag model could predict preferably the internal circulation process. Gassolid flow profiles were obtained by 3D steady simulation for solid velocity, pressure, solid volume fraction, and granular temperature and the internal circulation characteristics of the boiler were further understood in detail. The results showed that the pressure difference between the main and side bed and the distributions of solid velocity and volume fraction illustrated the mechanism of internal circulation process. The fluidized velocity in the side beds is lower and wear of immersed tubes is also lower. The granular temperature is higher near the immersed tube bundle. This research established the foundation for the design and large-scale of highlow bed CFB.

Qing Wang; Jianbo Xiao; Hongpeng Liu

2013-01-01T23:59:59.000Z

36

Integrating coal cleaning with pulverized coal and fluidized bed boilers to meet the Clean Air Act Amendment and for new plant construction  

SciTech Connect (OSTI)

Integrating coal cleaning into a two boiler, pulverized coal-fired/fluidized bed (PC/FBC) power plant can reduce emissions at low cost for both retrofit projects and new power plants. The technology, because it relies on proven equipment and practices, albeit in a novel context, is low risk and near term. Its low cost makes it particularly suitable to retrofit many of the older coal- fired power plants in the US, and also for retrofitting power plants in the less affluent Eastern European and Asian countries that rely on coal for power generation and need to reduce emission but cannot afford scrubbers. In retrofit applications the technology involves a simple coal cleaning plant and the addition of a small fluidized bed boiler with its steam circuitry integrated into the plant's steam cycle. The clean coal stream will be fired in the existing boiler while the fluidized bed will use the low grade (waste) stream from the coal cleaning plant. This paper reports that this approach is particularly applicable to the many power plants along the Ohio River.

Miliaras, E.S.; Lawrence, D.W. (Energotechnology Corp., Cambridge, MA (United States))

1990-01-01T23:59:59.000Z

37

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

2001-03-31T23:59:59.000Z

38

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

2002-07-12T23:59:59.000Z

39

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-10-12T23:59:59.000Z

40

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

2002-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 1: Occurrence of the corrosive ash forming elements in a fluidised bed boiler co-firing solid recovered fuel  

Science Journals Connector (OSTI)

In waste fired boilers high temperature corrosion has often been attributed to zinc and lead chlorides. In addition, bromine induced high temperature corrosion has been earlier observed in a bubbling fluidised bed (BFB) boiler co-firing solid recovered fuel (SRF) with bark and wastewater sludge. In Part 1 of this work a measurement campaign was undertaken to determine the occurrence of Cl, Br, Zn and Pb in the fuel, in the combustion gases as well as in the deposits on the boiler waterwalls. It was observed that Cl, Br, Zn and Pb originate to a large extent from the SRF, they are vaporised in the furnace, and may form waterwall deposits. This, complemented by fluctuations between oxidising and reducing atmosphere resulted in rapid corrosion of the waterwall tubes. Concentrations of Cl, Br, Zn and Pb in the fuel, in the furnace vapours and in the deposits are reported in this work. As there is lack of published data on the bromine induced high temperature corrosion, laboratory scale corrosion tests were carried out to determine the relative corrosiveness of chlorine and bromine and these results will be reported in Part 2 of this work. Furthermore, the forms of Cl, Br, Zn and Pb in the combustion gases as well as in the waterwall deposits were estimated by means of thermodynamic equilibrium modelling and these results will also be discussed in Part 2.

P. Vainikka; D. Bankiewicz; A. Frantsi; J. Silvennoinen; J. Hannula; P. Yrjas; M. Hupa

2011-01-01T23:59:59.000Z

42

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

2001-01-18T23:59:59.000Z

43

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

2001-07-13T23:59:59.000Z

44

Dynamic simulation of a circulating fluidized bed boiler of low circulating ratio with wide particle size distributions  

SciTech Connect (OSTI)

A steady state model of a coal fired CFB boiler considering the hydrodynamics, heat transfer and combustion is presented. This model predicts the flue gas temperature, the chemical gas species (O{sub 2}, H{sub 2}O, CO, CO{sub 2} and SO{sub 2}) and char concentration distributions in both the axial and radial location along the furnace including the bottom and upper portion. The model was validated against experimental data generated in a 35 t/h commercial CFB boiler with low circulating ratio.

Lu Huilin; Yang Lidan; Bie Rushan; Zhao Guangbo

1999-07-01T23:59:59.000Z

45

Latest Development of CFB Boilers in China  

Science Journals Connector (OSTI)

The circulating fluidized bed (CFB) coal-fired boiler has being rapidly developed ... the development history and development status of the CFB boiler in China are introduced. The development history of the CFB b...

G. X. Yue; H. R. Yang; J. F. Lu; H. Zhang

2010-01-01T23:59:59.000Z

46

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

Bruce G. Miller; Curtis Jawdy

2000-10-09T23:59:59.000Z

47

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect (OSTI)

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

48

Role of Pulverized Coal Ash against Agglomeration, Fouling, and Corrosion in Circulating Fluidized-Bed Boilers Firing Challenging Biomass  

Science Journals Connector (OSTI)

The mechanisms of fouling and corrosion in biomass combustion have been extensively studied for a long time, and although the basic aspects are well-accepted, the complexity of the details are not yet fully understood. ... (5) In an earlier study, Foster Wheeler tested the effectiveness of different alternative bed materials to counteract the agglomeration induced by high-alkali biomass. ... Figure 4 show SEM/EDX analysis complemented with phase composition calculations (Noran System, NSS 2.3) of loopseal samples from combustion tests, where bed material included both PC-ash and sand. ...

Vesna Barii?; Kari Peltola; Edgardo Coda Zabetta

2013-07-28T23:59:59.000Z

49

BOILERS, BOILER FUEL AND BOILER EFFICIENCY  

E-Print Network [OSTI]

This paper describes the modern boilers in the South African sugar industry. A new equation for the calculation of the net calorific value (NCV) of bagasse is suggested and a distinction is made between boiler design efficiency and boiler operation efficiency. Methods to calculate fuel calorific values and boiler efficiencies from first principles are presented.

A Wienese

50

Design considerations for CFB boilers  

Science Journals Connector (OSTI)

Since the 1970s, circulating fluidized bed (CFB) technology has been applied to combustion and ... firing of solid fuels. The success of CFB boilers is mainly due to their fuel... x and...

Yam Y. Lee

1997-01-01T23:59:59.000Z

51

Advanced atmospheric fluidized-bed combustion design - spouted bed  

SciTech Connect (OSTI)

This report describes the Spouted-Fluidized Bed Boiler that is an advanced atmospheric fluidized bed combustor (FBC). The objective of this system design study is to develop an advanced AFBC with improved performance and reduced capital and operating costs compared to a conventional AFBC and an oil-fired system. The Spouted-Fluidized Bed (SFB) system is a special type of FBC with a distinctive jet of air in the bed to establish an identifiable solids circulation pattern. This feature is expected to provide: reduced NO/sub x/ emissions because of the fuel rich spout zone; high calcium utilization, calcium-to-sulfur ratio of 1.5, because of the spout attrition and mixing; high fuel utilization because of the solids circulation and spout attrition; improved thermal efficiency because of reduced solids heat loss; and improved fuel flexibility because of the spout phenomena. The SFB was compared to a conventional AFBC and an oil-fired package boiler for 15,000 pound per hour system. The evaluation showed that the operating cost advantages of the SFB resulted from savings in fuel, limestone, and waste disposal. The relative levelized cost for steam from the three systems in constant 1985 dollars is: SFB - $10 per thousand pounds; AFBC - $11 per thousand pounds; oil-fired - $14 per thousand pounds. 18 refs., 5 figs., 11 tabs.

Shirley, F.W.; Litt, R.D.

1985-11-27T23:59:59.000Z

52

Novel CFB Boiler Technology with Reconstruction of its Fluidization State  

Science Journals Connector (OSTI)

Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed ... key research topic for researchers and manufacturers of CFB boilers. Based...

H. R. Yang; H. Zhang; J. F. Lu; Q. Lfu

2010-01-01T23:59:59.000Z

53

Operating experience with industrial packaged FBC boilers  

SciTech Connect (OSTI)

Jonston Boiler company has developed a packaged fluidized bed combustion firetube boiler which burns coal within a bed of inert material (limestone) efficiently and cleanly. The firetube boiler cross section is schematized and explained. After one year demonstration, a sale was made to Central Soya of Marion, Ohio. The control system, drum level control draft, baghouse control system and emissions tests are highlighted. A few incidents of defluidization are noted.

Hutchinson, B.

1982-06-01T23:59:59.000Z

54

Fluid-bed combustion of solid wastes  

SciTech Connect (OSTI)

For over ten years combustion Power Company has been conducting experimental programs and developing fluid bed systems for agencies of the federal government and for private industry and institutions. Many of these activities have involved systems for the combustion of solid waste materials. Discussed here will be three categories of programs, development of Municipal Solid Waste (MSW) fired fluid beds, development of wood waste fired fluid beds, and industrial installations. Research and development work on wood wastes has led to the design and construction of two large industrial fluid bed combustors. In one of these, a fluid bed is used for the generation of steam with a fuel that was previously suited only for landfill. Rocks and inerts are continuously removed from this combustor using a patented system. The second FBC is designed to use a variety of fuels as the source of energy to dry hog fuel for use in a high performance power boiler. Here the FBC burns green hog fuel, log yard debris, fly ash (char) from the boiler, and dried wood fines to produce a hot gas system for the wood dryer. A significant advantage of the fluidized bed reactor over conventional incinerators is its ability to reduce noxious gas emission and, finally, the fluidized bed is unique in its ability to efficiently consume low quality fuels. The relatively high inerts and moisture content of solid wastes pose no serious problem and require no associated additional devices for their removal.

Vander Molen, R.H.

1980-01-01T23:59:59.000Z

55

Current Status and Challenges within Fluidized Bed Combustion  

Science Journals Connector (OSTI)

Fluidized-bed technology is rapidly expanding. Today, more than 600 large (20+ MWth) FBC boilers with a total installed thermal capacity of ... beds (BFBC). The size of the boilers has increased steeply; the larg...

Mikko Hupa

2007-01-01T23:59:59.000Z

56

Small boiler uses waste coal  

SciTech Connect (OSTI)

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

57

Specifying Waste Heat Boilers  

E-Print Network [OSTI]

, refineries,kilns, incineration systems and cogeneration and combined cycle plants,to mention a few applications.Depending on several factors such as quantity of gas or steam floW,cleanl1ness of gas,gas and steam pressure and space availabilitY,they may... of incinerator.whether fixed bed.rotary kiln or fluid bed.Sla9ging constituents present in the gas can result in bridging of tubes by molten salts if tube spacing is not wide,particularly at the boiler inlet.Ash hoppers ,soot blowers and cleaning lanes...

Ganapathy, V.

58

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect (OSTI)

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

59

Bed material agglomeration during fluidized bed combustion  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

60

THE THERMODYNAMICS AND SYSTEMS DESIGN OF FBC BOILERS  

Science Journals Connector (OSTI)

ABSTRACT Several major options are available to the power boiler designer in configuring the fluidized bed combustion (FBC) process for a variety of specific applications. The selection considerations, and tradeoffs to be made, are presented for designing underbed or overbed feed bubbling fluidized bed (BFB) and for circulating fluidized bed (CFB) systems. KEYWORDS Fluidized bed combustion (FBC), bubbling fluidized bed (BFB), circulating fluidized bed (CFB), FBC sulfur capture, FBC thermodynamics, underbed feed BFB, overbed feed BFB, FBC freeboard effects.

Joseph R Comparato

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Proceedings of the 1987 international conference on fluidized bed combustion: FBC comes of age  

SciTech Connect (OSTI)

This book presents the papers given at a conference on fluidized-bed combustors. Topics considered at the conference included fluidized bed boilers for utility applications, coal-fired systems, boiler retrofit, demonstration programs, atmospheric fluidized bed applications at the Tennessee Valley Authority, pressurized fluidized bed applications, waste disposal, adsorbents, fluid mechanics in fluidized beds, hydrodynamics, desulfurization, environmental issues, and advanced concepts.

Mustonen, J.P.

1987-01-01T23:59:59.000Z

62

Evaluation of fluid bed heat exchanger optimization parameters. Final report  

SciTech Connect (OSTI)

Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

Not Available

1980-03-01T23:59:59.000Z

63

Mercury Emission and Removal of a 135MW CFB Utility Boiler  

Science Journals Connector (OSTI)

To evaluate characteristic of the mercury emission and removal from a circulating fluidized bed (CFB) boiler, a representative 135 MW CFB utility boiler was selected to take the ... is of majority in flue gas of ...

Y. F. Duan; Y. Q. Zhuo; Y. J. Wang; L. Zhang

2010-01-01T23:59:59.000Z

64

Characteristics of a Modified Bell Jar Nozzle Designed for CFB Boilers  

Science Journals Connector (OSTI)

One of the most important factors for trouble free operation of CFB boilers is the pressure drop of the ... with large-scale industrial circulating fluidized bed (CFB) boilers. The nozzle consists of a...

Z. M. Huang; H. R. Yang; Q. Liu; Y. Wang

2010-01-01T23:59:59.000Z

65

The fluidized bed combustion ash management puzzle  

SciTech Connect (OSTI)

As the electric and industrial power generation industry upgrades and expands, the amount of coal and other solid fuels also expands. With increased environmental controls, the introduction of a competitive market for power, and the increased interest in opportunity fuels will increase the usage of Fluidized Bed Combustion (FBC) boilers in the power industry. The combustion of these solid fuels will generate combustion ashes. Power generators, including FBC boilers owners, have traditionally looked to landfills for the disposal of their ash. With the tighter environmental controls being placed on landfills at the federal and state level, power generators are beginning to see constantly escalating tipping fees which now make the landfill option less attractive. In some instances, landfills are beginning to refuse to accept ash regardless of the tipping fee. In view of this, the power generators are now struggling to find a place to store or dispose of the ash that is produced by their power boiler. Other disposal alternatives such as backhaul to the mine and beneficial reuse are now being considered. Either alternative presents its own set of technical and environmental variables to be considered in developing an effective ash management plan. To be effective, these plans need to incorporate an aggressive, yet realistic, role to support beneficial reuse of the ash. Many applications exist for reuse of the various types of ash. The applications for conventional ashes such as those from pulverized coal boilers and stoker fired boilers are mature and more commonplace. The uses for FBC ash are not as well researched and demonstrated and therefore the marketing opportunities for FBC ash continue to require development. FBC boiler owners and operators must be willing to accept the challenges posed in developing these reuse applications for FBC ash for the market to accept the applications for FBC ash and allow the full value of the FBC ash to be realized.

Fitzgerald, H.B. [ReUse Technology, Inc., Kennesaw, GA (United States)

1996-12-31T23:59:59.000Z

66

Fluidized-bed retrofit a practical alternative to FGD  

SciTech Connect (OSTI)

A comparison is made between the costs of flue-gas desulphurization retrofit to a 112 MW pf-fired boiler, fluidized-bed combustion retrofit to the boiler, and a new fluidized-bed boiler. Breakdowns are given for capital costs, operating and maintenance costs and the busbar cost of energy for a 20 year unit life. The analysis shows that fbc is a viable option for the retrofit of many existing boilers from both a technical and economic viewpoint.

Stringfellow, T.E.

1984-02-01T23:59:59.000Z

67

Old boilers to profitable use with local biofuels  

SciTech Connect (OSTI)

To convert an old plant is often an economically advantageous alternative for a new boiler. The most important sources of biomass in industrial countries are residues from forestry, industry and agriculture. Sludges and wastes from industry, communities and households also contain useful energy. Still in many places there are existing power plants which can be converted to burn biofuels with low investment costs. An efficient and proven way is to convert an existing boiler to fluidized bed combustion (FBC) or use atmospheric circulating fluidized bed biofuel gasification connected to an existing boiler. Modern Fluidized Bed Combustion and Gasification gives us a possibility to burn biomass, sludges and many kinds of wastes in an efficient way with low emissions. Fluidized bed technologies are divided into bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) solutions. When making a boiler conversion to fluidized bed combustion, lower furnace of an existing boiler is converted and fuel receiving, handling and transportation system is installed. In many cases most of the existing boiler heating surfaces and a majority of the existing auxiliary equipment can be utilized. The circulating fluidized bed gasifier consists of the inside refractory-lined steel vessel, where fuel is gasified in a hot fluidized gas solid particle suspension. In the gasifier, the biofuels will be converted to combustible gas at atmospheric pressure at the temperature 800--900 C. The hot gas from the gasifier will be cooled down to 650--750 C in the air preheater. The hot gas is led directly to separate burners, which are located in the existing boiler furnace. The gas is burned in the boiler and replaces a part of the coal used in the boiler. Typical fuels for the FBC-boilers are wet fuels such as bark, wood waste, peat and sludges. These fuels normally contain 40--70% water.

Hankala, J.

1998-07-01T23:59:59.000Z

68

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect (OSTI)

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

69

Experimental and Modeling Study of Sulfur Capture by Limestone in Selected Conditions of Air-Fired and Oxy-fuel Circulating Fluidized-Bed Boilers  

Science Journals Connector (OSTI)

Liu et al.(5) noticed the influence of the system itself, noting that SO2 is enriched in the furnace of oxy-fuel combustion systems because the flue gas is recycled. ... This work has also been supported by the Academy of Finland under Grant 124368 and Foster Wheeler Energia Oy. ... In this study, the influence of CO2 on sulfur capture efficiency was studied during fluidized-bed desulfurization by experiments and modeling. ...

Sirpa Takkinen; Timo Hyppnen; Jaakko Saastamoinen; Toni Pikkarainen

2011-06-30T23:59:59.000Z

70

Advanced Refractory and Anti-Wearing Technology of Cyclone Separator in CFB Boiler  

Science Journals Connector (OSTI)

The circulating fluidized bed is playing more and more vital role in the electric power field. Cyclone separator as the heart of the circulating fluidized bed combustion boiler, the technology of fire-resistant a...

H. P. Chen; Y. Q. Shen; X. H. Wang

2010-01-01T23:59:59.000Z

71

Pulsed atmospheric fluidized bed combustion  

SciTech Connect (OSTI)

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

72

Ash Behavior in a CFB Boiler during Combustion of Salix  

Science Journals Connector (OSTI)

A study on the combustion characteristics of Salix Viminalis, a fast growing willow, was conducted at a 12 MW circulating fluidized bed boiler. The purpose of the study was to increase the understanding of the...

B.-J. Skrifvars; G. Sfiris; R. Backman

1997-01-01T23:59:59.000Z

73

Research and Development of Large Capacity CFB Boilers in TPRI  

Science Journals Connector (OSTI)

This paper presents an overview of advancements of circulating fluidized bed (CFB) technology in Thermal Power Research Institute ( ... progress of scaling up. For devoloping large CFB boiler, the CFB combustion ...

Sun Xianbin; Jiang Minhua

2010-01-01T23:59:59.000Z

74

Boilers | Open Energy Information  

Open Energy Info (EERE)

search TODO: Add description List of Boilers Incentives Retrieved from "http:en.openei.orgwindex.php?titleBoilers&oldid267147" Category: Articles with outstanding TODO tasks...

75

The fluid bed market: Status, trends, & outlook  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC) technology has become a major commercial competitor for conventional solid fuel combustion systems. Since the mid-1980s, independent power producers (IPPs) and cogenerators in particular, pursuing opportunities created by PURPA, have led the way in deploying FBC boilers for electric power and cogeneration plants in the United States. Circulating FBC (CFBC) boilers became the predominant FBC choice for coal-, coke-, and coal waste-fired projects with unit capacities typically in the range of 300,000-600,000 lb/hr (35-70 MW (nominal)). Utility-type reheat units in the 115-165 MW (net) range are now in operation in the United States and Europe. A 250 MW CFBC unit is under construction for 1995 startup in France, and another is scheduled for 1998 startup in Pennsylvania. A 350 MW bubbling FBC boiler is being commissioned now in Japan. Several other CFBC projects that would employ 150-250 MW CFBC units are in various stages of planning in the United States, Puerto Rico, Europe, and Asia.

Simbeck, D.R.; Johnson, H.E.; Wilhelm, D.J. [SFA Pacific, Inc., Mountain View, CA (United States)

1994-12-31T23:59:59.000Z

76

Practical and Regulatory Challenges in Controlling Trace Element Inputs to Soils from Land Application of Fluidized Bed Combustion Residues  

Science Journals Connector (OSTI)

The 165 MWe circulating fluidized bed boiler at the Nova Scotia Power Inc. ( ... largest fluidized bed unit. Fluidized bed combustion (FBC) allows the burning of high sulphur (...in situ capture of S (removal of ...

M. Hope-Simpson; W. Richards

2003-01-01T23:59:59.000Z

77

Application of Multivariable Model Predictive Advanced Control for a 2310T/H CFB Boiler Unit  

Science Journals Connector (OSTI)

When a CFB boiler is in automatic control, there are ... non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB adv...

Zhao Weijie; Dai Zongllao; Gou Rong

2010-01-01T23:59:59.000Z

78

Evaluating the fluidized bed combustion options  

SciTech Connect (OSTI)

The proceedings from a conference on fluidized bed combustion are now available. The book discusses the immediate availability of atmospheric fluidized bed combustion technology as a practical, environmentally sound option for burning all grades of coal, wood, wood wastes, and biomass. The economics and technical fundamentals of atmospheric FBC are explained for the benefit of owners and managers of industrial boilers, boiler operators, architects/engineers, boiler manufacturers, and fuel suppliers. More than 15 FBC experts have contributed their expertise and experiences to the book.

Sheahan, R.T. (ed.)

1984-01-01T23:59:59.000Z

79

Twelfth annual fluidized bed conference  

SciTech Connect (OSTI)

The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1996-12-31T23:59:59.000Z

80

Recovery Boiler Corrosion Chemistry  

E-Print Network [OSTI]

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields  

Science Journals Connector (OSTI)

Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 ... 5 million tons o...

H. Arro; T. Pihu; A. Prikk; R. Rootamm

2010-01-01T23:59:59.000Z

82

OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers  

Science Journals Connector (OSTI)

Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) boilers. If control systems fail to...the ground truth..., (2)handling noise and abrupt concept ...

Indr? liobait?; Jorn Bakker; Mykola Pechenizkiy

2009-01-01T23:59:59.000Z

83

Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler  

Science Journals Connector (OSTI)

Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (?) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercrit...

P. Zhang; J. F. Lu; H. R. Yang; J. S. Zhang

2010-01-01T23:59:59.000Z

84

Digital radiographic systems detect boiler tube cracks  

SciTech Connect (OSTI)

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

85

Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler  

Science Journals Connector (OSTI)

Gas solid flow characteristics in cyclones inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10?1....Figs...

J. Y. Tang; X. F. Lu; J. Lai; H. Z. Liu

2010-01-01T23:59:59.000Z

86

Recovery Boiler Modeling  

E-Print Network [OSTI]

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

87

Boilers and Fired Systems  

SciTech Connect (OSTI)

This chapter examines how energy is consumed, how energy is wasted, and opportunities for reducing energy consumption and costs in the operation of boilers.

Parker, Steven A.; Scollon, R. B.

2009-07-14T23:59:59.000Z

88

Fluidized bed combustion picks up steam  

SciTech Connect (OSTI)

Industrial interest in fluidized-bed combustion (FBC) continues, although the technology has been slow to enter the marketplace. Two FBC pilot plants funded by DOE and one commercial size project are in operation. FBC designs and commercial warranties are already available from the boiler industry, but 1981 was the first year to see significant numbers of privately-funded orders, now numbering 38 out of 50 boilers. Manufacturers are working on a universal boiler able to accept any fuel, but potential users are wary of new technology without a long-term demonstration of reliability and economics. There is interest in second generation designs, a new shallow-bed design suitable for retrofitting, and circulating bed types that decouple the combustion system from the heat removal system. (DCK)

Lawn, J.

1982-02-01T23:59:59.000Z

89

Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

90

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

91

DoD ESTCP Energy Test Bed Project  

Broader source: Energy.gov (indexed) [DOE]

ESTCP Energy Test Bed Project ESTCP Energy Test Bed Project EW-201016 "High Efficiency - Reduced Emissions Boiler Controls" 23 May 2012 Dr. Jim Galvin ESTCP Program Manager for Energy & Water ESTCP Energy Test Bed Project Location 2 3 Boiler Efficiency Improvement Demo Oxygen Sensor Servo Controls * 90% of boilers lack automated controls * State of the art automated controls sense only oxygen * Demonstrated prototype sensed oxygen and carbon monoxide Prototype CO Sensor Key Findings Boiler Before Demo 4 * Size: 25 MMBtu * Age: 30 years * Fuel: Natural Gas or Oil * Demo performed by United Technologies Research Center * Technology demonstrated: Fireye PPC4000 (Oxygen trim control) * Upgraded PPC4000 tested as a prototype 5 Three Phased Test ● Test Phase 1: Existing Legacy System (baseline)

92

Material balance in atmospheric fluidized-bed combustion of North Dakota lignite  

SciTech Connect (OSTI)

The cyclone/fabric filter system limited particulate emissions to extremely low levels of only 0.00026 lb/10/sup 6/ Btu to 0.00040 lb/10/sup 6/ Btu. Emissions, in the flue gas, of trace and minor elements were very low when compared to a well controlled conventional boiler and to environmental goals. The majority of the trace and minor elements left the FBC system in the primary cyclone catch and the bed drain. Emissions in the flue gas of many trace and minor elements were less than 0.1 percent of the total input to the FBC system. Trace and minor element material balance in FBC systems can be difficult to close unless problems with changes in bed inventory are minimized by long periods of steady state operation.

Hall, R.R.; McCabe, M.M.; McGrath, D.; Sears, D.R.

1982-01-01T23:59:59.000Z

93

NOx Emission Reduction by the Optimization of the Primary Air Distribution in the 235Mwe CFB Boiler  

Science Journals Connector (OSTI)

The article presents the results of experimental studies conducted on a large-scale 235 MWe CFB (Circulating Fluidized Bed) boiler, in which...x emission has been reduced by up to ten percent and the temperature ...

P. Mirek; T. Czakiert; W. Nowak

2010-01-01T23:59:59.000Z

94

Real-time Model and Simulation of Combustion System in a 440t/h CFB Boiler  

Science Journals Connector (OSTI)

A real-time simulation model for a 440t/h circulating fluidized bed (CFB) is presented. The dynamic mathematical model ... predict the static and dynamic characters of the CFB boiler, on the basis of principle an...

Xiaolong Gou; Zhiheng Zhang

2007-01-01T23:59:59.000Z

95

In-bed tube bank for a fluidized-bed combustor  

DOE Patents [OSTI]

An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

Hemenway, Jr., Lloyd F. (Morgantown, WV)

1990-01-01T23:59:59.000Z

96

Atmospheric fluidized-bed combustion. Technology status report  

SciTech Connect (OSTI)

The goal of DOE/METC's AFBC activities is to establish an engineering technology base by 1990, from which the industrial, commercial, and residential sectors can build and operate coal-fired AFBC systems. These systems will be capable of economically generating process steam, direct and indirect heat, and onsite electric power from coals of all ranks and sulfur contents in an environmentally acceptable manner. First-generation atmospheric fluidized-bed technology is considered commercial; a number of US boiler manufacturers are offering commercial units. However, many of these first units are products of empirical design and offer marginal gains in economics, performance, and reliability over conventional systems. In order to resolve the remaining technical issues and to broaden the market, DOE is pursuing advanced concepts. Development of this second-generation AFBC technology is directed toward small industrial, commercial, and residential applications. Penetration of these potential markets will require: (1) a 20 to 30% reduction in capital and operating costs over first-generation technology; (2) significant improvements in performance and reliability; and (3) compliance with existing and proposed New Source Performance Standards for environmental emissions. Current AFBC activities address: industrial operations, advanced concepts, and technology development. Four AFBC demonstration projects were active in FY 1984. The development of AFBC technology is directly supported by the evaluation of five advanced concepts by the M.W. Kellogg Company (circulating-bed FBC), Battelle Columbus Laboratories (spouted-bed FBC), Aerojet Energy Conversion Company (moving-bed FBC), Howard University (staged cascade FBC), and Arthur D. Little, Inc. (pulsed-bed FBC). These concepts may improve the economics and performance. 13 refs., 11 figs.

Not Available

1984-10-01T23:59:59.000Z

97

Test study of salty paper mill waste in a bubbling fluidized bed combustor  

SciTech Connect (OSTI)

Foster Wheeler Pyropower Inc. has supplied a 73.7 kg/s bubbling fluidized bed boiler to MacMillan Bloedel's Powell River paper mill (now Pacifica Paper). The BFB boiler was designed to fire a fuel mixture of a mill effluent sludge and a hog fuel (bark) that is contaminated with seawater. Due to its very high alkali content and low ash content, the fuel is prone to cause problems such as agglomeration in the fluidized bed. Foster Wheeler and MacMillan Bloedel took a proactive approach to quantify likely problems and to identify solutions. A 200 hour-long test program was carried out at Foster Wheeler Development Corporation in Livingston, New Jersey with the Powell River feedstock. This paper provides the project background, an outline of the test facility, test matrix, fuel and bed material characteristics, followed by a test process overview. A summary of fuel alkali related agglomeration mechanism in fluidized bed is also included. The paper offers further observations on in-bed alkali accumulation as well as examinations of different types of bed material agglomerates found during the tests. A recommended boiler operating strategy for preventing agglomeration in the BFB boiler developed based on the test results is described. These recommendations have been successfully implemented during the start up of the boiler. The boiler has been in operation since November 1997. Boiler performance tests completed in April 1998 have demonstrated all guaranteed process conditions.

Wu, S.; Sellakumar, K.M.; Chelian, P.K.; Bleice, C.; Shaw, I.

1999-07-01T23:59:59.000Z

98

Disposal of boiler ash  

SciTech Connect (OSTI)

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

99

Erosion-corrosion of thermal sprayed coatings in FBC boilers  

Science Journals Connector (OSTI)

Varieties of bed ash and fly ash were retrieved from operating fluidized bed combustor (FBC) boilers firing different fuels in North America and Europe. Using these ashes, the relative erosion-corrosion resistances of HVOF Cr3C2?NiCr coating and several other thermal sprayed coatings were determined in an elevated temperature blast nozzle erosion tester. Test conditions attempted to simulate erosive conditions found at the refractorywaterwall interface and in the convection pass region in tubular heat exchangers of FBC boilers. Erosion-corrosion (E-C) wastage mechanisms of the structural metals (AISI 1018, ASTM SA213-T22) were discussed and compared with the E-C wastage of HVOF Cr3C2?NiCr cermet coatings. The relatively different erosivities of ashes retrieved from North America and from Europe were also discussed.

Buqian Wang

1996-01-01T23:59:59.000Z

100

THE CFB SUMMERSIDE PROJECT INITIAL OPERATING EXPERIENCE WITH 18 TPH AFBC HEATING BOILERS  

Science Journals Connector (OSTI)

ABSTRACT Initial operating experience with Canada's first commercial FBC boiler plant, located at CFB Summerside, PEI, is described. The plant, consisting of two boilers rated at 18,000 kg/h of steam at MCR, operating at 965 kPa saturated steam, is designed for high-sulphur coal with supplementary firing of wood chips. The boilers were operated intermittently from December 1982 until May 1983, and in May one boiler was subjected to an acceptance test campaign of about two weeks, during which it performed satisfactorily, at loads ranging from 110% MCR to the maximum design turndown ratio of 4.5:1. Assessment of its performance in terms of efficiency and emissions awaits completion of laboratory analyses and data reduction. Careful control of limestone sizing is required to avoid the problems with cold fluidization which were encountered during commissioning. Also, high moisture and fines in the coal caused significant problems in the materials handling system. Some erosion of boiler tubes in the bed zone was observed. The affected areas were covered with a thin layer of hard refractory to prevent further deterioration. This does not appear to have a detrimental effect on steam output. Further work remains to be done, but it appears likely that during the next heating season both boilers will be fully commissioned and all requirements for acceptance will be met. KEYWORDS Fluidized-bed combustion, coal combustion, boiler operation.

V.V. Razbin; F.D. Friedrich

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

SciTech Connect (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Powers Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: scale up of gas to solid heat transfer high temperature finned surface design the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

102

Study on the Respirable Particulate Matter Generated from the Petroleum Coke and Coal Mixed-Fired CFB Boiler  

Science Journals Connector (OSTI)

The dust generated from the fuel combustion is one of the important sources for air pollution. This paper has made a comprehensive research on the particulate matter generated from the petroleum coke and coal mixed-fired circulating fluidized bed (CFB) ... Keywords: petroleum coke, respirable particulate matter, air pollution, circulating fluidized bed boiler

Yan Ma; Hao Bai; Lihua Zhao; Yang Ma; Daqiang Cang

2010-12-01T23:59:59.000Z

103

Bed material agglomeration during fluidized bed combustion. Final report  

SciTech Connect (OSTI)

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1996-01-01T23:59:59.000Z

104

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect (OSTI)

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

105

CFD Modelling Applied to the Co-Combustion of Paper Sludge and Coal in a 130 t/h CFB Boiler  

Science Journals Connector (OSTI)

Three-dimensional mathematical model has been developed as a tool for co-combustion of paper sludge and coal in a 130 tJh Circulating Fluidized Bed (CFB) boiler. Mathematical methods had been used ... FLUENT for ...

Z. S. Yu; X. Q. Ma; Z. Y. Lai; H. M. Xiao

2010-01-01T23:59:59.000Z

106

Bromine and Chlorine in Aerosols and Fly Ash when Co-Firing Solid Recovered Fuel, Spruce Bark and Paper Mill Sludge in a 80MWth BFB Boiler  

Science Journals Connector (OSTI)

Aerosol and fly ash sampling was carried out at a 80MWth bubbling fluidised bed (BFB) boiler plant co-firing solid recovered fuel (SRF), spruce bark and paper mill ... conditions. The SRF-Bark ratio in the fuel m...

P. Vainikka; J. Silvennoinen; P. Yrjas

2010-01-01T23:59:59.000Z

107

Refractory experience in circulating fluidized bed combustors, Task 7  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

108

Circulating fluidised-bed combustion  

SciTech Connect (OSTI)

Steam generators with circulating fluidized-bed combustion systems (CFBC) are characterized by a high degree of environmental comparability and a wide acceptance for FBC boiler plants involving a wide fuel spectrum which ranges from dried brown coal to high-ash coal and low-volatile bituminous coal as well as wood waste and bark. These plants incorporate a variety of CFBC systems. The choice in favor of different system options was not motivated by the inherent fuel properties but has evolved from the progressive advancement in power station FBC technology. The article elucidates several FBC system variants.

Rettemeier, W.; von der Kammer, G. (Steinmueller (L.u.C.) GmbH, Gummersbach (Germany, F.R.))

1990-01-01T23:59:59.000Z

109

Return Condensate to the Boiler  

Broader source: Energy.gov [DOE]

This tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

110

Improve Your Boiler's Combustion Efficiency  

SciTech Connect (OSTI)

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

111

Boiler Stack Economizer Tube Failure  

Science Journals Connector (OSTI)

A metallurgical evaluation was performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer. The tube had three distinct degradation mechanisms...

Ryan J. Haase; Larry D. Hanke

2013-10-01T23:59:59.000Z

112

Minimize Boiler Short Cycling Losses  

Broader source: Energy.gov [DOE]

This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

113

Oxy-Combustion Boiler Material Development  

SciTech Connect (OSTI)

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

114

Oxy-Combustion Boiler Material Development  

SciTech Connect (OSTI)

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

115

Boiler Maximum Achievable Control Technology (MACT) Technical...  

Broader source: Energy.gov (indexed) [DOE]

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, May 2014 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

116

Covered Product Category: Commercial Boilers | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

be brought online quickly, therefore avoiding the need to keep a boiler on hot standby. Remote monitoring capability: Remote monitoring capability is useful to manage boiler...

117

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report  

SciTech Connect (OSTI)

The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

Holzman, M.I.

1995-08-01T23:59:59.000Z

118

Energy Efficiency Opportunities in EPA's Boiler Rules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

119

Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study  

SciTech Connect (OSTI)

The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

Jack A. Fuller; Harvie Beavers; Robert Bessette [West Virginia University, Morgantown, WV (United States). College of Business and Economics

2006-06-15T23:59:59.000Z

120

Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant  

Science Journals Connector (OSTI)

Abstract Lignite-based polygeneration system has been considered as a feasible technology to realize clean and efficient utilization of coal resources. A newly polygeneration system has been proposed, featuring the combination of a 2נ300MW circulating fluidized bed (CFB) power plant and atmospheric pressure fluidized bed pyrolyzers. Xiaolongtan lignite is pyrolyzed in pyrolyzers. Pyrolyzed volatiles are further utilized for the co-generation of methanol, oil, and electricity, while char residues are fired in CFB boilers to maintain the full load condition of boilers. Detailed system models were built, and the optimum operation parameters of the polygeneration plant were sought. Technical and economic performances of optimum design of the polygeneration plant were analyzed and compared with those of the conventional CFB power plant based on the evaluation of energy and exergy efficiency, internal rate of return (IRR), and payback period. Results revealed that system efficiency and the IRR of the polygeneration plant are ca. 9% and 14% points higher than those of the power plant, respectively. The study also analyzed the effects of market fluctuations on the economic condition of the polygeneration plant, and found that prices of fuel, material, and products have great impacts on the economic characteristics of the polygeneration plant. Polygeneration plant is more economic than CFB power plant even when prices fluctuate within a wide range. This paper provides a thorough evaluation of the polygeneration plant, and the study indicates that the proposed polygeneration plant has a bright prospect.

Zhihang Guo; Qinhui Wang; Mengxiang Fang; Zhongyang Luo; Kefa Cen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant  

Science Journals Connector (OSTI)

Abstract The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the optimized boiler combustion can keep higher heat transfer efficiency than that of the non-optimized boiler combustion. The software is developed to realize the proposed method and obtain the encouraging results through combining ANSYS 14.5, ANSYS Fluent 14.5 and CORBA C++.

Xingrang Liu; R.C. Bansal

2014-01-01T23:59:59.000Z

122

Fluidized-bed retrofit a practical alternative to FGD  

SciTech Connect (OSTI)

When SO/sub 2/ emissions from an existing utility boiler must be reduced, retrofitting for fluidized-bed combustion may be an attractive alternative. In addition to reducing atmospheric pollutants during combustion, FBC retrofits allow simultaneous burning of a wide range of low-cost fuels. Also, since new components are incorporated in the steam generator rather than added on as pollution-control equipment, they extend the use of the plant beyond its normal life expectancy. There are five types of fossil-fuel-fired boilers used by utilities (pulverized coal, cyclone, stoker, oil, and gas), and literally hundreds of designs. Not all of these designs lend themselves to FBC retrofit, and much depends on the size and age of the boiler. Units that are not structurally sound or that have extensive internal corrosion are generally not suitable. Boilers over 150 MW usually have complicated water circuitry and small furnace plan areas, and may not have enough space to accommodate the fluidized bed. Other important considerations are: Water/steam-circulation design, Furnace bottom-to-grade clearance, Air-heater type and arrangement, Boiler support, Type of particulate-control device, Fan capacity, Space available in the boiler island for alterations.

Stringfellow, T.E.; Nolte, F.S.; Sage, W.L.

1984-02-01T23:59:59.000Z

123

Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

124

Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation  

Science Journals Connector (OSTI)

Abstract Two oil shale combustion technologies, pulverized firing (PF) and circulated fluidized bed (CFB) were compared with respect to partitioning of selected elements (Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Th, Tl, U, V, and Zn) in the ashes along the flue gas ducts. The ash samples were characterized by high-resolution ICP-MS. The average contents of toxic heavy metals in fly ash samples from the CFB boiler are lower compared to the PF boiler. Main differences in trace element contents between combustion technologies were as follows: Cd content in the fly ash samples of PF boiler was up to 0.9mg/kg while in CFB boiler it remained below 0.1mg/kg in all analyzed ash samples; Hg was observed in the ashes of electrostatic precipitator (ESP) of CFB boiler while in the PF boiler it was close to or below detection limit. In the PF boiler content of Sn was detected only in the ashes of ESPs, while in CFB boiler it was evenly distributed between bottom and fly ash samples. Highest content among heavy metals in ash samples was observed for Pb in the last field of ESP of the PF boiler (142mg/kg).

Janek Reinik; Natalya Irha; Eiliv Steinnes; Gary Urb; Jekaterina Jefimova; Eero Piirisalu; Jri Loosaar

2013-01-01T23:59:59.000Z

125

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

126

Oxy-combustion Boiler Material Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

127

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion Boiler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Combustion Boiler Material Development Oxy-Combustion Boiler Material Development Project No.: DE-NT0005262 CLICK ON IMAGE TO ENLARGE Foster Wheeler Oxy-combustion CFD Graphic The objectives of this Foster Wheeler Corporation-managed program are to assess the corrosion characteristics of oxy-combustion relative to air-fired combustion; identify the corrosion mechanisms involved; and determine the effects of oxy-combustion on conventional boiler tube materials, conventional protective coatings, and alternative materials and coatings when operating with high to low sulfur coals. The program involves the prediction of oxy-combustion gas compositions by computational fluid dynamic calculations, exposure of coupons of boiler materials and coverings coated with coal ash deposit to simulated oxy-combustion gases in electric

128

Minimize Boiler Short Cycling Losses  

SciTech Connect (OSTI)

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

129

Great lakes fluidized-bed combustion. Final report  

SciTech Connect (OSTI)

A program was conducted to design, construct, and operate an industrial fluidized bed combustion (FBC) boiler demonstration plant with a capacity of 50,000 lb/h steam. The following were the objectives of the program: (1) to extend the fluidized bed boiler design by employing natural circulation cooling; (2) to design, build, operate, test, and demonstrate a fluidized bed boiler that could burn high sulfur coal in an environmentally acceptable manner; and (3) to obtain sufficient data for industry to make an objective appraisal of fluidized bed coal burning boilers. Following a five-year design, development, and construction effort, the demonstration plant was first operated in June of 1981. Initial operation identified several equipment and operating problems, particularly in the areas of the fuel preparation and fuel feed systems. Unit operation and availability steadily improved, culminating in a 30-day continuous run ending in May 1982. Following shutdown, major problem areas such as bed tube failures were addressed by C-E and rectified prior to the start of the test program. Shakedown/testing operation commenced on August 12, 1983. The objectives for the test program were to establish the unit operating conditions required to optimize SO/sub 2/ removal and combustion efficiency for different operating modes, and to evaluate the long-term performance of components which are essential for reliable FBC operation. A total of 23 tests were run from February 16, 1984 to April 19, 1984. The test results demonstrated that FBC is an environmentally and commercially sound technology. Specificially, the required sulfur removal, low NO/sub x//CO emissions and high combustion efficiencies can be readily achieved. This report identifies the effects of recycle, excess air, Ca/S mole ratio, and overfire air on combustion efficiency, boiler efficiency, and emissions. 6 refs., 97 figs., 8 tabs.

Not Available

1985-12-01T23:59:59.000Z

130

Six years of ABB-CE, petcoke and fluid beds  

SciTech Connect (OSTI)

Combustion Engineering, Inc. (ABB-CE) has constructed twenty circulating fluidized bed (CFB) boilers and 2 bubbling fluidized bed (BFB) boilers throughout North America. The units were designed to fire a wide range of fuels from anthracite culm to coals, lignites and biomasses. Based on fuels economics, some plants have decided to use petroleum coke as a replacement or supplemental fuel. The fluid bed boiler can inherently handle a wide range of fuel types without requiring modification or down-rating. ABB-CE units have a significant amount of petroleum coke operating experience firing 100% petroleum coke with no supplemental fuel ranging from the first commercial CFB unit at New Brunswick Power to the largest CFB unit at Texas New Mexico Power. Petroleum coke is also being co-fired with anthracite culm at the Scott Paper CFB. The world`s largest operating BFB, the 160 MWe unit at TVA`s Shawnee plant, has also been co-firing petroleum coke. The ability of the fluidized bed technology to fire low volatile fuels such as petroleum cokes, efficiently and in an environmentally acceptable manner will result in the use of this technology as a preferred means of power generation. This report gives a brief description of the petroleum coke firing experiences with ABB-CE fluid bed steam generators over the last six years.

Tanca, M.

1994-12-31T23:59:59.000Z

131

Furnace and Boiler Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

132

Furnaces and Boilers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

133

Numerical Simulation in a Supercirtical CFB Boiler  

Science Journals Connector (OSTI)

The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many ... simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. ... th...

Yanjun Zhang; Xiang Gaol; Zhongyang Luo

2010-01-01T23:59:59.000Z

134

New Concept of CFB Boiler with FGD  

Science Journals Connector (OSTI)

This paper introduces the technology characteristic of CFB Boiler with CFB-FGD on the basis of the summary of desulfurization principle in CFB boiler. The technology can overcome disadvantage of...

Pan Xueqin

2009-01-01T23:59:59.000Z

135

EXHAUST GAS BOILER FIRE PERVENTION  

E-Print Network [OSTI]

Today's demands for better overall usability of fuel oil in large two-stroke low speed marine diesel engines greatly influenced their development, and the purity of their exhaust gases. With this paper we would like to indicate on to factors which directly influence on soot forming, deposition and cause of occurance of fire in exhaust gas boiler (EGB). Due the fact that a fire in the EGB can result in complete destruction of the boiler, and a longer interruption of the vessel commercial operations, crew must be familiar with the main reasons of soot deposition on the boiler tubes and elements and origination of fire, and to have taken proper and timely protection measures 1.

Branko Lali? Dipl. Ing; Mr. Ivan Komar; Dipl. Ing

136

Sootblowing optimization for improved boiler performance  

DOE Patents [OSTI]

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

137

Boiler Combustion Control and Monitoring System  

Broader source: Energy.gov [DOE]

Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

138

Chlorine in Solid Fuels Fired in Pulverized Fuel Boilers Sources, Forms, Reactions, and Consequences: a Literature Review  

Science Journals Connector (OSTI)

Chief Fuels and Combustion Engineer, Foster Wheeler North America Corp ... Reportedly, the operators of these boilers did not find systematic increases in maintenance problems of the combustion system that could directly attribute to the use of high chlorine content coal. ... A study of chlorine behavior in a simulated fluidized bed combustion system ...

David A. Tillman*; Dao Duong; Bruce Miller

2009-04-01T23:59:59.000Z

139

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect (OSTI)

Coal-fired power plants are a significant part of the nation???¢????????s power generating capacity, currently accounting for more than 55% of the country???¢????????s total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760???????°C (1400???????°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

David W. Gandy; John P. Shingledecker

2011-05-11T23:59:59.000Z

140

Covered Product Category: Commercial Boilers  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.  

E-Print Network [OSTI]

??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, (more)

Yang, Dong

2008-01-01T23:59:59.000Z

142

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

143

In-Field Performance of Condensing Boilers  

Broader source: Energy.gov (indexed) [DOE]

IN-FIELD PERFORMANCE OF CONDENSING IN-FIELD PERFORMANCE OF CONDENSING BOILERS Lois B. Arena Steven Winter Associates, Inc. March 2012 Why Research Hydronic Heating? © 2012 Steven Winter Associates, Inc. All rights reserved Reasons to Research Boilers  Approx. 14 million homes (11%) in the US are heated with a steam or hot water system  Almost 70 percent of existing homes were built prior to 1980  Boilers built prior to 1980 generally have AFUE's of 0.65 or lower  Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.  Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no

144

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect (OSTI)

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

145

Miscellaneous comments on boiler control tuning  

SciTech Connect (OSTI)

This article is about boiler control tuning, a task both difficult and important. Why is tuning of the boiler control so difficult Because it is essentially one large, interactive, non-linear control loop, which does not lend itself to automatic tuning. Why is good tuning of the boiler control so important Because it impacts boiler and turbine efficiency, unit ramp rate and generation error, unit turn-down (low load operation), and unit availability (ability to survive process upsets and equipment failures). Can you improve boiler operation through tuning alone Yes, if the practitioner of this art is competent, boiler control tuning can cover-up a multitude of sins. However, it is best to combined tuning with a new control system, appropriate control strategies, good measurements and small deadband actuators. This paper describes the basics of boiler control tuning.

Keller, G.Y. (Burns and Roe Enterprises, Oradell, NJ (United States))

1994-01-01T23:59:59.000Z

146

Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers  

DOE Patents [OSTI]

A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

Tuttle, Kenneth L. (Federal Way, WA)

1980-01-01T23:59:59.000Z

147

Boiler - tuning basics, part 1  

SciTech Connect (OSTI)

Tuning power plant controls takes nerves of steel and an intimate knowledge of plant systems gained only by experience. Tuning controls also requires equal parts art and science, which probably is why there are so few tuning experts in the power industry. In part 1 of a two-part series, the author explores a mix of the theoretical and practical aspects of tuning boiler control. 5 figs.

Leopold, T. [ABB Inc. (United States)

2009-03-15T23:59:59.000Z

148

Regenerative Boiler Feedwater Heater Economics  

E-Print Network [OSTI]

REGENERATIVE BOILER FEEDWATER HEATER ECONOMICS William L. Viar, PE waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT The basic Rankine Vapor Cycle has been r,~peatedly modified to improve efficiency. Always, the objective....g., first and second laws of thermodynamics) have improved and contributed to the evolution. The demands for larger systems with higher performance have been persistent. Progress i ve changes in the app1icat ion of the fundamental Rankine cycle have...

Viar, W. L.

149

List of Boilers Incentives | Open Energy Information  

Open Energy Info (EERE)

Boilers Incentives Boilers Incentives Jump to: navigation, search The following contains the list of 550 Boilers Incentives. CSV (rows 1-500) CSV (rows 501-550) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

150

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network [OSTI]

firing cycle, resulting in heat losses. Second, heat is lost from the natural convective draft through a boiler when not firing. Third, boilers run less efficiently in high fire than in low fire, since the ratio of heat transfer area to heat input... firing cycle, resulting in heat losses. Second, heat is lost from the natural convective draft through a boiler when not firing. Third, boilers run less efficiently in high fire than in low fire, since the ratio of heat transfer area to heat input...

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

151

Stress-Assisted Corrosion in Boiler Tubes  

SciTech Connect (OSTI)

A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

Preet M Singh; Steven J Pawel

2006-05-27T23:59:59.000Z

152

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect (OSTI)

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

153

Minimize Boiler Blowdown | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blowdown (January 2012) More Documents & Publications Install an Automatic Blowdown-Control System Recover Heat from Boiler Blowdown Consider Installing a Condensing Economizer...

154

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network [OSTI]

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

155

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

156

Low emission boiler system: Clean and efficient power from coal  

SciTech Connect (OSTI)

The US Department of Energy, Federal Energy Technology Center, is working with private industry to develop the Low Emission Boiler System (LEBS), an advanced coal-fired power generation system for the 21st century. LEBS will provide the utility industry with an opportunity to meet the anticipated increase in electricity demand throughout the world by offering cleaner and more efficient coal-fired power plants. LEBS has significantly higher thermal efficiency, superior environmental performance and a lower cost of electricity than conventional coal-fired systems. This paper presents an overall summary of the LEBS program.

Ruth, L.; Winslow, J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

157

An innovative bed temperature-oriented modeling and robust control of a circulating fluidized bed combustor  

Science Journals Connector (OSTI)

Circulating fluidized bed (CFB) combustion systems are increasingly used as superior coal burning systems in power generation due to their higher efficiency and lower emissions. However, because of their non-linearity and complex behavior, it is difficult to build a comprehensive model that incorporates all the system dynamics. In this paper, a mathematical model of the circulating fluidized bed combustion system based on mass and energy conservation equations was successfully extracted. Using these correlations, a state space dynamical model oriented to bed temperature has been obtained based on subspace method. Bed temperature, which influences boiler overall efficiency and the rate of pollutants emission, is one of the most significant parameters in the operation of these types of systems. Having dynamic and parametric uncertainties in the model, a robust control algorithm based on linear matrix inequalities (LMI) have been applied to control the bed temperature by input parameters, i.e. coal feed rate and fluidization velocity. The controller proposed properly sets the temperature to our desired range with a minimum tracking error and minimizes the sensitivity of the closed-loop system to disturbances caused by uncertainties such as change in feeding coal, while the settling time of the system is significantly decreased.

Aboozar Hadavand; Ali Akbar Jalali; Parviz Famouri

2008-01-01T23:59:59.000Z

158

FBC (fluidized-bed combustors) engineering correlations for estimating the combustion efficiency of a range of fuels  

SciTech Connect (OSTI)

Simplified engineering correlations are presented for estimating the combustion efficiency of a wide range of fuel types in fluidized bed boilers. The correlations are presented in such a way that they can be applied to various boiler designs, including both bubbling and circulating beds. Major emphasis is placed on minimizing the boiler design and operating details required, thereby enhancing the usefulness of these methods as screening tools. The impact of fuel type is addressed by making use of the fuel characterization parameters measured by the Babcock and Wilcox Company for the Electric Power Research Institute. It is demonstrated that the methods described give combustion efficiency estimates that agree well with typical observations from some well-documented fluidized bed combustion test facilities. 16 refs., 9 figs., 1 tab.

Daw, C.S.; Chandran, R.R.; Duqum, J.N.; Perna, M.A.; Petrill, E.M.

1989-01-01T23:59:59.000Z

159

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

160

Single-loop controllers bring boilers in line  

SciTech Connect (OSTI)

The boiler process seems simple. Some type of fuel is burned in the presence of air, forming heat and combustion gases. The heat is then absorbed by the boiler drum and transferred to the water inside. The heated water changes to steam and is exhausted, which spins an electrical turbine that produces electricity, and exhausts lower pressure steam for condensing in the process. Although this process seems simple, anything could go wrong at any time. The flame could go out, the fuel could run low, or the drum could get dirty. Let`s take a look at how to avoid these problems. The first step is to take accurate measurements. Typically, these measurements include flow, pressure, conductivity, temperature, stack analysis, and a level or two. Ambient conditions can affect performance of each measuring device, so be sure to consider the hot, drafty conditions of boiler houses when selecting/installing devices. The second step is to bring the measurement signals back to the control room. Use two-wire, loop-powered devices to transmit all signals except the stack analysis signals. Two-wire, loop-powered technology increases reliability, lowers installation costs, and eliminates ground loops. Signal conditioning takes place at the microcontroller input points. Signal conditioning is done to provide a linear, overall loop response to the controller. It also simplified measurement. Examining four types of input signal characterization will help explain the signal conditioning process. The first signal is a zero-based pressure signal with a linear characteristic. The second is a temperature measurement made by a thermocouple whose output is nonlinear. Next is a flow measurement made with a conventional d/p cell and orifice plate. It needs a square root characterization. Last is a combustion air flow measurement from the pressure drop across part of the boiler or preheater. This flow measurement is quite tricky because of a large deviation from the simple square root relationship.

Harrelson, D.; Piechota, B.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

162

Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry  

SciTech Connect (OSTI)

This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt mixtures and compared with sodium-based binary and higher order systems. Predictions and measurements were demonstrated for both salt systems and for some more complex silicate-bearing systems, substantially exceeding the original scope of this work. 4. A multi-dimensional model of char bed reactivity developed under this project demonstrated that essentially all reactions in char beds occur on or near the surface, with the internal portions of the bed being essentially inert. The model predicted composition, temperature, and velocity profiles in the bed and showed that air jet penetration is limited to the immediate vicinity of the char bed, with minimal impact on most of the bed. The modeling efforts substantially exceeded the original scope of this project. 5. Near the completion of this project, DOE withdrew the BYU portion of a multiparty agreement to complete this and additional work with no advanced warning, which compromised the integration of all of this material into a commercial computer code. However, substantial computer simulations of much of this work were initiated, but not completed. 6. The gasification modeling is nearly completed but was aborted near its completion according to a DOE redirection of funds. This affected both this and the previous tasks.

Baxter, Larry L.

2008-06-09T23:59:59.000Z

163

A Methodology for Optimizing Boiler Operating Strategy  

E-Print Network [OSTI]

Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required...

Jones, K. C.

1983-01-01T23:59:59.000Z

164

Black liquor combustion validated recovery boiler modeling, five-year report  

SciTech Connect (OSTI)

The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1996-08-01T23:59:59.000Z

165

Direct measurement of particle motion in a large-scale FBC boiler model  

SciTech Connect (OSTI)

One of the difficulties of designing fluidized bed combustion boilers is that motion of fluidized particles is uncertain in a large commercial-scale boiler. The authors constructed a large atmospheric fluidized bed model with mock-up tubes and obstacles that were nearly equivalent in size to a commercial-scale bed. The model was used to measure motion and diffusivity of particles from an inserted nozzle. The model had a length of 2.3m, a width of 1.7m and a total height of 8.2m. The bed height was adjusted to about 4m. Motion of particles was measured by a small cantilever on which strain gauges were attached. Before measurement, strain rate of the cantilever was correlated to particle velocity by a certain experimental formula. In order to measure overall motion of particles, a pipe with this cantilever was inserted into the bed and traversed at certain horizontal levels then these data were converted to particle velocity distributions. In the diffusion experiments, tracer particles were injected from the nozzle for a certain period then fluidizing air was terminated immediately. The baffle plate effect on the diffusivity was examined by measuring the mixing rate of tracer particles. Diffusion of particles was compared with unsteady diffusion calculations. Results are summarized as follows: (1) No significant difference was seen in particle velocity distribution when measurement level of the bed was shifted inside a bunch of tubes; (2) Average velocity of particles approximately ranged from {minus}0.02 to 0.02 m/s in the region of the tubes; (3) The vertical diffusion rate of particles was roughly several times higher than their horizontal diffusion rate; and (4) An effect of the baffle plate on particles diffusion was limited. The baffle plate seemed to enhance horizontal diffusion of injected particles only in the vicinity of it.

Ito, Osamu; Kawabe, Ryuhei; Miyamoto, Tomohiko; Orita, Hisayuki; Mizumoto, Mamoru; Miyadera, Hiroshi; Tomuro, Jinichi; Hokari, Nobuyuki; Iwase, Tetsuya

1999-07-01T23:59:59.000Z

166

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents [OSTI]

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

167

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents [OSTI]

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

168

Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler  

Science Journals Connector (OSTI)

The first 100MW CFB boiler, designed by the Thermal Power Research ... burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and ... got afte...

Zhiwei Wang; Wugao Yu; Shi Bo

2010-01-01T23:59:59.000Z

169

Fluidized Bed Technology - An R&D Success Story | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An R&D Success Story An R&D Success Story Fluidized Bed Technology - An R&D Success Story In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps the most significant advance in coal-fired boiler technology in a half century, was achieved largely through the technology program of the U.S. Department of Energy's Office of Fossil Energy (and its predecessors). The Interior Department's Office of Coal Research, one of the forerunners of the Energy Department, began studying the fluidized bed combustion concept in the early 1960s. The original goal was to develop a compact "package" coal boiler that could be pre-assembled at the factory and shipped to a plant site (a lower cost

170

Experimental research on combustion characteristics of pulverized-coal fluidized bed  

SciTech Connect (OSTI)

A new, efficient clean coal combustion method, pulverized-coal fluidized bed combustion (PC-FBC) is proposed firstly in this paper. Research has been conducted on the combustion characteristics of PC-FBC on an experimental rig with 0.3 MW heat input. PC-FBC uses pulverized-coal as its fuel and integrates the characters of the pulverized coal boiler and the fluidized bed boiler. In 850 to 880 C fluidized-bed combustion zone (FBCZ) of PC-FBC, the pulverized coal can be ignited stably and releases 57.7 to 84.2% volatile substance. Seventy (70%) of the released volatile and a part of carbon are burnt in FBCZ. The highest and average gas temperatures are 1100 C and 950 to 1000 C respectively in PC-FBC. A combustion efficiency of 98 to 99% can be reached.

Cheng, H. [North China Electric Power Univ., Baoding, Hebei (China); Jin, B.; Xu, Y. [Southeast Univ., Nanjing, Jiangshu (China)

1997-12-31T23:59:59.000Z

171

Parametric study of a firetube boiler performance  

SciTech Connect (OSTI)

Critical areas in the design of commercial and industrial firetube boilers are burner and furnace configuration, as is the resultant heat transfer from the furnace wall to the water under the various conditions. Furthermore, performance of industrial and commercial boilers is mainly dependent upon their material and geometrical dimensions. In order to investigate boiler performance globally, a relatively simple model which can be processed in a personal computer (PC) is proposed. In this paper, the effects of thermo-physical parameters on the energy and exergy performance of a firetube boiler are studied by using a simple model for the combustion product gas behavior through the boiler passes. For each steady-state condition, the boiler performance is investigated by parametrically changing the degree of inception of nucleate boiling, the tube wall emissivity, the saturation steam pressure, and the fraction of flue gas recirculation (FGR, utilized for NO{sub x} emissions reduction). Results for a set of parameters such as those considered in this work may be used in future firetube boiler design to improve performance and reduce manufacturing costs.

Park, H. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical and Industrial Engineering; Valentino, M.W. [Cleaver-Brooks, Milwaukee, WI (United States)

1995-12-31T23:59:59.000Z

172

Building Technologies Office: Residential Furnaces and Boilers Framework  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

173

Thermally sprayed coatings for boiler protection  

SciTech Connect (OSTI)

FBC boilers are large, expensive installations which suffer enormously from wear caused by corrosion, aggravated by high temperatures. The exact type of wear experienced varies from one part of a boiler to another and is influenced by the overall design of the boiler and the type of fuel burnt in it. Boiler manufacturers and users face a difficult choice in selecting materials to fight these problems. Inexpensive and easily worked metals, unfortunately, offer little resistance to the types of wear experienced in boilers, while alloys which are resistant to erosion and corrosion are very costly as well as being difficult to form and join. This paper presents a number of ways in which these material losses and related costs in boiler systems can be reduced by application of thermally sprayed coatings which lead to significant increases in service life. The selection of the coating material and of the correct deposition process can, today, be based on the results of laboratory tests (elevated temperature corrosion and erosion), small scale in-situ test coatings and on full scale FBC boiler protection coating utilization. Practical examples are given of thermal spray coatings which have been successfully applied to different kinds of FBC boilers including those burning coal, waste (chemical, industrial, household) and wood chips. The paper describes the procedures for applying coatings to boiler components, the properties of the resulting coatings and how best to select coating materials for use in some specific wear and corrosion environmentals. In addition, future trends in the utilization of thermally sprayed coatings are discussed.

Gustafsson, S.; Steine, H.T. [Eutectic and Castolin, Lausanne (Switzerland); Ridgway, W.F. [Eutectic and Castolin, New York, NY (United States)

1995-12-31T23:59:59.000Z

174

Resource recovery waste heat boiler upgrade  

SciTech Connect (OSTI)

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

175

New source performance standards for industrial boilers. Volume 5. Analysis of solid waste impacts  

SciTech Connect (OSTI)

This study provides an analysis of the impacts of emission controls on disposal of solid wastes from coal-fired industrial boilers. Examination is made of boiler systems, coal types, emission control alternatives, waste streams, waste disposal and utilization alternatives, and pertinent Federal regulations. Twenty-four representative model case scenarios are studied in detail. Expected disposal/utilization alternatives and disposal costs are developed. Comparison of the systems studied indicates that the most cost-effective SO/sub 2/ control technologies from the perspective of waste disposal cost per unit SO/sub 2/ control are, in decreasing order: physically cleaned coal/double alkali combination; double alkali; lime/limestone; spray drying; fluidized-bed combustion; and sodium throwaway.

Boldt, K.; Davis, H.; Delaney, B.; Grundahl, N.; Hyde, R.; Malloch, R.; Tusa, W.

1980-09-01T23:59:59.000Z

176

Development and applications of clean coal fluidized bed technology  

SciTech Connect (OSTI)

Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

2006-09-15T23:59:59.000Z

177

INVESTIGATION OF FLY ASH AND ACTIVATED CARBON OBTAINED FROM PULVERIZED COAL BOILERS  

SciTech Connect (OSTI)

One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addresses the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addresses the possible connection between SCR reactors, fly ash properties and Hg capture. The project is determining the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed are also being determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control, are being analyzed to determine the effect of SCR on the ash.

Edward K. Levy; Christopher Kiely

2005-11-01T23:59:59.000Z

178

Extractors manual for Fluidized-Bed Combustion Data Base System: Test Data Data Base. [FBC; planning  

SciTech Connect (OSTI)

Fluidized-bed combustion (FBC) technology is rapidly emerging as an acceptable alternative to conventional coal-fired boiler technology. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in FBC technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. To capture the results of Government-sponsored FBC research programs, documents have been written for the TDDB and MPDB to specify the data that contractors need to report and the procedures for reporting them. The FBC documents identify and define the data that need to be reported for FBC projects so that the data entered into the TDDB and MPDB will meet the needs of the users of the FBC data system. This document addresses what information is needed and how it must be formatted so that it can be entered into the TDDB for FBC. The level of detail needed to satisfy the wide variety of potential users' needs is the primary consideration in determining the types and amounts of data to be stored. The TDDB was designed so that data could be stored at any level of detail. 3 figs., 26 tabs.

Not Available

1986-09-01T23:59:59.000Z

179

Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications  

SciTech Connect (OSTI)

CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

2006-12-15T23:59:59.000Z

180

DOE Webcast: GTI Super Boiler Technology  

Broader source: Energy.gov (indexed) [DOE]

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Stress corrosion cracking of power boiler drums  

Science Journals Connector (OSTI)

This paper deals with the study, analysis and technical diagnosis fundamentals concerning damage induced by stress corrosion cracking. The main repair and safe operation methods for power boiler drums are described; this work being based on plant experience.

Alecsandru Pavel; Alexandru Pelle; Alexandru Epure; Cornel Radulescu; Petric? Baciu; Alexandru Bogdan; Mihai Stefanescu

1991-01-01T23:59:59.000Z

182

Modelling and simulating fire tube boiler performance  

E-Print Network [OSTI]

A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently MatLab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant.

Kim Srensen; Claus M. S. Karstensen; Thomas Condra; Niels Houbak

183

SIMPLE, FULLY FEATURED BOILER LOOP MODELLING  

E-Print Network [OSTI]

The performance of hot water space heating systems for mild to warm temperate climates is dominated by the efficiency of boiler operation at low load (i.e. below 25 % of nameplate capacity). This efficiency is influenced by a number of effects that are poorly represented in common modelling approaches, including static thermal losses from the boiler and distribution system, changes in burner efficiency at different firing rates, thermal inertia in the boiler loop and the effects of cyclic operation. In this paper, a simple model that includes these loss mechanisms is developed. An example from an actual project is used to demonstrate that addressing the full range of low-load efficiency effects can increase predicted boiler gas consumption substantially relative to standard simulation approaches.

Erica Kenna; Paul Bannister

184

Boiler House and Power Station Chemistry  

Science Journals Connector (OSTI)

... and power stations". It provides a useful background of information on the properties and combustion of ... of coals, and on such subjects as the treatment of boiler feed water, types of oil ...

A. PARKER

1949-01-01T23:59:59.000Z

185

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect (OSTI)

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

186

Clean Boiler Waterside Heat Transfer Surfaces  

Broader source: Energy.gov [DOE]

This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

187

A case history of a fixed bed, coal-derived oil hydrotreater  

Science Journals Connector (OSTI)

With the apparent shrinkage in the worldwide supply of liquid hydrocarbon fuels, upgrading of coal-derived liquids to synthetic crude oils will eventually emerge as a commercial entity. Although the Char-Oil-Energy Development (COED) Project has been shelved in the short term, information about the reaction engineering of the upgrading of coal-derived liquids by hydrotreatment in the COED Process should be relevant to upgrading technologies for other coal liquefaction processes. The COED Process was developed by FMC Corporation and the Office of Coal Research (now DOE) in the late 1960's and early 1970's. The process produced a synthetic crude oil, medium Btu gas and char by multi-stage, fluidized bed pyrolysis of coal. The raw coal-tar produced by pyrolysis was upgraded to synthetic crude oil by catalytic, fixed-bed hydrotreatment. Raw coal-tar has different properties from petroleum-derived oils, and upgrading by hydrotreatment is not an off-the-shelf technology. A 30 barrel per day fixed-bed hydrotreater was constructed and operated at the COED pilot plant site. The pilot plant hydrotreater design was based on conventional petroleum residua hydrotreatment technology together with bench-scale hydrotreatment tests performed by ARCO in the 1960's utilizing coal-tars produced in a process development unit. The pilot plant hydrotreater did operate for about four years providing valuable information about the reaction engineering of the hydrotreatment process as well as providing numerous samples for applications studies performed by other DOE contractors and interested potential users of the COED syncrude. Of note, 50,000 gallons of COED syncrude were supplied to the U.S. Naval Ship Engineering Center for shipboard testing in the boilers of the U.S.S. Johnston on November 1516th, 1973. This paper deals with the reaction engineering of the guard chamber and fixed-bed hydrotreatment reactors at the COED facility. Of major importance is the study of the role of the feedstock (pyrolysis coal-tar) properties and their effects on the catalysts utilized in the reactors. A working kinetic model has been derived that could allow a designer to optimize a particular set of design parameters and a plant operator to determine catalyst life. A quantitative comparison has been made of the effect of metals content of coal-derived oils and petroleum resids on catalyst deactivation.

Marvin I. Greene

1981-01-01T23:59:59.000Z

188

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect (OSTI)

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

189

An examination of the exothermic nature of fluidized bed combustion (FBC) residues  

Science Journals Connector (OSTI)

Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 \\{MWe\\} CFBC boiler at Point Aconi were examined for exothermic behaviour. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 \\{MWe\\} TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behaviour. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 J/g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/g/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)2, while for the bed ash a third or less of the CaO was converted to Ca(OH)2. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behaviour of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behaviour.

E.J Anthony; L Jia; M Caris; F Preto; S Burwell

1999-01-01T23:59:59.000Z

190

An examination of the exothermic nature of fluidized bed combustion (FBC) residues  

SciTech Connect (OSTI)

Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 MWe CFBC boiler at Point Aconi were examined for exothermic behavior. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 MWe TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behavior. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)[sub 2], while for the bed ash a third or less of the CaO was converted to Ca(OH)[sub 2]. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behavior of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behavior.

Anthony, E.J.; Jia, L.; Caris, M.; Preto, F.; Burwell, S. (Natural Resources Canada, Nepean, Ontario (Canada). CANMET Energy Technology Centre)

1999-01-01T23:59:59.000Z

191

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

192

Fouling in a 160MWe FBC boiler firing coal and petroleum coke  

Science Journals Connector (OSTI)

The 160MWe fluidized bed combustor (FBC) boiler owned and operated by the Tennessee Valley Authority (TVA) has recently been co-fired with coal and petroleum coke (up to 50%). However, it has suffered some fouling problems. On examination of the deposits it became clear that, in only a few cases could the fouling be partially attributed to alkali metals, and even in those cases the primarily limestone-derived materials were almost quantitatively sulphated to a level which was sufficient to cause strength development by itself. In other cases, it appeared that the fouling mechanism was carbonation of the free lime component of the deposit followed by sulphation. Finally, in a few deposits which were less sulphated than bed materials and fly ash, strength development appeared to have occurred by conversion of the free lime in the deposits to Ca(OH)2, followed by carbonation. This type of agglomeration has not been reported previously in a FBC.

E.J. Anthony; A.P. Iribarne; J.V. Iribarne; R. Talbot; L. Jia; D.L. Granatstein

2001-01-01T23:59:59.000Z

193

METHANE de-NOX for Utility PC Boilers  

SciTech Connect (OSTI)

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

194

Evaluation and demonstration of the chemically active fluid bed. Final report May 75-Jul 81  

SciTech Connect (OSTI)

The report gives results of the operation of a 17-MW Chemically Active Fluid Bed (CAFB) demonstration unit, retrofitted to a natural gas boiler. The CAFB process gasifies high-sulfur, high-metals-content liquid and solid fuels. Residual oil, lignite, and bituminous coal were gasified separately or together between November 1979 and June 1981. Design and operational areas where upgrading would be beneficial were identified. Continuous monitors were used to measure boiler flue gas emissions of SO2, NOx, CO, oxygen, CO2, and opacity. Periodic manual emission tests were conducted for particulate, SO2, and NOx, using EPA reference methods. Emissions of these three criteria pollutants were generally lower than New Source Performance Standards for utility boilers, although occasionally excessive particulate and SO2 emissions were observed. NOx emissions were consistently lower than those from natural gas combustion. Results of detailed chemical analyses and biological assays are reported.

Sommer, R.E.; Werner, A.S.; Kowszun, Z.

1984-02-01T23:59:59.000Z

195

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network [OSTI]

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand...

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

196

EECBG Success Story: Biomass Boiler to Heat Oregon School | Department...  

Energy Savers [EERE]

EECBG Success Story: Biomass Boiler to Heat Oregon School EECBG Success Story: Biomass Boiler to Heat Oregon School April 26, 2011 - 3:56pm Addthis Oregon Governor Kulongoski...

197

Direct contact, binary fluid geothermal boiler  

DOE Patents [OSTI]

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

198

Density-Enthalpy Phase Diagram 0D Boiler Simulation  

E-Print Network [OSTI]

Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

Vuik, Kees

199

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network [OSTI]

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

200

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network [OSTI]

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

?lveczky, Peter Csaba

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network [OSTI]

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

202

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network [OSTI]

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

203

Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes  

E-Print Network [OSTI]

Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes School of Materials Science Boiler Areas Susceptible to SAC · Generally SAC initiates near weld joints on cold side of tubes · SAC cracks are difficult to detect inaccessibility · Failures Detected at Various Locations in Boilers

Das, Suman

204

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network [OSTI]

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

205

FAQs Manhattanville Campus Central Energy Plant Boiler Stacks  

E-Print Network [OSTI]

FAQs Manhattanville Campus Central Energy Plant Boiler Stacks Installation Frequently Asked Questions What is happening? Columbia University is installing two (2) boiler stacks on top of the Jerome L, a below-grade facility which will consist four (4) 45,000 lbs/hr steam boilers and related equipment

Kim, Philip

206

Steam boiler control speci cation problem: A TLA solution  

E-Print Network [OSTI]

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

207

Steam boiler control specification problem: A TLA solution  

E-Print Network [OSTI]

Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

208

1 | P a g e Boiler Gold Rush  

E-Print Network [OSTI]

1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

Ginzel, Matthew

209

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network [OSTI]

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

?lveczky, Peter Csaba

210

Guide for the Extension of Boiler Internal Inspections  

E-Print Network [OSTI]

Under T.C.A. 68-122-110(a), each boiler used or proposed to be used within this state, except boilers exempt in 68-122-105, shall be thoroughly inspected as to their construction, installation, condition and operation as follows: (1) Power boilers shall be inspected annually both internally and externally while not under pressure, and

Tennessee Board; Boiler Rules

211

Pre-Inspection Checklist for High Pressure Boilers  

E-Print Network [OSTI]

Notice: This checklist reflects the most common violations our field inspectors encounter when performing an inspection on a high-pressure steam boiler installation. Its suggested that boiler industry personnel have access to a current set of applicable codebooks/jurisdictional laws. Such as: Section I of the ASME Boiler Code:

unknown authors

212

A new blowdown compensation scheme for boiler leak detection  

E-Print Network [OSTI]

considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances tubes. In utility boilers, early de- tection of leaks is primarily a financial issue. High velocityA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent

Marquez, Horacio J.

213

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network [OSTI]

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

214

BOILER BLOW-DOWN FLASH RECOVERY  

E-Print Network [OSTI]

Malelanes boiler blow-down flash, which was previously rejected to atmosphere, is now recovered into the turbo-alternator exhaust steam range and used for process heating duty. Various flash vapour recovery options have been evaluated for operability, maintainability and cost effectiveness. The design considerations for the blow-down vessel and the valve and piping configuration, which resulted from a Hazop Study, are explained. The recovery of 1.6 tons per hour of boiler blowdown flash equates to R260 000 per annum in coal savings.

I Singh; F Weyers

215

Fluidized bed combustion of a high-sulphur eastern Canadian coal  

SciTech Connect (OSTI)

A high-sulphur bituminous coal from Nova Scotia has been tested in a pilot scale FBC (Fluidized Bed Combustor) and an industrial FBC boiler. A comprehensive pilot plant program involved 28 tests at a nominal bed temperature of 850/sup 0/C (1560/sup 0/F) and fluidizing velocities of 1.2, 2.1 and 3 m/s (4,7 and 10 ft/sec) with and without fly ash recycle. Two different sizes of limestone were used for sulphur sorption. The industrial boiler trials involved two tests at 65% and 100% MCR (Maximum Continuous Rating). Pilot scaling results indicate that high combustion efficiencies are achievable. Sulphur capture of over 80% (meeting the SO/sub 2/ emission standard of 705 ng/J or 1.64 lbs/MBTU input) is possible with a Ca/S molar ratio <3 with fly ash recycle.

Desai, D.L.; Anthony, E.J.; Friedrich, F.D.; Razbin, V.V.

1986-01-01T23:59:59.000Z

216

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

217

Attrition of coal ash particles in a fluidized-bed reactor  

SciTech Connect (OSTI)

Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

Tomeczek, J.; Mocek, P. [Silesian Technical University, Katowice (Poland)

2007-05-15T23:59:59.000Z

218

Reach: A low cost-approach to reducing stack emissions and improving the performance of oil-fired boilers  

SciTech Connect (OSTI)

Improved oil combustion technology, based upon optimization of oil atomizer and flame stabilizer design, has been retrofit to oil-fired boilers to reduce NO{sub x} emissions, particulate matter emissions, and opacity, and to provide operational and performance benefits. This technology, referred to as REACH, can be retrofit to wall-fired and tangential-fired boilers at a cost of less than $0.75/kW, a fraction of the cost of installing new burners. The technology is compatible with conventional NO{sub x} controls such as overfire air, flue gas recirculation, and low-NO{sub x} burners, and can be combined with these techniques to further reduce NO{sub x} emissions. REACH has been applied to eighty boilers representing over 14,000 MW of generating capacity. This paper describes REACH technology, its applicability and cost, and the emissions and performance results achieved in full scale applications.

Giovanni, D.V.; McElroy, M.W.; Kerho, S.E. [Electric Power Technologies, Inc., Menlo Park, CA (United States)

1996-01-01T23:59:59.000Z

219

A study on the dynamic combustion behavior of a biomass fuel bed  

Science Journals Connector (OSTI)

Abstract The main objective of this research was to study fuel bed combustion dynamics of a BioGrate boiler with a mechanistic model. First, the fuel specific pyrolysis reaction rates were experimentally determined for the model. Second, the model was validated and finally, it was used to investigate the effects of the primary air flows on drying, pyrolysis and char consumption rates occurring inside the fuel bed. The research results are presented and the role of the dynamic behavior of the reactions on the biomass combustion process discussed.

Alexandre Boriouchkine; Vida Sharifi; Jim Swithenbank; Sirkka-Liisa Jms-Jounela

2014-01-01T23:59:59.000Z

220

Operating Experience with a Large Fluidized-Bed Gasifier of Woodwaste  

E-Print Network [OSTI]

OPERATING EXPERIENCE WITH A LARGE FLUIDIZED-BED GASIFIER OF WOODWASTE Robin F.W. Guard Omnifuel Gasification Systems Toronto, Ontario ABSTRACT The town of Hearst in northern Ontario is the lo cation of many forest product industries. One... Houston, TX, April 4-7, 1982 energy recovery systems before choosing gasification. The main reason for the choice was the need to be able to distribute the energy to four existing boilers in different locations, all working on natural gas. A secondary...

Guard, R. F. W.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cofiring Lignite with Hazelnut Shell and Cotton Residue in a Pilot-Scale Fluidized Bed Combustor  

Science Journals Connector (OSTI)

The absence of studies on cofiring of indigenous lignite with hazelnut shell/cotton residue blends in fluid bed combustors on one hand and the recent trend in utilization of biomass with local reserves in industry and utility boilers on the other necessitate investigation of combustion and emission characteristics of these fuel blends. ... However, the effect of recycle on gaseous emissions from combustion of Turkish lignites with high ash, volatile matter, and sulfur contents has not been investigated to date. ...

Zuhal Gogebakan; Nevin Seluk

2008-03-26T23:59:59.000Z

222

Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

Pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.

Bodruzzaman, M.; Essawy, M.A.

1996-02-27T23:59:59.000Z

223

Co-firing coal and biomass waste in an FB boiler  

SciTech Connect (OSTI)

The CSIR has been involved in the field of FBC since 1976, when a small 0.25m{sup 2} test facility was erected. Work really began in earnest in 1984, when the National Fluidised Bed Combustion (NFBC) boiler was commissioned. This facility, situated at the CSIR`s pilot plant terrain in Pretoria West, was designed to produce 12 tph steam while utilising {open_quotes}waste{close_quotes} coal reserves are large, accounting for some 11% of the worlds reserves. Unfortunately the quality of the coal is comparatively poor, and beneficiation is required in order to produce an acceptable fuel for the local and international markets. This leads to a large production of {open_quotes}waste{close_quotes} coal. More detail is given. It was concern about this waste that prompted the Department of Mineral and Energy Affairs (DMEA) to fund the construction of the NFBC boiler, the purpose of which was to prove the ability of FBC technology to utilize the low quality discard coal. The running costs of the unit were at first provided by the DMEA, and later by the National Energy Council (NEC). The NEC also played an active role in the formulation of test campaigns on the boiler. Management of the NFBC was undertaken by the division of Energy Technology (Enertek) at the CSIR in Pretoria, and it was sited at the CSIR`s pilot plant facility in Pretoria West. The boiler has been running since 1984 and many thousands of tonnes of low-grade coal have been burnt in it. During the course of the test campaign on the NFBC the CSIR developed a great deal of experience in the field of FBC, and in particular use of low grade fuels in FBC equipment. The following paper describes the highlights of this test work and details the commercial plant which have since been built using CSIR technology.

North, B.C.

1995-12-31T23:59:59.000Z

224

Packed Bed Combustion: An Overview  

E-Print Network [OSTI]

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

225

Primary energy consumption of the dwelling with solar hot water system and biomass boiler  

Science Journals Connector (OSTI)

Abstract This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present Algorithm for determining the energy demands and efficiency of technical systems in buildings, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with better thermal insulation.

Mihaela Berkovi?-ubi?; Martina Rauch; Damir Dovi?; Mladen Andrassy

2014-01-01T23:59:59.000Z

226

Mitsubishi FGD plants for lignite fired boilers  

SciTech Connect (OSTI)

In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

1998-07-01T23:59:59.000Z

227

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Broader source: Energy.gov (indexed) [DOE]

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

228

The next generation of oxy-fuel boiler systems  

SciTech Connect (OSTI)

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

229

Stress Assisted Corrosion in Boiler Tubes - Failure Analysis  

SciTech Connect (OSTI)

Stress assisted corrosion (SAC) of carbon steel boiler tubes is one of the major causes of waterside failure in industrial boilers. SAC is a major concern for kraft recovery boilers in the pulp and paper industry as any water leak into the furnace can cause a smelt-water explosion in the boiler. Failed carbon steel boiler tubes from different kraft recovery boilers were examined to understand the role of carbon steel microstructure on crack initiation and SAC crack morphology. A number of carbon steel tubes showed a deep decarburized layer on the inner surface (water-touched) and also an unusually large grain size at the inner tube surface. SAC cracks were found to initiate in these areas with large-graineddecarburized microstructure. Tubes without such microstructure were also found to have SAC cracks. It was found that the decarburization and large grained microstructure may facilitate initiation and growth but is not necessary for SAC of carbon steel boiler tubes.

Singh, Preet M [Georgia Institute of Technology; Pawel, Steven J [ORNL; Yang, Dong [Georgia Institute of Technology; Mahmood, Jamshad [Georgia Institute of Technology

2007-01-01T23:59:59.000Z

230

Economical investigation of an integrated boilersolar energy saving system in Jordan  

Science Journals Connector (OSTI)

Jordan is relatively poor in conventional energy resources and is basically a non-oil producing country, i.e. its energy supply relies to a very large extent on imports. It is therefore unlikely that any future energy scenario for Jordan will not include a significant proportion of its energy to come from renewable sources such as solar energy. The lack of an integrated energy saving system which utilizes the solar energy for domestic hot water as well as for building space heating was the main motivation for the present study. In Jordan, there is no existing system can provide the integration mechanisms of solar energy and fuel combustion with electrical ones. Also adding new and related products increases sales of current boilers products and can be offered at competitive prices. During our investigations, it has been found that the market demand for boilersolar integration system in terms of the system acceptability, system feasibility, and system values is very high especially after the increased in oil prices during the last 3years, i.e. 20062008. The market trend shows that even though solar collector is not attractive as an energy source for domestic hot water, but the combined system for space heating and domestic hot water is fully accepted. However, the market demand for such a system is not completely identified yet but the awareness and the discussion of the idea shows a good potential. The economical study about the integration system of boiler and solar energy shows that using solar water heaters to heat space and for domestic water is cost-effective. Payback can be as low as 3years, and utility bills are much lower than they would be using a conventional heating system. The initial draft and design of a prototype for the boilersolarelectrical integration system has been carried out.

A. Al-Salaymeh; I. Al-Rawabdeh; S. Emran

2010-01-01T23:59:59.000Z

231

A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery  

Science Journals Connector (OSTI)

Abstract After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3MWe additional net power output with a heat rate reduction of approximately 112.0kJ/kWh and could yield a net benefit of up to $85.8M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9MWth in the conventional boiler cold-end design to 39.6MWth in the proposed design.

Yongping Yang; Cheng Xu; Gang Xu; Yu Han; Yaxiong Fang; Dongke Zhang

2015-01-01T23:59:59.000Z

232

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

233

Tenth annual fluidized bed conference  

SciTech Connect (OSTI)

The proceedings of the Tenth Annual Fluidized Bed Conference is presented. The Conference was held November 14-15, 1994 in Jacksonville, FL and covered such topics as: opportunity fuels, the fluid bed market, bubbling fluid bed retrofitting, waste fuel-based circulating fluidized-bed project, construction permits for major air pollution sources, fluidized bed residues, uses for fluidized bed combustion ash, ash pelletization, sorbents for FBC applications, refractory maintenance, and petroleum coke. A separate abstract and indexing have been prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

234

Staged fluidized bed  

DOE Patents [OSTI]

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

235

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect (OSTI)

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

2010-01-01T23:59:59.000Z

236

Innovative boiler master design improves system response  

SciTech Connect (OSTI)

A quick and nimble boiler distributed control system can end up moving at the speed of molasses in winter after a low-NOx retrofit. In one utility fleet, several units, despite being equipped with a modern DCS, were experiencing firing system time lags and degraded dynamic loading capability. Swinging steam pressures and opacity excursions were forcing operators to constantly remove the unit from the load dispatch. Following a discussion of the new boiler control strategy, this article presents three studies detailing its installation at four coal-fired units owned and operated by the Kentucky Utilities (KU) subsidiary of E.ON US. The 495-MW Unit 3 of E.W. Brown Generating Station; the 75-MW Unit 3 of Tyrone Generating Station and the 75-MW Unit 3 and 100-MW Unit 4 of Green River Generating Station. Coal-fired plants produce about 95% of Kentucky's total generation. 4 figs.

Keller, G.; Baker, B.; Jones, R.J. [Burns and Roe, Oradell, NJ (United States)

2007-02-15T23:59:59.000Z

237

Recovery of Water from Boiler Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

238

World Class Boilers and Steam Distribution System  

E-Print Network [OSTI]

WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

Portell, V. P.

239

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

240

2014 Annual AFN Convention  

Broader source: Energy.gov [DOE]

The AFN Convention is the largest representative annual gathering in the United States of any Native peoples. In addition to the memorable keynote speeches, the expert panels and special reports, the Convention features several evenings of cultural performances known as Quyana Alaska.

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

242

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

243

Covered Product Category: Commercial Boiler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Boiler Commercial Boiler Covered Product Category: Commercial Boiler October 7, 2013 - 10:27am Addthis What's Covered All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Boilers Table 1 displays the FEMP-designated minimum efficiency requirements for

244

Gas-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

245

Oil-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

246

Oil-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

247

Gas-Fired Boilers and Furnaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

248

New Boilers, Big Savings for Minnesota County | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

249

Operating experience of Pyroflow boilers in a 250 MWe unit  

SciTech Connect (OSTI)

The Cedar Bay Cogeneration project is a 250 MWe unit owned and operated by US Generating Company. This plant has one turbine rated at 250 MWe net which is supplied by three Pyroflow CFB boilers that operate in parallel while supplying a paper mill with steam on an uninterruptible basis. Compared to similar size CFB boilers the Cedar Bay boilers have certain unique features. First, these are reheat boilers which must continue to supply process steam even when the steam turbine is down. Second, the SO{sub 2} control operates at a very low Ca/S molar ratio by optimizing the process conditions and flyash reinjection. Third, the NO{sub x} reduction process utilizes aqueous ammonia injection. This paper presents the operating data at full load in terms of boiler efficiency, and the ability to limit gaseous emissions with minimum limestone and ammonia usage. Unique features relating to the multiple boiler installation are also discussed.

Chelian, P.K.; Hyvarinen, K. [Pyropower Corp., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

250

New Boilers, Big Savings for Minnesota County | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Boilers, Big Savings for Minnesota County Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

251

Extractors manual for Fluidized-Bed Combustion Data Base System: Major Plants Data Base. [FBC; planning  

SciTech Connect (OSTI)

Fluidized-bed combustion (FBC) technology is rapidly emerging as an acceptable alternative to conventional coal-fired boiler technology. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in FBC technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. The FBC Data System consists of FBC data stored in the MPDB, TDDB, and MMDB; it will contain both atmospheric and pressurized FBC facilities. To capture the results of Government-sponsored FBC programs, documents have been written for the MPDB and TDDB to specify the data that contractors need to report and the procedures for reporting them. The FBC documents identify and define the data that need to be reported for FBC projects so that the data entered into the MPDB and TDDB will meet the needs of the users of the FBC Data System. This document identifies what information is needed and how it must be formatted so that it can be entered into the MPDB for FBC demonstration and commercial plants. The structure of the MPDB is shown in Figure 1-1. Section 2.0 describes the needs of potential users of the FBC Data System. Section 3.0 explains how the contractor should report and format this data so that it can be entered into the MPDB. Section 4.0 explains the quality control procedures that should be used to ensure the integrity of the data that is stored in the MPDB. 2 figs., 28 tabs.

Not Available

1986-09-01T23:59:59.000Z

252

Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

253

Online Mass Flow Prediction in CFB Boilers  

Science Journals Connector (OSTI)

Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) process. If control systems fail to ... of underlying processes and their mutual dependencies in

Andriy Ivannikov; Mykola Pechenizkiy

2009-01-01T23:59:59.000Z

254

Dioxin and Furan Formation in FBC Boilers  

Science Journals Connector (OSTI)

Fluidized bed combustion (FBC) can be used as a means of energy production or incineration for almost any material containing carbon, hydrogen and sulphur in a combustible form, be it a solid, liquid, slurry o...

L. Jia; E. J. Anthony; D. L. Granatstein

2002-01-01T23:59:59.000Z

255

Build, Own, Operate and Maintain (BOOM) Boiler Systems  

E-Print Network [OSTI]

Build, Own, Operate and Maintain (BOOM) Boiler Systems Tom Henry, Annstrong Service, Inc. Overview: The article addresses the growing trend in outsourcing boiler equipment, installation, operation, maintenance and ownership by large.... In most cases, thennal, electric and air energy systems are not considered "core" assets resulting in the need to find "other" solutions to providing the needed energy. ? Reduced staffing has resulted in fewer experienced and knowledgeable boiler...

Henry, T.

256

BPM: A tool to predict boiler performance on a PC  

SciTech Connect (OSTI)

The Department of energy has developed and made available to the public a PC-based software package (BPM 3.0) to help engineers predict the performance of utility boilers in non-standard modes of operation for power generation systems. This package is especially useful for analyzing changes in boiler performance resulting from fuel switching, changes in operating modes (e.g., constant versus variable pressure), and physical changes to the boiler. The report discusses the use of the program.

Lagomarsino, J. [Burns and Roe, Inc., Oradell, NJ (United States); Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-06-01T23:59:59.000Z

257

Controlling Formaldehyde Emissions with Boiler Ash  

Science Journals Connector (OSTI)

Regenerative thermal (2) or catalytic (3) oxidizers are presently used to control HAPs and other VOCs. ... In another, methanol and other VOCs released from the manufacture of printed circuit boards were trapped and concentrated in activated carbon beds before being oxidized (11). ... The capital cost of a fluidized bed is much lower than that of a thermal oxidizer, and the cost of natural gas required to operate the oxidizer is removed. ...

Jennifer Cowan; Malyuba Abu-Daabes; Sujit Banerjee

2005-06-02T23:59:59.000Z

258

Residual Strain Distribution in Bent Composite Boiler Tubes  

SciTech Connect (OSTI)

Kraft recovery boilers are typically constructed of carbon steel boiler tubes clad with a corrosion resistant layer, and these composite tubes are bent and welded together to form air port panels which enable the combustion air to enter the boiler. In this paper, the through-thickness residual strain in the carbon steel layer of non-heat-treated and heat-treated composite bent tubes were measured by neutron diffraction techniques and modeled by finite element modeling. The results can be used to optimize material selection and manufacturing processes to prevent stress corrosion and corrosion fatigue cracking in the boiler tubes.

Hubbard, Camden R [ORNL; Gorti, Sarma B [ORNL; Tang, Fei [ORNL

2006-01-01T23:59:59.000Z

259

Field Test of Boiler Primary Loop Temperature Controller  

SciTech Connect (OSTI)

Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

2014-09-01T23:59:59.000Z

260

Evaluation of Heat Losses in Fire Tube Boiler  

E-Print Network [OSTI]

Abstract The efficiency of oil fired fire tube boiler was calculated by evaluating the heat losses. Investigation on the performance of the boiler was conducted by examining the heat losses, identifying the reasons for losses, measuring the individual loss and developing a strategy for loss reduction. This study was carried out in Texmaco package horizontal fire tube boiler at Travancore Titanium Products Ltd (TTPL), Trivandrum, Kerala. The boiler efficiency was measured by indirect method. Heat losses in dry flue gas and due to unburned fuel were found to be the major problems. Since they were interrelated, installation of Zirconium oxygen sensor was recommended as a common remedy.

S. Krishnanunni; Josephkunju Paul C; Mathu Potti; Ernest Markose Mathew

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling of a Drum Boiler Using MATLAB/Simulink.  

E-Print Network [OSTI]

?? A dynamic simulator was developed for a natural circulation drum type boiler through a joint Youngstown State University/The Babcock and Wilcox Company cooperative agreement. (more)

Anderson, Scott B.

2008-01-01T23:59:59.000Z

262

Application of Boiler Op for combustion optimization at PEPCO  

SciTech Connect (OSTI)

Title IV requires the reduction of NOx at all stations within the PEPCO system. To assist PEPCO plant personnel in achieving low heat rates while meeting NOx targets, Lehigh University`s Energy Research Center and PEPCO developed a new combustion optimization software package called Boiler Op. The Boiler Op code contains an expert system, neural networks and an optimization algorithm. The expert system guides the plant engineer through a series of parametric boiler tests, required for the development of a comprehensive boiler database. The data are then analyzed by the neural networks and optimization algorithm to provide results on the boiler control settings which result in the best possible heat rate at a target NOx level or produce minimum NOx. Boiler Op has been used at both Potomac River and Morgantown Stations to help PEPCO engineers optimize combustion. With the use of Boiler Op, Morgantown Station operates under low NOx restrictions and continues to achieve record heat rate values, similar to pre-retrofit conditions. Potomac River Station achieves the regulatory NOx limit through the use of Boiler Op recommended control settings and without NOx burners. Importantly, any software like Boiler Op cannot be used alone. Its application must be in concert with human intelligence to ensure unit safety, reliability and accurate data collection.

Maines, P.; Williams, S. [Potomac Electric Power Co., Upper Marlsboro, MD (United States); Levy, E. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

1997-09-01T23:59:59.000Z

263

FEMP Technology Brief: Boiler Combustion Control and Monitoring System  

Broader source: Energy.gov [DOE]

There are more than 45,000 industrial and commercial boilers larger than 10 MMBtu/hr in the United States with a total fuel input capacity of 2.7 million MMBtu/hr. Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

264

EECBG Success Story: New Boilers, Big Savings for Minnesota County  

Broader source: Energy.gov [DOE]

Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. Learn more.

265

Suspension-fired biomass boilers. Three case studies  

SciTech Connect (OSTI)

A discussion of the conversion of oil-or gas-fired boilers to fire pulverized bark and wood wastes in suspension.

Robinson, L.

1986-01-01T23:59:59.000Z

266

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Broader source: Energy.gov (indexed) [DOE]

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

267

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network [OSTI]

allow ultra-supercritical boilers to achieve still higherthat supercritical-coal boilers, at least in the 1970s, didGW/year) by type of boiler. Source: [25]. Net Efficiency (

Yeh, Sonia; Rubin, Edward S.

2007-01-01T23:59:59.000Z

268

Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network [OSTI]

to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

Marquez, Horacio J.

269

The heat transfer coefficients of the heating surface of 300 MWe CFB boiler  

Science Journals Connector (OSTI)

A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The ... heat balance of the hot circuit of the CFB boiler. With the boiler capacity incre...

Haibo Wu; Man Zhang; Qinggang Lu; Yunkai Sun

2012-08-01T23:59:59.000Z

270

Fluidized Bed Fuel Cell Electrodes  

Science Journals Connector (OSTI)

... smoothed the electrolyte flow through the bed. The mesh acted as bed support and electrical contactor to the beads. In the case of the hydrogen peroxide electrode the nickel mesh ... at the top 'of the bed for the hydrogen peroxide electrode and close to the contactor for the methanol electrode. In both cases polarization measurements were carried out at 20 ...

T. BERENT; I. FELLS; R. MASON

1969-09-06T23:59:59.000Z

271

Low emission boiler system: Coal-fired power for the 21st century  

SciTech Connect (OSTI)

The U.S. Department of Energy, Pittsburgh Energy Technology Center, is working with private industry to develop the Low Emission Boiler System (LEBS), an advanced coal-fired power generation system for the 21st century. LEBS provides significantly higher thermal efficiency, superior environmental performance and a lower cost of electricity than conventional coal-fired systems. To meet the anticipated increase in electricity demand throughout the world, cleaner and more efficient power plants will be needed. This paper reviews performance of the LEBS, considers further improvements, and discusses its economics.

Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Van Bibber, L.; White, J. [Parsons Power Group Inc., Pittsburgh, PA (United States); Kim, S.S. [Dept. of Energy, Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

272

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

273

Economic Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

SciTech Connect (OSTI)

This report determines the capital and operating costs of two different oxygen-based, pulverized coal-fired (PC) power plants and compares their economics to that of a comparable, air-based PC plant. Rather than combust their coal with air, the oxygen-based plants use oxygen to facilitate capture/removal of the plant CO{sub 2} for transport by pipeline to a sequestering site. To provide a consistent comparison of technologies, all three plants analyzed herein operate with the same coal (Illinois No 6), the same site conditions, and the same supercritical pressure steam turbine (459 MWe). In the first oxygen-based plant, the pulverized coal-fired boiler operates with oxygen supplied by a conventional, cryogenic air separation unit, whereas, in the second oxygen-based plant, the oxygen is supplied by an oxygen ion transport membrane. In both oxygen-based plants a portion of the boiler exhaust gas, which is primarily CO{sub 2}, is recirculated back to the boiler to control the combustion temperature, and the balance of the flue gas undergoes drying and compression to pipeline pressure; for consistency, both plants operate with similar combustion temperatures and utilize the same CO{sub 2} processing technologies. The capital and operating costs of the pulverized coal-fired boilers required by the three different plants were estimated by Foster Wheeler and the balance of plant costs were budget priced using published data together with vendor supplied quotations. The cost of electricity produced by each of the plants was determined and oxygen-based plant CO{sub 2} mitigation costs were calculated and compared to each other as well as to values published for some alternative CO{sub 2} capture technologies.

Andrew Seltzer; Archie Robertson

2006-09-01T23:59:59.000Z

274

Characterization of the U.S. Industrial/Commercial Boiler Population...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization of the U.S. IndustrialCommercial Boiler Population - Final Report, May 2005 Characterization of the U.S. IndustrialCommercial Boiler Population - Final Report,...

275

Experimental Study on Coal Feeding Property of 600MW CFB Boiler  

Science Journals Connector (OSTI)

In the CFB boiler technology, improving the steam parameters can ... , based on the structure of commercial 600MW CFB boiler unit and similarity principle, the experiment...

H. P. Chen; L. N. Tian; Q. Du; H. P. Yang

2010-01-01T23:59:59.000Z

276

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

277

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network [OSTI]

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

Hahn, G.

278

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network [OSTI]

matter and char, and cold-end air pollution control devices. There is also evidence that boiler is equipped with hot and cold precipitators and a tubular air preheater. A strategy for mercury control designated hazardous air pollutants by the US Environmental Protection Agency (EPA), mercury (Hg) has

Li, Ying

279

Commercialization of fluidized bed combustion systems in urban areas: The local government role  

SciTech Connect (OSTI)

The purpose of this project was two-fold: to review the critical technical and institutional considerations which must underlie any decision to invest in Fluidized-Bed Combustion technology and to gauge the market for FBC technology within the City of Indianapolis. To achieve these purposes extensive research into the state-of-the-art of FBC technology was performed, including a review of alternate design configurations and an assessment of the remaining technical and operational difficulties associated with this new technology. At the same time a number of key financing and regulatory issues were investigated which directly affect the marketability of FBC boilers to local industries and institutions. Some of the largest Indianapolis energy users were surveyed to determine their long-term thermal energy requirements and whether FBC technology could help to meet these requirements. On the basis of this survey data, a comparative cost-benefit analysis of investment in a FBC boiler compared with investment in other types of boilers was undertaken. The analysis was done for specific Indianapolis industries and institutions. This report summarizes the project activities and makes specific recommendations that should help to facilitate the commercialization of FBC boilers in Indianapolis.

Jacobs, L.

1983-04-01T23:59:59.000Z

280

Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler  

Science Journals Connector (OSTI)

Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30MPa, mass flux from 230 to 1200kg/(m2s), and inner wall heat flux from 130 to 720kW/m2. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of Departure from Nucleate Boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler.

Dong Yang; Jie Pan; Chenn Q. Zhou; Xiaojing Zhu; Qincheng Bi; Tingkuan Chen

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers  

SciTech Connect (OSTI)

The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

NONE

2005-05-01T23:59:59.000Z

282

Materials development for ultra-supercritical boilers  

SciTech Connect (OSTI)

Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

NONE

2005-09-30T23:59:59.000Z

283

Sulfur capture in combination bark boilers  

SciTech Connect (OSTI)

A review of sulfur dioxide emission data for eight combination bark boilers in conjunction with the sulfur contents of the fuels reveals significant sulfur capture ranging from 10% to over 80% within the solid ash phase. Wood ash characteristics similar to activated carbon as well as the significant wood ash alkali oxide and carbonate fractions are believed responsible for the sulfur capture. Sulfur emissions from combination bark-fossil fuel firing are correlated to the sulfur input per ton of bark or wood residue fired.

Someshwar, A.V.; Jain, A.K. (National Council of the Paper Industry for Air and Stream Improvement, Gainesville, FL (United States))

1993-07-01T23:59:59.000Z

284

Boiler Gold Rush Prof. Johnny Brown (MATH 700)  

E-Print Network [OSTI]

Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;#12;#12;David McCullough, Jr help Always be prepared #12;Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;

Brown, Johnny E.

285

Settlement of footing on compacted ash bed  

SciTech Connect (OSTI)

Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

Ramasamy, G.; Pusadkar, S.S. [IIT Roorkee, Roorkee (India). Dept. of Civil Engineering

2007-11-15T23:59:59.000Z

286

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 5. Appendix G. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report, Appendix G, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Williamson, H.J.; Grimshaw, T.W.; Dunn, J.E.

1985-02-01T23:59:59.000Z

287

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 3. Appendices D and E. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report, Appendices D and E, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Minear, R.A.; Grimshaw, T.W.; Little, W.M.

1985-02-01T23:59:59.000Z

288

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 6. Appendix H. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report, Appendix H, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes underlaboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Williamson, H.J.; Heinrich, D.L.; Grimshaw, T.W.

1985-02-01T23:59:59.000Z

289

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 7. Appendix I. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report, Appendix 1, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Eklund, A.G.; Grimshaw, T.W.; Minear, R.A.

1985-02-01T23:59:59.000Z

290

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 2. Appendices A through C. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report Appendices A through C, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Little, W.M.; Gibson, T.S.; Grimshaw, T.W.; Eklund, A.G.

1985-02-01T23:59:59.000Z

291

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 1. Final report. Report for June 1980-June 1984  

SciTech Connect (OSTI)

This report, including 10 appendices, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Grimshaw, T.W.; Minear, R.A.; Eklund, A.G.; Little, W.M.; Dunn, J.E.

1985-02-01T23:59:59.000Z

292

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 4. Appendix F. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report, Appendix F, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Eklund, A.G.; Grimshaw, T.W.

1985-02-01T23:59:59.000Z

293

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 8. Appendix J. Final report, June 1980-June 1984  

SciTech Connect (OSTI)

This report, Appendix J, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Williamson, H.J.; South, R.C.; Grimshaw, T.W.

1985-02-01T23:59:59.000Z

294

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

295

Base load fuel comsumption with radiant boiler simulation  

SciTech Connect (OSTI)

The operating point of an oil fired radiant boiler, 580 Megawatt capacity, is critical in maximizing the availability, performance, reliability, and maintainability of a power producing system. Operating the unit above the design operating point causes outages to occur sooner than scheduled. When the boiler is operated below the design operating point, fuel is wasted because the quantity of fuel required to operate a radiant boiler is the same, whether the design setpoint is maintained or not. This paper demonstrates by means of simulation software that the boiler design setpoints is critical to fuel consumption and optimum output megawatts. A boiler with this capacity is used to provide a portion of the base load of an electric utility in order to sustain revenues and maintain reliable generation.

Shwehdi, M.H. (Pennsylvania State Univ., Wilkes-Barre, Lehman, PA (United States)); Hughes, C.M. (Naval Aviation Depot, NAS Jacksonville, Jacksonville, FL (United States)); Quasem, M.A. (Howard Univ. School of Business, Washington, DC (United States))

1992-12-01T23:59:59.000Z

296

Bed drain cover assembly for a fluidized bed  

DOE Patents [OSTI]

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

297

Evaluation of Iron Aluminide Weld Overlays for Erosion-Corrosion Resistant Boiler Tube Coatings in Low NOx Boilers  

SciTech Connect (OSTI)

Iron aluminide weld overlays containing ternary additions and thermal spray coatings are being investigated for corrosion protection of boiler tubes in Low NO{sub x} burners. The primary objective of the research is to identify overlay and thermal spray compositions that provide corrosion protection of waterwall boiler tubes.

Regina, J.R.; Lim, M.; Barbosa, N., DuPont, J.N.; Marder, A.R.

2000-04-28T23:59:59.000Z

298

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-01-31T23:59:59.000Z

299

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-04-27T23:59:59.000Z

300

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

2003-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-10-27T23:59:59.000Z

302

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-04-23T23:59:59.000Z

303

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-07-30T23:59:59.000Z

304

Boiler Materials For Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-09-30T23:59:59.000Z

305

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2004-01-23T23:59:59.000Z

306

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2005-08-01T23:59:59.000Z

307

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-01-31T23:59:59.000Z

308

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-07-17T23:59:59.000Z

309

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2004-10-30T23:59:59.000Z

310

Boiler Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

2006-04-20T23:59:59.000Z

311

Assessment of sorbent reactivation by water hydration for fluidized bed combustion application  

SciTech Connect (OSTI)

Disposal of fluidized bed combustion (FBC) solid residues currently represents one of the major issues in FBC design and operation, and contributes significantly to its operating cost. This issue has triggered research activities on the enhancement of sorbent utilization for in situ sulfur removal. The present study addresses the effectiveness of the reactivation by liquid water hydration of FB spent sorbents. Two materials are considered in the study, namely the bottom ash from the operation of a full-scale utility FB boiler and the raw commercial limestone used in the same boiler. Hydration-reactivation tests were carried out at temperatures of 40{sup o}C and 80{sup o}C and for curing times ranging from 15 minutes to 2d, depending on the sample. The influence of hydration conditions on the enhancement of sulfur utilization has been assessed. A combination of methods has been used to characterize the properties of liquid water-hydrated materials

Fabio Montagnaro; Piero Salatino; Fabrizio Scala; Yinghai Wu; Edward J. Anthony; Lufei Jia [Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, Naples (Italy). Dipartimento di Chimica

2006-06-15T23:59:59.000Z

312

Development of a Novel Oxygen Supply Process and its Integration with an Oxy-Fuel Coal-Fired Boiler  

SciTech Connect (OSTI)

BOC, the world's second largest industrial gas company, has developed a novel high temperature sorption based technology referred to as CAR (Cyclic Autothermal Recovery) for oxygen production and supply to oxy-fuel boilers with flue gas recycle. This technology is based on sorption and storage of oxygen in a fixed bed containing mixed ionic and electronic conductor materials. The objective of the proposed work was to construct a CAR PDU that was capable of producing 10-scfm of oxygen, using steam or recycled flue gas as the sweep gas, and install it in the Combustion Test Facility. The unit was designed and fabricated at BOC/The Linde Group, Murray Hill, New Jersey. The unit was then shipped to WRI where the site had been prepared for the unit by installation of air, carbon dioxide, natural gas, nitrogen, computer, electrical and infrastructure systems. Initial experiments with the PDU consisted of flowing air into both sides of the absorption systems and using the air heaters to ramp up the bed temperatures. The two beds were tested individually to operational temperatures up to 900 C in air. The cycling process was tested where gases are flowed alternatively from the top then bottom of the beds. The PDU unit behaved properly with respect to flow, pressure and heat during tests. The PDU was advanced to the point where oxygen production testing could begin and integration to the combustion test facility could occur.

None

2006-12-31T23:59:59.000Z

313

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

314

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

315

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

316

Decentralized robust PI controller design for an industrial boiler Batool Labibi a,*, Horacio Jose Marquez b  

E-Print Network [OSTI]

Decentralized robust PI controller design for an industrial boiler Batool Labibi a,*, Horacio Jose in revised form 23 April 2008 Accepted 23 April 2008 Keywords: Industrial utility boiler Internal model boiler, a control oriented nonlinear model for the boiler is identified. The nonlinearity of the system

Marquez, Horacio J.

317

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance- Fact Sheet, May 2014  

Broader source: Energy.gov [DOE]

Fact sheet about the Boiler Maximum Achievable Control Technology (MACT) Technical Assistance Program

318

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

319

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

320

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

322

Conventional Strategic Deterrence  

SciTech Connect (OSTI)

The Bush Administration argues that the US, as the world's only remaining superpower, must be prepared to intervene militarily in regional conflicts. However, the traditional American way of fighting-relying on ground forces with heavy equipment, supported by naval and air forces--could prove too expensive, both monetarily and in terms of expected American casualties, to garner the support of the American public or Congress. This paper argues that the revolution in conventional weaponry demonstrated in the Persian Gulf War opens up the possibility of a new strategy--called Conventional Strategic Deterrence--that could reduce both financial costs and casualties (if it were necessary to implement the strategy) while still being a strong and credible deterrent to regional conflict.

Latter, A.L.; Martinelli, E.A.; Speed, R.D.

1992-08-01T23:59:59.000Z

323

Conventional Strategic Deterrence  

SciTech Connect (OSTI)

The Bush Administration argues that the US, as the world`s only remaining superpower, must be prepared to intervene militarily in regional conflicts. However, the traditional American way of fighting-relying on ground forces with heavy equipment, supported by naval and air forces--could prove too expensive, both monetarily and in terms of expected American casualties, to garner the support of the American public or Congress. This paper argues that the revolution in conventional weaponry demonstrated in the Persian Gulf War opens up the possibility of a new strategy--called Conventional Strategic Deterrence--that could reduce both financial costs and casualties (if it were necessary to implement the strategy) while still being a strong and credible deterrent to regional conflict.

Latter, A.L.; Martinelli, E.A.; Speed, R.D.

1992-08-01T23:59:59.000Z

324

Determining average bed temperature of nonisothermal fixed-bed hydrotreater  

Science Journals Connector (OSTI)

Employing three catalysts in three parallel pilot-scale fixed-bed reactors, hydrotreating experiments were performed in both isothermal and ascending temperature modes to investigate kinetics and to determine a representative bed temperature. Assuming 1.5th-order for hydrodesulfurization (HDS) and 1st-order for both hydrodenitrogenation (HDN) and mild hydrocracking (MHC), kinetic parameters were obtained from the isothermal mode operation. With the activation energies from isothermal operations, equivalent isothermal temperatures (EITs) in the ascending mode operations were established for specific HDS, HDN and MHC. Employing 19 thermocouple readouts in the catalyst beds and applying an Arrhenius-type rate equation containing the same activation energy, the representative bed temperature was determined. The temperature so determined is called kinetic EIT. The kinetic EIT was found to be the best to represent the nonisothermal bed temperature. The kinetic EIT has been applied to monitoring the catalyst activity in commercial hydrotreating units.

Sok Yui; John Adjaye

2004-01-01T23:59:59.000Z

325

Introduction to the Boiler MACT Energy Assessment Process  

E-Print Network [OSTI]

Introduction to the Boiler MACT Energy Assessment Process I.E.T.C. May 21, 2014 Tom Theising, C.E.M., C.D.S.M. ESL-IE-14-05-12 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Assessment... Requirements ?Per Subparts DDDDD and JJJJJJ - National Emission Standards for Hazardous Air Pollutants (NESHAP) for Industrial, Commercial, and Institutional Boilers at Area Sources (also known as the Boiler GACT Generally Available Control Technology...

Theising, T. R.

2014-01-01T23:59:59.000Z

326

Conventional coal preparation in the United States  

SciTech Connect (OSTI)

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

327

Advanced Materials for Ultra Supercritical Boiler Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Patricia a. Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Robert M. Purgert Prime Contractor and Administrator Energy Industries of Ohio 6100 Oak Tree Boulevard, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com AdvAnced MAteriAls for UltrA sUpercriticAl Boiler systeMs Description A consortium led by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) has conducted the first phase of a multiyear program to develop materials technology for use in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of

328

Simulation and modeling of atmospheric fluidized bed combustors for high sulfur coals  

SciTech Connect (OSTI)

The principal issues in modeling atmospheric fluidized bed combustors (AFBC) are described using the Oak Ridge National Laboratory (ORNL) - Tennessee Valley Authority (TVA) steady state AFBC model as an example. Comparisons are made between model predictions of boiler performance with experimental data from the TVA 20 MW(e) AFBC pilot plant data. Recent FBC models are briefly reviewed and compared with the ORNL-TVA model. The paper also describes the ongoing effort at TVA on transient modeling of AFBC and presents some preliminary results from the TVA AFBC transient model.

Krishnan, R.P.; Daw, C.S.; Byrd, J.; Zielke, R.; Wells, J.W.

1986-01-01T23:59:59.000Z

329

Floor tube corrosion in recovery boilers  

SciTech Connect (OSTI)

Lower sulfur emissions at a pulp mill result in higher sulfidity levels and in the enrichment of potassium in the mill`s liquor system. The sulfidity values at Scandinavian kraft mills previously fluctuated between 28 and 35%; today they exceed 45%. Viscosity measurements show that the viscosity decreases drastically when the sulfidity increases from 30 mole% to 40 mole%, its potassium and chlorine levels are high enough, and the char bed is low, the smelt flows easily and may penetrate the char bed, approaching the floor tubes. In extreme cases, the hot smelt destroys the layer of solidified smelt on the floor tube`s surface and reacts very rapidly with the floor tube.

Klarin, A. [A. Ahistrom Corp., Helsinki (Finland)

1993-12-01T23:59:59.000Z

330

A new bed elevation dataset for Greenland  

E-Print Network [OSTI]

A new bed elevation dataset for Greenland J. L. Bamber 1 ,al. : A new bed elevation dataset for Greenland Howat, I. M.al. : A new bed elevation dataset for Greenland Fig. 3. (a)

2013-01-01T23:59:59.000Z

331

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

Not Available

2011-07-01T23:59:59.000Z

332

Biomass Boiler to Heat Oregon School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

333

Commonwealth Small Pellet Boiler Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate $15,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 03/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Base Grant: $7,000 Automated Conveyance of Fuel Adder: $3,000 Thermal Storage Adder: $2,000 Solar Thermal Hybrid System Adder: $1,000 Moderate Income Adder or Moderate Home Value Adder: $2,000 Maximum Grant: $15,000 Provider Massachusetts Clean Energy Center The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler

334

Biomass Boiler to Heat Oregon School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

335

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network [OSTI]

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

Fiorino, D. P.

336

Improving Boiler Efficiency Modeling Based On Ambient Air Temperature  

E-Print Network [OSTI]

Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load...

Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

2002-01-01T23:59:59.000Z

337

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

338

A Boiler Plant Energy Efficiency and Load Balancing Survey  

E-Print Network [OSTI]

Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam...

Nutter, D. W.; Murphy, D. R.

339

Abrasion-Resistant Technology and its Prospect for CFB Boilers  

Science Journals Connector (OSTI)

In recent years, CFB boilers (CFBB) have been widely used in the commercial power plants due to its environmental benefits, high combustion efficiency, wide coal flexibility, and some other advantages. At the ...

H. Zheng; Y. J. Li; L. J. Wang; S. H. Liu

2010-01-01T23:59:59.000Z

340

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

replacing its central plant with a combination of distributed boilers and ground source heat pumps. The results saved more than 1 million MBtu in energy and 19,574 Kgal of water...

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Selective diagnostics of combustion processes in multi-burner boilers  

Science Journals Connector (OSTI)

The process of gas hydrocarbon combustion was tested in real (industrial) conditions on boilers with many burners. For key operation modes, the main regularities of emission from single flames were studied. Th...

S. M. Borzov; V. V. Garkusha; V. I. Kozik; V. P. Mikheev

342

Fourier transform infrared (FTIR) instrumentation for monitoring recovery boilers  

SciTech Connect (OSTI)

This paper discusses FTIR which acts as an on-line diagnostic tool for Weyerhaeuser's recovery boiler. So far, the concentrations of various gases and fume particles have been successfully analyzed.

Morrison, P.W. Jr.; Cosgrove, J.E.; Carangelo, R.; Solomon, P.R. (Advanced Fuel Research, Inc., East Hartford, CT (US)); Leroveil, P.; Thorn, P.A. (Weyerhaeuser Paper Co., Tocoma, WA (US))

1991-12-01T23:59:59.000Z

343

A scanning electron microscope study on agglomeration in petroleum coke-fired FBC boilers  

Science Journals Connector (OSTI)

Ten samples originating from different boiler FBC systems burning petroleum coke and one laboratory sample were chosen to perform a study on the development, structure, and composition of deposits formed by agglomeration in various locations. The work focused on examination by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The possibility of a contribution of liquid phases in the adherence to solid surfaces and in agglomeration was discussed and checks by SEM, EDX, and analysis by neutron activation were performed; no evidence could be found either for liquid phases or for any role of vanadium or alkaline element compounds. The agglomerations result from the continued sintering of CaSO4 particles until they build up a strong framework that is indefinitely extended, into which particles of different and complex compositions are bound, without contributing to the cohesion. Chemical sintering occurring by the sulphation of CaO into CaSO4 appears to be an important contribution while CaO is still available, but sintering also occurs by mass transfer mechanisms and continues after the depletion of CaO. Deposits formed in regions only reached by fly ash (convection section), and also in in-bed deposits, grow from particles <50 ?m, mostly in the range of 10 ?m or less. In regions collecting bed ash (e.g., J-valves), the deposit grows from the sintering together of particles on the order of 100300 ?m (originally bed ash particles), which themselves appear as conglomerates of extensively sintered smaller particles.

J.V Iribarne; E.J Anthony; A Iribarne

2003-01-01T23:59:59.000Z

344

Dissimilar-metal weld failures in boiler tubing  

SciTech Connect (OSTI)

Both ferritic heat-resisting steels and austenitic stainless steels are used for fossil-fired boilers for central power stations. The use of these two different types of materials within the system leads to the need for a dissimilar-metal weld transition joint. Increased cyclic operation of boilers has led to a rash of failures in welds between dissimilar metals; studies have identified the causes, and improved nondestructive testing techniques permit early identification of problem areas.

Klueh, R.L.

1984-02-01T23:59:59.000Z

345

Guide to Low-Emission Boiler and Combustion Equipment Selection  

Broader source: Energy.gov [DOE]

The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussion about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. It is part of a suite of publications offered by the Department of Energy to improve steam system performance.

346

ABSTRACT Establishing an Energy Efficiency Recommendation for Commercial Boilers  

E-Print Network [OSTI]

To assist the federal government in meeting its energy reduction goals, President Clintons Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25 ~ percentile of efficiency. Under the direction of DOEs Federal Energy Management Program (FEMP), the Procurement Challenges goal is to create efficiency recommendations for all energy-using products (e.g. commercial boilers, chillers, motors) that could substantially impact the governments energy reduction goals. When establishing efficiency recommendations, FEMP looks at standardized performance ratings for products sold in the U.S. marketplace. Currently, the commercial boiler industry uses combustion efficiency and, sometimes, thermal efficiency as metrics when specifying boiler performance. For many years, the industry has used both metrics interchangeably, causing confusion in the market place about boiler performance. This paper discusses the method used to establish FEMPs efficiency recommendation for commercial boilers in lieu of the various, and somewhat confusing, efficiency ratings currently available. The paper also discusses potential energy cost savings for federal agencies that improve the efficiency of boilers specified and purchased.

Michelle J. Ware

347

Guided wave acoustic monitoring of corrosion in recovery boiler tubing  

SciTech Connect (OSTI)

Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

Quarry, M J; Chinn, D J

2004-02-19T23:59:59.000Z

348

Fluidized-bed combustion: Technical status report  

SciTech Connect (OSTI)

The goal of METC's FBC program is to establish, by the early 1990s, an engineering technology base that the utility, industrial, commercial, and residential sectors can use to build and operate coal-fired FBC systems. These systems would generate process steam, direct and indirect heat, and electric power from coals of all ranks and sulfur content in an economical and environmentally-acceptable manner. First-generation AFBC technology is already considered commercial and a number of US boiler manufacturers are offering commercial units. However, there are greater opportunities for improvement in economics, performance, and reliability. In order to resolve the remaining technical issues and to broaden the market sector served by AFBC, the DOE is pursuing advanced concepts. This second-generation AFBC technology is directed toward small industrial, commercial, and residential applications. Penetration of these potential markets will require 20- to 30-percent reduction in capital and operating costs over first-generation technology, significant improvements in performance and reliability, and compliance with existing and proposed New Source Performance Standards for environmental emissions. PFBC technology, on the other hand, is less developed and is not yet commercial. Sufficient R and D has been carried out, however, to establish its advantages and to demonstrate the viability of the technology for displacing imported oil and for improving the economics of conventional coal-fired systems.

Not Available

1985-10-01T23:59:59.000Z

349

Life Cycle Comparison of Coal Gasification by Conventional versus Calcium Looping Processes  

Science Journals Connector (OSTI)

After separation of H2, the remaining gas is used as fuel in a boiler to produce steam that is used in a steam turbine to produce electricity. ... Note that, as described in Section 2.1, the conventional process has nonzero GHG emissions due to combustion of the gases remaining after CO2 and H2S removal, while CLP does not have any GHG emissions. ... The conventional process with CO2 recovery from flue gas was compared with the calcium looping process based on their life cycle land use, water use, and GHG emissions. ...

Berrin Kursun; Shwetha Ramkumar; Bhavik R. Bakshi; Liang-Shih Fan

2014-03-10T23:59:59.000Z

350

Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989  

SciTech Connect (OSTI)

This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

Not Available

1990-05-01T23:59:59.000Z

351

Measure Guideline: Condensing Boilers - Optimizing Efficiency and Response Time During Setback Operation  

SciTech Connect (OSTI)

Conventional wisdom surrounding space heating has told us a couple of things consistently for several years now: size the mechanical systems to the heating loads and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step by step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

Arena, L.

2014-02-01T23:59:59.000Z

352

Materials for ultra-supercritical coal-fired power plant boilers  

Science Journals Connector (OSTI)

The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide, since the energy crisis in the 1970s. The need to reduce CO2 emission has recently provided an additional incentive to increase efficiency. The main enabling technology in achieving the above goals has been the development of stronger high-temperature materials. Extensive R&D programs have resulted in numerous high strength alloys for heavy section piping, and tubing needed to build boilers. The study reported here is aimed at identifying, evaluating and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating with 760C (1400F)/35MPa (5000psi) steam. The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperature have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650 (1200F) and 800C (1475F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. Weldability and fabricability of the alloys have been investigated. The capability of various overlay coatings and diffusion coatings have been examined. This paper provides a status report on the progress achieved to date on this project.

R. Viswanathan; K. Coleman; U. Rao

2006-01-01T23:59:59.000Z

353

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

354

A field test using coal:DRDF blends in spreader stoker-fired boilers. Final report, June 1976-July 1978  

SciTech Connect (OSTI)

This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-diameter x 3/4-inch-long dRDF was co-fired with coal in 2.7 x 7.5 kg/sec (60,000 lb/hr) and 3.6 x 10 kg/sec (75,000 lb/hr) of 1.03 MPa (150 psig) saturated steam. The results indicate that coal:dRDF blends up to 1:2 can be handled and burned in conventional spreader stoker-fired boilers without major equipment modification. As more dRDF was substituted for coal, the flame volume increased, the opacity decreased, the fly ash carbon burnout improved, and the turndown ratio of boiler operation increased. The emissions from the blend firing decreased slightly in mass flux, dropped significantly in particulate size and stack opacity, and had satisfactory particulate resistivities.

Degler, G.H.; Rigo, H.G.; Riley, B.T. Jr.

1980-08-01T23:59:59.000Z

355

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

& Experimental Stability of SDMs AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17­20 Page 2 of 15­20 Amsterdam, The Netherlands The papers at this Convention have been selected on the basis of a submitted

Reiss, Josh

356

Non-conventional sources for ethylene  

SciTech Connect (OSTI)

Two processes for conversion of methanol to ethylene are reviewed as to economic attractiveness at about 1990. The processes are homologation of methane to ethanol with dehydration to ethylene and direct catalytic cracking of methanol to ethylene using Mobil zeolite catalysts. For the economic projections, synthesis gas is assumed to be available from a large leverage-financed, synthetis gas unit based on a pressurized, entrained bed, coal-gasifier, built on the US Gulf Coast in 1990 at a cost of $0.19/m/sup 3/, and methane is valued at $650/metric ton in 1990 based on continuous operation of natural gas-based methanol plants in the US. The economics of ethylene production via conventional steam cracking of naphtha/gas oil are compared with those of the new technology. The methanol homologation/ethanol dehydration route to ethylene is more attractive than catalytic cracking at 40% carbon selectivity to ethylene. At higher selectivities, the methanol cracking scheme becomes economically competitive. However, with an assumption of a price of $650/metric ton for methanol in 1990, neiter methanol-based route is competitive with conventional steam cracking on the Gulf Coast in 1990. A methanol price of $500/metric ton would make the methanol-based oriduction routes attractive. 23 references.

Leonard, J.P.; Weiss, L.H.

1981-12-01T23:59:59.000Z

357

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Thermal characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a fluidized bed. The used combustor allows the novel, jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jetting-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The experiments show that smooth combustion of natural gas with rice straw can be performed in the jetting-fountain fluidized bed avoiding acoustic effects and explosions of burning bubbles that occurs in conventional operation. The jetting-fountain fluidized bed is shown to dampen greatly the freeboard overheating at particularly lower bed temperatures. This is because the fountain-particles absorb a great part of heat released in the freeboard and recover it back to the bed. It is confirmed by measuring the in-bed cooling load that was found to increase considerably at lower bed temperatures. The natural gas contribution is found to play a major role when applying the jetting-fountain configuration. Increasing the natural gas contribution enlarges the fountain zone that causes greater reduction in the freeboard overheating and recovers more heat back to the bed. Measuring the in-bed cooling also approves the later conclusion.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

358

ConventionConventionConventionConvention InformaInformaInformaInformation Guidetion Guidetion Guidetion Guide International Convention on Shapes and SolidsInternational Convention on Shapes and SolidsInternational Convention on Shapes and SolidsInternatio  

E-Print Network [OSTI]

Guidetion Guide International Convention on Shapes and SolidsInternational Convention on Shapes and SolidsInternational Convention on Shapes and SolidsInternational Convention on Shapes and Solids 13131313----17 June 2005, Massachusetts Institute of Technology, Cambridge, MA, USA #12;Information Guide International Convention

Reuter, Martin

359

ATNI Mid-year Convention  

Broader source: Energy.gov [DOE]

The Affiliated Tribes of Northwest Indians Mid-year Convention will be hosted by the Chehalis Tribe.

360

NCAI 71st Annual Convention  

Broader source: Energy.gov [DOE]

Save the date for the National Congress of American Indians (NCAI) 71st Annual Convention at the Hyatt Regency Atlanta.

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface  

E-Print Network [OSTI]

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

Montgomery, David R.

362

Heating boilers in Krakow, Poland: Options for improving efficiency and reducing emissions  

SciTech Connect (OSTI)

In Krakow, Poland, coal-fired boilers are used to heat single apartment buildings and local heating districts. Tile population includes 2,930 small, hand-fired boilers and 227 larger traveling grate stoker-fired boilers. These boilers are important contributors to air quality problems in Krakow, and an assessment of their efficiency and emissions characteristics was recently undertaken. For the larger, stoker-fired boilers, efficiency was measured using a stack-loss method In addition to the normal baseline fuel, the effects of coal cleaning and grading were evaluated Testing was done at two selected sites. Boiler efficiencies were found to be low-50% to 67%. These boilers operate without combustion controls or instrumentation for flue gas analysis. As a result, excess air levels are very high (up to 400%) leading to poor performance. Emissions were found to be typical for boilers of this type. Using the improved fuels yields reductions in emissions and improvement in efficiency when combined with proper adjustments. In the case of the hand-fired boilers, one set of cast-iron boilers and one set of steel boilers were tested. Efficiency in this case was measured using an input-output method for sets of three boilers taken together as a system. Emissions from these boilers are lowest when low volatile fuels, such as coke or smokeless briquettes, are used.

Cyklis, P.; Wlodkowski, A.; Butcher, T.; Kowalski, J.; Zaczkowski, A.; Kroll, J.; Boron, J.

1995-08-01T23:59:59.000Z

363

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

364

Numerical investigations of combustion and emissions of syngas as compared to methane in a 200MW package boiler  

Science Journals Connector (OSTI)

Abstract During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting \\{NOx\\} emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngasair combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H2, 50% CO:50% H2 and 33% CO:67% H2. The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and \\{NOx\\} emissions. \\{NOx\\} emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H2 syngas composition had the lowest emissions with the best combustion characteristics.

Mohamed A. Habib; Esmail M.A. Mokheimer; Sofihullahi Y. Sanusi; Medhat A. Nemitallah

2014-01-01T23:59:59.000Z

365

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect (OSTI)

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

366

Upgraded recovery boiler meets low air emissions standards  

SciTech Connect (OSTI)

In the fall of 1990, the Boise Cascade mill in International Falls, MN, carried out a millwide modernization project. One critical element of the project was the upgrade of their recovery boiler. As a result of the recovery boiler upgrade, the mill was required to obtain a prevention of significant deterioration (PSD) air permit. A best available control technology (BACT) assessment was performed as a requirement of the PSD regulations. Ultimately, a number of more stringent air pollution emission limits were established for the boiler, and a continuous emissions monitoring system (CEMS) was purchased and installed to report daily results to the Minnesota Pollution Control Agency. This paper describes efforts to achieve increased firing capacity in the mill's recovery boiler while meeting more severe air emissions regulations. The authors will show that each of the emissions limits, including CO, SO[sub 2], NO[sub x], TRS, and opacity, are met by the upgraded boiler, while achieving an increase in firing capacity over pre-upgrade levels of up to 40%.

La Fond, J.F.; Jansen, J.H. (Jansen Combustion and Boiler Technologies, Inc., Woodinville, WA (United States)); Eide, P. (Boise Cascade Corp., International Falls, MN (United States))

1994-12-01T23:59:59.000Z

367

(Fluidized bed combustion of high-ash Indian coals): Foreign trip report, January 5, 1988--March 16, 1988  

SciTech Connect (OSTI)

The foreign research assignment at BHEL, Trichy, was undertaken to participate in the ongoing USAID/BHEL joint program in fluidized bed combustion (FBC). As part of this program, an experimental FBC research test facility has been designed, erected and commissioned at BHEL, Trichy, to conduct experiments on the combustion of high-ash Indian coals and coal washery rejects. The data will be used to optimize the design and to select the operational parameters for large scale industrial and utility FBC boilers. ORNL has been providing technical assistance to BHEL since the initiation of the project in November 1983. The US team visited at 10 MW(e) FBC boiler fired with coal washery rejects at the Tata Iron and Steel Company (supplied by BHEL). The tour was very informative and gave the US team a good first-hand perspective of the Indian experience and concerns with FBC technology.

Krishnan, R.P.; Daw, C.S.

1988-03-01T23:59:59.000Z

368

The atmospheric bubbling fluidized bed combustion of coal in the Netherlands, cleaner it can't be  

SciTech Connect (OSTI)

The use of coal in atmospheric bubbling fluidized bed combustors for the generation of process steam is still a viable option for industrial applications world wide but interest in this as and electricity generation technology has also grown. The general advantages of AB-FBC are environmental acceptability and great fuel flexibility. As will be shown in this paper, it has a great potential for meeting possible future, even more stringent, regulations. Since 1979, Stork Boilers, TNO and Twente University have been carrying out a joint national research programme aimed at the design of industrial installations operating to stringent emission standards. This has led to the demonstration of a 90 MWth industrial boiler at the AKZO Chemical Works. The work has been under the control of NOVEM, the Netherlands Agency of Energy and the Environment. This body provides the financial resources on behalf of the Dutch Ministry of Economic Affairs by awarding annual contracts.

van Gasselt, M.L.G. (TNO-Apeldoorn, P.O. Box 342,7300 AH Apeldoorn (NL))

1991-01-01T23:59:59.000Z

369

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tune-ups: Tune-ups: Improve efficiency, reduce pollution, and save money! ____________________________________________________ Did you know . . . * Inefficient industrial, commercial, and institutional (ICI) boilers waste money and pollute? * There are over 1.5 million ICI boilers in the United States? * Boilers burning coal, oil, biomass, and other solid fuels and liquid are a major source of toxic air pollution? * New federal Clean Air Act rules require certain boilers to get regular tune-ups? * Keeping your boilers tuned-up can reduce hazardous air pollution? Energy Management, Tune-ups and Energy Assessment Reducing the amount of fuel used by boilers is one of the most cost effective ways to control hazardous air pollution. Tuning-up a boiler optimizes the air-fuel mixture for the operating range of the boiler

370

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

371

Damage Modeling and Life Extending Control of a Boiler-Turbine System1  

E-Print Network [OSTI]

Damage Modeling and Life Extending Control of a Boiler-Turbine System1 Donglin Li Tongwen Chen2 hierarchical LEC structure and apply it to a typ- ical boiler system. There are two damage models

Marquez, Horacio J.

372

OPPORTUNITIES FOR IMPROVING THE PERFORMANCE AND REDUCING THE COSTS OF BAGASSE-FIRED BOILERS By  

E-Print Network [OSTI]

The challenges faced by bagasse boiler designers mean that significant compromise and conservatism are present in the design of most bagasse fired boilers. This paper describes a number of

A. P. Mann; T. F. Dixon; F. Plaza; J. A. Joyce

373

Combustion Model for a CFB Boiler with Consideration of Post-Combustion in the Cyclone  

Science Journals Connector (OSTI)

Severe post combustion in the cyclone of CFB boilers could destroy heat absorbing balance among ... rarely considered in the design phase of a CFB boiler. Based on our previous experiment results ... added into a...

S. H. Li; H. R. Yang; H. Zhang; Y. X. Wu

2010-01-01T23:59:59.000Z

374

Research on the Hydraulic Characteristics of a 600MW Supercritical Pressure CFB Boiler  

Science Journals Connector (OSTI)

Water wall design is a key technology of supercritical pressure CFB boiler. On account of the low heat ... be applied in the water wall of supercritical CFB boilers. An experimental research on the flow ... Harbi...

D. Yang; J. Pan; Q. C. Bi; Y. J. Zhang

2010-01-01T23:59:59.000Z

375

Investigation on the Integrated External Heat Exchanger for a New Type CFB Boiler Arrangement  

Science Journals Connector (OSTI)

Various external heat exchangers (EHE) are widely used with large-scale CFB boiler. The solid mass flow rate diverted ... EHE has been used in a new designed CFB boiler successfully.

Bin Xiong; Xiaofeng Lu; Hanzhou Liu

2007-01-01T23:59:59.000Z

376

From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers  

E-Print Network [OSTI]

This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler...

Hockenbury, W. D.

1982-01-01T23:59:59.000Z

377

Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005  

Broader source: Energy.gov [DOE]

The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

378

Towards controlling PCDD/F production in a multi-fuel fired BFB boiler using two sulfur addition strategies. Part I: Experimental campaign and results  

Science Journals Connector (OSTI)

Abstract Levels of PCDD/F production in a 140MWth bubbling fluidized bed boiler were measured. The boiler uses solid recovered fuel, bark and sludge. Homologue distribution patterns suggest the de novo mechanism is the main pathway for the generation of dioxin and furans in the post combustion zones of the boiler. Two modes of sulfur addition were tested to induce the deactivation of Cu which has been identified as the prime catalyst of this mechanism. First, S-pellet promoted Cu sulfation as supported by aerosol sampling data and resulted in a decrease in PCDD/F levels. The second approach was adding sulfur through peat; this resulted in an increase in PCDD/F concentration. Factors such as high Cu content in the SRF-peat-sludge fuel mixture and reduced volatilization of Cu may have contributed to the said increase. For all test cases, phase redistribution of PCDD/F was observed in the electrostatic precipitator favoring more gaseous PCDD/F at the outlet. The homologue distribution pattern did not change in the flue gas path, suggesting that further synthesis and/or chlorination in the stream were minimized. There is however evidence for subsequent reactions happening in the ESP fly ash. The homologue distribution pattern in the latter was different from that of the flue gas, and more highly chlorinated PCDD/Fs were present. Furthermore, the ratio of PCDD and PCDF was different from that of the samples in the flue gas path.

Cyril Jose E. Bajamundi; Pasi Vainikka; Merja Hedman; Irina Hyytiinen; Jaani Silvennoinen; Teemu Heinanen; Raili Taipale; Jukka Konttinen

2014-01-01T23:59:59.000Z

379

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004  

Broader source: Energy.gov [DOE]

This guide presents useful information for evaluating the viability of cogeneration for new or existing ICI boiler installations.

380

Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of turbulators on firetube boilers as part of optimized steam systems.

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CHP Integrated with Burners for Packaged Boilers- Fact Sheet, April 2014  

Broader source: Energy.gov [DOE]

Fact sheet overviewing how this project will develop and integrate the Boiler Burner Energy System Technology (BBEST)

382

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers  

Broader source: Energy.gov [DOE]

Factsheet describing the project goal to reduce corrosion and improve the life span of boiler superheater tubes

383

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

384

Modeling of a coal-fired natural circulation boiler  

SciTech Connect (OSTI)

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

385

A review of ash in conventional and advanced coal-based power systems  

SciTech Connect (OSTI)

Process conditions are briefly described for conventional and advanced power systems. The advanced systems include both combustion and gasification processes. We discuss problems in coal-based power generation systems, including deposition, agglomeration and sintering of bed materials, and ash attack are discussed. We also discuss methods of mitigating ash problems and anticipated changes anticipated in ash use by converting from conventional to advanced systems.

Holcombe, N.T.

1995-12-31T23:59:59.000Z

386

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37  

E-Print Network [OSTI]

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

387

An Algebraic Speci cation of the Steam-Boiler Control System  

E-Print Network [OSTI]

An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

Bidoit, Michel

388

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20  

E-Print Network [OSTI]

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

389

Assertional Specification and Verification using PVS of the Steam Boiler Control System  

E-Print Network [OSTI]

Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

Hooman, Jozef

390

Decentralized robust control of a class of nonlinear systems and application to a boiler system  

E-Print Network [OSTI]

Decentralized robust control of a class of nonlinear systems and application to a boiler system Keywords: Asymptotic disturbance rejection Boiler systems Decentralized robust control Descriptor systems problem, a decentralized controller for the system can be calculated. In order to control a utility boiler

Marquez, Horacio J.

391

Development and Application of Gas Sensing Technologies to Enable Boiler Balancing  

E-Print Network [OSTI]

01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

Dutta, Prabir K.

392

Gain-scheduled `1 -optimal control for boiler-turbine dynamics  

E-Print Network [OSTI]

Gain-scheduled `1 -optimal control for boiler-turbine dynamics with actuator saturation Pang; accepted 2 June 2003 Abstract This paper presents a gain-scheduled approach for boiler-turbine controller the magnitude and rate saturation constraints on actuators. The nonlinear boiler-turbine dynamics is brought

Shamma, Jeff S.

393

Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement  

E-Print Network [OSTI]

Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement The Division which fosters an appreciation for a healthy lifestyle and promotes lifelong learning. Boiler Kids Camp Mission Statement Boiler Kids Camp is an interactive, summer day camp designed for children ranging

Ginzel, Matthew

394

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network [OSTI]

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M pollution using a model furnace of an industrial boiler utilizing fuel gas. The importance of this problem is mainly due to its relation to the pollutants produced by large boiler furnaces used widely in thermal

Aldajani, Mansour A.

395

Optimal control of a multi-energy district boiler: a case study  

E-Print Network [OSTI]

Optimal control of a multi-energy district boiler: a case study J. Eynard S. Grieu M. Polit of a multi-energy district boiler (La Rochelle, France) which supplies domestic hot water and heats optimizing the use of both the tank and the wood boiler. As a result, fossil energy consumption and CO2

Paris-Sud XI, Université de

396

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING  

E-Print Network [OSTI]

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK to analyze events leading to plug- gage of a boiler. The proposed approach involves statistics, data. The proposed approach has been tested on a 750 MW commercial coal-fired boiler affected with an ash fouling

Kusiak, Andrew

397

Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1  

E-Print Network [OSTI]

Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1 , Horacio J. Marquez b, and the concept is applied to a boiler-turbine unit to analyze its dynamics. It is shown that the unit shows. Keywords: Boiler-turbine unit; Nonlinearity measure; Gap metric; Anti-windup bumpless transfer techniques

Marquez, Horacio J.

398

MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC APPROACH  

E-Print Network [OSTI]

MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC mathematically and prac- tically tractable. Boilers are industrial units, which are used for gener- ating steam of fuel. Boiler operation is a complex operation in which hot water must be delivered to a turbine

Al-Duwaish, Hussain N.

399

welcome to university residences Boiler Gold Rush Check-In...........................Saturday, August 13 and  

E-Print Network [OSTI]

welcome to university residences #12;Boiler Gold Rush Check-In...........................Saturday, August 13 and Sunday, August 14, 2011 Boiler Gold Rush residence hall systems in the United States. weLcomE! 1 #12;Boiler GoLD Rush ParticiPants Your regular

Fernández-Juricic, Esteban

400

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented  

E-Print Network [OSTI]

Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented Executable the steam boiler control speci cation problem to il- lustrate how the evolving algebra approach to the speci, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract machines

Börger, Egon

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Corrections to "Proving Safety Properties of the Steam Boiler Controller" Correction Sheet  

E-Print Network [OSTI]

Corrections to "Proving Safety Properties of the Steam Boiler Controller" 1 Correction Sheet After our paper "Proving Safety Properties of the Steam Boiler Controller" went already to print, Myla address http://theory.lcs.mit.edu/tds/boiler.html. Following are the corrections to these errors and some

Lynch, Nancy

402

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA  

E-Print Network [OSTI]

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

403

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 14, [January 1, 1996--March 31, 1996  

SciTech Connect (OSTI)

The material wastage tests were continued to analyze erosion phenomena under the simulated erosion conditions of in-bed tubes in fluidized bed combustors. AISI 1018 steel and three thermal sprayed coating specimens were tested at an elevated temperature (300{degrees}C) using nozzle type erosion tester. Bed ashes retrieved from the operating biomass-fired boiler were used for erodent particles at a particle loading of 375 g, at particle impact angle of 30{degrees}, at particle velocity 60 m/s for exposure periods of 4 hours. The specimens were water-cooled on the backside. The material wastage of specimens was determined by thickness measurements. Test results can be seen that the cooled specimen had greater material wastage than that of the uncooled specimens. In addition, all of thermal-sprayed coating specimens for both cooled and uncooled specimens could reduce the erosion wastage rates as compared with 1018 steel. Among the three thermal-sprayed coatings, a DS-105 specimen of high velocity oxygen fuel spraying exhibited the lowest erosion wastage rate. When tested a higher particle velocity (60 m/s), but at the same elevated temperature (300{degrees}C), the material wastage rate of all three coatings was about 6 to 18 times higher than that of the material wastage at a low particle velocity (2.5 m/s).

Lee, Seong W.

1996-04-01T23:59:59.000Z

404

Tanana Chiefs Conference Annual Convention  

Broader source: Energy.gov [DOE]

The Tanana Chiefs Conference is holding its annual convention to discuss issues in the region, hold elections, and adopt resolutions presented by Tribes.

405

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

SciTech Connect (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

406

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

Unknown

2001-07-10T23:59:59.000Z

407

Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor  

SciTech Connect (OSTI)

The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering

2007-06-15T23:59:59.000Z

408

Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences  

SciTech Connect (OSTI)

Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

Mutanen, K.I. [A. Ahlstrom Corporation, Varkaus (Finland)

1995-11-01T23:59:59.000Z

409

Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry  

E-Print Network [OSTI]

This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

J. O. Odigure; A. S. Abdulkareem; E. T. Asuquo

410

The inspection of recovery boilers to detect factors that cause critical leaks  

SciTech Connect (OSTI)

Records compiled by the Black Liquor Recovery Boiler Advisory Committee (BLRBAC) include more than 140 recovery boiler explosions that occurred from 1948 to 1990. Although some incidents were due to improper boiler operation, many were caused by critical leaks arising from corrosion, erosion, metal fatigue, or other processes not directly under the control of the boiler operator. In this paper, the authors will examine the extent to which common boiler inspection practices can be expected to expose conditions like those that have led to critical leaks.

Bauer, D.G.; Sharp, W.B.A. (Westvaco Corp., Laurel Research Lab., Laurel, MD (United States))

1991-09-01T23:59:59.000Z

411

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 120th Convention 2006 May 20­23 Paris. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 of the Audio Engineering Society. Parametric Representation of Multichannel Audio Based on Principal Component

Paris-Sud XI, Université de

412

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 114th Convention 2003 March 22 for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. Real Time Object Based Coding Paul M. Brossier1 , Mark B. Sandler1 and Mark D

Plumbley, Mark

413

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 122nd Convention 2007 May 5­8 Vienna be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Plumbley, Mark

414

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 112th Convention 2002 May 10­13 Munich. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 of the Audio Engineering Society. Intelligent Audio Source Separation using Independent Component Analysis

Mitianoudis, Nikolaos

415

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 135th Convention 2013 October 17­20 New for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. Sound identification from MPEG-encoded audio files Joseph G. Studniarz

Maher, Robert C.

416

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 127th Convention 2009 October 9­12 New be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Joseph Fourier Grenoble-I, Université

417

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 128th Convention 2010 May 22­25 London be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Paris-Sud XI, Université de

418

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 117th Convention 2004 October 28­31 San for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. AES Technical Committee on Signal Processing Educational CD Project Robert C

Maher, Robert C.

419

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 134th Convention 2013 May 4­7 Rome. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 of the Audio Engineering Society. On the Informed Source Separation Approach for Interactive Remixing in Stereo

Paris-Sud XI, Université de

420

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 120th Convention 2006 May 20­23 Paris. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 of the Audio Engineering Society. Acoustic Rendering for Color Information Ludovico Ausiello1 , Emanuele

Ferri, Massimo

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 125th Convention 2008 October 2­5 San be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Jackson, Philip JB

422

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 129th Convention 2010 November 4­7 San be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Paris-Sud XI, Université de

423

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 124th Convention 2008 May 17 be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Reiss, Josh

424

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 130th Convention 2011 May 13­16 London be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering

Reiss, Josh

425

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 119th Convention 2005 October 7­10 New for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. Frequency-Based Coloring of the Waveform Display to Facilitate Audio Editing

Rice, Stephen V.

426

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 119th Convention 2005 October 7­10 New for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. A Web Search Engine for Sound Effects Stephen V. Rice1 and Stephen M. Bailey2

Rice, Stephen V.

427

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 116th Convention 2004 May 8­11 Berlin. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 of the Audio Engineering Society. MPEG-4 Audio Lossless Coding Tilman Liebchen1 , Yuriy Reznik2 , Takehiro

Wichmann, Felix

428

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 119th Convention 2005 October 7­10 New for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. The MPEG-4 Audio Lossless Coding (ALS) Standard - Technology and Applications

Wichmann, Felix

429

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 118th Convention 2005 May 28 for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. Improved Forward-Adaptive Prediction for MPEG-4 Audio Lossless Coding Tilman

Wichmann, Felix

430

Audio Engineering Society Convention Paper  

E-Print Network [OSTI]

Audio Engineering Society Convention Paper Presented at the 115th Convention 2003 October 10­13 New for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society of the Audio Engineering Society. MPEG-4 Lossless Coding for High-Definition Audio Tilman Liebchen1 1 Technical

Wichmann, Felix

431

An environment friendly and efficient lignite-fired power generation process based on a boiler with an open pulverizing system and the recovery of water from mill-exhaust  

Science Journals Connector (OSTI)

Abstract This paper advances a novel lignite-fired power generation process based on a OPSB (boiler with an open pulverizing system) and the recovery of water from mill-exhaust after the comprehensive analysis of the open pulverizing system used for high-moisture coals and heat/water recovery from boiler exhaust. Then, the thermal calculation method that applies to OPSB is presented based on heat and mass balance analyses of the boiler. Finally, an efficient unit applying the OPSB process is compared with a conventional 600MW lignite-fired power unit, and the performance of the efficient unit is calculated and discussed in detail. The results show that the efficient unit not only yields a notable increase in the boiler's (2.6%) and the power plant's (1.3%) thermal efficiency but also provides a remarkable advantage in water recovery due to the mass of water vapor concentrated in mill-exhaust. In the efficient unit, the volume fraction of water vapor in mill-exhaust reaches 34%, the water reclaimed from mill-exhaust is so much that a lignite-fired power plant with zero water consumption can be expected, while the pollutant emissions can be reduced in proportion to the increase in boiler thermal efficiency.

Youfu Ma; Yichao Yuan; Jing Jin; Hua Zhang; Xiaohong Hu; Dengyu Shi

2013-01-01T23:59:59.000Z

432

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents [OSTI]

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

433

Choosing the right boiler air fans at Weston 4  

SciTech Connect (OSTI)

When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

Spring, N.

2009-04-15T23:59:59.000Z

434

A New Type Heat Exchanger for Coal Burning Boilers  

Science Journals Connector (OSTI)

To make the best of heat energy in the flue gas exhausted from a coal burning boiler, the design proposal for a new type of heat exchanger was put forward in the paper. Via the new type of heat exchanger, temperature of the flue gas can be decreased ... Keywords: waste heat utilization, energy conservation, special heat exchanger, economizer

Bingwen Zhang; Yingjin Zhang

2010-06-01T23:59:59.000Z

435

Best Management Practice #8: Boiler and Steam Systems  

Broader source: Energy.gov [DOE]

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

436

Bed management in a Critical Care Unit  

Science Journals Connector (OSTI)

......can also be approach using a stochastic...150 BED MANAGEMENT IN A CRITICAL...of Decision Sciences and Information Management, Catholic University...bed-occupancy management and planning...Improving the Sipp approach for staffing......

J. D. Griffiths; V. Knight; I. Komenda

2013-04-01T23:59:59.000Z

437

Eleventh annual fluidized bed conference  

SciTech Connect (OSTI)

The Proceedings of the Eleventh Annual Fluidized Bed Conference are presented. The Conference was held November 14-15, 1995 in Allentown, Pennsylvania and discussed the following topics: third and fourth generation systems; fuel considerations; and FBC energy and environmntal regulatory issues. A separate abstract was entered into the Energy Science and Technology Database for each of the 19 papers presented at the conference.

NONE

1995-12-31T23:59:59.000Z

438

Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Julie McAlpin Communications Liaison, State Energy Program Why biomass? Wood was the first energy source used and man's main fuel source until the Industrial Revolution.

439

Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications  

SciTech Connect (OSTI)

This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

Levasseur, Armand

2014-01-01T23:59:59.000Z

440

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 9, [October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

This technical report summarizes the research work performed and progress achieved during the period of October 1, 1994 to December 31, 1994. The characteristics of anti-erosion remedies and mechanism for in-bed in FBC were discussed to provide the basic design guidelines for anti-erosion devices. One of the anti-erosion remedies currently operate the basic principle of creating a protective stagnant layer of solids to against incoming high velocity of solid particles. This stagnant layer of solid is goal of breaking up the local flow patterns at eroding tube surfaces. This principle is embodied by designing of antierosion studs, pins, fins, and baffles. By attaching a number of studs with a sufficient stud-to-stud distance to avoid the bridging of solid particles, tube wastage can be retarded to prolong the boiler tube life. These devices will be used for the measurement of material wastage in the laboratory-scale FBC.

Lee, Seong W.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

SciTech Connect (OSTI)

This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-04-01T23:59:59.000Z

442

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect (OSTI)

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

443

Fluidization quality analyzer for fluidized beds  

DOE Patents [OSTI]

A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

Daw, C.S.; Hawk, J.A.

1995-07-25T23:59:59.000Z

444

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

445

Uniform retorting of an anisotropic shale bed  

SciTech Connect (OSTI)

In situ oil shale retorts have typically been designed for the fracturing event to produce a rubble bed having uniform cross-sectional rubble properties. This uniform rubble bed approach strived to produce constant void fraction and particle size distribution within all regions of the rubble bed. Ideally, these isotropic rubble beds have uniform flow of oxidants, retorting and combustion products. However, edge effects during the blast event typically produce channeling at the retort walls during processing, reducing the rubble sweep and the local yield. Second generation in situ retorts are addressing uniform retorting within the rubble bed rather than the uniformity of rubble bed properties. Here, the blast design produces and anisotropic rubble bed with varying particle size distribution and void fraction normal to the direction of flow. This paper describes a laboratory experiment in which a highly-instrumented, 100 kg bed of shale with zones of differing particle size and void was retorted. Shale particle size and void were varied over the retort cross-section so that a retorting front would move at a constant velocity downward through the rubble bed. The bed was designed using data from numerous pressure drop measurements on uniform shale beds of varying shale particle size distribution and void. Retorting of the bed showed a uniform retorting front and a yield comparable with that achieved in isotropic shale beds. We present thermal data and offgas, oil and shale analyses (allowing material and energy balance closures) and compare these data to previous vertical retorting experiments on uniform and non-uniform beds of shale. This experiment verifies that uniform retorting fronts can be achieved in correctly designed anisotropic beds of shale and validates the concept of uniform retorting in order increase the oil recovery in second generation retorts. 20 refs., 17 figs., 4 tabs.

Bickel, T.C.; Cook, D.W.; Engler, B.P.

1986-01-01T23:59:59.000Z

446

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect (OSTI)

This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-07-30T23:59:59.000Z

447

NAIHC Convention and Trade Show  

Broader source: Energy.gov [DOE]

The National American Indian Housing Council's (NAIHC)most longstanding Annual Event, the 39th Annual NAIHC Convention and Trade Show is an opportunity to learn about tribal housing, attend...

448

Indian Gaming 2013 Tradeshow & Convention  

Broader source: Energy.gov [DOE]

The National Indian Gaming Association will host its annual tradeshow and convention on March 24-27 in Phoenix, Arizona. Be sure to visit the DOE Office of Indian Energy booth at the event.

449

ITCN 49th Annual Convention  

Office of Energy Efficiency and Renewable Energy (EERE)

The Inter-Tribal Council of Nevada, Inc. will be hosting its 49th Annual Convention, themed "Making a Difference for Nevada Tribes," December 8-11, 2014 at John Ascuagas Nugget in Sparks, Nevada.

450

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect (OSTI)

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

451

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect (OSTI)

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration tempera-tures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

452

Advanced, Low/Zero Emission Boiler Design and Operation  

SciTech Connect (OSTI)

In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

2007-06-30T23:59:59.000Z

453

CERTS Microgrid Laboratory Test Bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

454

Treatment of trichloroethene (TCE) with a fluidized-bed bioreactor  

SciTech Connect (OSTI)

Fluidized-bed bioreactors (FBBR`s) offer a promising alternative to existing treatment technologies for the treatment of water contaminated with chlorinated solvents. The objective of this research was to test a laboratory-scale FBBR for removal of trichloroethene (TCE) from groundwater and to study the FBBR kinetic behavior so that field-scale treatment systems could be designed. Phenol was selected as the growth substrate for biofilm-forming microorganisms enriched from activated-sludge because phenol induces enzymes capable of cometabolizing TCE and lesser chlorinated ethenes. The biofilm forming microorganisms were identified as Pseudomonas putida, a common soil bacterium. Experiments with a conventional, single-pass FBBR addressed TCE removal as effected by changes in TCE loading, phenol loading, and media type. In this study, TCE removal using quartz filter sand and garnet filter sand as the biofilm attachment media was measured. Removal ranged from 20 to 60% and was not affected by the media type. Also, removal was not affected by inlet TCE concentration over the range of 100 to 500 {micro}g/L provided the phenol loading was decreased with increasing TCE loading. The FBBR was capable of complete phenol removal at an inlet concentration of 20 to 25 mg/L and an empty-bed contact time of 2.7 minutes. However, the empty-bed contact time was insufficient to sustain greater than 40 to 50% removal of TCE in a nutrient-amended groundwater.

Foeller, J.R.; Segar, R.L. Jr. [Univ. of Missouri, Columbia, MO (United States). Dept. of Civil Engineering

1997-12-31T23:59:59.000Z

455

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect (OSTI)

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to make this technology ready for full-scale commercial deployment by 2002-2003 in order to meet an anticipated market demand for NO{sub x} reduction technologies resulting from the EPA's NO{sub x} SIP call.

Joseph Rabovitser

2000-07-05T23:59:59.000Z

456

Boiler tube failures in municipal waste-to-energy plants  

SciTech Connect (OSTI)

Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

457

Steam driven centrifugal pump for low cost boiler feed service  

SciTech Connect (OSTI)

This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

Not Available

1982-11-01T23:59:59.000Z

458

Formation of acidic sulfates in kraft recovery boilers  

SciTech Connect (OSTI)

Acidic sulfates (NaHSO[sub 4] and Na[sub 2]S[sub 2]O[sub 7]) have been suggested as the cause of corrosive sticky deposits in recovery boilers. Recovery-boiler precipitator dusts and pure Na[sub 2]SO[sub 4] were examined for their tendency to form acidic sulfates in simulated flue gases. Formation was strongly influenced by temperature and by gas-phase concentrations of SO[sub x] and H[sub 2]O. Liquid NaHSO[sub 4] formed readily at 250 C at SO[sub x] concentration above 150 ppm. Formation reactions were hindered by Na[sub 2]CO[sub 3]. Under appropriate conditions, acidic sulfates can exist at tube surfaces near the furnace roof, at the upper screen tubes, and in the generating bank and economizer.

Poon, W.; Barham, D.; Tran, H. (Univ. of Toronto, Ontario (Canada))

1993-07-01T23:59:59.000Z

459

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

SciTech Connect (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

460

Waste heat boiler optimization by entropy minimization principle  

SciTech Connect (OSTI)

A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

Reddy, B.V.; Murali, J.; Satheesh, V.S. [Vellore Engineering Coll. (India). Mechanical Engineering Dept.; Nag, P.K. [Indian Inst. of Tech., Kharagpur (India). Mechanical Engineering Dept.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "bed boilers conventional" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wood/coal cofiring in industrial stoker boilers  

SciTech Connect (OSTI)

Realizing that a significant reduction in the global emissions of fossil carbon dioxide may require the installation of a wide variety of control technologies, options for large and small boilers are receiving attention. With over 1,500 coal-fired stoker boilers in the US, biomass co-firing is of interest, which would also open markets for waste wood which is presently landfilled at significant costs ranging from $20--200/ton. While much cofiring occurs inside the fence, where industrial firms burn wastes in their site boilers, other opportunities exist. Emphasis has been placed on stoker boilers in the northeastern US, where abundant supplies of urban wood waste are generally known to exist. Broken pallets form a significant fraction of this waste. In 1997, the cofiring of a volumetric mixture of 30% ground broken pallet material and 70% coal was demonstrated successfully at the traveling-grate stoker boilerplant of the Pittsburgh Brewing Company. Fourteen test periods, with various wood/coal mixtures blended on site, and two extended test periods, using wood/coal mixtures blended at the coal terminal and transported by truck to the brewery, were conducted. The 30% wood/70% coal fuel was conveyed through the feed system without difficulty, and combusted properly on the grate while meeting opacity requirements with low SO{sub 2} and NO{sub x} emissions. Efforts are underway to commercialize a wood/coal blend at the brewery, to identify specific urban wood supplies in the Pittsburgh region and to conduct a demonstration at a spreader stoker.

Cobb, J.T. Jr.; Elder, W.W.; Freeman, M.C.

1999-07-01T23:59:59.000Z

462

Condensing economizers for small coal-fired boilers and furnaces  

SciTech Connect (OSTI)

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

Butcher, T.A.; Litzke, W.

1994-01-01T23:59:59.000Z

463

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect (OSTI)

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

464

Experience on coal reburn in a utility boiler  

Science Journals Connector (OSTI)

Reburning is an in-furnace combustion modification technology for the reduction of NOx. By staging the introduction of the fuel, an environment is created where NOx generated by the combustion of the main fuel supply is subsequently consumed by the hydrocarbon radicals arising from the reburn fuel under reducing conditions. ENEL has retrofitted unit No. 4 of Vado Ligure power station with coalover-coal reburn technology, with the target of 65% reduction of NOx emissions (425 mg/Nm³ of NOx @ 6% O2, with American Ashland coal). This retrofit represents the first application of the technology to a utility boiler in Europe, and it has been undertaken by a consortium of European companies, research centres and universities, as listed in the following ENEL (Italy), Mitsui Babcock Energy (United Kingdom), Ansaldo (Italy), Electricity Supply Board (Ireland), PowerGen (United Kingdom), Instituto Superior Tecnico Lisbon (Portugal), Electricidade de Portugal, Howden & Sons (United Kingdom), Electricité de France and University of Stuttgart (Germany), with the support of the European Community through the Thermie Programme. Results from the experimental campaign show that it has been possible to achieve NOx emissions in the order of 350 mg/Nm³ (@6% O2), burning a variety of coals, with carbon in ash ranging from 5 to 8%. Calculations performed on the experimental data show that the impact on boiler operation is also minimised, with a negligible change on the boiler heat transfer pattern.

Luca Ghiribelli

2002-01-01T23:59:59.000Z

465

Ketchikan Pulp's hog-fuel-boiler energy retrofits  

SciTech Connect (OSTI)

Ketchikan Pulp Co. (KPC) is a 600-b.d. Ton/day sulfite mill located 679 Alaska Airlines miles north of Seattle on the island of Revillagigedo. Designed to produce 860 psig steam at 825[degrees]F, each of the boilers is fired off a combination of No. 6 oil and waste wood. This paper reports that in 1984, a rotary bark dyer was installed in series between the existing boiler I.D. fans and the boiler stack. This system consists of a direct-contact rotary dryer unit followed by an additional I.D. fan and four cyclone separators. The combustion gases then return to the existing stack by way of the existing I.D. fan discharge ducting. This unit was designed to operate at a flue-gas inlet temperature of 550[degrees]F and maintained a discharge temperature of 300[degrees]F. The unit was designed to process approximately 360 units of hog fuel per day, drying it from 60% moisture to 40% moisture in a single-pass operation.

Sweet, R.N. (Howard Needles Tammen and Bergendoff, Bellevue, WA (United States))

1991-09-01T23:59:59.000Z

466

The environmental impact of orimulsion combustion in large utility boilers  

SciTech Connect (OSTI)

There is considerable worldwide interest in the practical use of Orimulsion as a replacement fuel in both oil and coal fired utility boilers. Practical experience of such applications has been gained in Canada, UK, Japan, Europe and USA. Fundamental work has demonstrated the different combustion characteristics of Orimulsion which has been termed the {open_quotes}fourth{close_quotes} fossil fuel to the fossil fuels normally used for power generation and how, in certain circumstances, these can be used to advantage in the application of Orimulsion in utility boiler combustion systems. Orimulsion is an emulsify ed fuel prepared from naturally occurring bitumen deposits located in the Orinoco Basin in Venezuela and comprises approximately 70% bitumen and 30% water. Compared to the heavier fuel oils the sulphur content of Orimulsion is medium to high, the ash content is high with high levels of Vanadium and Nickel. The ash content is enhanced by the addition of Magnesium compounds, to the commercial fuel, to mitigate against the potential in boiler corrosion effects arising form the Va, Na and S content in the fuel.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1997-07-01T23:59:59.000Z

467

Development of high temperature air combustion technology in pulverized fossil fuel fired boilers  

SciTech Connect (OSTI)

High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyroly