Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Feasibility Study for Vitrification of Sodium-Bearing Waste  

Science Conference Proceedings (OSTI)

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

2000-09-01T23:59:59.000Z

2

Feed Composition for Sodium-Bearing Waste Treatment Process  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

Barnes, C.M.

2000-10-30T23:59:59.000Z

3

Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

Taylor, Dean Dalton; Barnes, Charles Marshall

2002-09-01T23:59:59.000Z

4

Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

Barnes, C.M.; Taylor, D.D.

2002-09-09T23:59:59.000Z

5

Sodium-Bearing Waste Treatment Alternatives Implementation Study  

SciTech Connect

The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

Charles M. Barnes; James B. Bosley; Clifford W. Olsen

2004-07-01T23:59:59.000Z

6

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at INL for ICP  

SciTech Connect

The patented THOR steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR can also produce a final endproduct that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR process chemistry and process equipment being designed for the IWTU.

J. Bradley Mason; Kevin Ryan; Scott Roesener; Michael Cowen; Duane Schmoker; Pat Bacala; Bill Landman

2006-03-01T23:59:59.000Z

7

TRUEX partitioning studies applied to ICPP sodium-bearing waste  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located in southeast Idaho at the USDOE Idaho National Engineering Laboratory, formerly reprocessed highly enriched spent nuclear fuel to recover fissionable uranium. The HLW raffinates from the combined PUREX/REDOX type uranium recovery process were converted to solid oxides (calcine) in a high temperature fluidized bed. Liquid effluents from the calcination process were combined with liquid sodium bearing waste (SBW) generated primarily in conjunction with decontamination activities. Due to the high sodium content in the SBW, this secondary waste stream is not directly amenable to solidification via calcination. Currently, approximately 1.5 millon gallons of liquid SBW are stored at the ICPP in large tanks. Several treatment options for the SBW are currently being considered, including the TRansUranic EXtraction (TRUEX) process developed by Horwitz and co-workers at Argonne National Laboratory (ANL), in preparation for the final disposition of SBW. Herein described are experimental results of radionuclide tracer studies with simulated SBW using the TRUEX process solvent.

Herbst, R.S.; Brewer, K.N.; Law, J.D.; Tranter, T.J.; Todd, T.A.

1994-05-01T23:59:59.000Z

8

Feed Composition for Sodium-Bearing Waste Treatment Process, Rev. 3  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

Barnes, Charles Marshall

2003-09-01T23:59:59.000Z

9

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR{sup R} steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR{sup R} technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR{sup R} can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR{sup R} can also produce a final end-product that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR{sup R} process chemistry and process equipment being designed for the IWTU. (authors)

Mason, J.B.; Wolf, K.; Ryan, K.; Roesener, S.; Cowen, M.; Schmoker, D.; Bacala, P. [THOR Treatment Technologies, LLC, 106 Newberry St. SW, Aiken, SC 29801 (United States); Landman, B. [CH2M WG Idaho, LLC, P. O. Box 1625, Idaho Falls, ID 83415 (United States)

2006-07-01T23:59:59.000Z

10

EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preferred Sodium Bearing Waste Treatment Preferred Sodium Bearing Waste Treatment Technology EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology Idaho High-Level Waste (HLW) and Facilities Disposition In October 2002, the U.S. Department of Energy (DOE or the Department) issued the Final Idaho High-Level Waste (HLW) and Facilities Disposition Environmental Impact Statement (DOE/EIS-0287 (Final EIS)). The Final EIS contains an evaluation of reasonable alternatives for the management of mixed transuranic waste/sodium bearing waste (SBW),1 mixed HLW calcine, and associated low-level waste (LLW), as well as disposition alternatives for HLW facilities when their missions are completed. DOE/EIS-0287, Notice of Preferred Sodium Bearing Waste Treatment Technology, Office of Environmental Management, Idaho, 70 FR 44598 (August

11

Glass Formulation Development for INEEL Sodium-Bearing Waste  

SciTech Connect

For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO{sub 2}, 14.26 mass% B{sub 2}O{sub 3}, 11.31 mass% Fe{sub 2}O{sub 3}, 3.08 mass% TiO{sub 2}, and 2.67 mass % Li{sub 2}O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa{center_dot}s, is nearly ideal for waste-glass processing in a standard liquid-fed joule-heated melter. The normalized elemental releases by 7-day PCT are all well below 1 g/m{sup 2}, which is a very conservative set point used in this study. The T{sub L}, ignoring sulfate formation, is less than the 1050 C limit. Based on these observations and the reasonable waste loading of 35 mass 0/0, the SBW glass was a prime candidate for further testing. Sulfate salt segregation was observed in all test melts formed from oxidized carbonate precursors. Melts fabricated using SBW simulants suggest that the sulfate-salt segregation seen in oxide and carbonate melts was much less of a problem. The cause for the difference is likely H{sub 2}SO{sub 4} fuming during the boil-down stage of wet-slurry processing. Additionally, some crucible tests with SBW simulant were conducted at higher temperatures (1250 C), which could increase the volatility of sulfate salts. The fate of sulfate during the melting process is still uncertain and should be the topic of future studies. The properties of the simulant glass confirmed those of the oxide and carbonate glass. Corrosion tests on Inconel 690 electrodes and K-3 refractory blocks conducted at INEEL suggest that the glass is not excessively corrosive. Based on the results of this study, the authors recommend that a glass made of 35% SBW simulant (on a mass oxide and halide basis) and 65% of the additive mix (either filled or raw chemical) be used in demonstrating the direct vitrification of INEEL SBW. It is further recommended that a study be conducted to determine the fate of sulfate during glass processing and the tolerance of the chosen melter technology to sulfate salt segregation and corrosivity of the melt.

J.D. Vienna; M.J. Schweiger; D.E. Smith; H.D. Smith; J.V. Crum; D.K. Peeler; I.A. Reamer; C.A. Musick; R.D. Tillotson

1999-08-03T23:59:59.000Z

12

Glass Formulation Development for INEEL Sodium-Bearing Waste  

SciTech Connect

For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO{sub 2}, 14.26 mass% B{sub 2}O{sub 3}, 11.31 mass% Fe{sub 2}O{sub 3}, 3.08 mass% TiO{sub 2}, and 2.67 mass % Li{sub 2}O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa{center_dot}s, is nearly ideal for waste-glass processing in a standard liquid-fed joule-heated melter. The normalized elemental releases by 7-day PCT are all well below 1 g/m{sup 2}, which is a very conservative set point used in this study. The T{sub L}, ignoring sulfate formation, is less than the 1050 C limit. Based on these observations and the reasonable waste loading of 35 mass 0/0, the SBW glass was a prime candidate for further testing. Sulfate salt segregation was observed in all test melts formed from oxidized carbonate precursors. Melts fabricated using SBW simulants suggest that the sulfate-salt segregation seen in oxide and carbonate melts was much less of a problem. The cause for the difference is likely H{sub 2}SO{sub 4} fuming during the boil-down stage of wet-slurry processing. Additionally, some crucible tests with SBW simulant were conducted at higher temperatures (1250 C), which could increase the volatility of sulfate salts. The fate of sulfate during the melting process is still uncertain and should be the topic of future studies. The properties of the simulant glass confirmed those of the oxide and carbonate glass. Corrosion tests on Inconel 690 electrodes and K-3 refractory blocks conducted at INEEL suggest that the glass is not excessively corrosive. Based on the results of this study, the authors recommend that a glass made of 35% SBW simulant (on a mass oxide and halide basis) and 65% of the additive mix (either filled or raw chemical) be used in demonstrating the direct vitrification of INEEL SBW. It is further recommended that a study be conducted to determine the fate of sulfate during glass processing and the tolerance of the chosen melter technology to sulfate salt segregation and corrosivity of the melt.

J.D. Vienna; M.J. Schweiger; D.E. Smith; H.D. Smith; J.V. Crum; D.K. Peeler; I.A. Reamer; C.A. Musick; R.D. Tillotson

1999-08-03T23:59:59.000Z

13

TRUEX partitioning from radioactive ICPP sodium bearing waste  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP) located at the Idaho National Engineering Laboratory in Southeast Idaho is currently evaluating several treatment technologies applicable to waste streams generated over several decades of-nuclear fuel reprocessing. Liquid sodium bearing waste (SBW), generated primarily during decontamination activities, is one of the waste streams of interest. The TRansUranic EXtraction (TRUEX) process developed at Argonne National Laboratory is currently being evaluated to separate the actinides from SBW. On a mass basis, the amount of the radioactive species in SBW are low relative to inert matrix components. Thus, the advantage of separations is a dramatic decrease in resulting volumes of high activity waste (HAW) which must be dispositioned. Numerous studies conducted at the ICPP indicate the applicability of the TRUEX process has been demonstrated; however, these studies relied on a simulated SBW surrogate for the real waste. Consequently, a series of batch contacts were performed on samples of radioactive ICPP SBW taken from tank WM-185 to verify that actual waste would behave similarly to the simulated waste. The test results with SBW from tank WM-185 indicate the TRUEX solvent effectively extracts the actinides from the samples of actual waste. Gross alpha radioactivity, attributed predominantly to Pu and Am, was reduced from 3.14E+04 dps/mL to 1.46 dps/mL in three successive batch contacts with fresh TRUEX solvent. This reduction corresponds to a decontamination factor of DF = 20,000 or 99.995% removal of the gross a activity in the feed. The TRUEX solvent also extracted the matrix components Zr, Fe, and Hg to an appreciable extent (D{sub Zr} > 10, D{sub Fe} {approx} 2, D{sub Hg} {approx}6). Iron co-extracted with the actinides can be successfully scrubbed from the organic with 0.2 M HNO{sub 3}. Mercury can be selectively partitioned from the actinides with either sodium carbonate or nitric acid ({ge} 5 M HNO{sub 3}) solutions.

Herbst, R.S.; Brewer, K.N.; Tranter, T.J.; Todd, T.A.

1995-03-01T23:59:59.000Z

14

Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update  

SciTech Connect

This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

Mc Dannel, Gary Eidson

2001-09-01T23:59:59.000Z

15

Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1  

SciTech Connect

The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

2001-05-21T23:59:59.000Z

16

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected by the Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL). SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. Design of the IWTU is nearing completion. The IWTU will be constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF), with planned fabrication and construction to start in early 2007 upon receipt of needed permits and completion of design and engineering. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

Landman, W.; Roesener, S. [CH2M WG Idaho, LLC, Idaho Falls, ID (United States); Mason, B.; Wolf, K.; Amaria, N. [THOR Treatment Technologies, LLC, Aiken, SC (United States)

2007-07-01T23:59:59.000Z

17

CMP flowsheet development for the separation of actinides from ICPP sodium-bearing waste using centrifugal contactors  

Science Conference Proceedings (OSTI)

Previous results of lab-scale batch contacts with sodium-bearing waste (SBW) simulant suggested a potential flowsheet for partitioning actinides using solvent extraction with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (DHDECMP or simply CMP) as the extractant. The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SBW into the CMP solvent (0.75 M CMP, 1.0 M TBP in Isopar-L{reg_sign}); a thermally unstable complexant (TUCS) strip section to back-extract actinides; a sodium carbonate wash section for solvent cleanup; and a dilute HNO{sub 3} rinse section to re-acidify the solvent. The purpose of these studies was to test and develop a baseline CMP flowsheet for Idaho Chemical Processing Plant (ICPP) SBW under continuous, countercurrent conditions using centrifugal contactors. This flowsheet was tested in two experiments using the Centrifugal Contactor Mockup which consists of sixteen stages of 5.5 cm diameter centrifugal contactors (procured from Oak Ridge National Laboratory). All testing was performed using non-radioactive SBW simulant. Potential flowsheets were evaluated with regard to the behavior of the non-radioactive components potentially extracted by the CMP solvent. Specifically, the behavior of the matrix components, including Fe, Hg, and Zr, was studied. In addition, Nd was added to the SBW simulant as a surrogate for {sup 241}Am. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. Based on the assumption that the behavior of Am will be very similar to the behavior of the Nd surrogate, eight extraction stages are more than sufficient to reduce the actinide content in the SBW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Very little Fe or Zr were extracted from the SBW simulant, resulting in only 1% of the Fe and 4% of the Zr exiting in the high-activity waste (HAW) fraction.

Law, J.D.; Herbst, R.S.; Rodriguez, A.M.

1995-08-01T23:59:59.000Z

18

Sodium-bearing Waste Treatment Technology Evaluation Report  

SciTech Connect

Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Offices (NE-ID) and State of Idahos top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

2004-05-01T23:59:59.000Z

19

Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste  

SciTech Connect

The purpose of this document is to provide the technical information to Savannah River Site (SRS) personnel that is required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and nvironmental Laboratory (INEEL). INEEL considers simulation to have an important role in the integration/optimization of treatment process trains for the High Level Waste (HLW) Program. This project involves a joint Technical Task Plan (TTP ID77WT31, Subtask C) between SRS and INEEL. The work scope of simulation is different at the two sites. This document addresses only the treatment of SBW at INEEL. The simulation model(s) is to be built by SRS for INEEL in FY-2001.

Nichols, Todd Travis; Taylor, Dean Dalton; Lauerhass, Lance; Barnes, Charles Marshall

2001-02-01T23:59:59.000Z

20

Steam Reforming Application for Treatment of DOE Sodium-Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected by the U.S. Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of sodium-bearing waste (SBW) at the Idaho National Laboratory (INL) Site 1. SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. The IWTU is being constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF). Detailed design of the IWTU has been completed and DOE has approved the CD-3 detailed design. The State of Idaho has approved the RCRA and construction air permits. Construction of the IWTU started in April 2007 with civil and foundation work. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

Landman, W.; Roesener, S. [CH2M-WG Idaho, LLC, Idaho Falls, ID (United States); Bradley Mason, J.; Bourgeois, T.; Amaria, N. [THOR Treatment Technologies, LLC, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Removal of Mercury from SBW Vitrification Off-Gas by Activated Carbon  

SciTech Connect

Radioactive, acidic waste stored at the Idaho Nuclear Technology and Engineering Center (INTEC) have been previously converted into a dry, granular solid at the New Waste Calcining Facility (NWCF). As an alternative to calcination, direct vitrification of the waste, as well as the calcined solids in an Idaho Waste Vitrification Facility (IWVF) is being considered to prepare the waste for final disposal in a federal repository. The remaining waste to be processed is Sodium-Bearing Waste (SBW). Off-gas monitoring during NWCF operations have indicated that future mercury emissions may exceed the proposed Maximum Achievable Control Technology (MACT) limit of 130 ug/dscm (micrograms/dry standard cubic meter) @ 7% O2 for existing Hazardous Waste Combustors (HWC) if modifications are not made. Carbon monoxide and hydrocarbon emissions may also exceed the MACT limits. Off-gas models have predicted that mercury levels in the off-gas from SBW vitrification will exceed the proposed MACT limit of 45 ug/dscm @ 7% O2 for new HWCs. NO2/44% H2O.

Deldebbio, John Anthony; Watson, T. T.; Kirkham, Robert John

2001-09-01T23:59:59.000Z

22

Characterization of Tank WM-189 Sodium-bearing Waste at INTEC, Rev. 1  

SciTech Connect

Idaho Nuclear Technology and Engineering Center 300,000-gallon vessel WM-189 was filled in late 2001 with concentrated sodium bearing waste (SBW). Three airlifted liquid samples and a steam jetted slurry sample were obtained for quantitative analysis and characterization of WM-189 liquid phase SBW and tank heel sludge. Estimates were provided for most of the reported data values, based on the greater of (a) analytical uncertainty, and (b) variation of analytical results between nominally similar samples. A consistency check on the data was performed by comparing the total mass of dissolved solids in the liquid, as measured gravimetrically from a dried sample, with the corresponding value obtained by summing the masses of cations and anions in the liquid, based on the reported analytical data. After reasonable adjustments to the nitrate and oxygen concentrations, satisfactory consistency between the two results was obtained. A similar consistency check was performed on the reported compositional data for sludge solids from the steam jetted sample. In addition to the compositional data, various other analyses were performed: particle size distribution was measured for the sludge solids, sludge settling tests were performed, and viscosity measurements were made. WM-189 characterization results were compared with those for WM-180, and other Tank Farm Facility tank characterization data. A 2-liter batch of WM-189 simulant was prepared and a clear, stable solution was obtained, based on a general procedure for mixing SBW simulant that was develop by Dr. Jerry Christian. This WM-189 SBW simulant is considered suitable for laboratory testing for process development.

Batcheller, Thomas Aquinas; Taylor, Dean Dalton

2003-07-01T23:59:59.000Z

23

Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste  

Science Conference Proceedings (OSTI)

The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

2002-02-01T23:59:59.000Z

24

Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste  

Science Conference Proceedings (OSTI)

The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

2002-01-16T23:59:59.000Z

25

Phase 2 TWR Steam Reforming Test for Sodium-Bearing Waste Treatment  

SciTech Connect

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste (SBW) is stored in stainless steel tanks a the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory (INEEL). Steam reforming is a candidate technology being investigated for converting the SBW into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. Fluidized bed steam reforming technology, licensed to ThermoChem Waste Remediation, LLC (TWR) by Manufacturing Technology Conversion International, was tested in two phases using an INEEL (Department of Energy) fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center in Idaho Falls, Idaho. The Phase 1 tests were reported earlier. The Phase 2 tests are reported here. For Phase 2, the process feed rate, reductant stoichiometry, and process temperature were varied to identify and demonstrate how the process might be optimized to improve operation and product characteristics. The first week of testing was devoted primarily to process chemistry and the second week was devoted more toward bed stability and particle size control.

Nicholas R. Soelberg; Doug Marshall; Dean Taylor; Steven Bates

2004-01-01T23:59:59.000Z

26

Steam Reforming Technology Demonstration for Conversion of DOE Sodium-Bearing Tank Wastes at Idaho National Laboratory into a Leach-Resistant Alkali Aluminosilicate Waste Form  

Science Conference Proceedings (OSTI)

The patented THOR{sup R} fluidized-bed steam reforming (FBSR) technology was selected by the U.S. Department of Energy (DOE) for treatment of sodium-bearing waste (SBW) in the Integrated Waste Treatment Unit (IWTU), currently under construction at the Idaho National Laboratory (INL) Site.1 SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. The SBW contains high concentrations of nitric acid, and alkali and aluminum nitrates, along with many other inorganic compounds, including substantial levels of radionuclides. As part of the implementation of the THOR{sup R} process at INTEC, an engineering-scale technology demonstration (ESTD) was conducted using a specially designed pilot plant located at Hazen Research, Inc. in Golden Colorado. This ESTD confirmed the efficacy of the THOR{sup R} FBSR process to convert the SBW into a granular carbonate-based waste form suitable for disposal at the Waste Isolation Pilot Plant (WIPP). DOE authorized, as a risk reduction measure, the performance of an additional ESTD to demonstrate the production of an insoluble mineralized product, in the event that an alternate disposition path is required. The additional ESTD was conducted at the Hazen Research facility using the THOR{sup R} process and the same SBW simulant employed previously. An alkali aluminosilicate mineral product was produced that exhibited excellent leach resistance and chemical durability. The demonstration established general system operating parameters for a full-scale facility; provided process off-gas data that confirmed operation within regulatory limits; determined that the mineralized product exhibits superior leach resistance and durability, compared to Environmental Assessment (EA) and Low-activity Reference Material (LRM) glasses, as indicated by the Product Consistency Test (PCT); ascertained that Cs and Re (a surrogate for Tc) were non-volatile and were retained in the mineral product; and showed that heavy metals were converted into mineral forms that were not leachable, as determined by the Toxicity Characteristic Leaching Procedure (TCLP) test. (authors)

Ryan, K.; Bradley Mason, J.; Evans, B.; Vora, V. [THOR Treatment Technologies, LLC, Aiken, SC (United States); Olson, A. [CH2M-WG Idaho, LLC, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

27

Glass Formulation Development for INEEL Sodium -Bearing Waste (FY2001 WM-180)  

SciTech Connect

A systematic study was undertaken to develop a glass composition to demonstrate the vitrification flowsheet of the Idaho National Engineering and Environmental Laboratory's sodium bearing waste (SBW) using the latest WM-180 tank composition. Although the previous study did not restrict waste loadings (WLs) based on the potential to form a segregated salt layer, avoiding its development in a melter is beneficial and was the primary focus from the glass-formulation perspective. The testing results described in this report were aimed at providing a candidate glass composition for use in a scaled melter demonstration of direct vitrification of WM-180 in the Research Scale Melter (RSM) at Pacific Northwest National Laboratory and the EV-16 melter at the Clemson Environmental Technology Laboratory.

Peeler, D.K.

2001-09-21T23:59:59.000Z

28

Actinide extraction from ICPP sodium bearing waste with 0.75 M DHDECMP/TBP in Isopar L{reg_sign}  

SciTech Connect

Recent process development efforts at the Idaho Chemical Processing Plant include examination of solvent extraction technologies for actinide partitioning from sodium bearing waste (SBW) solutions. The use of 0.75 {und M} dihexyl-N, N-diethylcarbamoylmethylphosphonate (DHDECMP or simply CMP) and 1.0 {und M} tri-n-butyl phosphate (TBP) diluted in Isopar L{reg_sign} was explored for actinide removal from simulated SBW solutions. Experimental evaluations included batch contacts in radiotracer tests with simulated sodium bearing waste solution to measure the extraction and recovery efficiency of the organic solvent. The radioactive isotopes utilized for this study included Pu-238, Pu-239, Am-241, U-233, Np-239, Zr-95, Tc-99m, and Hg-203. Extraction contacts of the organic solvent with the traced SBW stimulant, strip (back-extraction) contacts of the loaded organic solvent with either a 1-hydroxyethane-1, 1-diphosphonic acid (HEDPA) in nitric acid solution or an oxalic acid in nitric acid solution, and solvent wash contacts with sodium carbonate were performed.

Herbst, R.S.; Brewer, K.N.; Garn, T.G.; Law, J.D.; Rodriguez, A.M.; Tillotson, R.T.

1996-01-01T23:59:59.000Z

29

Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report  

SciTech Connect

The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.

Darab, John G.; Graham, Dennis D.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D.; Vienna, John D.; Peeler, David K.

2001-07-31T23:59:59.000Z

30

Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology  

SciTech Connect

Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Offices (NE-ID) and State of Idahos top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-12-01T23:59:59.000Z

31

Notice of Preferred Sodium Bearing Waste Treatment Technology (DOE/EIS-0287) (08/03/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

598 598 Federal Register / Vol. 70, No. 148 / Wednesday, August 3, 2005 / Notices 1 The Final EIS refers to SBW as mixed transuranic waste/SBW. However, a determination that SBW is transuranic waste has not been made. overseas citizens, as well as the individual and combined number of such ballots returned and cast by such voters. (42 U.S.C. 1973ff-1(c)) 5. Individuals entitled to vote otherwise than in person under the Voter Accessibility for the Elderly and Handicapped Act (42 U.S.C. 1973ee- 1(b)(2)(B)(ii)) or any other Federal law. States must identify registrants who are entitled to cast an absentee ballot under such statutes as they are exempt from HAVA's 42 U.S.C. 15483(b)(2) identification requirements. F. What obligations do election officials have concerning the security of the

32

The extraction of rare earth elements from ICPP sodium-bearing waste and dissolved zirconium calcine by CMP and TRUEX solvents  

SciTech Connect

The extraction of stable isotopes of Eu and Ce was investigated from simulated sodium-bearing waste (SBW) and dissolved zirconium calcine by TRUEX and CMP solvents at the Idaho Chemical Processing Plant (ICPP). Single batch contacts were carried out in order to evaluate the rare earth behavior in the extraction, scrub, strip and wash sections for the proposed flowsheets. It has been shown that these lanthanides are efficiently extracted from the sodium-bearing wastes into either solvent, are not scrubbed and are stripped from both of the extractants with dilute HEDPA. The extraction distribution coefficients for Ce and Eu are higher in the TRUEX solvent (D{sub Ce} = 11.7, D{sub Eu} = 14.9) compared with CMP (D{sub Ce} = 9.3, D{sub Eu} = 7.23) for SBW. The extraction distribution coefficients for Ce and Eu are considerably less in the TRUEX solvent (D{sub Ce}=1.13, D{sub Eu}=1.8) than in the CMP solvent (D{sub Ce}=7.4, D{sub Eu=}6.1) for dissolved zirconium calcine feeds. The lower distribution coefficients for the extraction of lanthanides in the TRUEX/dissolved zirconium calcine system can be explained by zirconium loading of the solvent. The data obtained also confirmed that Ce and Eu can be used as non-radioactive surrogates for Am in separation experiments with acidic solutions.

Todd, T.A.; Glagolenko, I.Y.; Herbst, R.S.; Brewer, K.N.

1995-11-01T23:59:59.000Z

33

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as

34

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for

35

Sodium Bearing Waste Treatment Project ? Countdown to Startup  

NLE Websites -- All DOE Office Websites (Extended Search)

Date: March 19, 2012 Media Contact: Natalie Packer, 208-533-0253 Sodium Bearing Waste Treatment Project Countdown to Startup Marking completion of another major...

36

FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste  

SciTech Connect

A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997.

Musick, C.A.

1997-11-01T23:59:59.000Z

37

Sodium Bearing Waste Processing Alternatives Analysis  

SciTech Connect

A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on giving Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.

Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph

2003-12-01T23:59:59.000Z

38

Demonstration of a SREX flowsheet for the partitioning of strontium and lead from actual ICPP sodium-bearing waste  

SciTech Connect

Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr and Pb from acidic radioactive waste solutions located at the Idaho Chemical Processing Plant. Previous countercurrent flowsheet testing of the SREX process with simulated waste resulted in 99.98% removal of Sr and 99.9% removal of Pb. Based on the results of these studies, a demonstration of the SREX flowsheet was performed. The demonstration consisted of (1) countercurrent flowsheet testing of the SREX process using simulated sodium-bearing waste spiked with {sup 85}Sr and (2) countercurrent flowsheet testing of the SREX process using actual waste from tank WM-183. All testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. The flowsheet tested consisted of an extraction section (0. 15 M 4`,4`(5)-di-(tert-butyldicyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L{reg_sign}), a 2.0 MHNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.05 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.1 M ammonium citrate strip section for the removal of Pb from the SREX solvent, and a 3.0 M HNO{sub 3} equilibration section. The behavior of {sup 90}Sr, Pb, Na, K, Hg, H{sup +}, the actinides, and numerous other non-radioactive elements was evaluated. The described flowsheet successfully extracted and selectively stripped Sr and Ph from the SBW simulant and the actual tank waste. For the testing with actual tank waste (WM - 183), removal efficiencies of 99.995 % and >94% were obtained for {sup 90}Sr and Pb, respectively.

Law, J.D.; Wood, D.J.; Olson, L.G.; Todd, T.A.

1997-08-01T23:59:59.000Z

39

Solidification of Simulated Liquid Effluents Originating From Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center, FY-03 Report  

SciTech Connect

In this report, the mechanism and methods of fixation of acidic waste effluents in grout form are explored. From the variations in the pH as a function of total solids addition to acidic waste effluent solutions, the stages of gellation, liquefaction, slurry formation and grout development are quantitatively revealed. Experimental results indicate the completion of these reaction steps to be significant for elimination of bleed liquid and for setting of the grout to a dimensionally stable and hardened solid within a reasonable period of about twenty eight days that is often observed in the cement and concrete industry. The reactions also suggest increases in the waste loading in the direction of decreasing acid molarity. Consequently, 1.0 molar SBW-180 waste is contained in higher quantity than the 2.8 molar SBW-189, given the same grout formulation for both effluents. The variations in the formulations involving components of slag, cement, waste and neutralizing agent are represented in the form of a ternary formulation map. The map in turn graphically reveals the relations among the various formulations and grout properties, and is useful in predicting the potential directions of waste loading in grouts with suitable properties such as slurry viscosity, Vicat hardness, and mechanical strength. A uniform formulation for the fixation of both SBW-180 and SBW-189 has emerged from the development of the formulation map. The boundaries for the processing regime on this map are 100 wt% cement to 50 wt% cement / 50 wt% slag, with waste loadings ranging from 55 wt% to 68 wt%. Within these compositional bounds all the three waste streams SBW-180, SBW-189 and Scrub solution are amenable to solidification. A large cost advantage is envisaged to stem from savings in labor, processing time, and processing methodology by adopting a uniform formulation concept for fixation of compositionally diverse waste streams. The experimental efforts contained in this report constitute the first attempt at developing a uniform methodology.

S. V. Raman; A. K. Herbst; B. A. Scholes; S. H. Hinckley; R. D. Colby

2003-09-01T23:59:59.000Z

40

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal - June 2012 Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for the SBWTP-IWTU. This review also provides additional data regarding

42

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor - June 2012 Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as opportunities for improvement (OFIs) and items identified for further

43

Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination  

SciTech Connect

U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

Jacobson, Victor Levon

2002-08-01T23:59:59.000Z

44

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the reference glasses and the Low Activity Waste (LAW) specification for the Hanford Waste Treatment and Vitrification Plant (WTP). Normalized releases from the DMR and HTF samples were all less than 1 g/m{sup 2}. For comparison, normalized release from the High-Level Waste (HLW) benchmark Environmental Assessment (EA) glass for Si, Li, Na and B ranges from 2 to 8 g/m{sup 2}. The normalized release specification for LAW glass for the Hanford WTP is 2 g/m{sup 2}. The Toxicity Characteristic Leach Test (TCLP) was performed on DMR and HTF as received samples and the tests showed that these products meet the criteria for the EPA RCRA Universal Treatment Standards for all of the constituents contained in the starting simulants such as Cr, Pb and Hg (RCRA characteristically hazardous metals) and Ni and Zn (RCRA metals required for listed wastes).

Crawford, C; Carol Jantzen, C

2007-08-27T23:59:59.000Z

45

Electrolytic Treatment of ICPP Sodium-Bearing Waste Simulant  

SciTech Connect

Two proof-of-principle tests were conducted to determine if nitrate can be destroyed electrochemically in a simulated Idaho Chemical Processing Plant (ICPP) Sodium-Bearing waste. Both tests demonstrated the destruction of nitrate as well as the removal of other metals in the simulant. Metals removal is believed to be due to precipitation as a result of a change in the pH of the waste solution from strongly acidic to highly alkaline and reduction to a metal or metal oxide. Although gas evolution at the cathode was visible during each test, there were no visible signs of NO{sub x} formation in either test.

Hobbs, D.T.

1995-02-02T23:59:59.000Z

46

Sodium-Bearing Waste Treatment, Applied Technology Plan  

SciTech Connect

Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

2003-06-01T23:59:59.000Z

47

Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream  

SciTech Connect

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, {sup 203}Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste simulant and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl{sub 2} from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO{sub 3} and 0.077 with 0.25 M Na{sub 2}CO{sub 3}. An experimental flowsheet was designed from the batch contact tests and tested counter-currently using 5.5 cm centrifugal contactors. Results from the counter-current test show that mercury can be removed from the acidic mixed SBW simulant and recovered separately from the actinides.

Brewer, K.N.; Herbst, R.S.; Tranter, T.J. [and others

1995-12-01T23:59:59.000Z

48

INTEC SBW Solid Sludge Surrogate Recipe and Validation  

SciTech Connect

A nonhazardous INTEC tank farm sludge surrogate that incorporated metathesis reactions to generate solids from solutions of known elements present in the radioactive INTEC tank farm sodium-bearing waste sludges was formulated. Elemental analyses, physical property analyses, and filtration testing were performed on waste surrogate and tank farm waste samples, and the results were compared. For testing physical systems associated with moving the tank farm solids, the surrogate described in this report is the best currently available choice. No other available surrogate exhibits the noted similarities in behavior to the sludges. The chemical morphology, particle size distribution, and settling and flow characteristics of the surrogate were similar to those exhibited by the waste sludges. Nonetheless, there is a difference in chemical makeup of the surrogate and the tank farm waste. If a chemical treatment process were to be evaluated for final treatment and disposition of the waste sludges, the surrogate synthesis process would likely require modification to yield a surrogate with a closer matching chemical composition.

Maio, Vince; Janikowski, Stuart; Johnson, Jim; Maio, Vince; Pao, Jenn-Hai

2004-06-01T23:59:59.000Z

49

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

50

Overview of Integrated Waste Treatment Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Waste Treatment Unit Overview Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety  performance  cleanup  closure M E Environmental Management Environmental Management 2 2 Integrated Waste Treatment Unit Mission * Mission - Project mission is to provide treatment of approximately 900,000 gallons of tank farm waste - referred to as sodium bearing waste (SBW) - stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant (WIPP). - Per the Idaho Cleanup Project contract, the resident Integrated Waste Treatment Unit (IWTU) facility, shall have the capability for future packaging and shipping of the existing high level waste (HLW) calcine to the geologic

51

Wet oxidation of oil-bearing sulfide wastes  

SciTech Connect

Oil-bearing metal sulfide sludges produced in treatment of an industrial wastewater, which includes plating wastes, have yielded to treatment by electrooxidation and hydrogen peroxide processes. The oxidation can be controlled to be mild enough to avoid decomposition of the organic phase while oxidizing the sulfides to sulfates. The pH is controlled to near neutral conditions where iron, aluminum and chromium(III) precipitate as hydrous oxides. Other metals, such as lead and barium, may be present as sulfate precipitates with limited solubility, while metals such as nickel and cadmium would be present as complexed ions in a sulfate solution. The oxidations were found to proceed smoothly, without vigorous reaction; heat liberation was minimal. 2 refs., 12 figs.

Miller, R.L.; Hotz, N.J.

1991-01-01T23:59:59.000Z

52

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

53

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

54

Microsoft PowerPoint - 1-07 Mason DOE EM Waste Processing Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

plants: Studsvik Processing Facility: Ion exchange resins (45" diameter FBSR) DOE Idaho Integrated Waste Treatment Unit: SBW treatment (48" diameter FBSR) DOE...

55

Vitrified waste option study report  

SciTech Connect

A {open_quotes}Settlement Agreement{close_quotes} between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032.

Lopez, D.A.; Kimmitt, R.R.

1998-02-01T23:59:59.000Z

56

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

Science Conference Proceedings (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

57

Electron Microscopy Characterization of Tc-Bearing Metallic Waste Forms- Final Report FY10  

SciTech Connect

The DOE Fuel Cycle Research & Development (FCR&D) Program is developing aqueous and electrochemical approaches to the processing of used nuclear fuel that will generate technetium-bearing waste streams. This final report presents Pacific Northwest National Laboratory (PNNL) research in FY10 to evaluate an iron-based alloy waste form for Tc that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal.

Buck, Edgar C.; Neiner, Doinita

2010-09-30T23:59:59.000Z

58

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement ORR Operational...

59

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement OGC Off-Gas...

60

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

62

Idaho Nuclear Technology and Engineering Center Sodium-Bearing Waste Treatment Research and Development FY-2002 Status Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2002, immobilization-related research included of grout formulation development for sodium-bearing waste, absorption of the waste on silica gel, and off-gas system mercury collection and breakthrough using activated carbon. Experimental results indicate that sodium-bearing waste can be immobilized in grout at 70 weight percent and onto silica gel at 74 weight percent. Furthermore, a loading of 11 weight percent mercury in sulfur-impregnated activated carbon was achieved with 99.8% off-gas mercury removal efficiency.

Herbst, Alan Keith; Deldebbio, John Anthony; Mc Cray, John Alan; Kirkham, Robert John; Olson, Lonnie Gene; Scholes, Bradley Adams

2002-09-01T23:59:59.000Z

63

Froth flotation of oil-bearing metal sulfide wastes  

SciTech Connect

An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

Miller, R.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Atwood, R.L.; Ye, Yi [Advanced Processing Technologies, Inc., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

64

Froth flotation of oil-bearing metal sulfide wastes  

SciTech Connect

An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

Miller, R.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Atwood, R.L.; Ye, Yi (Advanced Processing Technologies, Inc., Salt Lake City, UT (United States))

1991-01-01T23:59:59.000Z

65

Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium  

SciTech Connect

A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

Nichols, T.T.; Taylor, D.D.

2002-07-18T23:59:59.000Z

66

Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium  

SciTech Connect

A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

Nichols, Todd Travis; Taylor, Dean Dalton

2002-07-01T23:59:59.000Z

67

Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan K.

2002-01-02T23:59:59.000Z

68

Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan Keith

2002-01-01T23:59:59.000Z

69

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project" BACKGROUND In 2005, the Department of Energy (Department) awarded the Idaho Cleanup Project contract to CH2M ♦ WG Idaho, LLC (CWI) to remediate the Idaho National Laboratory. The Sodium

70

Alternative TRUEX-Based Pretreatment Processing of INEEL Sodium Bearing Waste  

SciTech Connect

The goals of this study were to demonstrate a selective complexant for separating mercury from the transuranic (TRU) elements in the transuranic extraction (TRUEX) process and to demonstrate alternative stripping methods to eliminate phosphorus-containing, actinide stripping agents during TRUEX processing. The work described in this report provides the basis for implementing an improved TRUEX-based flowsheet for processing INEEL sodium-bearing waste using only minor modifications to the current Idaho National Engineering and Environmental Laboratory (INEEL) flowsheet design.

Rapko, Brian M.; Fiskum, Sandra K.; Lumetta, Gregg J.

2000-09-27T23:59:59.000Z

71

Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads  

SciTech Connect

Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

2004-01-01T23:59:59.000Z

72

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2

73

Worst-Case" Simulant for INTEC Soduim-Bearing Waste Vitrification Tests  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is developing technologies to process the radioactive liquid sodium-bearing waste from the waste tanks at INTEC to solidify the waste into a form suitable for disposition in a National high-level waste repository currently being considered at Yucca Mountain, Nevada. The requirement is for a qualified glass waste form. Therefore, vitrification is being developed using laboratory, research-scale, and pilot scale melters. While some laboratory experiments can be done with actual waste, the larger scale and most laboratory experiments must be done on non-radioactive simulant waste solutions. Some tests have previously been done on simulants of a representative waste that has been concentrated and will remain unchanged in tank WM-180 until it is vitrified. However, there is a need to develop glass compositions that will accommodate all future wastes in the tanks. Estimates of those future waste compositions have been used along with current compositions to develop a worst-case waste composition and a simulant preparation recipe suitable for developing a bracketing glass formulation and for characterizing the flowpath and decontamination factors of pertinent off-gas constituents in the vitrification process. The considerations include development of criteria for a worst-case composition. In developing the criteria, the species that are known to affect vitrification and glass properties were considered. Specific components that may need to be characterized in the off-gas cleanup system were considered in relation to detection limits that would need to be exceeded in order to track those components. Chemical aspects of various constituent interactions that should be taken into account when a component may need to be increased in concentration from that in the actual waste for detection in experiments were evaluated. The worst-case waste simulant composition is comprised of the highest concentration of each species of concern that will be present in current and future wastes from different tanks. Because most of the species of concern are at small concentrations relative to the bulk components that are fairly constant, maximizing them individually into a single waste composition does not substantially affect the general vitrification chemistry. The evaluation and results are reported here. This simulant is suitable for performing laboratory and pilot-scale tests in order to develop the vitrification technology.

Christian, Jerry Dale; Batcheller, Thomas Aquinas

2001-09-01T23:59:59.000Z

74

Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

2002-09-26T23:59:59.000Z

75

Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

2001-09-01T23:59:59.000Z

76

Suitability of Silica Gel to Process INEEL Sodium Bearing Waste - Letter Report  

SciTech Connect

The suitability of using the silica gel process for Idaho National Engineering and Environmental Laboratory (INEEL) sodium bearing waste was investigated during fiscal year 2000. The study was co-funded by the Tanks Focus Area as part of TTP No. ID-77WT-31 and the High Level Waste Program. The task also included the investigation of possible other absorbents. Scoping tests and examination of past work showed that the silica gel absorption/adsorption and drying method was the most promising; thus only silica gel was studied and not other absorbents. The documentation on the Russian silica gel process provided much of the needed information but did not provide some of the processing detail so these facts had to be inferred or gleaned from the literature.

Kirkham, Robert John; Herbst, Alan Keith

2000-09-01T23:59:59.000Z

77

Sintered Bentonite Ceramics for the Immobilization of Cesium- and Strontium-Bearing Radioactive Waste  

E-Print Network (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200 degrees C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200 degrees C sintering temperature to 3.03 g/cm3 with a 29% waste loading and sintered at 1100 degrees C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ~650 degrees C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300 degrees C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200 degrees C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200 degrees C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100 degrees C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.

Ortega, Luis H.

2009-12-01T23:59:59.000Z

78

Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment  

Science Conference Proceedings (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

Nicholas R. Soelberg

2004-01-01T23:59:59.000Z

79

Composition and Simulation of Tank WM-180 Sodium Bearing Waste at INTEC  

SciTech Connect

The 1-million liters of sodium-bearing waste in the WM-180 tank at the Idaho Nuclear Technology and Engineering Center has been concentrated and will be the first to be processed, at its current composition, by vitrification to prepare the radioactive waste for disposition. The waste has been sampled and analyzed for cations, anions, and radionuclides in the liquid and in the small amount of solids that were entrained with the liquid during sampling. The analytical results have been evaluated and a non-radioactive simulant composition and preparation procedure developed and demonstrated to result in a clear solution. The evaluation and results are reported here. This simulant is suitable for performing laboratory and pilot-scale tests in order to develop the vitrification technology. The solids entrained from the tank with the liquid sample amount to 0.06% of the dissolved solids in the liquid. While their elemental and radionuclide composition was determined, qualitative characterization using x-ray diffraction was not possible. Because of the interest in the properties of solids that may be in the bottom of the WM-180 tank, for tank closure activities, thermodynamic modeling was performed of potential precipitates that may be in equilibrium with the solution. The results were used to derive a possible chemical composition of the solids.

Christian, Jerry Dale

2001-04-01T23:59:59.000Z

80

Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy  

Science Conference Proceedings (OSTI)

This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

Behrens, R.G. [Los Alamos National Lab., NM (United States); Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J. [Argonne National Lab., IL (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification  

SciTech Connect

Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344F.

Wood, Richard Arthur

2001-09-01T23:59:59.000Z

82

Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report  

Science Conference Proceedings (OSTI)

The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

2001-03-01T23:59:59.000Z

83

A comparision of TRUEX and CMP solvent extraction processes for actinide removal from ICPP wastes  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP) is currently engaged in development efforts for the decontamination of high-level radioactive wastes generated from decades of nuclear fuel reprocessing. These wastes include several types of calcine, generated by high temperature solidification of reprocessing raffinates. In addition to calcine, there are smaller quantities of secondary wastes from decontamination and solvent wash activities which are typically referred to as sodium-bearing waste (SBW). Solvent extraction technologies based on octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO, the active extractant in the TRUEX process) and dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP, the active extractant in the CMP process) are being evaluated for actinide partitioning from these waste streams. Calcines must first be dissolved in an appropriate acidic solution prior to treatment in solvent extraction based processes. The SBW is currently stored as an acidic solution and readily amenable to liquid extraction techniques. Development efforts to date have revolved around defining and refining baseline flowsheets with the TRUEX and CMP processes for each waste stream. Another objective of this work was to determine which of these technologies are best suited for the treatment of ICPP wastes. Laboratory batch contacts were performed to identify relevant chemistry and distribution coefficients. This information was then used to establish baseline flowsheet configuration with regard to chemistry. The laboratory data were used to model the behavior of the actinides and other constituents in the wastes in countercurrent, continuous processes based on centrifugal contactor technology. The laboratory data and modelling results form the basis for comparison of the two processes.

Herbst, R.S.; Brewer, K.N.; Garn, T.G.; Law, J.D. [and others

1996-04-01T23:59:59.000Z

84

Cementitious waste option scoping study report  

SciTech Connect

A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

Lee, A.E.; Taylor, D.D.

1998-02-01T23:59:59.000Z

85

TRUEX flowsheet development as applied to ICPP sodium-bearing waste using centrifugal contactors  

SciTech Connect

Previous lab-scale work using batch contacts with sodium- bearing waste (SEW) simulant and samples of radioactive SEW from tank WM-185 suggested a potential flowsheet for partitioning actinides using solvent extraction (the TRUEX process). The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SEW into the TRUEX solvent (0.2 M CMP01 1.4 M TBP in Isopar-L); a dilute nitric acid scrub (0.07- 0.2 M HNO{sub 3}) to back extract co-extracted matrix materials (primarily Fe, Zr, and HNO{sub 3}) from the loaded solvent; thermally unstable complexants (TUCS) to back extract actinides; and a carbonate wash section for solvent cleanup. The purpose of the flowsheet development studies was to test and develop the baseline TRUEX flowsheet for ICPP SEW under continuous, countercurrent conditions using centrifugal contactors. All testing was performed using non-radioactive SEW simulant. Potential flowsheets were evaluated with regards to the behavior of the non-radioactive components known to be extracted by the TRUEX solvent. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. The results indicate that eight extraction stages are more than sufficient to reduce the actinide content in the SEW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Iron was effectively scrubbed from the organic and 5% ended up in the high-activity waste (HAW) fraction. Zirconium scrubbing was not as effective and as much as 60% of the Zr in the feed could end up in the HAW fraction. The TUCS strip was effective at quantitatively stripping all metals except mercury from the TRUEX solvent. Carbonate washing effectively back extracted mercury from the stripped solvent, resulting in 99.4% of the mercury selectively partitioned from the SEW.

Law, J.D.; Herbst, R.S.

1995-02-01T23:59:59.000Z

86

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

87

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

88

Development and testing of a SREX flowsheet for the partitioning of strontium and lead from simulated ICPP sodium-bearing waste  

SciTech Connect

Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Chemical Processing Plant. Previous countercurrent flowsheet testing of the SREX process with simulated waste resulted in 99.98% removal of Sr. With this previous test, however, Pb was extracted by the SREX solvent and was not back-extracted in the dilute nitric acid strip section. The Pb concentration increased in the recycled solvent and in the aqueous phase of the strip section, resulting in the formation of a Pb precipitate. Subsequently, studies were initiated to identify alternative stripping agents which will selectively strip Sr and Pb from the SREX solvent. Based on the results of these studies, a countercurrent flow sheet was developed and tested in the 5.5-cm Centrifugal Contactor Mockup using simulated waste. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5)-di-(tert-butyldicyclohexo)-18-crown-6 and 1.2 M TBP in Isopar-L{reg_sign}), a 0.05 M nitric acid strip section for the removal of Sr from the SREX solvent, a 0.1 M ammonium citrate strip section for the removal of Pb from the SREX solvent, and a 2.0 M nitric acid equilibration section. The behavior of Sr, Pb, Al, Ca, Hg, Na, Zr, and H{sup +} was evaluated. The described flowsheet successfully extracted and selectively stripped Sr and Pb from the SBW simulant. Removal efficiencies of 97.9% and 99.91% were obtained for Sr and Pb, respectively. Essentially all of the extracted Sr (99.998%) and 1.9% of extracted Pb exited with the 0.05 M nitric acid strip product; whereas, 0.002% of the extracted Sr and 97.9% of the extracted Pb existed with the 0.1 M ammonium citrate strip product. Also, 95% of the Hg and 63% of the Zr were extracted by the SREX solvent.

Law, J.D.; Wood, D.J.

1996-11-01T23:59:59.000Z

89

FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

2006-12-06T23:59:59.000Z

90

FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

2007-03-31T23:59:59.000Z

91

Out-Of-Drum Grout Mixer Testing With Simulated Liquid Effluents Originating From Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2003, alternatives were evaluated for grout formulation development and associated mixing for the Sodium-Bearing Waste cesium ion exchange process. The neutralization agents calcium or sodium hydroxide and the solidification agents Portland cement, with or without blast furnace slag were evaluated. A desired uniform formulation was pursued to develop a grout waste form without any bleed liquid and solidify within a reasonable period of about twenty-eight days. This testing evaluates the out-of-drum alternative of mixing the effluent with solidification agents prior to being poured into drums versus the in-drum alternative of mixing them all together after being poured into the drums. Experimental results indicate that sodium-bearing waste can be immobilized in grout using the Autocon continuous mixer within the range of 66 to 72 weight percent. Furthermore, a loading of 30 weight percent NWCF scrubber simulant also produced an acceptable grout waste form.

B. A. Scholes; A. K. Herbst; S. V. Raman; S. H. Hinckley

2003-09-01T23:59:59.000Z

92

Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace  

SciTech Connect

Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

Freeman, C.J.

1997-05-01T23:59:59.000Z

93

ch_3  

NLE Websites -- All DOE Office Websites (Extended Search)

ansuranic w a s t e M i x e d tr ansuranic w a s t e LEGEND Mixed transuranic waste sodium-bearing waste Waste Isolation Pilot Plant Newly generated liquid waste NGLW SBW...

94

INTEC High-Level Waste Studies Universal Solvent Extraction Feasibility Study  

SciTech Connect

This report summarizes a feasibility study that has been conducted on the Universal Solvent Extraction (UNEX) Process for treatment and disposal of 4.3 million liters of INEEL sodium-bearing waste located at the Idaho Nuclear Technology and Engineering Center. This feasibility study covers two scenarios of treatment. The first, the UNEX Process, partitions the Cs/Sr from the SBW and creates remote-handled LLW and contact-handled TRU waste forms. Phase one of this study, covered in the 30% review documents, dealt with defining the processes and defining the major unit operations. The second phase of the project, contained in the 60% review, expanded on the application of the UNEX processes and included facility requirements and definitions. Two facility options were investigated for the UNEX process, resulting in a 2 x 2 matrix of process/facility scenarios as follows: Option A, UNEX at Greenfield Facility, Option B, Modified UNEX at Greenfield Facility, Option C, UNEX at NWCF, th is document, covers life-cycle costs for all options presented along with results and conclusions determined from the study.

J. Banaee; C. M. Barnes; T. Battisti (ANL-W) [ANL-W; S. Herrmann (ANL-W) [ANL-W; S. J. Losinski; S. McBride (ANL-W) [ANL-W

2000-09-01T23:59:59.000Z

95

DOE/EIS-0026-SA-03: Supplement Analysis for The Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant (11/08/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis For Disposal of Certain Rocky Flats Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant PURPOSE The U.S. Department of Energy (DOE) is proposing to revise its approach for managing approximately 0.97 metric tons (MT) of plutonium-bearing materials (containing about 0.18 MT of surplus plutonium) located at the Rocky Flats Environmental Technology Site (RFETS). DOE is proposing to repackage and transport these materials for direct disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Several DOE environmental impact statements (EISs) discuss the potential impacts from different proposed alternatives for the storage and disposition of surplus plutonium and waste containing surplus plutonium. These EISs evaluated and presented the potential impacts for

96

The effect of Ca-Fe-As coatings on microbial leaching of metals in arsenic bearing mine waste  

Science Conference Proceedings (OSTI)

Globally arsenic (As) is a ubiquitous trace element derived from the natural weathering of As-bearing rock. With the onset of reducing conditions, the prevalence of aqueous As(III) may be intensified through biotic and abiotic processes. Here we evaluate the stability of arsenic bearing Ca-Fe hydroxide phases collected from exposed tailings at Ketza River mine, Yukon, Canada, during the reductive dissolution of both acid treated and untreated samples by Shewanella putrefaciens 200R and Shewanella sp. ANA-3. Samples were acid treated in order to remove Ca-Fe oxide coatings and evaluate the influence of these coatings on the rates of microbial Fe(III) and As(V) reduction. Environmental scanning electron microscope (ESEM) micrographs of the solid phase show significant differences in the chemistry and physical morphology of the material by the bacteria over time and are especially evident in the acid treated samples. Moreover, while solution chemistry showed similar As(III) respiration rates of the inoculated acid treated samples for both ANA3 and 200R at {approx}1.1 x 10{sup -6} {micro}M {center_dot} s{sup -1} {center_dot} m{sup -2}, the Fe(II) respiration rates differed at 1.4 x 10{sup -7} and 9.5 x 10{sup -8} {micro}M {center_dot} s{sup -1} {center_dot} m{sup -2} respectively, thus suggesting strain specific metal reduction metabolic pathways Additionally, the enhanced metal reduction observed in the acid treated inoculated samples suggests that the presence of the Ca-Fe hydroxide phase in the untreated samples acted as a barrier, inhibiting the bacteria from accessing the metals. This has implications for increased mobilization of metals by metal reducing bacteria within areas of increased acidity, such as acid mine drainage sites and industrial tailings ponds that can come into contact with surface and ground water sources.

Weisener, C.G.; Guthrie, J.W.; Smeaton, C.M.; Paktunc, D.; Fryer, B.J. (Windsor); (NRC)

2011-11-07T23:59:59.000Z

97

Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)  

SciTech Connect

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to {approx}700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''.

Grutzeck, Michael W.

2005-06-27T23:59:59.000Z

98

CUSHIONED BEARING  

DOE Patents (OSTI)

A vibration damping device effective to dampen vibrations occurring at the several critical speeds encountered in the operation of a high-speed centrifuge is described. A self-centering bearing mechanism is used to protect both the centrifuge shaft and the damping mechanism. The damping mechanism comprises spaced-apant, movable, and stationary sleeve members arranged concentrically of a rotating shaft with a fluid maintained between the members. The movable sleeve member is connected to the shaft for radial movement therewith.

Rushing, F.C.

1960-09-01T23:59:59.000Z

99

Waste Disposition Update by Doug Tonkay  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for disposal operations over next decade Planned Waste-Related Accomplishments * Begin treatment of Idaho's sodium bearing waste * Begin full operations of the DUF6 Conversion...

100

Demonstration of an optimized TRUEX flowsheet for partitioning of actinides from actual ICPP sodium-bearing waste using centrifugal contactors in a shielded cell facility  

Science Conference Proceedings (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of the actinides from acidic radioactive wastes stored at the ICPP. These efforts have culminated in recent demonstrations of the TRUEX process with actual tank waste. The first demonstration was performed in 1996 using 24 stages of 2-cm diameter centrifugal contactors and waste from tank WM-183. Based on the results of this flowsheet demonstration, the flowsheet was optimized and a second flowsheet demonstration was performed. This test also was performed using 2-cm diameter centrifugal contactors and waste from tank WM-183. However, the total number of contactor stages was reduced from 24 to 20. Also, the concentration of HEDPA in the strip solution was reduced from 0.04 M to 0.01 M in order to minimize the amount of phosphate in the HLW fraction, which would be immobilized into a glass waste form. This flowsheet demonstration was performed using centrifugal contactors installed in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet tested consisted of six extraction stages, four scrub stages, six strip stages, two solvent was stages, and two acid rinse stages. An overall removal efficiency of 99.79% was obtained for the actinides. As a result, the activity of the actinides was reduced from 540 nCi/g in the feed to 0.90 nCi/g in the aqueous raffinate, which is well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste. Removal efficiencies of 99.84%, 99.97%, 99.97%, 99.85%, and 99.76% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, and {sup 238}U, respectively.

Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.; Olson, L.G.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bearing Material Systems  

Science Conference Proceedings (OSTI)

Table 2   Single-metal bearing material systems...Bronze C C C D B 14 2 Electric motor bushings, home appliance bearings,

102

Passive magnetic bearing configurations  

Science Conference Proceedings (OSTI)

A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

Post, Richard F. (Walnut Creek, CA)

2011-01-25T23:59:59.000Z

103

Demonstration of the UNEX Process for the Simultaneous Separation of Cesium, Strontium, and the Actinides from Actual INEEL Sodium-Bearing Waste  

SciTech Connect

A universal solvent extraction (UNEX) process for the simultaneous separation of cesium, strontium, and the actinides from actual radioactive acidic tank waste was demonstrated at the Idaho National Engineering and Environmental Laboratory. The waste solution used in the countercurrent flowsheet demonstration was obtained from tank WM-185. The UNEX process uses a tertiary solvent containing 0.08 M chlorinated cobalt dicarbollide, 0.5% polyethylene glycol-400 (PEG-400), and 0.02 M diphenyl-N,N-dibutylcarbamoyl phosphine oxide (Ph2Bu2CMPO) in a diluent consisting of phenyltrifluoromethyl sulfone (FS-13). The countercurrent flowsheet demonstration was performed in a shielded cell facility using 24 stages of 2-cm diameter centrifugal contactors. Removal efficiencies of 99.4%, 99.995%, and 99.96% were obtained for 137Cs, 90Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137Cs, 90Sr, and actinides in the WM-185 waste to below NRC Class A LLW requirements. Flooding and/or precipitate formation were not observed during testing. Significant amounts of the Zr (87%), Ba (>99%), Pb (98.8%), Fe (8%), Ca (10%), Mo (32%), and K (28%) were also removed from the feed with the universal solvent extraction flowsheet. 99Tc, Al, Hg, and Na were essentially inextractable (<1% extracted).

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Romanovskiy, V.; Smirnov, I.; Babain, V.; Zaitsev, B.; Esimantovskiy, V.

1999-11-01T23:59:59.000Z

104

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Sodium Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the DOE Sodium Bearing Waste Treatment Project (SBWTP). The primary objective of the evaluation was to provide information regarding the status of the safety culture at SBWTP. The data collection phase of the assessment occurred in April and May 2012. SBWTP is one of DOE's largest nuclear

105

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1  

SciTech Connect

This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

1995-02-01T23:59:59.000Z

106

Powder Metallurgy Bearing Failure  

Science Conference Proceedings (OSTI)

The bearings were oil impregnated, porous, powder metallurgy bushings. Even after the fire, lubricant ... Failure Analysis of Four Graphite Pump Seal Faces.

107

DRAFT Bear Safety Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Bear Safety Plan June 2010 Bear Safety Plan June 2010 NSA_bsp_Rev9.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Bear Safety Plan Background As a major part of DOE's participation in the US Global Change Research Program (USGCRP), the North Slope of Alaska (NSA) and Adjacent Arctic Ocean (AAO) Climate Research Facility (ACRF) exists on the North Slope of Alaska with its Central Facility near the town of Barrow. A secondary facility exists at Atqasuk, a town 100km inland from Barrow. Other instrumentation locations in more remote areas on the North Slope may be established in later stages of the project. Polar bears, and to a lesser extent, brown bears (barren ground grizzly) are significant hazards within the ACRF/NSA/AAO

108

The Black Bear  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Bear Black Bear Nature Bulletin No. 286-A December 9, 1967 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation THE BLACK BEAR The most amusing and human-like of all our American wild animals is the Black Bear. Slow, clumsy and loose-jointed in appearance, with a shambling gait, he can be very swift and nimble. Like any good clown he is also a good acrobat with a fine sense of balance and timing. He is a great climber in spite of his bulk. Shrewd and droll, he is very popular in menageries and as a performer in circuses and side shows because he learns tricks easily. He can stand on his hind legs to wrestle, box, dance, or beg for food and, occasionally, one becomes a graceful artist on roller skates. They love applause.

109

Load responsive hydrodynamic bearing  

Science Conference Proceedings (OSTI)

A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

2002-01-01T23:59:59.000Z

110

American Black Bear: Ursus americanus  

E-Print Network (OSTI)

3/21/2011 1 USFWS American Black Bear: Ursus americanus www.bear.org LDWF Historic Distribution, forested regions (Pelton et al. 1994) Glacier Kenai Queen Charlotte Island. Kermode Dall American Black regions (Pelton et al. 1994) #12;3/21/2011 2 Historic Range Louisiana black bear Louisiana Black Bear

Gray, Matthew

111

DOE/EIS-0287 Idaho High-Level Waste & Facilities Disposition Draft Environmental Impact Statement (December 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW & FD EIS HLW & FD EIS 3-13 DOE/EIS-0287D Calcine storag e i n b i n s ets Calcine storag e i n b i n s et s Cesium ion exchange & grouting Cesium ion exchange & grouting NWCF* NWCF* Calcine Mixed transuranic waste/SBW Mixed transuranic waste/NGLW Low-level waste disposa l*** disposa l*** Tank heels Transuranic waste (from tank heels) * * * * Mixed transuranic waste/ NGLW Mixed transuranic waste/ NGLW M i x e d t r a nsuran ic w a s t e / M i x e d t r a nsuran ic w a s t e / S B W s t o rage in Ta n k F a r m S B W s t o rage in Ta n k F a r m Low-leve l waste Low-leve l waste FIGURE 3-2. Continued Current Operations Alternative. LEGEND * Including high-temperature and maximum achievable control technology upgrades. Mixed transuranic waste/ newly generated liquid waste New Waste Calcining Facility ** Calcine would be transferred from bin set #1 to bin set #6 or #7.

112

Magnetically leviated superconducting bearing  

DOE Patents (OSTI)

A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

1993-01-01T23:59:59.000Z

113

Woolly Bear Caterpillar  

NLE Websites -- All DOE Office Websites (Extended Search)

Woolly Bear Caterpillar Woolly Bear Caterpillar Name: Colton Location: N/A Country: N/A Date: N/A Question: We live in N.J. and found a Woolly Bear Caterpillar that was all black. We would like to keep it but are worried that it may "NEED" to hibernate to live. Also: We love to collect bugs (live) and learn about them, but most of the books don't have all the information we need ie. what does it eat, how long does it live, identifying caterpillar stages of insects. Could you please reccomend a good book, that has pictures of all life stages and information that would be of interest to children? Thank you for your time. Replies: Good books on caterpillars are hard to find. Try the Peterson Guide to Butterflies, Audubon Guide to Butterflies, etc. You will probably just have to browse in libraries and see what you can find. Good luck. By the way, the more black on the wooly bear, so the legend goes, the harder the winter will be. One was recently seen around here (NE Illinois) that was almost, but not quite, all black.

114

Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from the Moab project to Crescent Junction for disposal * Idaho: Start treatment of sodium bearing waste, continue CH and RH TRU projects * Los Alamos: Work toward completion...

115

Rotating plug bearing and seal  

DOE Patents (OSTI)

A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

Wade, Elman E. (Ruffs Dale, PA)

1977-01-01T23:59:59.000Z

116

Newly Generated Liquid Waste Processing Alternatives Study, Volume 1  

SciTech Connect

This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

2002-09-01T23:59:59.000Z

117

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

118

Bearing construction for refrigeration compresssor  

DOE Patents (OSTI)

A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

Middleton, Marc G. (Wyoming, MI); Nelson, Richard T. (Worthington, OH)

1988-01-01T23:59:59.000Z

119

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

120

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Study of Catcher Bearings for High Temperature Magnetic Bearing Application  

E-Print Network (OSTI)

The Electron Energy Corporation (EEC) along with National Aeronautics and Space Administration (NASA) in collaboration with Vibration Control and Electro mechanics Lab (VCEL), Texas A & M University, College Station, TX are researching on high temperature permanent magnet based magnetic bearings. The magnetic bearings are made of high temperature resistant permanent magnets (up to 1000 degrees F). A test rig has been developed to test these magnetic bearings. The test rig mainly consists of two radial bearings, one axial thrust bearing and two catcher bearings. The test rig that the catcher bearing is inserted in is the first ultra-high temperature rig with permanent magnet biased magnetic bearings and motor. The magnetic bearings are permanent magnet based which is a novel concept. The Graphalloy bearings represent a new approach for ultra-high temperature backup bearing applications. One of the main objectives of this research is to insure the mechanical and electrical integrity for all components of the test rig. Some assemblies and accessories required for the whole assembly need to be designed. The assembly methods need to be designed. The preliminary tests for coefficient of friction, Young's modulus and thermal expansion characteristics for catcher bearing material need to be done. A dynamic model needs to be designed for studying and simulating the rotor drop of the shaft onto the catcher bearing using a finite element approach in MATLAB. The assembly of the test rig was completed successfully by developing assembly fixtures and assembly methods. The components of the test rig were tested before assembly. Other necessary systems like Sensor holder system, Graphalloy press fit system were designed, fabricated and tested. The catcher bearing material (Graphalloy) was tested for coefficient of friction and Young's modulus at room and high temperatures. The rotor drop was simulated by deriving a dynamic model, to study the effect of system parameters like clearance, coefficient of friction, negative stiffness, initial spin speed on system behavior. Increasing the friction increases the backward whirl and decreases the rotor stoppage time. Increasing the clearance reduces the stoppage time and increases the peak bearing force. Increasing the initial spin speed increases the rotor stoppage time. The maximum stress encountered for as built conditions is more than allowable limits.

Narayanaswamy, Ashwanth

2011-05-01T23:59:59.000Z

122

Interim storage study report  

SciTech Connect

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

123

Field Guide: Bearing Damage Mechanisms  

Science Conference Proceedings (OSTI)

Electric Power Research Institute (EPRI) report 1021780, Manual of Bearing Failures and Repair in Power Plant Rotating Equipment, 2011 Update, is a comprehensive document on the subject of fluid film bearing damage modes. This field guide provides a pocket reference based upon the content of that report. ...

2012-11-06T23:59:59.000Z

124

Optimizing journal bearing bit performance  

SciTech Connect

This article explains that continuous progress in the field of rock bit technology has produced many new designs and improved features in the tri-cone rock bits used today. Much of the research and advancements have centered around journal bearing systems, seals and lubricants leading to greatly extended bearing life. These improved bearing systems, incorporated into both tooth and insert-type bits, have not only increased the effective life of a rock bit, but have also allowed greater energy levels to be applied. This, in turn, has allowed for higher rates of penetration and lower costs per foot of hole drilled. Continuous improvements in journal bearing bits allowing them to run longer and harder have required similar advancements to be made in cutting structures. In tooth bit designs, these improvements have been basically limited to the areas of gauge protection and to application of hardfacing materials.

Moerbe, O.E.; Evans, W.

1986-10-01T23:59:59.000Z

125

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

126

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, James R. (Rigby, ID)

1982-01-01T23:59:59.000Z

127

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

128

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

129

Chemical Composiiton Analysis of INEEL Phase 3 Glasses: Task Technical and QA Plan  

SciTech Connect

For about four decades radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive waste from decontamination, laboratory activities and fuels storage activities have also been collected and stored as liquid. These liquid high-activity wastes (HAW) are collectively called Sodium Bearing Wastes (SBW). Currently about 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as a treatment option for SBW. The resulting glass can be sent to either the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as remote handled transuranic waste (RH-TRU) or to the federal geologic repository for final disposal. In addition to the SBW, roughly 4,000 m3 of calcined high-level wastes (HLW) are currently being stored at INEEL in stainless steel bin sets. These calcined HLW may also be vitrified, either with or without a dissolution and separation process, and sent to the federal geologic repository for final disposal.

Peeler, D.

2000-08-11T23:59:59.000Z

130

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

2000-10-31T23:59:59.000Z

131

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

2000-11-01T23:59:59.000Z

132

Baseline Change Request  

NLE Websites -- All DOE Office Websites (Extended Search)

performance cleanup closure performance cleanup closure M E Environmental Management Environmental Management Sodium Bearing Waste Treatment Project Overview U. S. Department of Energy Office of Waste Processing Technical Exchange Denver, Colorado May 20, 2009 Keith Lockie, Deputy Federal Project Director 2 safety performance cleanup closure M E Environmental Management Environmental Management 2 Project Mission/Contract * Mission - The Sodium Bearing Waste Treatment Project (also known as the Integrated Waste Treatment Project) mission is to provide treatment of approximately 900,000 gallons of tank farm waste - referred to as sodium bearing waste (SBW) - stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant -

133

AMCRM.PPT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Project IWTU Project Risk Management Overview Presented at U.S. Department of Energy Risk Management Meeting November 4-6, 2009 Bob Williamson IWTU Risk Manager 2 IWTU (Sodium-Bearing Waste) Project Picture of IWTU Part of the Idaho Cleanup Project (ICP) contract - Contract period May 2005 - September 2012 - Scope reflects EM cleanup mission at the INL - Total Cost ~ $2.9 B ICP contract Sodium Bearing Waste Scope - Provide treatment of approximately 900,000 gallons of Sodium Bearing Waste (SBW) stored at the Idaho Tank Farm Facility to a stable waste form suitable for disposition at the Waste Isolation Pilot Plant (WIPP). Line Item Project 06-D-401 designs, constructs, and commissions a new treatment facility - Total Project Cost - $570.9 M 3 IWTU (Sodium-Bearing Waste) Project Objectives

134

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.

2003-05-21T23:59:59.000Z

135

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg

2003-05-01T23:59:59.000Z

136

Self-bearing motor design & control  

E-Print Network (OSTI)

This thesis presents the design, implementation and control of a new class of self-bearing motors. The primary thesis contributions include the design and experimental demonstration of hysteresis self-bearing motors, novel ...

Imani Nejad, Mohammad

2013-01-01T23:59:59.000Z

137

Design of a low cost hydrostatic bearing  

E-Print Network (OSTI)

This thesis presents the design and manufacturing method for a new surface self compensating hydrostatic bearing. A lumped resistance model was used to analyze the performance of the bearing and provide guidance on laying ...

Wong, Anthony Raymond

2012-01-01T23:59:59.000Z

138

Rolling Element Bearing Stiffness Matrix Determination (Presentation)  

DOE Green Energy (OSTI)

Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

Guo, Y.; Parker, R.

2014-01-01T23:59:59.000Z

139

Self-Lubricating Sintered Bronze Bearings  

Science Conference Proceedings (OSTI)

...interconnected porosity of the bearing as an oil reservoir. Figure 8 shows schematically the mechanism of this type

140

Thin film superconductor magnetic bearings  

DOE Patents (OSTI)

A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

Weinberger, Bernard R. (Avon, CT)

1995-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reduction Properties of Iron Ore Composite Pellets Bearing Waste ...  

Science Conference Proceedings (OSTI)

Designing a Collaborative System for Socio-Environmental Management of ... Oils Post-Consumption Residential and Commercial Clay with Two Brazilian.

142

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Reduction Reformer CWI CH2M-WG Idaho, LLC DMR Denitration Mineralization Reformer DOE U.S. Department of Energy DOE-ID DOE Idaho Operations Office D-ORR DOE Operational...

143

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

144

Low Temperature Waste Immobilization Testing Vol. I  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste formsalkali-aluminosilicate hydroceramic cement, Ceramicrete phosphate-bonded ceramic, and DuraLith alkali-aluminosilicate geopolymerwere selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

2006-09-14T23:59:59.000Z

145

Waste disposal options report. Volume 2  

SciTech Connect

Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

146

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

2003-05-21T23:59:59.000Z

147

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg; K. M. Shaber

2003-05-01T23:59:59.000Z

148

ZERO WASTE.  

E-Print Network (OSTI)

??The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with (more)

Upadhyaya, Luv

2013-01-01T23:59:59.000Z

149

INEEL Summary on Calcination  

Science Conference Proceedings (OSTI)

Irradiated nuclear fuel reprocessing to recover 235U and 80Kr began at the INEEL in 1953. The resulting acidic high-level liquid radioactive waste (HLW) was stored in stainless steel tanks in underground concrete vaults. A fluidized-bed calcination process was developed during the 1950s to form a granular calcine solid from the acidic HLW with a seven-fold volume reduction. An engineering-scale demonstration, the Waste Calcining Facility (WCF) was constructed and operated in 1963. After the successful demonstration of the process, the WCF was continued as a production facility through 1981, Calcining 15,000 m3 of HLW to 2,160 m3 of calcine.1 The New Waste Calcining Facility (NWCF) was designed and constructed based on the operating experience of the WCF, and began operation in 1982. With a rated capacity of 3,000 gallons/day, the NWCF continued waste processing operations through May of 2000, resulting in an additional 2,226 m3 of calcine (total current inventory of 4,386 m3).2 During waste processing at the NWCF, sodium-bearing waste (SBW) from decontamination activities was blended with HLW to minimize alkali (sodium and potassium) concentrations in the calciner feed solution. This was necessary due to the propensity of sodium and potassium nitrates to melt in the calciner, causing the bed to agglomerate and interfere with fluidization. However, near the end of HLW processing, work was initiated to modify the calcination process to treat SBW directly, blending it with chemical additives such as aluminum nitrate rather than lower alkali content HLW liquids. The result of this development effort was to increase the operating temperature of the calciner from 500C to 600C. The 600C SBW flowsheet was successfully demonstrated at the NWCF during two separate trials during 1999 and 2000.3, 4 The conclusion from these demonstrations was that operating the existing NWCF at 600C is a viable method for solidifying SBW, and this concept is currently being evaluated as one option for preparing the SBW for disposal. To restart the NWCF for SBW processing, applicable environmental waste processing and/or air permits will be required. It is anticipated that the NWCF will be regulated as an incinerator; thus, compliance with maximum achievable control technology (MACT) emission limits will be required. To meet these stringent standards, an upgrade to the off-gas treatment train will be required. Specifically, emission of CO, total hydrocarbons (THC), and mercury must be mitigated. In addition, NOx abatement is necessary to eliminate interferences with the instrumentation required for air monitoring to demonstrate compliance.

Gombert, Dirk

2003-12-01T23:59:59.000Z

150

Waste form product characteristics  

SciTech Connect

The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

Taylor, L.L.; Shikashio, R.

1995-01-01T23:59:59.000Z

151

ICPP tank farm closure study. Volume 1  

SciTech Connect

The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

1998-02-01T23:59:59.000Z

152

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

153

Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems  

SciTech Connect

Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

Bailey, W.J.; Berting, F.M.

1990-12-01T23:59:59.000Z

154

Analysis of Sealed, Integrated, Automotive Wheel Bearings  

Science Conference Proceedings (OSTI)

... microstructure, both surface and subsurface, and the statistics of bearing life. ... and Manufacturing Selection for the New AP1000 Nuclear Power Plant Design.

155

Microstructural Characterisation of Bainitic Bearing Steel  

Science Conference Proceedings (OSTI)

Abstract Scope, Bainitic heat treatments are applied for rolling bearings where there are typically high demands on toughness and crack propagation resistance .

156

The viscosity plate thrust bearing  

SciTech Connect

The results of tests on a viscosity plate thrust bearing indicated that serious differences existed between theoretical predictions by existing methods and experimental values. In particular the load carrying capacity at any speed and plate gap was much overestimated by calculation, and the variation of load with speed, at constant gap, appeared to be quite different in theory and experiment. While the theoretical load speed curve departed by only a small amount from linearity, the experimental curves indicated a definite flattening out at high speed, and corresponding to a given gap, a maximum load was reached and maintained independent of speed. It is the aim of this investigation to find the reason for this flattening out of the curve, and to indicate why it is not shown by the theoretical methods. The aerodynamic theory of viscosity plate bearings is considered, and taking into account as many aerodynamic effects as possible, a new method of performance prediction is developed. Results by this method agree quite well with those of existing methods, and therefore the effect which is being looked for cannot be an aerodynamic one already included in the method. Other possible explanations are considered including centrifugal action on the gas, heating up the gas due to frictional losses, a comparison of the plate gap with the mean free path of molecules of the gas, and distortion of the grooved plate under pressure load. Of these it is shown that the first three are not important, but that with the type of plate mounting used in the experiments very serious deflections of the stationary plate can be expected at high speed. At 21,000 rpm and a plate gap of 2.0 x 10/sup -4/ in. and with the theoretically predicted load, the plate deflection reaches a maximum of about five times the nominal gap and moreover varies considerably with radius and around the disc. Because of these distortions the theoretical methods discussed are not applicable to the experimental conditions and the calculated and measured results cannot be compared. It will be seen that constant plate clearance is not involved in the theories in a simple manner and a method which took into account both aerodynamic and elastic effects would be most complex. Although it has not been demonstrated that these additional elastic effects would lead to the flattening out of the calculated curves, it seems most likey that they are responsible for the discrepancies between the theoretical and experimental results. This could be most easily shown by tests on a similar bearing with the grooved plate considerably thicker to increase its stiffness. (auth)

Wordsworth, D.V.

1958-07-01T23:59:59.000Z

157

Gearbox Reliability Collaborative Bearing Calibration  

DOE Green Energy (OSTI)

NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

van Dam, J.

2011-10-01T23:59:59.000Z

158

Negotiating equity for management of DOE wastes  

SciTech Connect

One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1994-09-01T23:59:59.000Z

159

Negotiating equity for management of DOE wastes  

SciTech Connect

One important factor frustrating optimal management of DOE-complex wastes is inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1993-11-01T23:59:59.000Z

160

Production of iron from metallurgical waste  

DOE Patents (OSTI)

A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

Hendrickson, David W; Iwasaki, Iwao

2013-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

162

SOME MECHANISMS OF DRY BEARING CHATTER  

SciTech Connect

Much study has been devoted to the motion of shafts in lubricated journal bearings. In contrast, the work done on the motion of shafts in unlubricated or dry bearings is negligible. The reason is obvious: in most applications, lubrication of the bearings is relatively simple. This is not the case in nuclear power plant appliciltion where bearings operate in low viscosity primary coolants of liquid metal or water without the benefit of coolant contaminating lubricants. For this reason, an analytical study was made to determine what motions would be excited in a shaft mounted in a dry bearing. The study splits naturally into two parts: (a) the shaft maintains continuous contact with the bearing, either rolling or sliding or a combination of the two; (b) the shaft dances (or chatters) about the bearing in a series of impacts. Typical motions in each of these cases (rolling oscillations, sliding oscillations, stick- slip oscillations, chatter) are calculated and plotted. Except for the stick- slip oscillation, none of the motions studied is self-sustaining; rolling and sliding oscillations will damp out due to frictional and other losses, and chatter degenerates into a rolling whirl of the shaft around the bearing. (auth)

Jahsman, W.E.; Miller, D.R.

1956-06-01T23:59:59.000Z

163

Self-adjusting magnetic bearing systems  

SciTech Connect

A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described.

Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

164

Self-adjusting magnetic bearing systems  

DOE Patents (OSTI)

A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described. 7 figs.

Post, R.F.

1998-07-21T23:59:59.000Z

165

A Machine Vision System for Inspecting Bearings  

Science Conference Proceedings (OSTI)

In this paper, we describe a machine vision system for inspecting bearings, which are an important part of electro-mechanical kWh meters. The system consists of a personal computer with a frame grabber, a black and white progressive scan CCD camera, ... Keywords: machine vision, quality control, bearing, eccentricity

2000-09-01T23:59:59.000Z

166

ICPP waste management technology development program  

SciTech Connect

A program has been implemented at the Idaho Chemical Processing Plant (ICPP) to identify technologies for disposing of sodium-bearing liquid radioactive waste, radioactive calcine, and irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The sodium bearing waste and calcine, have resulted from ICPP reprocessing operations conducted since 1953. The irradiated spent fuel consists of various fuel compositions and ranges from complete fuel elements to fuel pieces for which no reprocessing flowsheet had been identified. The program includes a very strong systems analysis program to assure complete consideration of all issues (technical, economic, safety, environmental, etc.) affecting final disposal of the waste and spent fuel. A major goal of the program is to assure the final implementation is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

167

Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation  

SciTech Connect

This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives.

Anderson, M. [Jacobs Engineering Group, Inc., Oak Ridge, TN (United States)

1995-07-01T23:59:59.000Z

168

Genomic sequencing of Pleistocene cave bears  

SciTech Connect

Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

2005-04-01T23:59:59.000Z

169

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

170

Compressor ported shroud for foil bearing cooling  

DOE Patents (OSTI)

A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

2011-08-02T23:59:59.000Z

171

Treatment and Recycling of Solid Slag/Wastes - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 15, 2012... industrial solid wastes, such as titanium-bearing blast furnace slag, high-silicon iron tailing and boron-enriched slag as well as oil shale.

172

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Picasolar Picasolar University of Arkansas 16 likes Picasolar wholly owns the hydrogen selective emitter (HSE) technology. HSE can increase the efficiency of solar cells by up to 15 percent and remove up to 33 percent of the silver grid lines in a conventional silicon solar cell. Learn More SiNode Systems Northwestern University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher battery capacity and faster charging rates, all while being produced via a low cost solution chemistry-based manufacturing process. Learn More Pyro-E University of California-Berkeley 190 likes Pyro-E, LLC is developing a solid-state device for waste heat harvesting at the distributed energy scale. The device is designed based on the

173

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Picasolar Picasolar University of Arkansas 16 likes Picasolar wholly owns the hydrogen selective emitter (HSE) technology. HSE can increase the efficiency of solar cells by up to 15 percent and remove up to 33 percent of the silver grid lines in a conventional silicon solar cell. Learn More Pyro-E University of California-Berkeley 190 likes Pyro-E, LLC is developing a solid-state device for waste heat harvesting at the distributed energy scale. The device is designed based on the pyroelectric effect and can be used to improve the fuel-use efficiency of 300 million vehicles and generators in the United States. Learn More SiNode Systems Northwestern University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes

174

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pyro-E Pyro-E University of California-Berkeley 190 likes Pyro-E, LLC is developing a solid-state device for waste heat harvesting at the distributed energy scale. The device is designed based on the pyroelectric effect and can be used to improve the fuel-use efficiency of 300 million vehicles and generators in the United States. Learn More SiNode Systems Northwestern University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher battery capacity and faster charging rates, all while being produced via a low cost solution chemistry-based manufacturing process. Learn More Picasolar University of Arkansas 16 likes Picasolar wholly owns the hydrogen selective emitter (HSE) technology. HSE

175

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Russell, Lynn

176

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

Firtel, Richard A.

177

Bear Creek and Hwy 95 Intersection  

NLE Websites -- All DOE Office Websites (Extended Search)

plantation and presented aesthetic impact. * Kudzu treated with high-volume foliar spray of Tordon 101 by CSC in 2004 through 2006. Invasive Non-native Plant Management: Bear...

178

Sun Bear Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Solar Ltd Jump to: navigation, search Name Sun Bear Solar Ltd Place Hong Kong Sector Solar Product Hong Kong-based firm that manufactures solar product equipment, such as PV glass,...

179

A carbon nanotube bearing and Stodola rotor  

E-Print Network (OSTI)

A nano-scale rotor supported on a cantilevered multi-wall carbon nanotube (MWNT) shaft (Stodola configuration) is proposed. The nanotube is also expected to function as the bearing, since individual walls of a MWNT are not ...

Cook, Eugene Hightower

2008-01-01T23:59:59.000Z

180

Bear Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bear Creek Wind Farm Bear Creek Wind Farm Facility Bear Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown owns majority Developer CEI Iberdrola Energy Purchaser PPL Corp. Location Near Bear Creek Village PA Coordinates 41.1801°, -75.7216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1801,"lon":-75.7216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RUBBER BEARINGS FOR DOWN-HOLE PUMPS  

DOE Green Energy (OSTI)

Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratory was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three based on silicon oxide. Samples of all six materials have been obtained and are being tested at the National Laboratory in Brookhaven, New York. This new material's properties as a bearing material and its ability to adhere to a bearings shell must be reviewed, but cost information deemed the material to be too expensive to be economical.

Bob Sullivan Mammoth Pacific, L.P.

2005-09-07T23:59:59.000Z

182

Passive magnetic bearings for vehicular electromechanical batteries  

DOE Green Energy (OSTI)

This report describes the design of a passive magnetic bearing system to be used in electromechanical batteries (flywheel energy storage modules) suitable for vehicular use. One or two such EMB modules might, for example, be employed in a hybrid-electric automobile, providing efficient means for power peaking, i.e., for handling acceleration and regenerative braking power demands at high power levels. The bearing design described herein will be based on a ''dual-mode'' operating regime.

Post, R

1996-03-01T23:59:59.000Z

183

Flywheel energy storage with superconductor magnetic bearings  

DOE Patents (OSTI)

A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT); Hull, John R. (Hinsdale, IL)

1993-01-01T23:59:59.000Z

184

Reference Poster: Turbine Bearing Damage Mechanisms  

Science Conference Proceedings (OSTI)

Damage to turbine and generator bearings accounts for a significant amount of lost generation in the power industry. There are numerous known damage mechanisms affecting these bearings, and as part of EPRIs technology transfer efforts, we have developed a reference poster. This poster provides clear, concise, and visual information for a wide variety of mechanisms and is meant to supplement related EPRI projects. By providing an overview of various issues as well as information on how to ...

2012-10-04T23:59:59.000Z

185

Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Operational Readiness Review June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2 4.0 Results ................................................................................................................................................... 2

186

Potential dispositioning flowsheets for ICPP SNF and wastes  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

Olson, A.L. [ed.; Anderson, P.A.; Bendixsen, C.L. [and others

1995-11-01T23:59:59.000Z

187

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

188

Radionuclide Retention in Concrete Waste Forms  

Science Conference Proceedings (OSTI)

Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

2010-09-30T23:59:59.000Z

189

Waste= Capital.  

E-Print Network (OSTI)

??The evolution of manufacturing practices over the last century has led to the creation of excess waste during the production process, depleting resources and overwhelming (more)

Stidham, Steve P.

2011-01-01T23:59:59.000Z

190

Sodium waste technology: A summary report. [Melt-drain-evaporation-calcination (MEDEC)  

SciTech Connect

The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds.

Abrams, C.S.; Witbeck, L.C.

1987-01-01T23:59:59.000Z

191

Method for changing removable bearing for a wind turbine generator  

DOE Patents (OSTI)

A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY), Gadre; Aniruddha Dattatraya (Rexford, NY)

2008-04-22T23:59:59.000Z

192

Bear Canyon Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Canyon Geothermal Facility Canyon Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bear Canyon Geothermal Facility General Information Name Bear Canyon Geothermal Facility Facility Bear Canyon Sector Geothermal energy Location Information Location Clear Lake, California, Coordinates 38.762851116528°, -122.69217967987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.762851116528,"lon":-122.69217967987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

194

Chemical foaming of water-bearing explosives  

SciTech Connect

A process is described for preparing foamed semi-solid colloidal dispersions of water-bearing blasting agents, especially water gels or thickened water-bearing explosives, and emulsion-type blasting agents. It consists of mixing inorganic oxidizing salt, fuel, and water. The improvement consists of separately incorporating into the mix each component of a 2-component foaming agent composition: (1) a hydrazine or derivative and (2) an oxidizing agent that aids in decomposing the hydrazine or derivative to produce gas. This foams and sensitizes the blasting agent. When thickener is added to the mix, the thickener should be nonoxidizable in the mix during preparation of the blasting agent. (20 claims)

Chrisp, J.D.

1972-12-19T23:59:59.000Z

195

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

196

HLNC calibration and application to waste measurement  

Science Conference Proceedings (OSTI)

Using the established equations governing the counts and the underlying nuclear parameters involved in neutron coincidence measurements, the calibration procedure used in calculating the effective Pu{sup 240} mass in plutonium bearing samples is carefully reexamined and restructured in a physically and mathematically consistent form. The characteristics of this approach are described and its application to existing data illustrated. The implications for waste measurements are discussed.

Lu, Ming-Shih; Teichmann, T. (Brookhaven National Lab., Upton, NY (United States)); De Ridder, P.M.; Delegard, C. (International Atomic Energy Agency, Vienna (Austria))

1992-01-01T23:59:59.000Z

197

HLNC calibration and application to waste measurement  

SciTech Connect

Using the established equations governing the counts and the underlying nuclear parameters involved in neutron coincidence measurements, the calibration procedure used in calculating the effective Pu{sup 240} mass in plutonium bearing samples is carefully reexamined and restructured in a physically and mathematically consistent form. The characteristics of this approach are described and its application to existing data illustrated. The implications for waste measurements are discussed.

Lu, Ming-Shih; Teichmann, T. [Brookhaven National Lab., Upton, NY (United States); De Ridder, P.M.; Delegard, C. [International Atomic Energy Agency, Vienna (Austria)

1992-06-01T23:59:59.000Z

198

Sleeping Bear Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sleeping Bear Wind Farm Sleeping Bear Wind Farm Jump to: navigation, search Name Sleeping Bear Wind Farm Facility Sleeping Bear Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Chermac Energy Corp./Edison Mission Group Energy Purchaser AEP - Public Service of Oklahoma Location Harper County OK Coordinates 36.63°, -99.5° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.63,"lon":-99.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

The Grizzly and the Big Brown Bears  

NLE Websites -- All DOE Office Websites (Extended Search)

Grizzly and the Big Brown Bears Grizzly and the Big Brown Bears Nature Bulletin No. 655-A November 12, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE GRIZZLY AND THE BIG BROWN BEARS In the early days, more tall tales were told about "Old Ephraim, " the grizzly bear, than any other animal. It had the reputation of being a bloodthirsty enemy of man and was given the scientific name Ursus horribilis by a taxonomist who had never seen a live one but had heard and read some of those yarns about its terrible ferocity and prodigious strength. The Grizzly is very intelligent and shrewd but, actually, has a rather phlegmatic disposition. It avoids people and will not attack unless provoked. Then, a female with cubs is unpredictable, and big game hunters say that a wounded grizzly is the most dangerous animal on earth. But ordinarily, as Earnest Thompson Seton observed, Ephraim is a peaceful giant who is perfectly satisfied to let you alone if you leave him alone.

200

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it...

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIS-0287-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-SA-01: Supplement Analysis -SA-01: Supplement Analysis EIS-0287-SA-01: Supplement Analysis Idaho High-Level Waste and Facilities Disposition DOE/EIS-0287-SA-01: Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (June 2005). In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HLW) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center. DOE/EIS-0287-SA-01: Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (June 2005)

202

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 9430 of 9,640 results. 21 - 9430 of 9,640 results. Download EIS-0287: Final Environmental Impact Statement Idaho High-Level Waste and Facilities Disposition http://energy.gov/nepa/downloads/eis-0287-final-environmental-impact-statement Download EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid... http://energy.gov/nepa/downloads/eis-0287-idaho-high-level-waste-and-facilities-disposition-final-environmental-impa-1 Download EIS-0250-S2: Final Supplemental Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level

203

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

204

Design and control of a linear bearing durability tester  

E-Print Network (OSTI)

In order to better understand the characteristics of linear bearings under high load and high speed conditions, a machine capable of testing bearings under these conditions was created. The machine is flexible in its design, ...

Pope, Benjamin J

2008-01-01T23:59:59.000Z

205

Hot isostatic press waste option study report  

SciTech Connect

A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

Russell, N.E.; Taylor, D.D.

1998-02-01T23:59:59.000Z

206

Supporting Safe Storage of Plutonium-Bearing Materials through ...  

Science Conference Proceedings (OSTI)

Analysis of a Bucketwheel Stacker Reclaimer Structural Failure Analysis of Glass Breakage Analysis of Sealed, Integrated, Automotive Wheel Bearings.

207

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

208

Bear, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bear, Delaware: Energy Resources Bear, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788°, -75.6582628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6292788,"lon":-75.6582628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Buffalo Bear Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Buffalo Bear Wind Farm Facility Buffalo Bear Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser Western Farmers Electric Coop Location OK Coordinates 36.573681°, -99.573275° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.573681,"lon":-99.573275,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

1999-10-01T23:59:59.000Z

211

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

1999-09-30T23:59:59.000Z

212

ICPP Tank Farm planning through 2012  

SciTech Connect

Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

1998-04-01T23:59:59.000Z

213

STATIC SODIUM TEST OF WESTINGHOUSE FLOW CONTROLLER BEARING  

SciTech Connect

Tests were carried out to determine the action of a static sodium environment on a special high-temperature ball bearing while operating at the specified speed and loading. The test bearing was operated at 85 rpm and 870 pounds axial load for 385 hr at 1000 deg F. Visual inspection of the test bearing showed a very marked increase in roughness of both the balls and the ball races. Details of the measurements and a photograph of the bearing parts after test are given. On the basis of this test it did not appear that this bearing will be satisfactory for the service intended. (M.C.G.)

Cygan, R.

1960-12-01T23:59:59.000Z

214

Understanding Cement Waste Forms  

Science Conference Proceedings (OSTI)

Oct 29, 2009 ... Ongoing nuclear operations, decontamination and decommissioning, salt waste disposal, and closure of liquid waste tanks result in...

215

Waste Minimization Contents  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Waste Minimization Contents...

216

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 5720 of 28,560 results. 11 - 5720 of 28,560 results. Download EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid... http://energy.gov/nepa/downloads/eis-0287-idaho-high-level-waste-and-facilities-disposition-final-environmental-impa-1 Download Audit Report: OAS-L-03-16 Department of Energy's Nuclear Weapons Incident Response Program http://energy.gov/ig/downloads/audit-report-oas-l-03-16 Download DOE-TSPP-8, Approving and Issuing DOE Technical Standards- July 1, 2009 This document is the TSPP for Approving and Issuing DOE Technical

217

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 8440 of 26,764 results. 31 - 8440 of 26,764 results. Download EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid... http://energy.gov/nepa/downloads/eis-0287-idaho-high-level-waste-and-facilities-disposition-final-environmental-impa-1 Download EA-1819: Final Environmental Assessment Kilowatts for Kenston Wind Energy Project, Chagrin Falls, Geauga County http://energy.gov/nepa/downloads/ea-1819-final-environmental-assessment Download LNG Annual Report- 2005 LNG Annual Report - 2005 http://energy.gov/fe/downloads/lng-annual-report-2005

218

EIS-0287: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0287: Final Environmental Impact Statement Idaho High-Level Waste and Facilities Disposition This EIS analyzes the potential environmental consequences of alternatives for managing high- level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liq- uid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS- 0287D), as well as information on available treatment technologies, DOE and the State of Idaho have iden- tified separate preferred alternatives for

219

Technetium Waste Form Development Progress Report  

SciTech Connect

The approach being followed to evaluate the use of an iron-based alloy waste form to immobilize the Tc-bearing waste streams generated during the aqueous and electrochemical processing of used fuel that is being studied in the DOE Advanced Fuel Cycle Initiative (AFCI) is presented in this report. The objective is to develop an alloy waste form that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides, and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal. Microanalysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to analyze non-radioactive Fe-Mo-Re samples. A sample was prepared for SEM; however, significant unforeseen instrument problems led to delays in conducting the detailed work. The TEM was not available for this particular sample and therefore only preliminary SEM work can be reported. The results are in agreement with previous studies [Ebert 2009]; however, a rhenium-rich region within the Re-Mo phase is clearly visible.

Buck, Edgar C.

2010-02-26T23:59:59.000Z

220

Flywheel energy storage advances using HTS bearings.  

DOE Green Energy (OSTI)

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Mulcahy, T. M.

1998-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

WASTE TO WATTS Waste is a Resource!  

E-Print Network (OSTI)

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany BREFs and their BATs Next Generation of Waste Fired Power Plants: Getting the most out of your trash Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

Columbia University

222

Positive contact, self retaining bearing seals  

DOE Patents (OSTI)

An ultra-low friction bearing including an inner race, an outer race, bearing elements engaged between the inner and outer races and a seal between the inner and outer races is disclosed. The seal includes first and second sealing washers. The first washer has an outer diameter greater than an inner diameter of the outer race and an inner diameter greater than the outer diameter of the inner race. The second washer has an inner diameter less than the outer diameter of the inner race and an outer diameter less than the inner diameter of the outer race. The first washer slidably engages the outer race, the second washer slidably engages the inner race and the washers overlap and slidably engage one another. One of the washers snap fits into its respective inner or outer race while the other washer engages a stepped surface of the other of the inner and outer races. The grooved and stepped surface are offset from one another in a longitudinal direction of the races such that the washers are conically loaded thus providing a seal between the inner and outer races sufficient to prevent lubricant and contaminating particles from passing therethrough. The washers are made from a non-metallic semi-flexible low-modulus material.

Johnson, Bruce H. (Kansas City, MO); Larsen, Lawrence E. (Kansas City, MO); Welch, Edmund F. (Kansas City, MO)

1992-05-05T23:59:59.000Z

223

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

224

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

Science Conference Proceedings (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

225

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

226

Hydrogen trapping in bearing steels: mechanisms and alloy design  

E-Print Network (OSTI)

removal by white structure flaking on wind turbine bearing inner ring [3]. This type of failure demands complete replacement of the bearing. In addition, mon- itoring the development of damage is difficult when it starts under the surface, so it is hardly... diffusion into steel may cause premature cracking in various components such as tempered martensitic and bainitic bearing parts, pearlitic and bainitic rail tracks, gear boxes, wind turbines, aerospace and marine engine parts. The damage caused by hydrogen...

Szost, Blanka Angelika

2013-02-05T23:59:59.000Z

227

Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements  

SciTech Connect

There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

1986-10-01T23:59:59.000Z

228

White Bear Lake Conservation District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This statute establishes the White Bear Lake Conservation District, which

229

NETL: Methane Hydrates - DOE/NETL Projects - Hydrate-Bearing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and EngineeringGeological Implications Last Reviewed 6192013 DE-FE0009897 Goal The primary goal of...

230

Passive magnetic bearing element with minimal power losses  

DOE Patents (OSTI)

Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

Post, Richard F. (Walnut Creek, CA)

1998-01-01T23:59:59.000Z

231

Fretting Corrosion Induced Fracture of a Floating Bearing Base Plate ...  

Science Conference Proceedings (OSTI)

This presentation will decribe the case of the rupture of a 250 Tons Yankee drum free bearing floating base plate made in a hardened low alloyed carbon steel...

232

Passive magnetic bearing element with minimal power losses  

DOE Patents (OSTI)

Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

Post, R.F.

1998-12-08T23:59:59.000Z

233

Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste  

SciTech Connect

As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

1995-08-01T23:59:59.000Z

234

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

235

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report  

Science Conference Proceedings (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

NONE

1996-09-01T23:59:59.000Z

236

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1  

SciTech Connect

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

NONE

1996-09-01T23:59:59.000Z

237

Medical School Biomedical Waste  

E-Print Network (OSTI)

Medical School Biomedical Waste Labware, gloves, pipets, pipet tips Stock cultures, bacterial with or without needles, razor blades, scalpel blades) Key: Pathological waste BL1 & BL2 waste (low risk ­ LR) BL2 waste (moderate risk - MR)/BL3 waste Blood Blood Autoclave Needle box Metal Cart Must either bleach

Cooley, Lynn

238

Waste Sorting Activity Introduction  

E-Print Network (OSTI)

Waste Sorting Activity Introduction: This waste sorting game was originally designed to be one have completed the waste sorting activity quickly, no team was able to complete the waste sorting task who were unfamiliar with Dalhousie's waste management system. Goals: The primary goal of the activity

Beaumont, Christopher

239

University of Waste Procedures  

E-Print Network (OSTI)

University of Maryland Hazardous And Regulated Waste Procedures Manual Revised July 2001 #12;Review II. HAZARDOUS WASTE MANAGEMENT III. BIOLOGICAL, PATHOLOGICAL AND MEDICAL WASTE (BPMW) MANAGEMENT IV. LOW-LEVEL RADIOACTIVE WASTE (LLRW) MANAGEMENT V. EMERGENCY PROCEDURES VI. WASTE MINIMIZATION VII

Rubloff, Gary W.

240

Bear Valley Electric Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Name Bear Valley Electric Service Place California Utility Id 17612 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 General Service, less than 20 kW A-1 General Service, less than 20 kW - Direct Access Commercial A-2 General Service, 20 to 50 kW A-2 General Service, 20 to 50 kW - Direct Access A-3 General Service, more than 50 kW Commercial

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Resonant frequency method for bearing ball inspection  

DOE Patents (OSTI)

The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

Khuri-Yakub, B. T. (Palo Alto, CA); Hsieh, Chung-Kao (Stanford, CA)

1993-01-01T23:59:59.000Z

242

Resonant frequency method for bearing ball inspection  

DOE Patents (OSTI)

The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

Khuri-Yakub, B.T.; Chungkao Hsieh.

1993-11-02T23:59:59.000Z

243

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

244

Waste Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management Facility ISO 14001 Registered A wide range of wastes are generated during the normal course of business at BNL. These waste streams are common to many businesses...

245

Ferrocyanide Safety Project: Comparison of actual and simulated ferrocyanide waste properties  

Science Conference Proceedings (OSTI)

In the 1950s, additional high-level radioactive waste storage capacity was needed to accommodate the wastes that would result from the production of recovery of additional nuclear defense materials. To provide this additional waste storage capacity, the Hanford Site operating contractor developed a process to decontaminate aqueous wastes by precipitating radiocesium as an alkali nickel ferrocyanide; this process allowed disposal of the aqueous waste. The radiocesium scavenging process as developed was used to decontaminate (1) first-cycle bismuth phosphate (BiPO{sub 4}) wastes, (2) acidic wastes resulting from uranium recovery operations, and (3) the supernate from neutralized uranium recovery wastes. The radiocesium scavenging process was often coupled with other scavenging processes to remove radiostrontium and radiocobalt. Because all defense materials recovery processes used nitric acid solutions, all of the wastes contained nitrate, which is a strong oxidizer. The variety of wastes treated, and the occasional coupling of radiostrontium and radiocobalt scavenging processes with the radiocesium scavenging process, resulted in ferrocyanide-bearing wastes having many different compositions. In this report, we compare selected physical, chemical, and radiochemical properties measured for Tanks C-109 and C-112 wastes and selected physical and chemical properties of simulated ferrocyanide wastes to assess the representativeness of stimulants prepared by WHC.

Scheele, R.D.; Burger, L.L.; Sell, R.L.; Bredt, P.R.; Barrington, R.J.

1994-09-01T23:59:59.000Z

246

FTIR fiber optic methods for the analysis of Hanford Site waste  

Science Conference Proceedings (OSTI)

Sampling and chemical characterization of mixed high-level waste stored in underground tanks at the Hanford Site is currently in progress. Waste tank safety concerns have provided impetus to analyze this waste. A major safety issue is the possibility of significant concentrations of fuel (ferrocyanide and/or organic compounds) in contact with oxidizers (nitrates and nitrites). It is postulated that under dry conditions and elevated temperatures, ferrocyanide- and/or organic-bearing wastes could undergo rapid exothermic reactions. To maintain the tanks in a safe condition, data are needed on the moisture and fuel concentrations in the waste. Because of the highly radioactive nature of the waste, non-radioactive waste simulants mimicking actual waste are used to provide an initial basis for identifying realistic waste tank safety concerns. Emphasis has been placed on the use of new or existing Fourier transform infrared (FTIR)-based systems with potential for field or tank deployment to perform in situ remote waste characterization. Near-infrared diffuse reflectance and mid-infrared attenuated total reflectance fiber optic probes coupled to a Bio-Rad FTS 60A spectrometry system have been evaluated. The near-infrared diffuse reflectance fiber probe system has also been used for preliminary screening of the moisture content and chemical composition of actual Hanford Site waste tank waste core samples. The attributes of this method for analyzing actual radioactive waste are discussed.

Rebagay, T.V.; Cash, R.J.; Dodd, D.A. [and others

1995-06-01T23:59:59.000Z

247

Condition Monitoring of Fans With Rolling Element Bearings  

Science Conference Proceedings (OSTI)

Data on high-frequency vibration caused by the impacts of bearing pits and spalls can help utilities schedule equipment maintenance. One data collection technique, developed through long-term monitoring of combustion air axial fans at the Pennsylvania Electric Company Homer City station, helps plant personnel anticipate failures of draft fan antifriction bearings by several months.

1988-03-22T23:59:59.000Z

248

Waste Logic Decommissioning Waste Manager 2.0 Users Manual  

Science Conference Proceedings (OSTI)

The Decommissioning Waste Manager, part of EPRI's Waste Logic series of computer programs, analyzes decommissioning waste cost and volume reduction strategies with the intent of quantifying the existing waste management program for any given waste generator.

2001-10-29T23:59:59.000Z

249

Hanford ferrocyanide waste chemistry and reactivity preliminary catalyst and initiator screening studies  

Science Conference Proceedings (OSTI)

During the 1950s, ferrocyanide was used to scavenge radiocesium from aqueous nitrate-containing Hanford wastes. During the production of defense materials and while these wastes were stored in high-level waste tanks at the Hanford Site, some of these wastes were likely mixed with other waste constituents and materials. Recently, Pacific Northwest Laboratory (PNL) was commissioned by Westinghouse Hanford Company (WHC) to investigate the chemical reactivity of these ferrocyanide-bearing wastes. Because of known or potential thermal reactivity hazards associated with ferrocyanide- and nitrate-bearing wastes, and because of the potential for different materials to act as catalysts or initiators of the reactions about which there is concern, we at PNL have begun investigating the effects of the other potential waste constituents. This report presents the results of a preliminary screening study to identify classes of materials that might be in the Hanford high-level waste tanks and that could accelerate or reduce the starting temperature of the reaction(s) of concern. We plan to use the resulted of this study to determine which materials or class of materials merit additional research.

Scheele, R.D.; Bryan, S.A.; Johnston, J.W.; Tingey, J.M.; Burger, L.L.; Hallen, R.T.

1992-05-01T23:59:59.000Z

250

Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report  

SciTech Connect

The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

Herbst, A.K.; Marshall, D.W.; McCray, J.A.

1998-02-01T23:59:59.000Z

251

Solid Waste (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

252

Industrial Waste Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

9) Page 2 of 7 Industrial Waste Generation Work with Engineered Nanomaterials Power Consumption Historical Contamination (groundwater, soil) Hazardous Waste Generation Atmospheric...

253

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste-...

254

International Trade with Waste.  

E-Print Network (OSTI)

?? In this thesis, trade with waste between developed countries and the third world will be presented to analyze whether waste?trading can create a possible (more)

Willn, Jenny

2008-01-01T23:59:59.000Z

255

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

256

Analytical and experimental investigations of hybrid air foil bearings  

E-Print Network (OSTI)

Air foil bearings offer several advantages over oil-lubricated bearings in high speed micro-turbomachinery. With no contact between the rotor and bearings, the air foil bearings have higher service life and consequently lesser standstills between operations. However, the foil bearings have reliability issues that come from dry rubbing during start-up/shutdown and limited heat dissipation capability. Regardless of lubricating media, the hydrodynamic pressure generated provides only load support but no dissipation of parasitic energy generated by viscous drag and the heat conducted from other parts of the machine through the rotor. The present study is a continuation of the work on hybrid air foil bearings (HAFB) developed by Kim and Park, where they present a new concept of air foil bearing combining hydrodynamic air foil bearing with hydrostatic lift. Their experimental studies show that HAFB has superior performance compared to its hydrodynamic counterpart in load capacity and cooling performance. In this article, the bearing stiffness and damping coefficients of HAFB are calculated using a linear perturbation method developed for HAFB. The study focuses on circular HAFB with a single continuous top foil supported by bump foil. The research also includes a parametric study which outlines the dependence of the stiffness and damping coefficients on various design parameters like supply pressure ( P s ), feed parameter ( ? s ), excitation frequency (v), and bearing number (?). Furthermore the present research also includes experimental investigation of HAFB with bump foil as compliant structure. In the first phase of the experimental research a high speed test facility was designed and fabricated. The facility has the capability of running up to 90,000 RPM and has an electric motor drive. This article gives detailed description of this test rig and also includes data acquired during the commissioning phase of the test rig. The test rig was then used to measure the load capacity of HAFB.

Kumar, Manish

2008-08-01T23:59:59.000Z

257

Uranium immobilization and nuclear waste  

SciTech Connect

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

258

Method for primary containment of cesium wastes  

DOE Patents (OSTI)

A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

Angelini, Peter (Oak Ridge, TN); Lackey, Walter J. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN); Blanco, Raymond E. (Oak Ridge, TN); Bond, Walter D. (Knoxville, TN); Arnold, Jr., Wesley D. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

259

Methane Recovery from Hydrate-bearing Sediments  

Science Conference Proceedings (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

260

Waste analysis plan for central waste complex  

SciTech Connect

This waste analysis plan (WAP) has been prepared for the Central Waste Complex which is located in the 200 West Area of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

Weston, N.L.

1996-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Flywheel energy storage using superconducting magnetic bearings  

DOE Green Energy (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

262

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

263

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

Science Conference Proceedings (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

264

Paramont's Black Bear No. 4 mine does it right, again  

Science Conference Proceedings (OSTI)

The Paramont Coal Company Virginia, LLC, a subsidiary of Alpha Natural Resources, recently won the '2007 overall award for excellence in mining and reclamation from the Virginia Division of Mined Land Reclamation and the Virginia Mining Association. Coal People Magazine recently visited Black Bear No. 4 mine where a settling pond was being removed and stream bed placed to drain the area, part of the 451-acre award winning reclamation project. The article recounts discussions with mining engineers about the company's operations with emphasis on the Black Bear No. 4 mine. Black Bear No. 1 mine won five state and national awards last year for conservation and land management practices. 8 photos.

Sanda, A.

2007-07-15T23:59:59.000Z

265

Infectious waste feed system  

DOE Patents (OSTI)

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

266

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

267

Nuclear waste solidification  

DOE Patents (OSTI)

High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

Bjorklund, William J. (Richland, WA)

1977-01-01T23:59:59.000Z

268

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

269

Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Uinit Contractor Operational Readiness Review, June 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Contractor Contractor Operational Readiness Review June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2 4.0 Results ................................................................................................................................................... 2

270

Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Uinit Contractor Operational Readiness Review, June 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor Contractor Operational Readiness Review June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2 4.0 Results ................................................................................................................................................... 2

271

Business Plan : Residential Solid Waste Collection.  

E-Print Network (OSTI)

??Residential solid waste means all the solid wastes produced in household level, which includes bio-waste, metal, mixed wastes, organic and inorganic waste. The inability of (more)

Mazengo, Dorice

2013-01-01T23:59:59.000Z

272

DOE - Office of Legacy Management -- American Bearing Corp - IN 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Bearing Corp - IN 09 Bearing Corp - IN 09 FUSRAP Considered Sites Site: American Bearing Corp. (IN.09 ) Eliminated from further consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: 429 South Harding Street , Indianapolis , Indiana IN.09-1 Evaluation Year: 1986 IN.09-3 Site Operations: Uranium metal fabrication work during the mid-1950s IN.09-3 Site Disposition: Eliminated - No Authority - NRC licensed IN.09-2 IN.09-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IN.09-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to NRC IN.09-4 Also see Documents Related to American Bearing Corp. IN.09-1 - National Lead Company of Ohio Memorandum; Ciborski to

273

Timken XEMC Hunan Bearings Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Timken XEMC Hunan Bearings Co Ltd Timken XEMC Hunan Bearings Co Ltd Jump to: navigation, search Name Timken XEMC (Hunan) Bearings Co Ltd Place Xiangtan, Hunan Province, China Sector Wind energy Product Manufacturer of ultra-large-bore bearings for large scale wind turbines. Coordinates 27.859819°, 112.892067° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.859819,"lon":112.892067,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Cooling system for a bearing of a turbine rotor  

SciTech Connect

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

275

High performance magnetic bearing systems using high temperature superconductors  

DOE Patents (OSTI)

Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

Abboud, R.G.

1998-05-05T23:59:59.000Z

276

High performance magnetic bearing systems using high temperature superconductors  

DOE Patents (OSTI)

A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

Abboud, Robert G. (Barrington Hills, IL)

1998-01-01T23:59:59.000Z

277

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

1999-03-01T23:59:59.000Z

278

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

1999-03-01T23:59:59.000Z

279

Waste Management Quality Assurance Plan  

E-Print Network (OSTI)

Raya James Johnson Rad/Mixed Waste** Steve Bakhtiar Leadhazardous, radioactive, and mixed waste at the Hazardoustraining. Radioactive and mixed waste generators must take

Waste Management Group

2006-01-01T23:59:59.000Z

280

Waste Minimization Plan Prepared by  

E-Print Network (OSTI)

Waste Minimization Plan Prepared by: Environmental Health and Safety Department Revised February 2012 #12;Waste Minimization Plan Table of Contents Policy Statement........................................................... 3 Centralized Waste Management Program

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hazardous Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

282

NATURE OF RADIOACTIVE WASTES  

SciTech Connect

The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)

Culler, F.L. Jr.

1959-01-26T23:59:59.000Z

283

Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report  

SciTech Connect

Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes.

Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

1995-10-01T23:59:59.000Z

284

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report  

Science Conference Proceedings (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

NONE

1996-09-01T23:59:59.000Z

285

Development of Cementitious Waste Forms for Nuclear Waste ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Development of Cementitious Waste Forms for Nuclear Waste Immobilization.

286

Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)  

SciTech Connect

Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500{degrees}C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect.

Newby, B.J.; Thomson, T.D.; O`Brien, B.H.

1992-06-01T23:59:59.000Z

287

Stability Issues in Ambient-Temperature Passive Magnetic Bearing Systems  

DOE Green Energy (OSTI)

The ambient-temperature passive magnetic bearing system developed at the Lawrence Livermore National Laboratory achieves rotor-dynamic stability by employing special combinations of levitating and stabilizing elements. These elements, energized by permanent magnet material, create the magnetic and electrodynamic forces that are required for the stable levitation of rotating systems, such as energy-storage flywheels. Stability criteria, derived from theory, describe the bearing element parameters, i.e., stiffnesses and damping coefficients, that are required both to assure stable levitation (''Earnshaw-stability''), and stability against whirl-type rotor-dynamic instabilities. The work described in this report concerns experimental measurements and computer simulations that address some critical aspects of this overall stability problem. Experimentally, a test device was built to measure the damping coefficient of dampers that employ eddy currents induced in a metallic disc. Another test device was constructed for the purpose of measuring the displacement-dependent drag coefficient of annular permanent magnet bearing elements. In the theoretical developments a computer code was written for the purpose of simulating the rotor-dynamics of our passive bearing systems. This code is capable of investigating rotor-dynamic stability effects for both small-amplitude transient displacements (i.e., those within the linear regime), and for large-amplitude displacements, where non-linear effects can become dominant. Under the latter conditions a bearing system that is stable for small-amplitude displacements may undergo a rapidly growing rotor-dynamic instability once a critical displacement is exceeded. A new result of the study was to demonstrate that stiffness anisotropy of the bearing elements (which can be designed into our bearing system) is strongly stabilizing, not only in the linear regime, but also in the non-linear regime.

Post, R.F.

2000-02-17T23:59:59.000Z

288

How to deal with laboratory waste Radioactive waste  

E-Print Network (OSTI)

How to deal with laboratory waste Radioactive waste: Any laboratory waste, whether chemical or biological, containing radioactive material, should be disposed as radioactive waste. Radioactive waste should be removed from the laboratory to the departmental waste area, soon after finishing the experiment

Maoz, Shahar

289

Transuranic (TRU) Waste  

Energy.gov (U.S. Department of Energy (DOE))

Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

290

Transuranic Waste Screener  

The TRU waste screener (TRU-WS) is a multifunctional system for the rapid screening of transuranic material for criticality safety or screening for TRU content in open trays or waste containers.

291

Hanford Waste Vitrification Plant  

SciTech Connect

The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs.

Larson, D.E.; Allen, C.R. (Pacific Northwest Lab., Richland, WA (United States)); Kruger, O.L.; Weber, E.T. (Westinghouse Hanford Co., Richland, WA (United States))

1991-10-01T23:59:59.000Z

292

Pet Waste Management  

E-Print Network (OSTI)

About 1 million pounds of dog waste is deposited daily in North Texas alone. That's why proper disposal of pet waste can make a big difference in the environment. 5 photos, 2 pages

Mechell, Justin; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

293

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy (DOE) is closing the circle on the generation, management, and disposal of transuranic waste. But the WIPP story is not just about radioactive waste. It is...

294

Immobilization of Nuclear Wastes  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Glassy and Glass Composite Nuclear Wasteforms: Michael Ojovan1; Bill Lee2; ... wastes which should be solidified for safe storage and disposal. ... has been vitrifying the Department of Energy's High Level Waste (HLW) at...

295

The wild wild waste: e-waste  

Science Conference Proceedings (OSTI)

E-Waste is a popular, informal name for discarded electronic products such as computers, VCRs, cameras, which have reached the end of their "useful life". Discarded electronic products contain a stew of toxic metals and chemicals such as lead, mercury, ... Keywords: donate, e-waste, ecology, efficiency, environment, green computing, hazardous material, re-use, recycle, reduce, thin-client, upgrade, virtualization

Scott E. Hanselman; Mahmoud Pegah

2007-10-01T23:59:59.000Z

296

Waste canister for storage of nuclear wastes  

DOE Patents (OSTI)

A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

Duffy, James B. (Fullerton, CA)

1977-01-01T23:59:59.000Z

297

Mixed Waste Treatment Study  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented nuclear utility industry experience in the on-site treatment of mixed waste. This report reviews all available exclusions/exceptions to EPA permitting requirements for environmentally responsible on-site management of mixed waste. Included is a description of emerging mixed waste treatment technologies along with a detailed evaluation of off-site treatment/disposal facilities.

1996-01-31T23:59:59.000Z

298

EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE  

SciTech Connect

This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a made-from approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the teams designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

2009-06-30T23:59:59.000Z

299

Recycle Plastic Waste Recommended Action  

E-Print Network (OSTI)

AR No. 5 Recycle Plastic Waste Recommended Action Separate scrap plastic bag waste from solid waste stream and recycle. This can be accomplished by either arranging for no-cost pick-up of loose waste or by selling baled waste material. Assessment Recommendation Summary Recommended Waste Cost Implementation

Tullos, Desiree

300

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore  

E-Print Network (OSTI)

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected plants · 8% (non-incinerable waste) and incineration ash goes to the offshore Semakau Landfill · To reach

Columbia University

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Axial inlet conversion to a centrifugal compressor with magnetic bearings  

Science Conference Proceedings (OSTI)

NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings have been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).

Novecosky, T. (NOVA Corp., Edmonton, Alberta (Canada))

1994-01-01T23:59:59.000Z

302

Reducing waste, Photoby stcvcchan  

E-Print Network (OSTI)

I ' I I t Reducing waste, Photoby stcvcchan AMs President Mike Lee (left to right), Point Grey M U recycling given high priority on campus By GAVIN WILSON UBC is taking stepsto reduce waste and encourageGellatly,Vice-President,Administration and Finance,to develop and recommend university policies on waste recycling. Another task force has submitted

Farrell, Anthony P.

303

Hazardous Waste Management Training  

E-Print Network (OSTI)

Hazardous Waste Management Training Persons (including faculty, staff and students) working be thoroughly familiar with waste handling and emergency procedures ap- plicable to their job responsibilities before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

304

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

305

Waste acceptance criteria for closure generated waste  

Science Conference Proceedings (OSTI)

The PORTS Facility has been operating since 1954. The PORTS Facility is used to enrich uranium for nuclear navy applications and commercial nuclear reactors. The PORTS process uses molecular diffusion techniques to separate the U-235 isotope from the U-238 isotope. The PORTS Facility consists of a complex cascade of compressors and converters through which gaseous uranium hexafluoride feed is processed. The feed contains approximately 0.7 percent U-235 by weight while products contain from 4 to 97 percent U-235 by weight, depending on the final application. In general, the majority of the closure wastes generated at PORTS consists of personal protective equipment (PPE), rags, soils, decontamination solutions, and construction related debris. These hazardous wastes will be predominately characterized on the basis of process knowledge. PORTS assumes its conservative waste characterizations that are based on process knowledge are correct unless and until further investigation and/or analysis proves the constituents are not present or are present at concentrations below characteristic regulatory thresholds. Waste Acceptance Criteria for wastes generated by the closure of active and inactive RCRA facilities at PORTS has been developed. The criteria presented in this document govern the activities that are performed during the closure and subsequent generation of waste and relocation from the closure locations to the storage unit. These criteria are intended to ensure the proper handling, classification, processing, and storage of wastes in order to prevent hazardous waste release that may pose a threat to human health or the environment. Any wastes currently stored at each of the facilities that are to be closed will be transferred to the X-326 or X-7725 Storage Units. The waste transfers will be accomplished in accordance with the Container Transfer Plan.

Not Available

1992-05-01T23:59:59.000Z

306

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01T23:59:59.000Z

307

Direct cementitious waste option study report  

SciTech Connect

A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.

Dafoe, R.E.; Losinski, S.J.

1998-02-01T23:59:59.000Z

308

Waste Disposal Matrix Type of Chemical University-related Waste Personal Waste  

E-Print Network (OSTI)

Waste Disposal Matrix Type of Chemical University-related Waste Personal Waste Batteries, used or unwanted including lithium, alkaline, lead ­ acid or lithium aluminum hydride Chemical Waste Check Disposal of Toxics website for disposal options or Take to Bookstore Biological Waste Biological Waste Residential

Zaferatos, Nicholas C.

309

Stailization, Packaging, and Storage of Plutonium-Bearing Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-3013-2012 MARCH 2012 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/NuclearSafety/ns/techstds/ DOE-STD-3013-2012 iii ABSTRACT This Standard provides guidance for the stabilization, packaging, and safe storage of plutonium- bearing metals and oxides containing at least 30 wt% plutonium plus uranium. It supersedes DOE-STD-3013-2004, "Stabilization, Packaging, and Storage of Plutonium-Bearing Materials," and is approved for use by all DOE organizations and their contractors. Metals are stabilized by

310

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

311

Municipal waste processing apparatus  

DOE Patents (OSTI)

This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

Mayberry, J.L.

1988-04-13T23:59:59.000Z

312

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report  

Science Conference Proceedings (OSTI)

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.

NONE

1996-09-01T23:59:59.000Z

313

ASSEMBLAGES ON WASTE ROCK  

E-Print Network (OSTI)

Abstract: Natural regeneration on waste rock was investigated at the old Wangaloa coal mine, south-east Otago. A 450-m long waste rock stack had been created 4050 years ago, and has had little anthropogenic intervention since. The stack is made up of a gradient of three main waste rock types, defined as silt-rich, mixed, and quartz-rich, which reflect different proportions of loess siltstone and quartz gravel conglomerate. Plant species assemblages were quantified in four 5-m 2 quadrats in each waste rock type. Invertebrates were heat extracted from substrate cores (7 cm diameter; depth 5 cm) collected from quadrats over an eight-week period in spring 2003. Ordination analysis showed statistically distinct plant and invertebrate assemblages had arisen on each waste rock type. Revegetation patterns were dominated by native, woody individuals on all waste rock types, particularly manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides). Plant cover on silt-rich waste rock was four-fold that on quartz-rich waste rock. Total numbers of invertebrates were highest on quartz-rich waste rock, but richness greatest on silt-rich waste rock. Collembola dominated the fauna but their numbers were proportionally greatest in poorly vegetated areas. Further work is required to explain the absence of plants and invertebrates from local areas of waste rock. ___________________________________________________________________________________________________________________________________

C. G. Rufaut; S. Hammit; D. Craw; S. G. Clearwater

2006-01-01T23:59:59.000Z

314

Mixed waste: Proceedings  

SciTech Connect

This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

1993-12-31T23:59:59.000Z

315

Seismic base isolation: Elastomer characterization, bearing modeling and system response  

Science Conference Proceedings (OSTI)

This paper discusses several major aspects of seismic base isolation systems that employ laminated elastomer bearings. Elastomer constitutive models currently being used to represent the nonlinear elastic and hysteretic behavior are discussed. Some aspects of mechanical characterization testing of elastomers is presented along with representative tests results. The development of a finite element based mesh generator for laminated elastomer bearings is presented. Recent advances in the simulation of base isolated structures to earthquake motions are presented along with a sample problem. 13 refs., 19 figs., 1 tab.

Kulak, R.F.; Wang, C.Y.; Hughes, T.H.

1991-01-01T23:59:59.000Z

316

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

317

Tank Waste and Waste Processing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

318

Waste acid detoxification and reclamation: Phase 1, Project planning and concept development  

SciTech Connect

The objectives of this project are to develop processes for reducing the volume, quantity, and toxicity of metal-bearing waste acids. The primary incentives for implemeting these types of waste minimization processes are regulatory and economic in that they meet requirements in the Resource Conservation and Recovery Act and reduce the cost for treatment, storage, and disposal. Two precipitation processes and a distillation process are being developed to minimize waste from fuel fabrication operations, which comprise a series of metal-finishing operations. Waste process acids, such as HF/--/HNO/sub 3/ etch solutions contianing Zr as a major metal impurity and HNO/sub 3/ strip solutions containing Cu as a major metal impurity, are detoxified and reclaimed by concurrently precipitating heavy metals and regenerating acid for recycle. Acid from a third waste acid stream generated from chemical milling operations will be reclaimed using distillation. This stream comprises HNO/sub 3/ and H/sub 2/SO/sub 4/ which contains U as the major metal impurity. Distillation allows NO/sub 3//sup /minus// to be displaced by SO/sub 4//sup /minus/2/ in metal salts; free HNO/sub 3/ is then vaporized from the U-bearing sulfate stream. Uranium can be recovered from the sulfate stream in downstream precipitation step. These waste minimization processes were developed to meet Hanford's fuel fabrication process needs. 7 refs., 4 figs., 1 tab.

Stewart, T.L.; Brouns, T.M.

1988-02-01T23:59:59.000Z

319

TSA waste stream and final waste form composition  

SciTech Connect

A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ``average`` transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ``average`` transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties.

Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

1993-01-01T23:59:59.000Z

320

Integrated Waste Services Association National Solid Wastes Management Association  

E-Print Network (OSTI)

Can Help Meet Our Energy Needs October 5, 2006 - WASHINGTON, DC--A broad coalition of government-244-4700 Evan Von Leer, SWANA 240-494-2252 John Varrasi, ASME 212-591-8158 Don't Waste Waste! Waste-Based Energy and utilization of energy produced from waste, or waste-based energy (WBE). The United States Conference of Mayors

Columbia University

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

WIPP Waste Information System Waste Container Data Report  

E-Print Network (OSTI)

WIPP Waste Information System Waste Container Data Report 06/06/2008 07:50 2.6 % LASB00411 % % Report Date Run by Report Site Id Container Number Waste Stream Data Status Code PEARCYM Version RP0360 Selection Criteria - Total Pages PRD02Instance 5 #12;Waste Isolation Pilot Plant Waste Container Data Report

322

8-Waste treatment and disposal A. Responsibility for waste management  

E-Print Network (OSTI)

8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

323

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network (OSTI)

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid scintillation vials must be collected separately. 5. Any "mixed waste" must be cleared with the RSO and labeled

324

WIPP Waste Information System Waste Container Data Report  

E-Print Network (OSTI)

WIPP Waste Information System Waste Container Data Report 06/06/2008 07:49 2.6 % LAS817174 % % Report Date Run by Report Site Id Container Number Waste Stream Data Status Code PEARCYM Version RP0360 Selection Criteria - Total Pages PRD02Instance 5 #12;Waste Isolation Pilot Plant Waste Container Data Report

325

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network (OSTI)

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

326

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents (OSTI)

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

Vijayan, S.; Wong, C.F.; Buckley, L.P.

1994-11-22T23:59:59.000Z

327

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents (OSTI)

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

1994-01-01T23:59:59.000Z

328

Waste Confidence Discussion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion More Documents & Publications Status Update: Extended Storage...

329

PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS  

DOE Green Energy (OSTI)

Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

Duffey, J.; Livingston, R.

2010-02-01T23:59:59.000Z

330

Gearbox Reliability Collaborative High Speed Shaft Tapered Roller Bearing Calibration  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is a project investigating gearbox reliability primarily through testing and modeling. Previous dynamometer testing focused upon acquiring measurements in the planetary section of the test gearbox. Prior to these tests, the strain gages installed on the planetary bearings were calibrated in a load frame.

Keller, J.; Guo, Y.; McNiff, B.

2013-10-01T23:59:59.000Z

331

Test of Conductive Carbon Fiber Enhancing the Structural Bearing Capacity  

Science Conference Proceedings (OSTI)

Research mechanism of conductive carbon fiber concrete, including mechanical intelligent properties, electrical properties, thermo-sensitive properties and mechanical properties. Put forward intelligent programs of carbon fiber concrete bridge, and do ... Keywords: conductive carbon fiber, CFRP concrete, intelligent programs, properties test, structural bearing capacity

Xiao-ming He; Jie Liang; Peng Guan

2010-06-01T23:59:59.000Z

332

Supercomputers, materials and bears: ORNL marks eventful 2012  

E-Print Network (OSTI)

SCIENCE Supercomputers, materials and bears: ORNL marks eventful 2012 Oak Ridge National Laboratory and became a showpiece for renewable energy technology during 2012. ORNL's 2012 maintained a string of achievements in both research and support that is expected to continue into 2013. Among the highlights: ORNL

333

Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone  

E-Print Network (OSTI)

Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone Sediments at the Hanford 300 collected beneath the former North Process Pond (NPP) in the 300 Area of the Hanford site (Washington the Hanford site in the state of Washington (U.S.). The 300 Area is one of many

334

A BIBLIOGRAPHY ON GAS LUBRICATED BEARINGS-REVISED. Interim Report  

SciTech Connect

A compilation of 290 references on gas bearings is presented. In most cases an English resume' of each reference is included a translation being made when required. The references are arranged alphabetically by first author. Indexes included are the year of origin corporate author, subject, patent number, and country of origin. (J.R.D.)

Sciulli, E.B.

1959-09-15T23:59:59.000Z

335

BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH  

E-Print Network (OSTI)

BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

336

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet Waste Management Nuclear...

337

NDAA Section 3116 Waste Determinations with Related Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste...

338

SRS - Programs - Waste Solidification  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

339

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

340

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ANALYSIS OF DAMAGE TO WASTE PACKAGES CAUSED BY SEISMIC EVENTS DURING POST-CLOSURE  

SciTech Connect

This paper presents methodology and results of an analysis of damage due to seismic ground motion for waste packages emplaced in a nuclear waste repository at Yucca Mountain, Nevada. A series of three-dimensional rigid body kinematic simulations of waste packages, pallets, and drip shields subjected to seismic ground motions was performed. The simulations included strings of several waste packages and were used to characterize the number, location, and velocity of impacts that occur during seismic ground motion. Impacts were categorized as either waste package-to-waste package (WP-WP) or waste package-to-pallet (WP-P). In addition, a series of simulations was performed for WP-WP and WP-P impacts using a detailed representation of a single waste package. The detailed simulations were used to determine the amount of damage from individual impacts, and to form a damage catalog, indexed according to the type, angle, location and force/velocity of the impact. Finally, the results from the two analyses were combined to estimate the total damage to a waste package that may occur during an episode of seismic ground motion. This study addressed two waste package types, four levels of peak ground velocity (PGV), and 17 ground motions at each PGV. Selected aspects of waste package degradation, such as effective wall thickness and condition of the internals, were also considered. As expected, increasing the PGV level of the vibratory ground motion increases the damage to the waste packages. Results show that most of the damage is caused by WP-P impacts. TAD-bearing waste packages with intact internals are highly resistant to damage, even at a PGV of 4.07 m/s, which is the highest level analyzed.

Alves, S W; Blair, S C; Carlson, S R; Gerhard, M; Buscheck, T A

2008-05-27T23:59:59.000Z

342

Guidelines for mixed waste minimization  

SciTech Connect

Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

Owens, C.

1992-02-01T23:59:59.000Z

343

Operational Waste Volume Projection  

SciTech Connect

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

STRODE, J.N.

2000-08-28T23:59:59.000Z

344

Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report  

Science Conference Proceedings (OSTI)

The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch.

Herbst, A.K.

1996-09-01T23:59:59.000Z

345

Waste Confidence Discussion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence Rule based on the EIS and Decision, if applicable 2 Overview of Draft Report Background and assumptions report is first step in process. Basic topics in the report are:

346

Norcal Waste Systems, Inc.  

SciTech Connect

Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

Not Available

2002-12-01T23:59:59.000Z

347

CLAB Transuranic Waste Spreadsheets  

Science Conference Proceedings (OSTI)

The Building 772-F Far-Field Transuranic (TRU) Waste Counting System is used to measure the radionuclide content of waste packages produced at the Central Laboratory Facilities (CLAB). Data from the instrument are entered into one of two Excel spreadsheets. The waste stream associated with the waste package determines which spreadsheet is actually used. The spreadsheets calculate the necessary information required for completion of the Transuranic Waste Characterization Form (OSR 29-90) and the Radioactive Solid Waste Burial Ground Record (OSR 7-375 or OSR 7-375A). In addition, the spreadsheets calculate the associated Low Level Waste (LLW) stream information that potentially could be useful if the waste container is ever downgraded from TRU to LLW. The spreadsheets also have the capability to sum activities from source material added to a waste container after assay. A validation data set for each spreadsheet along with the appropriate results are also presented in this report for spreadsheet verification prior to each use.

Leyba, J.D.

2000-08-11T23:59:59.000Z

348

Solid Waste Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

349

The Power of Waste.  

E-Print Network (OSTI)

?? Abstract It is estimated that up to 2 percent of the population in Third World countries survives on waste in one way or another. (more)

Frykman, Carina

2006-01-01T23:59:59.000Z

350

Making waste public.  

E-Print Network (OSTI)

??This thesis questions the boundaries that define waste as a public or private dilemma, investigating these boundaries as productive sites for the imagination of social (more)

Gambetta, Curt

2009-01-01T23:59:59.000Z

351

Vitrification of waste  

DOE Patents (OSTI)

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

352

Make love not waste.  

E-Print Network (OSTI)

?? The purpose of this thesis was to investigate a waste management project and its public awareness components, in the Korca region, Albania. We wanted (more)

Carlsson Engstrm, Christina

2008-01-01T23:59:59.000Z

353

Making Waste Public.  

E-Print Network (OSTI)

??This thesis questions the boundaries that define waste as a public or private dilemma, investigating these boundaries as productive sites for the imagination of social (more)

Gambetta, Curt

2009-01-01T23:59:59.000Z

354

WEB RESOURCE: Radioactive Waste  

Science Conference Proceedings (OSTI)

May 8, 2007 ... This resource offers a a very broad explanation of how the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Material...

355

Integrated waste management.  

E-Print Network (OSTI)

??Integrated waste management is considered from a systems approach, with a particular emphasis on advancing sustainability. The focus of the thesis is to examine the (more)

Seadon, Jeffrey Keith

2010-01-01T23:59:59.000Z

356

Vitrification of waste  

DOE Patents (OSTI)

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

357

Waste Clean Up 5  

Science Conference Proceedings (OSTI)

... deployment and clean-up activities of robot arms into a nuclear contaminated pit at the opening of waste storage tank C-106 at Hanford, Washington ...

2011-08-30T23:59:59.000Z

358

Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management's Yucca Mountain Project and the Office of Nuclear Energy's Advanced Fuel Cycle Initiative (AFCI) and Global Nuclear Energy Partnership (GNEP) programs. Efforts...

359

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

360

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Secondary Waste Cast Stone Waste Form Qualification Testing Plan  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

Westsik, Joseph H.; Serne, R. Jeffrey

2012-09-26T23:59:59.000Z

362

Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd | Open Energy  

Open Energy Info (EERE)

Jingye Bearing Manufacture for Rolling Mills Co Ltd Jingye Bearing Manufacture for Rolling Mills Co Ltd Jump to: navigation, search Name Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Place Beijing Municipality, China Sector Wind energy Product Beijing-based wind turbine bearing maker. References Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd is a company located in Beijing Municipality, China . References ↑ "Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Jingye_Bearing_Manufacture_for_Rolling_Mills_Co_Ltd&oldid=342621

363

SNAP I POWER CONVERSION SYSTEM BEARINGS DEVELOPMENT. Period covered: February 1, 1957 to June 30, 1959  

SciTech Connect

Development of bearings for use in the SNAP I power conversion system is described. Liquid mercury, lubricated hydrosphere bearings were selected. Design and performance data are given along with conclusions. (J.R.D.)

Meredith, R.; Ono, G.Y.; Reemsnyder, D.C.

1960-06-20T23:59:59.000Z

364

Advances in hybrid water-lubricated journal bearings for use in ocean vessels  

E-Print Network (OSTI)

The outboard bearings that support shafts in naval ships and submarines present unique challenges to designers, shipbuilders, and operators. Such bearings must operate continuously and reliably in demanding environments ...

Heberley, Brian Douglas

2013-01-01T23:59:59.000Z

365

Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...  

National Nuclear Security Administration (NNSA)

dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of scientific study, public input, and...

366

Virginia Waste Management Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

367

Solid Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

368

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

369

Manual of Bearing Failures and Repair in Power Plant Rotating Equipment  

Science Conference Proceedings (OSTI)

Turbine bearing failures in electric utilities can be responsible for outages resulting in significant lost generation time. In addition to bearing failures in the turbogenerators, failures may occur in other rotating equipment, such as pumps, fans, and auxiliary systems. Knowledge of bearing failure mechanisms and causes allows utilities to introduce safeguards into their occurrence and take faster remedial action. EPRI released the initial report, Manual of Bearing Failures and Repair in Power Plant Ro...

2011-12-15T23:59:59.000Z

370

New and Underutilized Technology: Water Cooled Oil Free Magnetic Bearing Compressors  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for water cooled oil free magnetic bearing compressors within the Federal sector.

371

Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life  

DOE Green Energy (OSTI)

This report describes the design criteria, calculation methods, and applicable standards recommended for use in performance and life analyses of ball and roller (rolling) bearings for yaw and pitch motion support in wind turbine applications. The formulae presented here for rolling bearing analytical methods and bearing-life ratings are consistent with methods in current use by wind turbine designers and rolling-bearing manufacturers.

Harris, T.; Rumbarger, J. H.; Butterfield, C. P.

2009-12-01T23:59:59.000Z

372

Isolation of Metals from Liquid Wastes: Reactive in Turbulent Thermal Reactors  

SciTech Connect

A Generic Technology for treatment of DOE Metal-Bearing Liquid Waste The DOE metal-bearing liquid waste inventory is large and diverse, both with respect to the metals (heavy metals, transuranics, radionuclides) themselves, and the nature of the other species (annions, organics, etc.) present. Separation and concentration of metals is of interest from the standpoint of reducing the volume of waste that will require special treatment or isolation, as well as, potentially, from the standpoint of returning some materials to commerce by recycling. The variety of metal-bearing liquid waste in the DOE complex is so great that it is unlikely that any one process (or class of processes) will be suitable for all material. However, processes capable of dealing with a wide variety of wastes will have major advantages in terms of process development, capital, and operating costs, as well as in environmental and safety permitting. Moreover, to the extent that a process operates well with a variety of metal-bearing liquid feedwastes, its performance is likely to be relatively robust with respect to the inevitable composition variations in each waste feed. One such class of processes involves high-temperature treatment of atomized liquid waste to promote reactive capture of volatile metallic species on collectible particulate substrates injected downstream of a flame zone. Compared to low-temperature processes that remove metals from the original liquid phase by extraction, precipitation, ion exchange, etc., some of the attractive features of high-temperature reactive scavenging are: The organic constituents of some metal-bearing liquid wastes (in particular, some low-level mixed wastes) must be treated thermally in order to meet the requirements of the Resource Conservation and Recovery Act (RCRA) and Toxic Substances Control Act (TSCA), and the laws of various states. No species need be added to an already complex liquid system. This is especially important in light of the fact that DOE has already experienced problems with organic complexants added to precipitate radionuclides. For example, the Defense Nuclear Facilities Safety Board has expressed, in a formal Recommendation to the Secretary of Energy, its concern about the evolution of benzene vapor in concentrations greater then the lower flammability limit from tanks to which sodium tetraphenylborate has been added to precipitate 137Cs in the ''In-Tank Precipitation'' (ITP) process at the Savannah River Site. Other species added to the waste in the ITP process are sodium titanate (to adsorb 90Sr and Pu), and oxalic acid. Avoiding addition of organics to radioactive waste has the additional advantage that is likely to significantly reduce the rate of radiolytic and radiolytically-induced hydrogen generation (c.f. Meisel et al., [1993]), in which it is shown that removal of organics reduces the rate of hydrogen generation in simulated waste from Hanford tank 241-SY-101 by over 70%. Organic species already present are destroyed with very high efficiency. This attribute is especially attractive with respect to high-level tank waste at the Hanford Site, in which large amounts of citrate, glyoxylate, EDTA (ethylenediaminetetraacetic acid), and HEDTA [N-(2- hydroxyethyl)-ethylenediaminetriacetic acid] were added to precipitate radionuclides. These organic species are important in the thermal and radiolytic generation of methane, hydrogen, and nitrous oxide, flammable mixtures of which are episodically vented from 25 tanks on Hanford's Flammable Gas Watch List [Hopkins, 1994]. The same basic approach can be used to treat a broad range of liquid wastes, in each case concentrating the metals (regardless of liquid-phase oxidation state or association with chelators or absorbents) using a collectible sorbent, and destroying any organic species present. In common with the Army's approach (see section 2.2) to the thermal destruction of a 10 range of chemical warfare agents (GB, VX, and two blister agents), this may drastically simplify process and plant design and

Wendt, Jost O.L.

2001-09-30T23:59:59.000Z

373

Development of a cryogenic induction motor for use with a superconducting magnetic bearing  

E-Print Network (OSTI)

Development of a cryogenic induction motor for use with a superconducting magnetic bearing Tomotake of a superconducting magnetic bearing (SMB). Both the motor and the SMB are operated at liquid He temperatures. We give Keywords: Astrophysical polarimeter; Induction motor; Superconducting magnetic bearings 1. Introduction

Oxley, Paul

374

Land Disposal Restrictions Treatment Standards: Compliance Strategies for Four Types of Mixed Wastes  

Science Conference Proceedings (OSTI)

This paper describes the unique challenges involved in achieving compliance with the Resource Conservation and Recovery Act (Public Law 94-580) Land Disposal Restrictions (LDR) treatment standards for four types of mixed wastes generated throughout the U.S. Department of Energy (DOE) complex: (1) radioactively contaminated lead acid batteries; (2) radioactively contaminated cadmium-, mercury-, and silver-containing batteries; (3) mercury-bearing mixed wastes; and (4) radioactive lead solids. For each of these mixed waste types, the paper identifies the strategy pursued by DOE's Office of Pollution Prevention and Resource Conservation Policy and Guidance (EH-43) in coordination with other DOE elements and the U.S. Environmental Protection Agency (EPA) to meet the compliance challenge. Specifically, a regulatory interpretation was obtained from EPA agreeing that the LDR treatment standard for wastes in the D008 'Radioactive Lead Solids' sub-category applies to radioactively contaminated lead acid batteries. For cadmium-, mercury-, and silver-containing batteries, generically applicable treatability variances were obtained from EPA approving macro-encapsulation as the alternative LDR treatment standard for all three battery types. Joint DOE/EPA technology demonstrations were pursued for mercury-bearing mixed wastes in an effort to justify revising the LDR treatment standards, which focus on thermal recovery of mercury for reuse. Because the demonstrations failed to produce enough supporting data for a rulemaking, however, EPA has recommended site-specific treatability variances for particular mercury-bearing mixed waste streams. Finally, DOE has filed an application for a determination of equivalent treatment requesting approval of container-based macro-encapsulation technologies as an alternative LDR treatment standard for radioactive lead solids. Information is provided concerning the length of time required to implement each of these strategies, and suggestions for obtaining variances from the LDR treatment standards at the site-specific level are also discussed. (authors)

Fortune, W.B. [U.S, Department of Energy, Office of Pollution Prevention and Resource Conservation (EH-43), 1000 Independence Ave., S.W., Washington, DC 20585 (United States); Ranek, N.L. [Argonne National Laboratory, Environmental Science Division, 955 L'Enfant Plaza North, Suite 6000, Washington, DC 20024 (United States)

2006-07-01T23:59:59.000Z

375

Mixed Waste Management Guidelines  

Science Conference Proceedings (OSTI)

The management of mixed waste presents serious challenges to nuclear utilities. Regulatory and practical predicaments make compliance with the letter of all applicable regulations extremely difficult. Utility experts developed these guidelines to identify opportunities for improving work practices and regulatory compliance while minimizing any potential adverse impacts of mixed waste management.

1994-12-31T23:59:59.000Z

376

Mixed Waste Characterization Guidelines  

Science Conference Proceedings (OSTI)

This report presents an overview of the process of characterizing potential mixed waste streams from nuclear power plants. Utility experts developed these guidelines to help guide utility personnel through the characterization process and provide a mechanism for properly documenting the characterization of individual waste streams.

1995-12-31T23:59:59.000Z

377

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

378

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

379

Heterogeneous waste processing  

DOE Patents (OSTI)

A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

380

Nuclear waste solutions  

DOE Patents (OSTI)

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

382

SRS - Programs - Solid Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

manner possible. SRS's waste is categorized as transuranic, low-level, hazardous, mixed, high-level or sanitary waste. SWM is responsible for managing all of these...

383

Animal Waste Technology Fund (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

384

Municipal Waste Combustion (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

385

Hazardous Waste Management (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

386

Solid waste management of Jakarta.  

E-Print Network (OSTI)

?? Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the (more)

Trisyanti, Dini

2004-01-01T23:59:59.000Z

387

Treatment of Waste Soils / Solids  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Waste Soils / Solids...

388

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

389

Centrifugally activated bearing for high-speed rotating machinery  

SciTech Connect

A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

Post, Richard F. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

390

Preliminary relative permeability estimates of methanehydrate-bearing sand  

Science Conference Proceedings (OSTI)

The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

2006-05-08T23:59:59.000Z

391

Failure Atlas for Rolling Bearings in Wind Turbines  

DOE Green Energy (OSTI)

This Atlas is structured as a supplement to the book: T.E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2nd edition, ASME Press New York, (1999). The content of the atlas comprises plate pages from the book that contain bearing failure images, application data, and descriptions of failure mode, image, and suspected failure causes. Rolling bearings are a critical component of the mainshaft system, gearbox and generator in the rapidly developing technology of power generating wind turbines. The demands for long service life are stringent; the design load, speed and temperature regimes are demanding and the environmental conditions including weather, contamination, impediments to monitoring and maintenance are often unfavorable. As a result, experience has shown that the rolling bearings are prone to a variety of failure modes that may prevent achievement of design lives. Morphological failure diagnosis is extensively used in the failure analysis and improvement of bearing operation. Accumulated experience shows that the failure appearance and mode of failure causation in wind turbine bearings has many distinguishing features. The present Atlas is a first effort to collect an interpreted database of specifically wind turbine related rolling bearing failures and make it widely available. This Atlas is structured as a supplement to the book: T. E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2d edition, ASME Press New York, (1999). The main body of that book is a comprehensive collection of self-contained pages called Plates, containing failure images, bearing and application data, and three descriptions: failure mode, image and suspected failure causes. The Plates are sorted by main failure mode into chapters. Each chapter is preceded by a general technical discussion of the failure mode, its appearance and causes. The Plates part is supplemented by an introductory part, describing the appearance classification and failure classification systems used, and by several indexes. The present Atlas is intended as a supplement to the book. It has the same structure but contains only Plate pages, arranged in chapters, each with a chapter heading page giving a short definition of the failure mode illustrated. Each Plate page is self contained, with images, bearing and application data, and descriptions of the failure mode, the images and the suspected causes. Images are provided in two resolutions: The text page includes 6 by 9 cm images. In addition, high resolution image files are attached, to be retrieved by clicking on their 'push pin' icon. While the material in the present Atlas is self-contained, it is nonetheless a supplement to the book and the complete interpretation of the terse image descriptions and of the system underlying the failure code presupposes familiarity with the book. Since this Atlas is a supplement to the book, its chapter numbering follows that of the book. Not all failure modes covered in the book have been found among the observed wind turbines. For that reason, and because of the omission of introductory matter, the chapter numbers in this Atlas are not a continuous sequence.

Tallian, T. E.

2006-01-01T23:59:59.000Z

392

Applying Case-Based Reasoning to Mechanical Bearing Design  

E-Print Network (OSTI)

Case-Based Reasoning (CBR) provides a promising methodology for solving many complex engineering design problems. CBR is based on the idea that past problem-solving experiences can be reused and learned from in solving new problems. This paper presents an overview of a CBR design system to assist human engineers in performing mechanical bearing design. It retrieves previously designed cases from a case-base and uses adaptation techniques to adapt them to satisfy the current problem requirements. Our approach combines parametric adaptations and constraint satisfaction adaptations. The technique of parametric adaptation considers not only parameter substitution, but also the interrelationships between the problem definition and its solution. The technique of constraint satisfaction adaptation provides a method to globally check the design requirements to assess case adaptability. Currently, our system has been tested in the rolling bearing domain.

Xiaoli Qin; William C. Regli

2000-01-01T23:59:59.000Z

393

The use of filtered bags to increase waste payload capacity  

DOE Green Energy (OSTI)

For the past few years, the Department of Energy has favored the direct disposal of low plutonium content residue materials from Rocky Flats rather than engage in expensive and time consuming plutonium recovery operations. One impediment to direct disposal has been the wattage limit imposed by the Waste Isolation Pilot Plant on hydrogenous materials such as combustibles and sludges. The issue of concern is the radiolytic generation and accumulation of hydrogen and other explosive gases in waste containers. The wattage limits that existed through 1996 restricted the amount of plutonium bearing hydrogenous materials that could be packaged in a WIPP bound waste drum to only a fraction of the capacity of a drum. Typically, only about one kilogram of combustible residue could be packaged in a waste drum before the wattage limit was exceeded resulting in an excessively large number of drums to be procured, stored, shipped, and interred. The Rocky Flats Environmental Technology Site has initiated the use of filtered plastic bags (called bag-out bags) used to remove transuranic waste materials from glove box lines. The bags contain small, disk like HEPA filters which are effective in containing radioactively contaminated particulate material but allow for the diffusion of hydrogen gas. Used in conjunction with filtered 55 gallon drums, filtered bag-out bags were pursued as a means to increase the allowable wattage limits for selected residue materials. In February 1997, the Nuclear Regulatory Commission approved the use of filtered bag-out bags for transuranic waste materials destined for WIPP. The concomitant increase in wattage limits now allows for approximately four times the payload per waste drum for wattage limited materials.

Dustin, D.F.; Thorp, D.T. [Safe Sites of Colorado, Golden, CO (United States); Rivera, M.A. [Los Alamos Technical Associates, Albuquerque, NM (United States)

1998-03-03T23:59:59.000Z

394

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

395

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

396

HLW Glass Waste Loadings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

397

Uranium- and thorium-bearing pegmatites of the United States  

SciTech Connect

This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

Adams, J.W.; Arengi, J.T.; Parrish, I.S.

1980-04-01T23:59:59.000Z

398

Numerical studies on the geomechanical stability ofhydrate-bearing sediments  

Science Conference Proceedings (OSTI)

The thermal and mechanical loading of oceanicHydrate-Bearing Sediments (HBS) can result in hydrate dissociation and asignificant pressure increase, with potentially adverse consequences onthe integrity and stability of the wellbore assembly, the HBS, and thebounding formations. The perception of HBS instability, coupled withinsufficient knowledge of their geomechanical behavior and the absence ofpredictive capabilities, have resulted in a strategy of avoidance of HBSwhen locating offshore production platforms, and can impede thedevelopment of hydrate deposits as gas resources.In this study weinvestigate in three cases of coupled hydraulic, thermodynamic andgeomechanical behavior of oceanic hydrate-bearing sediments. The firstinvolves hydrate heating as warm fluids from deeper conventionalreservoirs ascend to the ocean floor through uninsulated pipesintersecting the HBS. The second case describes system response duringgas production from a hydrate deposit, and the third involves mechanicalloading caused by the weight of structures placed on the ocean flooroverlying hydrate-bearing sediments.For the analysis of the geomechanicalstability of HBS, we developed and used a numerical model that integratesa commercial geomechanical code and a simulator describing the coupledprocesses of fluid flow, heat transport and thermodynamic behavior in theHBS. Our simulation results indicate that the stability of HBS in thevicinity of warm pipes may be significantly affected, especially if thesediments are unconsolidated and more compressible. Gas production fromoceanic deposits may also affect the geomechanical stability of HBS underthe conditions that are deemed desirablefor production. Conversely, theincreased pressure caused by the weight of structures on the ocean floorincreases the stability of underlying hydrates.

Rutqvist, Jonny; Moridis, George J.

2007-05-01T23:59:59.000Z

399

Report on phase I on the development of improved seals and bearings for downhole drilling motors. Final report  

DOE Green Energy (OSTI)

New bearing and seal designs are outlined, as well as the progress made on developing test facilities for full-size bearing and seal assemblies. (MHR)

Black, A.D.; Green, S.J.; Matson, L.W.; Maurer, W.C.; Nielsen, R.R.; Nixon, J.D.; Wilson, J.G.

1977-05-01T23:59:59.000Z

400

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Waste Analysis Plan  

Science Conference Proceedings (OSTI)

The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Plutonium Finishing Plant Treatment and Storage Unit (PFP Treatment and Storage Unit) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (4)(a) and (5). The PFP Treatment and Storage Unit is an interim status container management unit for plutonium bearing mixed waste radiologically managed as transuranic (TRU) waste. TRU mixed (TRUM) waste managed at the PFP Treatment and Storage Unit is destined for the Waste Isolation Pilot Plant (WIPP) and therefore is not subject to land disposal restrictions [WAC 173-303-140 and 40 CFR 268]. The PFP Treatment and Storage Unit is located in the 200 West Area of the Hanford Facility, Richland Washington (Figure 1). Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AVLIS production plant waste management plan  

Science Conference Proceedings (OSTI)

Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

Not Available

1984-11-15T23:59:59.000Z

402

Effect of potential waste constituents on the reactivity of Hanford ferrocyanide wastes: Diluent, catalyst, and initiator studies  

SciTech Connect

During the 1980s, scientists at the Hanford Site began considering disposal options for wastes in underground storage tanks. As a result of safety concerns, it was determined that special consideration should be given to ferrocyanide-bearing wastes to ensure their continued safe storage. In addition, Westinghouse Hanford Company (WHC) chartered Pacific Northwest Laboratory (PNL) to determine the conditions necessary for vigorous reactions to occur in the Hanford Site ferrocyanide wastes. As part of those studies, PNL has evaluated the effects of selected potential waste constituents to determine how they might affect the reactivity of the wastes. The authors` investigations of the diluent, catalytic, or initiating effects of potential waste constituents included studies (1) to determine the effect of the oxidant-to-ferrocyanide ratio, (2) to establish the effect of sodium aluminate concentration, (3) to identify materials that could affect the explosivity of a mixture of sodium nickel ferricyanide (a potential aging product of ferrocyanide) and sodium nitrate and nitrite, (4) and to determine the effect of nickel sulfide concentration. They also conducted a thermal sensitivity study and analyzed the results to determine the relative behaviors of sodium nickel ferrocyanide and ferricyanide. A statistical evaluation of the time-to-explosion (TTX) test results from the catalyst and initiator screening study found that the ferricyanide reacted at a faster rate than did the ferrocyanide analog. The thermal analyses indicated that the ferricyanide form is more thermally sensitive, exhibiting exothermic behavior at a lower temperature than the ferrocyanide form. The increased thermal sensitivity of the ferricyanide, which is a potential oxidation product of ferrocyanide, relative to the ferrocyanide analog, does not support the hypothesis that aging independent of the reaction pathway will necessarily reduce the reaction hazard of ferrocyanide wastes.

Scheele, R.D.; Johnston, J.W.; Tingey, J.M.; Burger, L.L.; Sell, R.L.

1993-04-01T23:59:59.000Z

403

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect

Irradiated nuclear fuel has been reprocessed at the Idaho Chemical Processing Plant (ICPP) since 1953 to recover uranium-235 and krypton-85 for the US Department of Energy (DOE). The resulting acidic high-level liquid radioactive waste (HLLW) has been solidified to a high-level waste (HLW) calcine since 1963 and stored in stainless-steel bins enclosed in concrete vaults. Residual HLW and radioactive sodium-bearing waste are stored in stainless-steel underground tanks contained in concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also stored at INEL. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium. As a result of the decision to curtail reprocessing the ICPP Spent Fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the INEL. The plan was developed jointly by DOE and Westinghouse Idaho Nuclear Company, Inc., (WINCO) and with the concurrence of the State of Idaho.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-06-01T23:59:59.000Z

404

THE SNAP II POWER CONVERSION SYSTEM. Topical Report No. 6, Bearing Design and Development  

SciTech Connect

A preliminary analysis conducted on various types of bearings indicated that hydrodynamic type journal and thrust bearings lubricated with a portion of the mercury from the condensate return pump would best suit the SNAP II requirements. Experimental rssults confirmed the bearing design approach. Stable bearing operation was obtained at speeds in excess of the 40,000 rpm design objective with simulated loads of 1 to 10 g in the radial direction, and 0 to 2 g in the axial direction. Total power consumption of the bearing system is approximately 550 watts at the design speed. (auth)

Waldron, W.D.

1960-06-22T23:59:59.000Z

405

Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology  

SciTech Connect

The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

Ermold, L.F.; Knecht, D.A.

1993-08-01T23:59:59.000Z

406

Waste Management & Research290 Waste Manage Res 2002: 20: 290301  

E-Print Network (OSTI)

Waste Management & Research290 Waste Manage Res 2002: 20: 290­301 Printed in UK ­ all rights reserved Copyright © ISWA 2002 Waste Management & Research ISSN 0734­242X Introduction Chromated copper of sorting technologies for CCA treated wood waste Monika Blassino Helena Solo-Gabriele University of Miami

Florida, University of

407

L/O/G/OL/O/G/O Waste Waste  

E-Print Network (OSTI)

L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu Top management should participate in regular "Ground Zero" walks CQI CQI RCA #12; waste/ value waste/ value · Eliminate · Re-arrange · Re-structure · Simplify · Combine · IT #12

Laksanacharoen, Sathaporn

408

WASTE SEPARATION-DOES IT INFLUENCE MUNICIPAL WASTE COMBUSTOR EMISSIONS?  

E-Print Network (OSTI)

WASTE SEPARATION- DOES IT INFLUENCE MUNICIPAL WASTE COMBUSTOR EMISSIONS? A. John Chandler A a commendable job in proving that trace emissions from a modem waste to energy plant have little to do with the trace compounds in individual components of municipal solid waste. Ogden, the leader in designing

Columbia University

409

Waste Management & Research172 Waste Manage Res 2003: 21: 172177  

E-Print Network (OSTI)

Waste Management & Research172 Waste Manage Res 2003: 21: 172­177 Printed in UK ­ all rights reserved Copyright © ISWA 2003 Waste Management & Research ISSN 0734­242X In many market segments of PVC in Germany increased by 9%, the fastest growth rate of all plastics. The waste stream in Germany

Columbia University

410

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN  

E-Print Network (OSTI)

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN THE GREEN ECONOMY Submission to the Ministry of the Environment Regarding the Minister's Report on the Waste Diversion Act 2002 Review Submitted by: Submitted to of the Environment 10 Rambert Crescent Integrated Environmental Policy Division Toronto, Ontario M6S 1E6 Waste

Columbia University

411

FY94 site characterization and multilevel well installation at a west Bear Creek Valley research site on the Oak Ridge Reservation  

SciTech Connect

The goals of this project are to collect data that will assist in determining what constitutes a representative groundwater sample in fractured shale typical of much of the geology underlying the ORR waste disposal sites, and to determine how monitoring-well construction and sampling methods impact the representativeness of the sample. This report details the FY94 field activities at a research site in west Bear Creek Valley on the Oak Ridge Reservation (ORR). These activities funded by the Energy Systems Groundwater Program Office through the Oak Ridge Reservation Hydrologic and Geologic Studies (ORRHAGS) task, focus on developing appropriate sampling protocols for the type of fractured media that underlies many of the ORR waste disposal sites. Currently accepted protocols were developed for porous media and are likely to result in nonrepresentative samples in fractured systems.

Moline, G.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Schreiber, M.E. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Geology and Geophysics

1996-03-01T23:59:59.000Z

412

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

413

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

414

TRU Waste Sampling Program: Volume I. Waste characterization  

DOE Green Energy (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

415

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

416

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

417

L/O/G/OL/O/G/O Waste Waste  

E-Print Network (OSTI)

L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one · · · · · · · · · · · · · · · · · · 5 WHY · · · RCA · · · 5 WHY · · #12; waste/ value waste/ value

Laksanacharoen, Sathaporn

418

Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description  

SciTech Connect

Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

Losinski, Sylvester John; Marshall, Douglas William

2002-08-01T23:59:59.000Z

419

Method for calcining radioactive wastes  

DOE Patents (OSTI)

This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

Bjorklund, William J. (Richland, WA); McElroy, Jack L. (Richland, WA); Mendel, John E. (Kennewick, WA)

1979-01-01T23:59:59.000Z

420

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "bearing waste sbw" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Copenhagen Waste Management and Incineration  

E-Print Network (OSTI)

Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen 24 20092 Presentation · General introduction to Copenhagen Waste Management System · National incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste

Columbia University

422

Waste to Energy Time Activities  

E-Print Network (OSTI)

SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

Columbia University

423

Contained recovery of oily waste  

DOE Patents (OSTI)

A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

1989-01-01T23:59:59.000Z

424

Urban Wood Waste Resource Assessment  

DOE Green Energy (OSTI)

This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

Wiltsee, G.

1998-11-20T23:59:59.000Z

425

In situ chemical characterization of waste sludges using FTIR-based fiber optic sensors  

Science Conference Proceedings (OSTI)

The characterization of unknown mixed wastes is a mandatory step in today`s climate of strict environmental regulations. Cleaning up the nuclear and chemical wastes that have accumulated for 50 years at the Hanford Site is the largest single cleanup task in the United States today. The wastes are stored temporarily in carbon steel single- and double-shell tanks that are buried in tank farms at the Site. In the 1950s, a process to scavenge radioactive cesium and other soluble radionuclides in the wastes was developed to create additional tank space for waste storage. This scavenging process involved treatment of the wastes with alkali cyanoferrates and nickel sulfate to precipitate {sup 137}Cs in the presence of nitrate oxidant. Recent safety issues have focused on the stability of cyanoferrate-bearing wastes with large quantities of nitrates and nitrites. Nitrate has been partially converted to nitrite as a result of radiolysis during more than 35 years of storage. The major safety issue is the possibility of the presence of local hot spots enriched in {sup 137}Cs and {sup 90}Sr that under optimum conditions can self-heat causing dry out and a potential runaway reaction of the cyanoferrates with the nitrates/nitrites). For waste tank safety, accurate data of the concentration and distribution of cyanoferrates in the tanks are needed. Because of the extensive sampling required and the highly restricted activities allowed in the tank farms, simulated tank wastes are used to provide an initial basis for identifying and quantifying realistic concerns prior to waste remediation. Fiber optics provide a tool for the remote and in situ characterization of hazardous and toxic materials. This study is focused on near-infrared (NIR) and mid-infrared (MIR) fiber optic sensors for in situ chemical characterization of Hanford Site waste sludges.

Rebagay, T.V.; Dodd, D.A.; Jeppson, D.W.; Lockrem, L.L.; Blewett, G.R.

1994-02-01T23:59:59.000Z

426

Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update  

SciTech Connect

The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

1994-09-01T23:59:59.000Z

427

NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION  

SciTech Connect

Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

2011-01-13T23:59:59.000Z

428

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

429

OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON TEST RESULTS  

SciTech Connect

Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL sodium bearing waste (SBW), liquid low activity waste (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (Tank 48H waste) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

Nick Soelberg

2007-05-01T23:59:59.000Z

430

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

431

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

432

Handford Waste Division  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Hanford Waste Diversion SAN Teleconference June 21, 2012 Tom Ferns, DOE-RL 2 Hanford Site Mission The Hanford Site is engaged in one of the largest and most complex environmental...

433

Treatment of organic waste  

DOE Patents (OSTI)

An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

Grantham, LeRoy F. (Calabasas, CA)

1979-01-01T23:59:59.000Z

434

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

request for further delays After the EPA certified that the WIPP met the standards for disposal of transuranic waste in May 1998, then-New Mexico Attorney General Tom Udall...

435

Vitrification of waste  

DOE Patents (OSTI)

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300{degrees}C to 800{degrees}C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100{degrees}C to 1400{degrees}C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1992-12-31T23:59:59.000Z

436

ORNL radioactive waste operations  

SciTech Connect

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

1982-01-01T23:59:59.000Z

437

Citrus Waste Biomass Program  

DOE Green Energy (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

438

Method of fabricating a uranium-bearing foil  

Science Conference Proceedings (OSTI)

Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

2012-04-24T23:59:59.000Z

439

Medical and Biohazardous Waste Generator's Guide (Revision 2)  

E-Print Network (OSTI)

Biohazardous Waste Training Medical/Biohazardous WasteInspections 7. Forms and Supplies Medical Waste AccumulationLog Ordering Medical Waste Supplies 8. Solid Medical Waste

Waste Management Group

2006-01-01T23:59:59.000Z

440

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z