Powered by Deep Web Technologies
Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Beamlines Beamlines Print Beamlines Directory List of ALS beamlines, techniques, energy ranges, beamline scientists' contact information, and individual beamline schedules. The ALS Beamclock and links to the ALS Energy-Related Beamlines poster and beamclock are also available. Beam Status Current status of the ALS accelerator, updated every minute. Instructions on how to get beam status updates via Twitter @ALSRingStatus or text messages, and request form for beam history information. Research Techniques Research techniques and the corresponding beamlines where they are available (under construction). Schedules Weekly user schedule, current and upcoming long-term operating schedules; individual beamline long-term schedules can be found on the ALS Beamlines Directory.

2

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Beamlines Directory ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

3

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

4

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

5

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Beamlines Directory Print ALS Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

6

ALS Beamlines Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Print Beamlines Directory Print Beamlines, Parameters, Contact Information, and Schedules Download a high-resolution version of the ALS Beamclock. See Beamclock to view the ALS energy-related beamlines beamclock. Beamline Parameters Beamline and endstation technical information is available through the links below. Unless otherwise noted, all beamlines are currently operational. Individual beamline schedules are posted when available. Please contact the responsible beamline scientist for additional schedule information. When calling from off-site, all beamline (BL) phone numbers that begin with a "2" are preceded by 495- (i.e., 495-2014); all others are preceded by 486-. Beamline Number Source Technique/ Group Name Energy Range Beamline Contact Schedule/BL Phone

7

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X8A All users must procedure for removal of solder wasteSolder B CLOSE OUT Secure the beamline and disable shutter/beam before for this beamline:I understand the instructions given to me on beamline operations and safety awareness. Date UAdm

Ohta, Shigemi

8

Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

about how nif works Beamline Every NIF beam starts at the master oscillator. The low-energy beam is amplified in the preamplifier module and then in the power amplifier, the main...

9

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20A All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20A All users must A Review procedure and location for temporary SAA (for soldering or other wastes)SAA - Solder B CLOSE OUT to me on beamline operations and safety awareness. Date UAdmTrainer's Signature J. Jordan-Sweet C

Ohta, Shigemi

10

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20C All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline X20C All users must containerDisposal - Sharps A Review procedure and location for temporary SAA (for soldering or other wastes)SAA - Solder B CLOSE OUT Secure the beamline and disable shutter/beam before you leaveDisabling Beam A Review

Ohta, Shigemi

11

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Source...

12

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline U3C All users must be instructed in operating the beamline safely. Leave checkbox blank if not applicable. Training valid 2 years. Visitors use Visitor/Escort forms.  

E-Print Network (OSTI)

BeamLine Operations and Safety Awareness (BLOSA) Checklist Beamline U3C All users mustVent System A Avoid skin contact with soldering iron to prevent burns to the skinBurns B Use caution when and safety awareness. Date UAdmTrainer's Signature Bin Dong LU-BLOSA-U3C R = NSLS Content A = Applicable

Ohta, Shigemi

13

Find a Beamline | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Find a Beamline Find a Beamline The Advanced Photon Source consists of 34 sectors; each sector contains one or more beamlines. There are several resources available to help you find information about APS sectors and beamlines. Maps: Interactive Map Clicking on the link above or the picture below will take you to a page where you can see which APS beamlines are operational and relevant to your scientific interests. sectors map thumb Beamlines Map Clicking on the link above or the picture below will take you to a detailed bird's eye view of every beamline at the APS. beamline map thumb Directories: Beamlines Directory The complete listing of all APS beamlines' contacts, specifications, and status. Techniques Directory An explanation of the various research techniques in use at the APS, and a

14

Operations Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards BPA Operations Information (OPI) Transmission Services operates and plans for regional and national system needs. Transmission Services coordinates system operation and...

15

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 12.2.2 Beamline 12.2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure

16

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

17

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

18

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

19

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

20

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

7.0.1 Print 7.0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

22

Beamline 7.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) Electronic Structure Factory (ESF) Advanced x-ray inelastic scattering (AXIS) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7: http://www-bl7.lbl.gov/ ENDSTATION INFORMATION Endstation name nanoARPES Operational This instrument is currently under development. Expected user operation in 2012. For consideration, speak to the beamline scientist before applying for beamtime.

23

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

24

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

25

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

26

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline 1.4.3 Print Beamline 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

27

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 10.0.1 Print Tuesday, 20 October 2009 09:08 Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV

28

Final Beamline Design Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Beamline Design Report Final Beamline Design Report Guidelines and Review Criteria (SCD 1.20.95) 6.0 Final Beamline Design Report (FDR) Overview The Final Beamline Design Report is part of the Advanced Photon Source (APS) beamline review process and should be planned for when approximately 90% of the total beamline design has been completed. Fifteen copies of the FDR are to be submitted to the APS Users Office. Approval of the Collaborative Access Team's (CAT) designs described in the report is required prior to installation of beamline components in the APS Experiment Hall. Components that have a long lead time for design or procurement can be reviewed separately from the remainder of the beamline, but enough information must be provided so that the reviewer can understand the

29

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

30

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

31

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

32

Beamline 7.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Diagnostic beamline GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range Port 1: ~17 keV transmission though Mo filters Port 2: IR-visible from large-angle synchrotron radiation; UV-x-ray for beam position monitor (BPM) Endstations Port 1: Hard x-ray to visible converter (phosphor) Port 2: None (available for temporary experiments) Both ports are inside the ALS shielding. Characteristics Port 1: Pinhole-based x-ray system for transverse measurements Port 2: IR/visible port available for temporary experiments; x-ray BPM based on electron secondary emission induced in metallic blades by synchrotron radiation Spatial resolution Port 1: <25 µm transverse Port 2: ~1 µm position; <1 µrad angle (x-ray BPM)

33

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

34

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2

35

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

36

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

37

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

38

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 2.2 Beamline 12.2.2 Print Tuesday, 20 October 2009 09:31 High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating

39

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

40

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Beamline 5.0.1 Print Tuesday, 20 October 2009 08:32 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

42

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

43

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

44

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 0.1 Beamline 8.0.1 Print Tuesday, 20 October 2009 08:51 Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE)

45

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

46

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

47

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

3.1 3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

48

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

49

Beamline 10.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Photoemission of Highly Correlated Materials; High-Resolution Atomic, Molecular, and Optical Physics Scientific disciplines: AMO, correlated electron systems Endstations: High energy resolution spectrometer (HERS) High-resolution atomic and molecular electron spectrometer (HiRAMES) HRAMO-Ion-photon beamline (IPB) Velocity map imaging spectrometer Electron spin polarization (ESP) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator SGM (gratings: 380, 925, 2100 lines/mm) Calculated and measured flux (1.9 GeV, 400 mA) Up to 1013 photons/s/0.01% BW at 30 eV Resolving power (E/ΔE)

50

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.3.1 2.3.1 Beamline 12.3.1 Print Tuesday, 20 October 2009 09:33 Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000

51

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

52

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

53

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

5.0.2 5.0.2 Beamline 5.0.2 Print Tuesday, 20 October 2009 08:35 Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics

54

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.3.2 9.3.2 Beamline 9.3.2 Print Tuesday, 20 October 2009 09:06 Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

55

Beamline 12.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.1 Print 2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables Endstations Angle- and spin-resolved photoemission (12.0.1.1) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.2) Berkeley Dose Calibration Tool (DCT)(12.0.1.3) Beamline phone numbers (510) 495-2121 (12.0.1.1)

56

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Beamline 5.0.3 Print Tuesday, 20 October 2009 08:36 Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

57

SI Operational Information  

NLE Websites -- All DOE Office Websites (Extended Search)

RMD Beamline Validation Schedule SIG ICMS ECR Procedure CCWP Procedure RSS Policy Spares OPS Scheduling Page Document Numbering System Drawing Number Key ECR Tracking System...

58

National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition  

SciTech Connect

This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

1989-01-01T23:59:59.000Z

59

Operations Information for Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Information for Studies Operations Information for Studies This page contains historical information about hydropower operations. Reclamation UC Region 24-Month Studies FY2009 Load Information (pdf) SLIP total customer loads for Fiscal Year 2009 (Oct, 2008-Sept, 2009) FY2010 Load Information (pdf) SLIP total customer loads for Fiscal Year 2010 (Oct, 2009-Sept, 2010) FY2011 Load Information (pdf) SLIP total customer loads for Fiscal Year 2011 (Oct, 2010-Sept, 2011) FY2012 Load Information (pdf) SLIP total customer loads for Fiscal Year 2012 (Oct, 2011-Sept, 2012) FY2013 Load Information (pdf) SLIP total customer loads for Fiscal Year 2013 (Oct, 2012-Sept, 2013) CRSP Projected Power Releases From USBR (Excel) The most recent file of projected future power releases from CRSP Dams, median projection

60

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

62

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

63

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

64

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

65

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

66

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

67

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

68

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

69

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

70

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

71

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

72

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

5.4.1 5.4.1 Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

73

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

74

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

0.2 Print 0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

75

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

76

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

77

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

78

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

79

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

80

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

82

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

83

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

84

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

85

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

86

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 9.0.2 Beamline 9.0.2 Print Tuesday, 20 October 2009 08:59 Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm

87

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

88

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

89

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

90

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

91

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

92

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

93

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

94

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

95

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

96

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

97

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

98

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

99

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

100

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

102

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

103

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

104

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

105

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

106

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

107

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

108

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

109

Beamline 7.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

110

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

111

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

112

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

113

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

114

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

115

Beamline 7.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

7.3.1 Print 7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2) Characteristics X-ray absorption spectromicroscopy Spatial resolution Below 100 nm Detectors Slow scan CCD Spot size at sample 30 x 30 µm Sample format UHV-compatible flat, conductive samples up to 1 cm2 in area Sample preparation Sputter-cleaning, heating, e-beam and sputter evaporation, LEED, transfer capability, magnet (1 kOe)

116

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

117

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

118

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.3.1 0.3.1 Beamline 10.3.1 Print Tuesday, 20 October 2009 09:14 X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format

119

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

120

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

122

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

123

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

124

Beamline 5.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12.7 keV (fixed) Monochromator Si(220) Asymmetric cut single crystal Measured flux 1.50 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Resolving power (E/ΔE) ~10,000 Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available

125

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

126

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

127

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

128

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

129

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

130

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

131

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

132

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

3.2 Print 3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

133

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

134

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

135

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

136

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

137

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

138

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

139

Beamline 4.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: MERIXS: High-resolution inelastic scattering ARPES: Angle-resolved photoemission spectroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) High flux 1200 lines/mm; ~1/25,000 Endstations High-resolution inelastic scattering (MERIXS) and ARPES Characteristics Milli-Electron-volt Resolution beamLINe (MERLIN): Ultrahigh-resolution inelastic scattering and angle-resolved photoemission

140

Beamline 8.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0(h) x 0.5(v) mrad Measured spot size at sample (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K Special notes Computers for data processing and analysis are available

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

1.4.3 Print 1.4.3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample

142

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

143

Beamline 5.0.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print Berkeley Center for Structural Biology (BCSB) Monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm-period wiggler (W11) Energy range 12,700 eV(fixed) Monochromator Asymmetric cut single crystal Si(220) Measured flux 2.4 x 1011 photons/s at 400-mA ring current, with 1.5-mrad divergence and 100-µm pinhole collimator Divergence at sample 3.0 (h) x 0.4 (v) mrad (user selectable) Spot size 100 µm Endstations Standard hutch Detectors 3 x 3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available; automated sample mounting system

144

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

145

Beamline 9.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power (E/ΔE) <10,000 Scientific disciplines Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry. Endstations Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)*

146

Beamline 8.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Berkeley Center for Structural Biology (BCSB) Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 T, single pole) Energy range 5-16 keV Monochromator Double crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 3.0 x 1011 photons/sec Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.5 (v) mrad Measured spot size (FWHM) 100 µm Endstations Minihutch Detectors 3x3 CCD array (ADSC Q315R) Sample format Single crystals of biological molecules Sample preparation Support labs available Sample environment Ambient or ~100 K

147

Beamline 8.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

3.1 Print 3.1 Print Multiple-wavelength anomalous diffraction (MAD) and macromolecular crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal, Si(111) Measured flux (1.9 GeV, 400 mA) 2.5 x 1011 at 11 keV Resolving power (E/ΔE) 7,000 Divergence (max at sample) 3.0 (h) x 0.35 (v) mrad Endstations Minihutch Detectors 3 x 3 CCD array (ADSC Q315r) Measured spot size at sample (FWHM) 0.120 (h) x 0.108 (v) mm Sample format Single crystals of biological molecules. Crystallization tray goniometer available with prior arrangement.

148

Beamline 1.4.3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Print 3 Print FTIR spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.2 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations Nicolet Magna 760 FTIR, Nic-Plan IR Microscope (N2 purged) Characteristics Motorized sample stage, 0.1-micron resolution, reflection, transmission, and grazing-incidence reflection modes Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy Detectors MCT-A (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited)

149

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

150

Beamline 12.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

12.3.1 Print 12.3.1 Print Structurally Integrated Biology for Life Sciences (SIBYLS) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics Superbend Energy range 5-17 keV (1% max flux) Frequency range 2.5-0.73 Angstrom wavelength Beam size 100 µm round beam default 10 µm and 30 µm collimators available for small samples with flux reduced to 1% and 12%, respectively. 120 µm x 120 µm Gaussian uncollimated beam shape at sample. Scientific discipline Structural biology Monochromator #1 Si(111) Double crystal Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/sec at 11 keV Resolving power (E/ΔE) 7000 Monochromator #2 0.6% bandpass multilayers Calculated flux (1.9 GeV, 400 mA)

151

Beamline 12.2.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.2 Print 2.2 Print High-Pressure (California High-Pressure Science Observatory: Calipso) Endstations: Medium pressure High pressure laser heating GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving power (E/ΔE) Si(111) = 7000, Multilayer =100 Beam size (HxV) Focused: 10 x 10 micron Unfocused: 90 x 100 micron Scientific applications High-pressure science Scientific disciplines Earth sciences, materials science, construction materials, chemistry, energy. Endstations Medium pressure High pressure laser heating Experimental techniques High pressure, diffraction, x-ray imaging, XAS, laser heating

152

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

153

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

154

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

155

Beamline 1.4.4  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Print 4 Print Infrared spectromicroscopy Scientific disciplines: Biology, correlated electron systems, environmental science, geology, chemistry, polymers, soft materials GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Bend magnet Energy range 0.05-1.5 eV Frequency range 800 - 10,000 cm-1 Interferometer resolution up to 0.125 cm-1 Endstations Thermo Nicolet Nexus 870 FTIR, Continuum XL IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; differential interference contrast (DIC), polarizing and UV fluorescence optics Spatial resolution Diffraction-limited (~wavelength); x-y stage with 0.1 micron accuracy

156

Beamline 5.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Berkeley Center for Structural Biology (BCSB) Multiple-wavelength anomalous diffraction (MAD) and monochromatic protein crystallography Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for Structural Biology Beamlines (2-month cycle) Source characteristics 11.4-cm period wiggler (W11) Energy range 5-16 keV Monochromator Double-crystal, Si(111) liquid N2 cooled Measured flux at 12.4 keV 8.0 x 1011 photons/s at 400-mA ring current, with 1.5-mrad convergence and 100-µm pinhole collimator Resolving power (E/ΔE) 7,000 Divergence at sample 3.0(h) x 0.4 (v) mrad (user selectable) Spot size 25-125 µm (user selectable) Endstations Standard hutch Characteristics Single axis, air bearing goniometer; CCD detector, low-temperature system

157

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2.0.2 Print 2.0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

158

APS 7-BM Beamline: Beamline Controls and Data Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline Controls and Data Acquisition Beamline Controls and Data Acquisition Beamline controls operate through EPICS, with the standard MEDM graphical interface. When needed, Python is used for scripting, based on the PyEpics implementation written by CARS. The beamline workstation has access to the Enthought Python Distribution, which includes many common Python packages, such as numpy, scipy, h5py, and others. Data formats Time resolved data collected at the beamline are typically stored in a locally-defined binary data file. For distribution to users, these files are converted to HDF5, a widely used, hierarchical binary data format that can be accessed using tools in a wide variety of programming languages. Other formats can potentially be accommodated upon request; please contact beamline staff prior to your beamtime if a different format is needed.

159

Photon Sciences Directorate | 2010 Annual Report | FY10 Beamline Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

FY10 Beamline Guide FY10 Beamline Guide beamline status chart Click on the image to download a high-resolution version. Beamline Status In 2010, 49 X-Ray and 11 Vacuum Ultraviolet-Infrared operational beamlines were available for a wide range of experiments using a variety of techniques. There are two types of beamlines at NSLS: facility beamlines, of which there were 21; and participating research team (PRT) beamlines, of which there were 39. Facility beamlines are operated by Photon Sciences staff members and reserve a minimum of 50 percent of their beam time for general users. PRT beamlines are run by user groups with similar interests and reserve 25 percent of their beam time for general users, although they can grant additional time at their own discretion. The following pages provide details on NSLS operational beamlines,

160

Beamline 12.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

0.2 0.2 Beamline 12.0.2 Print Tuesday, 20 October 2009 09:30 Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beamline 11.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Beamline 11.0.1 Print Tuesday, 20 October 2009 09:16 PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

162

APS Preliminary Beamline Design Report Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

PRELIMINARY BEAMLINE DESIGN REPORT PRELIMINARY BEAMLINE DESIGN REPORT December 5, 1994 5.1 Preliminary Beamline Design: General Guidelines The Preliminary Design of the beamline represents an approximately 30% design level of each of the beamline components. This level of design permits the CAT to develop cost estimates for the construction of the beamline, as well as a realistic timeline for completion of the construction tasks. A committee from the APS has been charged with reviewing the Preliminary Design Reports and has established the evaluation criteria described below. The Preliminary Beamline Report is expected to expand upon the Conceptual Design Report in the following areas: Beamline Layout Component Design Work Breakdown Structure Cost and Schedule Additional Operational Requirements

163

BNL | ATF Beamline Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline Simulation Data and Control Panel Displays Beamline Simulation Data and Control Panel Displays Beamline 0 Beamline 1 Beamline 2 Beamline 0 is directly downstream of the linac and serves to transport the beam from the linac to any one of the three experimental beamlines. Beamline 0 is modeled using MAD. Shown below is a summary of the MAD simulation results. Beamline control system panel (PDF) Transport line control system panel (PDF) MAD input deck Raw output beamline 0 This beam line currently serves the Plasma Acceleration, Current Filamentation Instability and Compton scattering experiments. A summary of the MAD simulation results is shown below. MAD input deck | Output of optical functions | Beamline control system panel (PDF) beamline 1 output ATF beamline 2 previously served the IFEL experiment, the SASE experiment

164

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

165

The BEAR Beamline at Elettra  

SciTech Connect

The BEAR (Bending Magnet for Emission Absorption and Reflectivity) beamline is installed at the right exit of the 8.1 bending magnet at ELETTRA. The beamline - in operation since January 2003 - delivers linear and circularly polarized radiation in the 5 - 1600 eV energy range. The experimental station is composed of a UHV chamber for reflectivity, absorption, fluorescence and angle resolved photoemission measurements and a UHV chamber for in-situ sample preparation.

Nannarone, S.; Pasquali, L.; Selvaggi, G. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Pedio, M. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy); Mahne, N. [TASC-INFM, Universita di Trieste, Trieste (Italy); Naletto, G.; Pelizzo, M.G.; Tondello, G. [LUXOR-INFM, Universita di Padova, Padua (Italy)

2004-05-12T23:59:59.000Z

166

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

167

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

168

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

169

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

170

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

171

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

172

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

173

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

174

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

175

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

176

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

177

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

178

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

179

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

180

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

4.0.2 Print 4.0.2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

182

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

8.0.1 Print 8.0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

183

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

184

Beamline 8.0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

0.1 Print 0.1 Print Surface and materials science, soft x-ray fluorescence (SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: Soft x-ray fluorescence (SXF) spectrometer 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.4: Nano-NEXAFS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 lines/mm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photons/s (resolution and energy dependent) Resolving power (E/ΔE) 7000 Scientific disciplines Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system.

185

Beamline 4.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Magnetic spectroscopy Scientific disciplines: Magnetism, materials science Endstations: Eight-pole electromagnet XMCD chamber (6T, 2K) L-edge chamber with superconducting spectrometer GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 100-2000 eV Monochromator Variable-included-angle PGM Calculated flux (1.9 GeV, 400 mA) 1 x 1013 photons/s/0.1%BW at 800 eV [Value reported is the merit function, flux = total flux x (degree of circular polarization)2.] Resolving power (E/ΔE) 5,000-10,000 (at source-size limit; energy-dependent) >25,000 (64 eV, 10-mm entrance/exit slits) Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization.

186

APS Beamline 6-ID-B,C  

NLE Websites -- All DOE Office Websites (Extended Search)

B,C Home B,C Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-B,C Beamline 6-ID-B,C is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. Research on this beamline centers on general x-ray scattering studies of materials. The beamline has 2 end-stations: 6-ID-B: Psi -Diffractomter & In-Field Studies 6-ID-C: UHV in-situ growth Recent Research Highlights LSMO pictures Searching for Next-Generation Electronic Materials December 14, 2009 A new class of layered oxide materials discovered thanks to research at the beamline 6-ID-B offers scientists unprecedented opportunities for creating the next generation of electronic devices. Local Contact: Phil Ryan Local Contacts: Philip Ryan (Surface Diffraction) 630.252.0252 ryan@aps.anl.gov

187

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

188

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

189

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

190

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

191

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

192

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

193

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

194

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

195

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

196

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

197

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

198

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

199

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

200

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

202

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

203

Beamline 10.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with optical table Characteristics X-ray fluorescence analysis of samples with high elemental sensitivity and high spatial resolution Spatial resolution 10 x 10 µm Detectors Silicon drift detector Spot size at sample 1.0 x 1.2 µm Sample format Sample size flexible up to 30 cm x 1 meter depending on configuration.

204

Beamline 9.3.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Atomic, molecular, and materials science Endstations: X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 2320eV-5600eV Monochromator Double Si(111) crystal Measured flux (1.9 GeV, 300 mA) 1011 photons/s Resolving power (E/ΔE) 3000-8000 Beam size Adjustable with 2nd mirror Focused: 1.0 mm x 0.7 mm (~0.5 mm square at 2800 eV) Unfocused: 10 mm x 10 mm or larger Endstations X-ray absorption endstation Polarized-x-ray emission spectrometer Magnetic mass spectrometer Liquid cell endstation Local contact Wayne Stolte Advanced Light Source, Berkeley Lab Phone: (510) 486-5804 Fax: (510) 495-2111

205

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

206

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

207

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

208

Beamline 5.4.1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Print 1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.07-1.25 eV Frequency range 600 - 10,000 cm-1 Interferometer resolution 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength) Detectors Probably MCT-A*, MCT-B (mercury cadmium telluride) Spot size at sample 2-10 µm (diffraction-limited) Sample preparation Biological preparation equipment available including incubator, biohoods, prep table, and more TBD. Sample environment N2 purged, minimal clean area (no particle specification), microcryostat/heater stages available for 4.2-730 K

209

Beamline 3.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1 Print 2.1 Print Commercial deep-etch x-ray lithography (LIGA) GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-12 keV Monochromator None Endstations Hutch with automated scanner Calculated spot size at sample 100 x 10 mm Sample format 3- and 4-in. wafer format; x-ray mask and LIGA substrate Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Deep-etch x-ray lithography (LIGA) Spokesperson This e-mail address is being protected from spambots. You need JavaScript enabled to view it Advanced Light Source, Berkeley Lab Phone: (510) 486-5527 Fax: (510) 486-4102 This e-mail address is being protected from spambots. You need JavaScript enabled to view it AXSUN Technology

210

Beamline Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

211

APS Beamline 6-ID-D  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights LuFeO Unlikely route to ferroelectricity May 16, 2012 A new type of ferroelectric, LuO2Fe4, has been investigated at the APS by a research team from Julich research center. XAS & XMCD studies on beamline 4-ID-C determined the Fe magnetism and valence, while single crystal x-ray scattering measurements at 6-ID-B & 6-ID-D probed the associated structural and charge ordering.

212

APS Beamline 6-ID-D  

NLE Websites -- All DOE Office Websites (Extended Search)

D Home D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science Division (XSD) of the Advanced Photon Source. This is a high energy (50 - 130 keV) beamline used for structural studies primarily on single crystal materials. Recent Research Highlights A New Family of Quasicrystals A New Family of Quasicrystals June 24, 2013 Scientists from the U.S. Department of Energy's Ames Laboratory and Iowa State University have used the high energy x-rays available on beamline 6-ID-D, to confirm the structure of the only known magnetic rare earth icosahedral binary quasicrystals. Contacts: Alan Goldman & Paul Canfield - Iowa State Univ. & Ames Lab Local Contacts:

213

APS 7-BM Beamline: 7-BM Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the 7-BM beamline Overview of the 7-BM beamline The 7-BM beamline is dedicated to time-resolved measurements of complex fluid flowfields using x-ray radiography and fluorescence spectroscopy. Funding for the final commissioning of 7-BM was provided by the DOE Office of Energy Efficiency and Renewable Energy. Commissioning was completed at the end of FY2012. The beamline is currently operated by the X-Ray Science Division of the APS. Major Areas of Research Fuel sprays from automotive fuel injectors, both diesel and gasoline. See more on the X-Ray Fuel Spray web page from Argonne's Energy Systems Division. Sprays for air-breathing propulsion. Fuel injection for rocket injectors. Gas-phase fuel injection and mixing. Beamline Performance Total flux: 4 x 1011 ph/s at 8 keV Energy range: 5.5 - 11 keV, 1.4% ΔE/E

214

Macromolecular crystallography beamline X25 at the NSLS  

Science Journals Connector (OSTI)

A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented.

H?roux, A.

2014-04-08T23:59:59.000Z

215

XRLM Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

steel ring Substrate: standard 4" wafer and any dimension not larger than 4.75" Photon BPM A photon BPM is installed in the front end section and provides actual information of...

216

Information Solutions: Database Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Database Applications Database Applications Argonne DOE-BES Central User Facility: A-Z People Query Data Warehouse Edits Registration | Registration Processing Security Admin Beamline Component Database System to manage beamline components. Beamline Downtime Report - UES Floor coordinator's downtime entry and reporting system. Beamline Directory | Beamline Entry Administration Links to the beamline websites and to detailed information about the equipment, techniques and contact information of a beamline. Beamline Usage and Scheduling System Long term schedule query and edit. Beamline schedule query and edit. Watchman and PSS data. Budget Proposal System Allows user to submit budget proposals via the web. Beamline Statistics Menu Query, entry and reporting of beamline statistics for ALD use only.

217

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

218

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

219

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

220

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

222

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

223

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

224

Beamline 11.3.2  

NLE Websites -- All DOE Office Websites (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

225

A Test Beamline on Diamond Light Source  

SciTech Connect

A Test beamline B16 has been built on the 3 GeV Diamond synchrotron radiation source. The beamline covers a wide photon energy range from 2 to 25 keV. The beamline is highly flexible and versatile in terms of the available beam size (a micron to 100 mm) and the range of energy resolution and photon flux; by virtue of its several operational modes, and the different inter-changeable instruments available in the experiments hutch. Diverse experimental configurations can be flexibly configured using a five-circle diffractometer, a versatile optics test bench, and a suite of detectors. Several experimental techniques including reflectivity, diffraction and imaging are routinely available. Details of the beamline and its measured performance are presented.

Sawhney, K. J. S.; Dolbnya, I. P.; Tiwari, M. K.; Alianelli, L.; Scott, S. M.; Preece, G. M.; Pedersen, U. K.; Walton, R. D. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire-OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

226

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

227

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

228

Design of the LBNE Beamline  

E-Print Network (OSTI)

The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60 -120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is desi...

Papadimitriou, V; Hylen, J; Kobilarcik, T; Marchionni, A; Moore, C D; Schlabach, P; Tariq, S

2015-01-01T23:59:59.000Z

229

Hutch for CSX Beamlines  

ScienceCinema (OSTI)

NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

Ed Haas

2013-07-17T23:59:59.000Z

230

Occurrence Reporting and Processing of Operations Information  

Directives, Delegations, and Requirements

This Manual provides detailed requirements to supplement DOE O 232.1, Occurrence Reporting and Processing of Operations Information. Chg 1 dated 8-12-96.

1995-09-25T23:59:59.000Z

231

Beamline Safety Design Review Steering Committee Charter  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Minutes internal link Meeting Minutes internal link Reviews internal link Beamline Safety Design Review Steering Committee (BSDRSC) 1. Purpose The Beamline Safety Design Review Steering Committee (BSDRSC) oversees the review of all safety aspects related to beamline and critical component design, regardless of who generated the design, and includes facility operational issues when reviewing non-APS generated designs. 2. Membership Members appointed by the APS Division Directors will be comprised of a pre-selected standing committee with membership chosen by function. The following functions will be included: AES User Technical Interface (Committee Chair) AES Technical Operations Specialist APS Electrical / Electronics Technical Representative AES QA Engineering Specialist APS Radiation Safety Shielding Committee Chair

232

Reactor operation safety information document  

SciTech Connect

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

233

Occurrence Reporting and Processing of Operations Information  

Directives, Delegations, and Requirements

To establish and maintain a system for reporting operations information related to DOE-owned or -operated facilities and processing that information to identify the root causes of Unusual, Off -Normal, and Emergency Occurrences and provide for appropriate corrective action. Chg 1, 10-26-95. Canceled by DOE O 231.1B

1995-09-25T23:59:59.000Z

234

Occurrence Reporting and Processing of Operations Information  

Directives, Delegations, and Requirements

To establish and maintain a system for reporting operations information related to DOE-owned or -operated facilities and processing that information to identify the root causes of Unusual, Off -Normal, and Emergency Occurrences and provide for appropriate corrective action. Chg 2, 8-12-96

1996-08-12T23:59:59.000Z

235

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

236

Occurrence Reporting and Processing of Operations Information  

Directives, Delegations, and Requirements

To establish and maintain a system for reporting operations information related to DOE-owned and -leased facilities and processing that information to identify the root causes of Unusual, Off-Normal, and Emergency Occurrences and provide for appropriate corrective action. Cancels: DOE O 232.1

1997-07-21T23:59:59.000Z

237

The New Materials Science Beamline HARWI-II at DESY  

SciTech Connect

In autumn 2005, the GKSS-Research Center Geesthacht in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg, started operation of the new synchrotron radiation beamline HARWI-II. The beamline is specialized for performing materials science experiments using hard X-rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate, the texture of cold extruded Al90-Cu10 composites, and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI-II, the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Beckmann, Felix; Dose, Thomas; Lippmann, Thomas; Lottermoser, Lars; Martins, Rene-V.; Schreyer, Andreas [GKSS-Research Center Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

238

The New Materials Science Beamline HARWI?II at DESY  

Science Journals Connector (OSTI)

In autumn 2005 the GKSS?Research Center Geesthacht in cooperation with Deutsches Elektronen?Synchrotron DESY Hamburg started operation of the new synchrotron radiation beamline HARWI?II. The beamline is specialized for performing materials science experiments using hard X?rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate the texture of cold extruded Al90?Cu10 composites and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI?II the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Felix Beckmann; Thomas Dose; Thomas Lippmann; Lars Lottermoser; Rene?V. Martins; Andreas Schreyer

2007-01-01T23:59:59.000Z

239

BNL | ATF Beamline Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline Parameters Beamline Parameters Electron beam energy: 25 to 76 MeV Temporal structure: Macropulse length: 3 microseconds Macropulse repetition rate from under 1 PPS to 3 PPS. Micropulse repetition period 12.25 ns or 24.5 ns. Micropulse length variable from about 1 ps FWHM to 10 ps FWHM. Electron beam charge: continuously variable. Single micropulse charge from zero to a few nanoculombs. Bunch train charge up to about 10 nanoculombs. Emittance: depends on various conditions, e.g. peak current, gun field, microbunch length etc. At 1 nC we have measured the emittance at 2.6 mm mrad (rms normalized) at a bunch length of 10 ps FWHM. The local emittance (Slice Emittance) is smaller, measured 1.4 mm mrad for a slice out of the 1 nC bunch. Stability: (approx.) 1 ps in short term phase, 1% of beam diameter

240

Instrumentation and Experimental Developments for the Beamlines at the Synchrotron SOLEIL  

SciTech Connect

This paper presents an overview of the instrumentation and experiments developed for the beamlines at Synchrotron SOLEIL in France. Currently fourteen beamlines are opened to users out of the twenty six scheduled. About half of the beamlines cover the soft x-rays region using spectroscopy and imagery techniques. The second half covers the hard x-rays field studying diffraction of matter. Some sample environments carried out for beamlines, for biology, chemistry and surface sciences are described. For the soft x-rays beamlines, carbon contamination of optics is a crucial issue. Different experiments are currently under study in order to reduce or even avoid this effect. Other studies relate to the improvement of metrological methods for beamline optics, to the reduction of vibrational effects for the microbeams and development of computer control for diffractometers. The various types of instruments and experiments will be presented both with an overview of the status of the beamlines in operation and under construction.

Prigent, P.; Bac, S.; Blanchandin, S.; Cauchon, G.; David, G.; Fernandez Varela, P.; Kubsky, S.; Picca, F. [Synchrotron SOLEIL, Division Experiences-L'Orme des merisiers-Saint-Aubin-BP 48-91192 GIF S/YVETTE Cedex (France)

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

APS Safety Guidelines for Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Guidelines for Beamlines Accident Investigations LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form...

242

NSLS II: The Future National Synchrotron Light Source | 2010 Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Beamline Development Proposals - Approved Proposals 2010 Beamline Development Proposals - Approved Proposals Proposal Results Announcement Acronym Title Spokesperson Type Information 4DE 4-Dimensional Studies in Extreme Environments Donald J. Weidner, Stony Brook University 1 Slide ABS A Highly Automated Instrument for Static X-ray Scattering Measurements of Biological Molecules in Solution Lin Yang, BNL 1 Slide AIM Advanced Infrared Microspectroscopy Lisa Miller, BNL 1 Slide AMX Flexible Access Macromolecular Crystallography at an Undulator Beamline Dieter Schneider, BNL 1 Slide | Proposal BMM Hard X-ray Absorption Spectroscopy and Diffraction - Beamline for Materials Measurements Daniel Fischer, NIST 2 Slide | Proposal CDI Coherent X-ray Diffraction Ian Robinson, University College London 1 Slide | Proposal

243

Performance measurements at the SLS SIM beamline  

SciTech Connect

The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.; Krempasky, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

244

Photon Sciences | NSLS-II Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Beamlines NSLS-II Beamlines beamlines Current NSLS-II Beamline Diagram The National Synchrotron Light Source II will accommodate more than 60 beamlines using 27 straight sections for insertion-device sources and 31 bending-magnet or three-pole-wiggler sources, with additional beamlines possible through canted insertion devices and multiple branches. Six beamlines were selected in 2008 and are now funded within the NSLS-II project. These project beamlines encompass research programs in inelastic x-ray scattering, hard x-ray nanoprobe, coherent hard x-ray scattering, coherent soft x-ray scattering and polarization, submicron resolution x-ray spectroscopy, and x-ray powder diffraction. For each beamline, a beamline advisory team, or BAT, has been established to represent the broader scientific community in a specific area of

245

Beamline 29-ID  

NLE Websites -- All DOE Office Websites (Extended Search)

IEX Milestones(4/29/2013) IEX Milestones(4/29/2013) • Spring 2012 ✓ Completion of the IEX EM-VPU insertion device (photos) ✓ Installation of EM-VPU in the storage ring (photo1, photo2) ✓ Installation of high heat-load mirrors M0/M1 (photo) • Summer 2012 ✓ Testing of various polarization mode of EM-VPU with stored beam ✓ Installation of vacuum transport, support tables and diagnostic component; implementation of beamline controls and safety systems (cleanroom, FOE progress, FOE progress2) • Fall 2012 ✓ FDR approval (October 15) ✓ Installation of first optical enclosure components (photo) ✓ First light and testing of white/pink beam components (photo1, photo2) • Winter/Spring 2013 - White beam commissioning ✓ Alignment of mirrors with synchrotron beam ✓ Installation and alignment of support tables (photo)

246

Definition: System Operating Limit | Open Energy Information  

Open Energy Info (EERE)

Operating Limit Operating Limit Jump to: navigation, search Dictionary.png System Operating Limit The value (such as MW, MVar, Amperes, Frequency or Volts) that satisfies the most limiting of the prescribed operating criteria for a specified system configuration to ensure operation within acceptable reliability criteria. System Operating Limits are based upon certain operating criteria. These include, but are not limited to: Facility Ratings (Applicable pre- and post- Contingency equipment or facility ratings), Transient Stability Ratings (Applicable pre- and post-Contingency Stability Limits), Voltage Stability Ratings (Applicable pre- and post- Contingency Voltage Stability), System Voltage Limits (Applicable pre- and post- Contingency Voltage Limits)[1] Also Known As SOL

247

Definition: Operating Plan | Open Energy Information  

Open Energy Info (EERE)

Plan Plan Jump to: navigation, search Dictionary.png Operating Plan A document that identifies a group of activities that may be used to achieve some goal. An Operating Plan may contain Operating Procedures and Operating Processes. A company-specific system restoration plan that includes an Operating Procedure for black-starting units, Operating Processes for communicating restoration progress with other entities, etc., is an example of an Operating Plan.[1] Related Terms Operating Procedure, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Operating_Plan&oldid=502599

248

Beamline Control and Instrumentation System using Industrial Interface Techniques  

SciTech Connect

How should a beamline be designed, which satisfies the needs and requirements of scientists and is easy to build and operate? Today, most control and instrumentation systems for beamlines are based on scientific requirements. Scientific details of the beamline, e.g. vacuum and beam physics details; are usually extensively described. However, control system specifications are often reduced to few requirements, e.g. which beam-related device to use. Lots of these systems work perfectly from the physicist's point of view, but are hard to bring into service and operate and difficult to extend with additional equipment. To overcome this, the engineering company ENZ has developed components using industrial standard interfaces to guarantee high flexibility for equipment extension. Using special interface boards and galvanic isolation offers increased stability of motion control axes. This saves resources during commissioning and service. A control system was developed and installed at a Soft-X-ray beamline at ASP Melbourne. It is operated under EPICs on distributed embedded IOC's based on PC-hardware. Motion and vacuum systems, measurement devices, e.g. a Low-Current Monitor (LoCuM) for beam position monitoring, and parts of the equipment protection system were developed and most of them tested in cooperation with DELTA at the Technical University of Dortmund.

Enz, F. [ENZ Engineering company for environmental electronic and automation, F.-Woehler-Str. 2, 12489 Berlin (Germany)

2010-06-23T23:59:59.000Z

249

AG Plus Co operative | Open Energy Information  

Open Energy Info (EERE)

Plus Co operative Plus Co operative Jump to: navigation, search Name AG Plus Co-operative Place SE Kindred, North Dakota Zip 58051 Product Cooperative offering membership stock to agricultural producers. Set up to assist with the financing of a soybean crushing plant in the town of Kindred. References AG Plus Co-operative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AG Plus Co-operative is a company located in SE Kindred, North Dakota . References ↑ "AG Plus Co-operative" Retrieved from "http://en.openei.org/w/index.php?title=AG_Plus_Co_operative&oldid=341858" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

250

Definition: Operating Reserve | Open Energy Information  

Open Energy Info (EERE)

Operating Reserve Operating Reserve Jump to: navigation, search Dictionary.png Operating Reserve That capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages and local area protection. It consists of spinning and non-spinning reserve.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve

251

Definition: Operating Procedure | Open Energy Information  

Open Energy Info (EERE)

Procedure Procedure Jump to: navigation, search Dictionary.png Operating Procedure A document that identifies specific steps or tasks that should be taken by one or more specific operating positions to achieve specific operating goal(s). The steps in an Operating Procedure should be followed in the order in which they are presented, and should be performed by the position(s) identified. A document that lists the specific steps for a system operator to take in removing a specific transmission line from service is an example of an Operating Procedure.[1] Related Terms transmission lines, transmission line References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from

252

Definition: Optimized Generator Operation | Open Energy Information  

Open Energy Info (EERE)

Optimized Generator Operation Optimized Generator Operation Jump to: navigation, search Dictionary.png Optimized Generator Operation Better forecasting and monitoring of load and grid performance would enable grid operators to dispatch a more efficient mix of generation that could be optimized to reduce cost. The coordinated operation of energy storage, distributed generation, or plug-in electric vehicle assets could also result in completely avoiding central generation dispatch.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Optimized_Generator_Operation&oldid=502509" Categories:

253

Freedom of Information and Privacy Act Database PIA, Idaho Operations...  

Energy Savers (EERE)

Freedom of Information and Privacy Act Database PIA, Idaho Operations Office More Documents & Publications PIA - Security Clearance Work Tracking and Budget System TRAIN-PIA.pdf...

254

Cone Drive Operations Inc | Open Energy Information  

Open Energy Info (EERE)

Cone Drive Operations Inc Place: Traverse City, Michigan Zip: 49684 Sector: Solar Product: US-based manufacturers of double enveloping worm gear technology. The company supplies...

255

Definition: Operating Reserve - Spinning | Open Energy Information  

Open Energy Info (EERE)

Reserve - Spinning Reserve - Spinning Jump to: navigation, search Dictionary.png Operating Reserve - Spinning The portion of Operating Reserve consisting of: Generation synchronized to the system and fully available to serve load within the Disturbance Recovery Period following the contingency event; or, Load fully removable from the system within the Disturbance Recovery Period following the contingency event.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the

256

Definition: Operating Reserve - Supplemental | Open Energy Information  

Open Energy Info (EERE)

Supplemental Supplemental Jump to: navigation, search Dictionary.png Operating Reserve - Supplemental The portion of Operating Reserve consisting of: Generation (synchronized or capable of being synchronized to the system) that is fully available to serve load within the Disturbance Recovery Period following the contingency event; or, Load fully removable from the system within the Disturbance Recovery Period following the contingency event.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the

257

BEAMLINE 13-1  

NLE Websites -- All DOE Office Websites (Extended Search)

studies 10-50 ps time resolution based on SSRL operating mode Sample environment: UHV, Spectroscopy: T 25-450K, magnetic fields up to 0.25 Tesla Microscopy: Room...

258

US Operating Services Company | Open Energy Information  

Open Energy Info (EERE)

Operating Services Company Operating Services Company Jump to: navigation, search Name US Operating Services Company Place New Jersey Utility Id 14932 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0708/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=US_Operating_Services_Company&oldid=412872" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version

259

Constellation Operating Services | Open Energy Information  

Open Energy Info (EERE)

Operating Services Operating Services Jump to: navigation, search Name Constellation Operating Services Place Fallon, Nevada Zip 89406 Sector Geothermal energy Product Operator of the Soda Lake geothermal plants. Coordinates 39.474905°, -118.777624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.474905,"lon":-118.777624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Safety and Operational Guidelines | Open Energy Information  

Open Energy Info (EERE)

a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleSafetyandOperationalGuidelines&oldid542700" Categories: Stubs EZFeed Stubs...

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Medford Operation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Medford Operation Biomass Facility Medford Operation Biomass Facility Jump to: navigation, search Name Medford Operation Biomass Facility Facility Medford Operation Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Occurrence Reporting and Processing of Operations Information  

Directives, Delegations, and Requirements

Provides detailed information for reporting occurrences and managing associated activities at DOE facilities, including NNSA facilities. Cancels DOE M 232.1-1A. Canceled by DOE O 232.2.

2003-08-19T23:59:59.000Z

263

Beamlines Directory | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Directory Beamlines Directory Filter by: L bracket Discipline: All Atomic Physics Chemistry Environmental Science GeoScience Life Sciences Materials Science Physics Polymer Science Technique: All Anomalous and resonant scattering (hard x-ray) Anomalous and resonant scattering (soft x-ray) Biohazards at the BSL2/3 level Coherent x-ray scattering Diffraction anomalous fine structure Diffuse x-ray scattering Energy dispersive X-ray diffraction Fiber diffraction Fluorescence spectroscopy General diffraction Grazing incidence diffraction Grazing incidence small-angle scattering High-energy x-ray diffraction High-pressure diamond anvil cell High-pressure multi-anvil press Inelastic x-ray scattering Inelastic x-ray scattering (1 eV resolution) Intensity fluctuation spectroscopy Large unit cell crystallography Laue

264

Definition: Operating Voltage | Open Energy Information  

Open Energy Info (EERE)

Voltage Voltage Jump to: navigation, search Dictionary.png Operating Voltage The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related; also, the effective (root-mean-square) potential difference between any two conductors or between a conductor and the ground. The actual voltage of the circuit may vary somewhat above or below this value.[1] Related Terms system References ↑ Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Operating_Voltage&oldid=480559" Categories: Definitions ISGAN Definitions What links here Related changes

265

KJC Operating Company | Open Energy Information  

Open Energy Info (EERE)

KJC Operating Company KJC Operating Company Jump to: navigation, search Name KJC Operating Company Place Boron, California Zip 93516 Sector Solar Product Developed solar thermal electricity generating plants, using Luz technology, in the Mojave Desert. Coordinates 34.99946°, -117.647884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.99946,"lon":-117.647884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

California Independent System Operator | Open Energy Information  

Open Energy Info (EERE)

Operator Operator Jump to: navigation, search 200px Name California Independent System Operator Address California ISO P.O. Box 639014 Place Folsom, California Zip 95763-9014 Sector Services Phone number 916-351-4400 Website http://www.caiso.com Coordinates 38.68°, -121.18° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.68,"lon":-121.18,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Renewable Energy Co operative | Open Energy Information  

Open Energy Info (EERE)

Co operative Co operative Jump to: navigation, search Name Renewable Energy Co-operative Place Pensanze, United Kingdom Zip TR20 8TB Sector Solar Product Cornwall-based R-ECO is a co-operative that specialises in installing Solar Photovoltaic (PV) and Air Source Heat Pump (ASHP) technologies. In May, it announced plans to build ten 2MW solar parks in the region for GBR 40m for an SPV, Benbole Energy Farm. Coordinates 34.923771°, -110.259109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.923771,"lon":-110.259109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Request for Information - Operations and Maintenance (O & M) Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Information - Operations and Maintenance (O & M) Request for Information - Operations and Maintenance (O & M) Support Services for the iManage Request for Information - Operations and Maintenance (O & M) Support Services for the iManage Request for Information (THIS IS NOT A NOTICE OF SOLICITATION ISSUANCE) This is a Special Notice that includes a Request for Information (RFI) to receive comments regarding the attached draft Performance Work Statement (PWS), notice regarding an upcoming Industry Day, and notice regarding one-on-one conferences. This Special Notice is issued solely for information and planning purposes - it does not constitute a Request for Proposal (RFP) or a promise to issue an RFP in the future. This RFI does not commit the Government to contract for any supply or service

269

Redesign and Reconstruction of the Equipment Protection Systems for the Upgrading Front Ends and Beamlines at BSRF  

SciTech Connect

The BEPC(Beijing Electron-Positron Collider) is upgraded to be BEPCII, a two-ring Electron-Positron collider. Due to the construction of the BEPCII and upgrade of the existing front ends and beamlines, all the existing EPSs(Equipment Protection Systems) have to be redesigned and reconstructed at BSRF. All the redesigned EPSs for the upgrading front ends and beamlines are a PLC- and SCADA-based equipment protection and control and monitoring system. The EPSs are used to protect BEPCII two storage rings vacuum against vacuum failures in a beamline, as well as to protect the front-end and beamline components from being damaged by synchrotron radiation. For the high-power wiggler beam lines, a fast movable mask is used to protect the blade of a fast-closing valve from damage when the fast-closing valve is triggered to close, which does not need to dump the electron beam running in BEPCII outer ring. In addition, all redesigned PLC- based EPSs are used to communicate with the same centralized monitoring computer to monitor a variety of parameters from all PLC- based EPS systems. The monitoring computer runs the SCADA (Supervisory Control And Data Acquisition) software with its own web server. Graphical HMI interfaces are used to display a few overall views of all front-end equipment operation status and the further detailed information for each EPS in a different pop-up window. On the web services, the SCADA-based centralized monitoring system provides a web browse function, etc. The design of the reconstructed systems is described in this paper.

Xiong Shenshou; Tan Yinglei; Wu Xuehui [Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, P. O. Box 918, Branch 2-7, Beijing 100049 (China)

2007-01-19T23:59:59.000Z

270

Information operations with an excitable field  

Science Journals Connector (OSTI)

It is well established that a traveling wave can be generated on an excitable field, which is described with a pair of partial differential equations for an activator and inhibitor. In the present paper, we use a numerical simulation to show that the traveling wave, or signaling pulse, can be transmitted from an excitable field to an opposing excitable field via an intervening passive diffusion field in a characteristic manner depending on the spatial geometry of the excitable fields. Using such characteristics, it is possible to design various kinds of logic gates together with a time-sequential memory device. Thus, these functions can perform time-sensitive operations in the absence of any controlling clock. It may be possible to accomplish these computations with excitable fields in an actual system, or to create a field computer composed of electronic active and passive units.

Ikuko Motoike and Kenichi Yoshikawa

1999-05-01T23:59:59.000Z

271

Transportation Beamline at the Advanced Photon Source | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the...

272

TravInfo Evaluation (Technology Element) Traveler Information Center (TIC) Study: Operator Response Time Analysis  

E-Print Network (OSTI)

Traveler Information Center (TIC) Study Operator Inte$aceTraveler Information Center (TIC) Study Operator ZnterjizceInformation Center (TIC) Study (Technology Evaluation

Miller, Mark A.; Loukakos, Dimitri

2000-01-01T23:59:59.000Z

273

APS 7-BM Beamline: Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

274

Diamond Beamline I16 (Materials and Magnetism)  

SciTech Connect

We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

275

Overview of the SPring-8 Diagnostics Beamlines  

SciTech Connect

We present an overview of the two SPring-8 diagnostics beamlines, the beamline I (dipole magnet source) and II (insertion device source). At the beamline I, synchrotron radiation (SR) in both the X-ray and the visible bands is exploited for characterizations of the electron beam. At the beamline II, by observing the spectral, spatial, and temporal characteristics of X-ray SR of the insertion device (ID), new techniques for accelerator diagnostics are investigated. Irradiation experiments with the ID to develop accelerator components such as photon absorbers, and production of intensive 10 MeV {gamma}-rays by backward Compton scattering of external far infrared (FIR) laser photons are being prepared at the beamline II.

Takano, S.; Masaki, M.; Tamura, K.; Mochihashi, A.; Nakamura, T.; Suzuki, S.; Oishi, M.; Shoji, M.; Taniuchi, Y.; Okayasu, Y.; Ohkuma, H. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); Okajima, S. [Center of Advanced Metrology, Chubu University, Kasugai, Aichi, 487-8501 (Japan)

2010-06-23T23:59:59.000Z

276

APS Beamline Questionnaire Form | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Beamline Motor Drive Questionnaire Form APS Beamline Motor Drive Questionnaire Form * indicates required field Please send a separate email to Thomas Barkalow with an attached beamline drawing or sketch showing where the groups are located and the distances they are apart. First Name*: Middle Initial/Name: Last Name*: Beamline Designation*: What is the total number of driver units with makes and models?: How are driver units grouped together and each group's location within the beamline?: What number of driver units are in use simultaneously for each group?: What is the maximum amperage setting actually used for each unit?: What is the number of groups in use simultaneously and which groups are they?: Verification: We need to make sure you are a human. Please solve the challenge below, and click the I'm a Human button to get a confirmation code. To make this

277

Meeting the reactor operator's information needs using functional analysis  

SciTech Connect

Since the accident at Three Mile Island, many ideas have been proposed for assisting the reactor operator during emergency situations. However, some of the suggested remedies do not alleviate an important shortcoming of the TMI control room: the operators were not presented with the information they needed in a manner which would allow prompt diagnosis of the problem. To address this problem, functional analysis is being applied at the LOFT facility to ensure that the operator's information needs are being met in his procedures and graphic displays. This paper summarizes the current applications of functional analysis at LOFT.

Nelson, W.R.; Clark, M.T.

1980-01-01T23:59:59.000Z

278

Method and Apparatus Providing Deception and/or Altered Operation in an Information System Operating System  

DOE Patents (OSTI)

A method and/or system and/or apparatus providing deception and/or execution alteration in an information system. In specific embodiments, deceptions and/or protections are provided by intercepting and/or modifying operation of one or more system calls of an operating system.

Cohen, Fred (Livermore, CA); Rogers, Deanna T. (Fremont, CA); Neagoe, Vicentiu (San Leandro, CA)

2008-10-14T23:59:59.000Z

279

Diagnostic X-Multi-Axis Beamline  

SciTech Connect

Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by about 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45 degrees. An upgrade can later be made by adding beamlines 5-8 azimuthally indexed so as to provide an azimuthal resolution of 22.5 degrees. All eight beamlines point down by 10 degrees (pitch). The x-ray converter target can be located along each beamline anywhere between 0 to 5 meters from the firing point. An example of inter-facing the Diagnostic X facility with the Darht II accelerator located at LANL will be given.

Paul, A C

2000-04-05T23:59:59.000Z

280

Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Beryllium windows, 100 m and 120 m. Distance source point - mask plane 10.35 meter. DEX 02 scanner, from Jenoptik GmbH. Micromachining II (XRLM2), Port 2B, 10 mrad...

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Real-Time Traffic Information for Emergency Evacuation Operations  

E-Print Network (OSTI)

Real-Time Traffic Information for Emergency Evacuation Operations Research Brief Oak Ridge National Environment Safety Security Vehicle Technologies T here are many instances in which it is possible to plan. The system of sensors will transmit through satellite links, or other robust communication means, real

282

Environmental Quality Information Analysis Center (EQIAC) operating procedures handbook  

SciTech Connect

The Operating Procedures Handbook of the Environmental Quality Information Analysis Center (EQIAC) is intended to be kept current as EQIAC develops and evolves. Its purpose is to provide a comprehensive guide to the mission, infrastructure, functions, and operational procedures of EQIAC. The handbook is a training tool for new personnel and a reference manual for existing personnel. The handbook will be distributed throughout EQIAC and maintained in binders containing current dated editions of the individual sections. The handbook will be revised at least annually to reflect the current structure and operational procedures of EQIAC. The EQIAC provides information on environmental issues such as compliance, restoration, and environmental monitoring do the Air Force and DOD contractors.

Walsh, T.E. (Florida Univ., Gainesville, FL (United States)); Das, S. (Oak Ridge National Lab., TN (United States))

1992-08-01T23:59:59.000Z

283

Mailing Addresses and Information Numbers for Operations, Field, and Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Energy.gov » Mailing Addresses and Information Numbers for About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 510-486-5784 U.S. Department of Energy Bonneville Power Administration P.O. Box 3621 905 NE 11th Avenue Portland, OR 97232 Bonneville Power Administration General and Regional Offices 503-230-3000 U.S. Department of Energy Brookhaven Site Office Upton, NY 11973 631-344-5050

284

The X-ray microscopy beamline UE46-PGM2 at BESSY  

SciTech Connect

The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

Follath, R.; Schmidt, J. S. [Helmholtz-Center Berlin, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Weigand, M. [Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Fauth, K. [University Erlangen, Experimental Physics 4, Am Hubland, 97074 Wuerzburg (Germany)

2010-06-23T23:59:59.000Z

285

Status of the LBNE Neutrino Beamline  

SciTech Connect

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a beam of neutrinos toward a detector placed at the Homestake Mine in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector (60-120 GeV) hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined taking into account several factors including the physics goals, the Monte Carlo modeling of the facility, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be {approx}700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. We discuss here the status of the conceptual design and the associated challenges.

Papadimitriou, Vaia; /Fermilab

2011-12-01T23:59:59.000Z

286

KCP&L Greater Missouri Operations | Open Energy Information  

Open Energy Info (EERE)

Operations Operations Jump to: navigation, search Name KCP&L Greater Missouri Operations Place Missouri Utility Id 12698 Utility Location Yes Ownership I NERC Location SPP, WECC NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service-Secondary Commercial Large Power Service-Secondary Commercial

287

Photon Sciences | Beamlines | CSX: Coherent Soft X-ray Scattering and  

NLE Websites -- All DOE Office Websites (Extended Search)

CSX: Coherent Soft X-ray Scattering and polarization CSX: Coherent Soft X-ray Scattering and polarization X-Ray 1 Poster | X-Ray 2 Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Coherent Soft X-ray Scattering and Polarization (CSX) beamline design (source and optics) has been optimized to the NSLS-II parameters to provide the highest possible flux for experiments requiring either high coherence or full control of the polarization. Beamline Description The CSX beamline will be served by two identical EPU49 sources. Both EPUs are planned to operate in a canted geometry with opposite circular polarization for fast polarization switching experiments at the full polarization control (PC) branch. The EPUs will also be able to operate "phased" as a single device for high coherent flux experiments at the

288

A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids  

SciTech Connect

High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

Mauro, N.A.; Kelton, K.F. (WU)

2011-10-27T23:59:59.000Z

289

Design of a High Flux Vacuum-Ultraviolet Beamline for Circular Dichroism Experiments  

SciTech Connect

A vacuum-ultraviolet bending-magnet beamline for circular dichroism (CD) experiments has been designed. To maximize the photon flux and minimize the focused beam size, a cylindrical mirror and a cylindrical grating with independent optical functions are utilized. The beamline can collect a 30 mrad horizontal by 7 mrad vertical solid angle of synchrotron radiation. By using a 600 grooves/mm grating, the calculated photon flux is greater than 1x10{sup 13} photons/sec and the focused beam size is 0.4 mmx0.65 mm for the spectral range from 130 nm to 330 nm with the energy resolving power set at 1000. The linear polarization degree is better than 75% and can be increased to 90% by reducing the vertical acceptance angle down to 2 mrad. In addition to the high flux mode described above, this beamline can also be operated in a high resolution mode. By using a 1200 grooves/mm grating, a resolving power greater than 10,000 can be achieved for the spectral range from 180 to 330 nm. This beamline can provide photon flux as high as the best synchrotron CD beamlines in the world while offers simultaneously a smaller focused beam size.

Fu, H. W.; Fung, H. S.; Chung, S. C.; Huang, L. J.; Chen, C. T. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

2010-06-23T23:59:59.000Z

290

CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams  

SciTech Connect

The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments.

NONE

1999-07-08T23:59:59.000Z

291

LENGTH OF BEAMLINES AND WIDTH OF THE LS-37  

NLE Websites -- All DOE Office Websites (Extended Search)

LENGTH OF BEAMLINES AND WIDTH OF THE LENGTH OF BEAMLINES AND WIDTH OF THE LS-37 November 10, 1985 G. K. Shenoy G. S. Knapp EXPERIMENTAL HALL AT A 6-GeV SYNCHROTRON FACILITY The width of the experimental hall at a 6-GeV facility is closely related to the length of the beamlines. This note addresses this aspect in some de tail. In general, no two beamlines will have identical lengths or the placement of various optical elements. Hence fixing the beamline lengths prior to their assignment to specific experiments is difficult. In spite of this fact, a few general conclusions are made. 1. At least 25m of all the beamlines will be behind the shielding wall. Within this length many beamline components can be accommodated as shown in Fig. 1. 2. For most beamlines on bending magnets (BM), the first optical element will

292

Data acquisition and control software for XRD beamline at Indus?2  

Science Journals Connector (OSTI)

X?ray diffraction (XRD) beamline is under commissioning on Indus?2 synchrotron radiation facility. The experimental setup of XRD beamline consists of a six?circle diffractometer and various detector systems such as scintillation detector ionization chamber and image plate. The diffractometer can be controlled via EIA232 serial interface or Ethernet. Standard data acquisition software with a graphical user interface has been developed using LabVIEW. A firm safety and error handling scheme is implemented for failsafe operation of the experimental station. This paper describes in detail the data acquisition and control software for the experimental station.

Sanjeev R. Kane; C. K. Garg; A. K. Sinha

2010-01-01T23:59:59.000Z

293

1-ID: Sector 1, Insertion Device Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

1-ID beamline schematic 1-ID beamline schematic ID on-axis brilliance values 1-ID - Sector 1, Insertion Device Beamline Responsible Scientists Jon Almer, phone: (630) 252-1049, e-mail: almer@aps.anl.gov Sarvjit Shastri, phone: (630) 252-0129, e-mail: shastri@aps.anl.gov John Okasinski, phone: (630) 252-0162, e-mail: okasinski@aps.anl.gov Peter Kenesei, phone: (630) 252-0133, e-mail: kenesei@aps.anl.gov Scientific Programs Coupled high-energy SAXS/WAXS studies (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Single-grain studies Stress/strain/texture studies Pair-distribution function (PDF) measurements High-energy fluorescence Source Characteristics Upstream insertion device: APS Undulator A No. of Poles 72 Undulator Period 3.3 cm Device Length 2.4 m Minimum Gap 11 mm Downstream insertion device

294

Development and Application of the STARS-based Beamline Control System at the Photon Factory  

SciTech Connect

STARS{sup [1-2]}(Simple Transmission and Retrieval System) is a message transferring software for small-scale control systems with TCP/IP sockets, originally developed at the Photon Factory (PF). Because it has a server-client architecture using TCP/IP sockets and can work on various types of operating systems, the design and application are quite flexible. We have developed a common low-level beamline control system based on the STARS technology. Many kinds of useful STARS clients (device drivers, data acquisitions, user interfaces etc.) are available now, and so far, the system has been installed at 22 PF beamlines. We will describe the development and generalize of the STARS-based beamline control system at the PF.

Kosuge, Takashi; Nigorikawa, Kazuyuki; Nagatani, Yasuko; Saito, Yuuki [Photon Factory, 1-1 Oho Tsukuba-shi Ibaraki-ken 305-0801 (Japan)

2010-06-23T23:59:59.000Z

295

The Phase I MX Beamlines at Diamond Light Source  

SciTech Connect

Three beamlines dedicated to macromolecular crystallography, I02, I03 and I04 at Diamond Light Source are presented. These beamlines formed the life science component of Phase 1 of Diamond Light Source. The article provides details of the design and the current status of the beamlines.

Duke, E. M. H.; Evans, G.; Flaig, R.; Hall, D. R.; Latchem, M.; McAuley, K. E.; Sandy, D. J.; Sorensen, T. L-M.; Waterman, D.; Johnson, L. N. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon. OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

296

File:OperatingPermitCheckList.pdf | Open Energy Information  

Open Energy Info (EERE)

OperatingPermitCheckList.pdf OperatingPermitCheckList.pdf Jump to: navigation, search File File history File usage File:OperatingPermitCheckList.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 28 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:27, 13 November 2012 Thumbnail for version as of 13:27, 13 November 2012 1,275 × 1,650 (28 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from "http://en.openei.org/w/index.php?title=File:OperatingPermitCheckList.pdf&oldid=536405

297

Beamline Phone Numbers| Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

298

Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1  

SciTech Connect

The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.

Schreck, R.I.

1991-10-01T23:59:59.000Z

299

The Diamond Beamline I13L for Imaging and Coherence  

SciTech Connect

I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

Rau, C. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Feinberg School of Medicine, Northwestern University, Chicago, Illinois (United States); Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Robinson, I. K. [Diamond Light Source Ltd., Chilton, Oxfordshire (United Kingdom); Laboratory for Nanomaterials, University College London, London, London (United Kingdom)

2010-06-23T23:59:59.000Z

300

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network (OSTI)

Hart, D. Energy management information systems: achievingHart, D. Energy management information systems: achievingHart, D. Energy management information systems: achieving

Granderson, Jessica

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

User Operation Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS-NSSD-TOF-TD-0002 - R00 SNS-NSSD-TOF-TD-0002 - R00 1 SEQUOIA Operations Manual for Users G.E. Granroth SEQUOIA Lead Instrument Scientist A.I. Kolesnikov SEQUOIA Instrument Scientist L.M. DeBeer-Schmitt SEQUOIA Scientific Associate T.E. Sherline Sample Environment Scientist Revised - May 13, 2013 SNS-NSSD-TOF-TD-0002 - R00 2 Abstract The SEQUOIA Operations Manual for Users presents a description of the SEQUOIA spectrometer located at beamline 17 (BL17) of the Spallation Neutron Source (SNS). It is the intent of this manual to inform the user regarding the SEQUOIA spectrometer and available sample environment, to run experiments, to access and analyze the collected data, and to provide the user with other potentially useful information. The first section serves to describe the components of which the instrument is comprised.

302

Analysis of the optical design of the NSLS-II Coherent Hard X-ray beamline  

SciTech Connect

Ultra-low emittance third-generation synchrotron radiation sources such as the NSLS-II offer excellent opportunities for the development of experimental techniques exploiting x-ray coherence. Coherent light scattered by a heterogeneous sample produces a speckle pattern characteristic for the specific arrangement of the scatterers. This may vary over time, and the resultant intensity fluctuations can be measured and analyzed to provide information about the sample dynamics. X-ray photon correlation spectroscopy (XPCS) extends the capability of dynamic light scattering to opaque and turbid samples and extends the measurements of time evolution to nanometer length scales. As a consequence XPCS became crucial in the study of dynamics in systems including, but not being limited to, colloids, polymers, complex fluids, surfaces and interfaces, phase ordering alloys, etc. In this paper we present the conceptual optical design and the theoretical performance of the Coherent Hard X-ray (CHX) beamline at NSLS-II, dedicated to XPCS and other coherent scattering techniques. For the optical design of this beamline, there is a tradeoff between the coherence needed to distinguish individual speckles and the phase acceptance (high intensity) required to measure fast dynamics with an adequate signal-to-noise level. As XPCS is a 'photon hungry' technique, the beamline optimization requires maximizing the signal-to-noise ratio of the measured intensity-intensity autocorrelation function. The degree of coherence, as measured by a two-slit (Young) experiment, is used to characterize the speckle pattern visibilities. The beamline optimization strategy consists of maximization of the on-sample intensity while keeping the degree of coherence within the 0.1-0.5 range. The resulted design deviates substantially from an ad-hoc modification of a hard x-ray beamline for XPCS measurements. The CHX beamline will permit studies of complex systems and measurements of bulk dynamics down to the microsecond time scales. In general, the 10-fold increase in brightness of the NSLS-II, compared to other sources, will allow for measurements of dynamics on time-scales that are two orders of magnitude faster than what is currently possible. We also conclude that the common approximations used in evaluating the transverse coherence length would not be sufficiently accurate for the calculation of the coherent properties of an undulator-based beamline, and a thorough beamline optimization at a low-emittance source such as the NSLS-II requires a realistic wave-front propagation analysis.

Fluerasu A.; Chubar, O.; Kaznatcheev, K.; Baltser, J.; Wiegart, Lutz; Evans-Lutterodt, K.; Carlucci-Dayton, M.; Berman, L.

2011-08-21T23:59:59.000Z

303

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network (OSTI)

Energy Information Handbook Applications for Energy-ENERGY INFORMATION HANDBOOK Applications for Energy-performance tracking handbook: Continuous improvement for

Granderson, Jessica

2013-01-01T23:59:59.000Z

304

Form:Testing Facility Operator | Open Energy Information  

Open Energy Info (EERE)

Facility Operator Jump to: navigation, search Add a Testing Facility Operator Input your facility operator name below to add to the registry. If your organization is already in the...

305

On Line Beamline Commissioning Activity Approval Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Activity Approval Form Commissioning Activity Approval Form This form is to be filled by the Commissioning Activity Team Leader. No beamline commissioning activities will be allowed to run without a properly completed, approved, and posting of this commissioning approval form. You will be notified by e-mail upon approval. Sector Beamline Expected Start Date Expected Duration 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 BM ID ( Give a Unit) Activity Description( Give only a brief description) Commissioning Team Members First and Last Name Affiliation Phone Number 1. 2. 3. 4. 5. 6. Special Safety Concerns Commissioning Activity Team Leader Name E-Mail Address Submit Commissioning Activity Approval Form Clear all Fields and start All over again!!!

306

1993 CAT workshop on beamline optical designs  

SciTech Connect

An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

Not Available

1993-11-01T23:59:59.000Z

307

PNNL Electricity Infrastructure Operations Center | Open Energy Information  

Open Energy Info (EERE)

Electricity Infrastructure Operations Center Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Topics Pathways analysis Website http://eioc.pnl.gov/ Country United States Northern America References Pacific Northwest National Laboratory [1] "Building upon...expertise in electricity transmission and distribution, Pacific Northwest National Laboratory has invested in bringing together industry software, real-time grid data and advanced computation into a functional control room. This unique integrated energy operations capability was shaped with input from utilities and researchers across the

308

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS) Proposal Team: L. Carr 1 , D. Dolan 2 , R. Hemley 3 , S. Jacobson 4 , S. Karato 5 , Z. Liu 3 , W. Panero 6 , M. Pravica 7 , and T. Zhou 8 1 Brookhaven National Laboratory, 2 Sandia National Laboratories, 3 Carnegie Institution of Washington, 4 Northwestern University, 5 Yale University, 6 Ohio State University, 7 University of Nevada, 8 New Jersey Institute of Technology TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * TECHNIQUE(S): Fourier transform infrared spectroscopy; Raman and visible spectroscopy; Diamond anvil cell techniques for static high pressure; Gas-gun launchers for dynamic compression; Cryogenic techniques combined with DACs;

309

Baywind Energy Co operative Ltd | Open Energy Information  

Open Energy Info (EERE)

Baywind Energy Co operative Ltd Baywind Energy Co operative Ltd Jump to: navigation, search Name Baywind Energy Co-operative Ltd Place Barrow in Furness, Cumbria, United Kingdom Zip LA14 2PN Sector Renewable Energy, Wind energy Product A co-operative which owns 6 wind turbines in Cumbria and is seeking further opportunities to build renewable schemes. References Baywind Energy Co-operative Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Baywind Energy Co-operative Ltd is a company located in Barrow in Furness, Cumbria, United Kingdom . References ↑ "Baywind Energy Co-operative Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Baywind_Energy_Co_operative_Ltd&oldid=34255

310

WAC - 173-401 Operating Permit Regulation | Open Energy Information  

Open Energy Info (EERE)

Operating Permit Regulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-401 Operating Permit RegulationLegal...

311

Travinfo Field Operational Test Traveler Information Center (TIC) Study (technology Evaluation Element) Implementation Plan  

E-Print Network (OSTI)

Phase I & 11) 2. Review TRWIASG TIC documentation 3.TIC site visits 4. Conduct discussions with operators PhaseInformation Center (TIC) Study (Technology Evaluation

Miller, Mark; Hall, Randolph

1995-01-01T23:59:59.000Z

312

Title V Operation Permit Application Webpage | Open Energy Information  

Open Energy Info (EERE)

Application Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Title V Operation Permit Application Webpage Author Division of Air Quality...

313

Toledo Bend Project Joint Oper | Open Energy Information  

Open Energy Info (EERE)

Bend Project Joint Oper Bend Project Joint Oper Jump to: navigation, search Name Toledo Bend Project Joint Oper Place Texas Utility Id 19048 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Toledo_Bend_Project_Joint_Oper&oldid=411678"

314

Technical information report: Plasma melter operation, reliability, and maintenance analysis  

SciTech Connect

This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

Hendrickson, D.W. [ed.

1995-03-14T23:59:59.000Z

315

A Lightweight Camera Sensor Network Operating on Symbolic Information  

E-Print Network (OSTI)

for sensing motion, particularly that of humans. Today, human motion can be detected with Passive Infrared information-rich sensing modality, are becoming smaller, low-power and more affordable. With such changes-calibrate and consume little power. Also despite the need for accurate information, the lack of privacy preservation

Teixeira, Thiago

316

Nevada Geothermal Operating Company LLC | Open Energy Information  

Open Energy Info (EERE)

Operating Company LLC Operating Company LLC Jump to: navigation, search Name Nevada Geothermal Operating Company LLC Place Blue Mountain, NV Sector Geothermal energy Website http://www.nevadageothermal.co References Alternative Earth Resources Inc Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Nevada Geothermal Operating Company LLC is a subsidiary of Alternative Earth Resources Inc based in Blue Mountain, NV. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

317

Category:Testing Facility Operators | Open Energy Information  

Open Energy Info (EERE)

Facility Operators Facility Operators Jump to: navigation, search This category contains facilities for research on renewable technologies and uses the form Testing Facility Operator. Pages in category "Testing Facility Operators" The following 26 pages are in this category, out of 26 total. A Alden Research Laboratory, Inc B Bucknell University C Colorado State University Hydrodynamics Cornell University Hydrodynamics M Massachusetts Institute of Technology Hydrodynamics O Ohmsett Oregon State University Hydrodynamics P Pennsylvania State University Hydrodynamics S Sandia National Laboratories Hydrodynamics S cont. Stevens Institute of Technology T Texas A&M (Haynes) Texas A&M (OTRC) U United States Army Corp of Engineers (ERDC) United States Geological Survey, HIF United States Geological Survey, LSC

318

NMOSE Artesian Well Plan of Operations | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMOSE Artesian Well Plan of OperationsLegal Published NA Year Signed or Took Effect 2011 Legal Citation Not...

319

Algebraic and information-theoretic conditions for operator quantum error correction  

SciTech Connect

Operator quantum error correction is a technique for robustly storing quantum information in the presence of noise. It generalizes the standard theory of quantum error correction, and provides a unified framework for topics such as quantum error correction, decoherence-free subspaces, and noiseless subsystems. This paper develops (a) easily applied algebraic and information-theoretic conditions that characterize when operator quantum error correction is feasible; (b) a representation theorem for a class of noise processes that can be corrected using operator quantum error correction; and (c) generalizations of the coherent information and quantum data processing inequality to the setting of operator quantum error correction.

Nielsen, Michael A.; Poulin, David [School of Physical Sciences, University of Queensland, Queensland 4072 (Australia)

2007-06-15T23:59:59.000Z

320

Algebraic and information-theoretic conditions for operator quantum error correction  

Science Journals Connector (OSTI)

Operator quantum error correction is a technique for robustly storing quantum information in the presence of noise. It generalizes the standard theory of quantum error correction, and provides a unified framework for topics such as quantum error correction, decoherence-free subspaces, and noiseless subsystems. This paper develops (a) easily applied algebraic and information-theoretic conditions that characterize when operator quantum error correction is feasible; (b) a representation theorem for a class of noise processes that can be corrected using operator quantum error correction; and (c) generalizations of the coherent information and quantum data processing inequality to the setting of operator quantum error correction.

Michael A. Nielsen and David Poulin

2007-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wolf Creek Nuclear Operating Corporation | Open Energy Information  

Open Energy Info (EERE)

Wolf Creek Nuclear Operating Corporation Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name Wolf Creek Nuclear Operating Corporation Place Burlington, Kansas Zip 66839-0411 Product Wolf Creek Nuclear Operating Corporation operates the Wolf Creek Generating Station, Kansas' first nuclear power generating station, for three utility owners in Kansas and Missouri. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Westmill Wind Farm Co operative Ltd | Open Energy Information  

Open Energy Info (EERE)

Westmill Wind Farm Co operative Ltd Westmill Wind Farm Co operative Ltd Jump to: navigation, search Name Westmill Wind Farm Co-operative Ltd Place Cumbria, United Kingdom Sector Wind energy Product Raising GBP 3.75m to construct the Westmill Wind Farm in Oxforshire. Based upon the model of the Baywind Cooperative in Cumbria. Coordinates 54.63044°, -2.89984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.63044,"lon":-2.89984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Design of the angiography beamline for the Argonne Advanced Photon Source  

Science Journals Connector (OSTI)

The angiography beamline planned for the Argonne Advanced Photon Source (APS) is a very special beamline dedicated to medical imaging. It is especially designed to enhance the art of digital subtraction angiography. It is different from the angiography beamlines presently in operation that scan the X-ray picture line by line, in that it will take both the high and low energy angiography X-ray pixtures simultaneously as full frame pictures. Pictures with 0.25 mm resolution and good signal to noise will be possible with 2 ms exposure times. This is possible because of the increase in flux that is available at the APS. The source of the 33 keV photons is a special high intensity wiggler. The photon beam is separated into two parts, spread out in the vertical direction, and monochro- matized with two convex bent crystals. These two crystals are bent in a non-uniform way that allows one to both make the photon flux uniform over the 15 cm 15 cm examining area and stabilize the shape of the surface of the diffraction crystal against distortion caused by the heat load on the crystal. Most of the energy of the photon beam is absorbed by a fast shutter placed in front of the crystals. The two images at the two different energies are recorded in two large position-sensitive detectors.

Robert K. Smither; Edwin M. Westbrook

1988-01-01T23:59:59.000Z

324

Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source  

E-Print Network (OSTI)

A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

2014-01-01T23:59:59.000Z

325

Distortion operator and Entanglement Information Rate Distortion of Quantum Gaussian Source  

E-Print Network (OSTI)

Quantum random variable, distortion operator are introduced based on canonical operators. As the lower bound of rate distortion, the entanglement information rate distortion is achieved by Gaussian map for Gaussian source. General Gaussian maps are further reduced to unitary transformations and additive noises from the physical meaning of distortion. The entanglement information rate distortion function then are calculated for one mode Gaussian source. The rate distortion is accessible at zero distortion point. For pure state, the rate distortion function is always zero. In contrast to the distortion defined via fidelity, our definition of the distortion makes it possible to calculate the entanglement information rate distortion function for Gaussian source.

Xiao-yu Chen

2005-11-30T23:59:59.000Z

326

100-J level amplifier concepts for HiLASE and ELI-Beamlines  

Science Journals Connector (OSTI)

We present comparison of two alternative layouts of a 100 J cryogenically cooled Yb:YAG multi-slab laser system operating at 10 Hz for HiLASE and ELI Beamlines projects. In the first approach the 100 J slab amplifier consists of a preamplifier and power amplifier while in the second approach it uses single power amplifier with two amplifier heads. These two concepts are compared with respect to output power B-integral accumulated B-integral and peak fluence. Results are obtained by simulating beam propagation in MIR code and calculating stored energy in the amplifier by homemade ray-tracing MATLAB code for amplified spontaneous emission evaluation.

2012-01-01T23:59:59.000Z

327

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect

The hard x-ray nanoprobe (HXN) beamline of the National Synchrotron Light Source II (NSLS-II) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic, and NSLS II operating systems have been studied using state-of-the-art simulations and an array of field data. Further, final stage vibration isolation principles have been explored.

Simos, N.; Chu, Y. S.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2011-09-09T23:59:59.000Z

328

TB-14 Section 8 - Beamline Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

verify that CAT safety management plans are in place, ensure the radiation source safeguards are operational, ensure the front end is operational and its safeguards, the...

329

Metrology and Tests beamline at SOLEIL Design and first results  

SciTech Connect

The objectives of this project is install at the 2.75 GeV SOLEIL synchrotron radiation source a calibration and metrology test facility for the R and D of optical components and detectors. We have build, on a bending magnet, two branches to cover an energy range from few eV to 28 keV and give access to white beam. This installation will first address the needs of the SOLEIL experimental groups(Optics and Detectors)and will be used by a large community. This beamline will also be valuable as a general-purpose beamline to prepare, test and set up a wide range of experiments in the field of Astrophysics, laser plasma etc...A complementary important aspect of this installation is the realization of primary standard: the metrology beamline of SOLEIL could become the national primary standard source in collaboration with the Laboratoire National d'Essais(LNE)and help in the design and characterization of several diagnostics for the Megajoule Laser in Bordeaux in collaboration with the CEA DIF. The beamline has been designed to provide great flexibility. In this paper, we describe the beamline design, the end station instrumentation and give also some preliminary results.

Idir, Mourad; Mercere, Pascal; Moreno, Thierry; Delmotte, Aurelien; Dasilva, Paulo; Modi, Mohammed H. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48 91192 GIF-sur-YVETTE CEDEX (France)

2010-06-23T23:59:59.000Z

330

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

SciTech Connect

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

331

Temperature and TimeResolved XRay Powder Diffraction X14A EERE sponsored PRT beamline  

E-Print Network (OSTI)

Temperature and TimeResolved XRay Powder Diffraction X14A EERE sponsored PRT beamline Objective, in ambience or with gas flow Capabilities: X14A, EERE-sponsored PRT beamline · High photon flux: typically 9x

Ohta, Shigemi

332

E-Print Network 3.0 - absorption beamline x-11 Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of beamline: 9... open Checkpoints on the X9 side of beamline: 2. Bremsstrahlung shield (BS 1) in place and banded... photo 11. Mirror windows (3) covered in lead as per photo...

333

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

334

U2B Beamline | Photon Sciences | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL People BNL People Photon SciencesInfrared Programs PS Home Infrared Home Beamlines U2A U2B U4IR U10A U10B U12IR Publications User Info Useful Sites Beamline U2B Home Publications Equipment Schedule Beamtime Instrument Spectrometer endstation: Thermo Nicolet Magna 860 Step-Scan FTIR and Continuum IR microscope Frequency Range (cm-1): 500 - 4000 Spectral resolution (cm-1): 4.0 Spatial resolution: diffraction-limit (i.e. ~ 3 to 10 microns) Brightness (compared to a black body): 100x to 1000x Smallest practical targeting aperture size: 3 microns square Beamline angular acceptance: (milliradians): 40H x 40V (100% vertical collection down to 240 cm-1) Optical Configuration A two-mirror system (M1 and M2) collects and re-images the synchrotron infrared source at a point just outside of the storage ring's UHV. M1 is a

335

APS beamline standard components handbook, Version 1. 3  

SciTech Connect

This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

Hahn, U.; Shu, D.; Kuzay, T.M.

1993-02-01T23:59:59.000Z

336

A New Beamline For Time Resolved And Extreme Conditions X-Ray Absorption Spectroscopy  

SciTech Connect

The ESRF has recently started an ambitious project spread over 10 years aimed at an upgrade of the accelerator, beamlines and infrastructure. Through this upgrade, we are proposing a refurbishment of the scanning EXAFS beamline BM29 and of the Energy Dispersive XAS (EDXAS) beamline ID24.

Mathon, Olivier; Mairs, Trevor; Pascarelli, Sakura [ESRF, BP220, 38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

337

Beamline standard component designs for the Advanced Photon Source  

SciTech Connect

The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings.

Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

1994-12-01T23:59:59.000Z

338

Physics Potential of the Fermilab NuMI beamline  

E-Print Network (OSTI)

We explore the physics potential of the NuMI beamline with a detector located 10 km off-axis at a distant site (810 km). We study the sensitivity to $\\sin^2 2 \\theta_{13}$ and to the CP-violating parameter $\\sin \\delta$ as well as the determination of the neutrino mass hierarchy by exploiting the $\

Olga Mena; Stephen Parke

2005-07-25T23:59:59.000Z

339

ANL/APS/TB-5 Functional Description of APS Beamline Front Ends  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Description of APS Beamline Front Ends by Tuncer Kuzay February 1993 Advanced Photon Source & Argonne National Laboratory, Argonne, Illinois 60439 o operated by The University of Chicago for the United States Department of Energy under Contract W-31-1 09-Eng-38 Argonne National Laboratory, with facilties in the states of Ilinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Deparment of Energy. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any waranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

340

Preliminary operating experience with the Doublet III neutral-beam injector system  

SciTech Connect

Two Neutral Injector beamlines have not been mounted on the Doublet III tokamak and preliminary plasma heating experiments are being started. The first beamline underwent a brief testing period on a target tank to verify that the basic design features worked. More extensive pre-operational tests are now in progress and significant results are presented.

Colleraine, A.P.; Beal, J.W.; Fasolo, J.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Investigation of pin-post monochromators for a wiggler beamline  

SciTech Connect

Three water-cooled pin-post monochromators, to be used on a wiggler beamline at the Advanced Photon Source (APS), were built with the heat exchanger engineered to provide very high heat transfer. The geometry of the heat exchanger as well as calculated data on the heat transfer will be presented. Before using the monochromators on the beamline, they were checked by x-ray diffraction topography. Reflections (333) and (220) in Bragg case were utilized. In all crystals, similar patterns of strain in the diffracting silicon layers were revealed, which can be attributed to the geometry of the heat exchangers, the bonding technology, and the thickness of the top layer. Conclusions about construction of future pin-post monochromators have been drawn.

Krasnicki, S.; Maj, J. [Argonne National Lab., IL (United States); Schildkamp, W. [Univ. of Chicago, IL (United States); Tonnessen, T. [Boeing North American, Albuquerque, NM (United States). Albuquerque Operations

1998-12-31T23:59:59.000Z

342

Performance of Saga-University Beamline with Planer Undulator  

SciTech Connect

A planer undulator consisted of 24 periods of an 85-mm length has been installed in a 2.7-m straight section of the SAGA-LS, in order to provide brilliant soft x-rays for advanced researches on nano-surfaces and interfaces at the Saga-university beamline BL13. The photon flux of 2x10{sup 11} photons/100 mA was obtained at 133 eV, and the available photon energy was beyond 800 eV using higher harmonics. The achieved resolving power of the varied-line-spacing (VLS) monochromator system was 8,670 at 130 eV with slits of 15 um. This agrees very well with the value of 8,790 expected from the ray-tracing calculation. The details in the performance tests will be reported, indicating the high performance of the beamline BL13 for photoelectron spectroscopy in the soft x-ray region.

Azuma, J.; Takahashi, K.; Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Ohkuma, H. [Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198 (Japan); Yamamoto, S. [High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

343

10 Questions for a Beamline Scientist: Apurva Mehta | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for a Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta November 4, 2011 - 1:02pm Addthis Apurva Mehta | Image courtesy of SLAC Apurva Mehta | Image courtesy of SLAC Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "It was exhilarating when we found a novel solution and the instrument evolved." Apurva Mehta, Beamline Scientist Fifteen years ago, SLAC National Accelerator Laboratory (SLAC) scientist Apurva Mehta volunteered to help a friend build beamline parts at the Stanford Synchrotron Radiation Lightsource (SSRL). Today, he's "still mucking around with beamlines."
 
In the latest 10 Questions, Dr. Mehta shares how he landed at SLAC and his adventures in a wide range of projects, from advanced semiconductors to

344

Photon Sciences Directorate | 2010 Annual Report | Beamline & Optics R&D:  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Beamline & Optics R&D: Enhancing Tools at NSLS, NSLS-II Qun Shen "Synchrotron sources have quickly become an essential tool for a wide spectrum of research. All the action takes place at beamlines, each one consisting of a suite of sophisticated scientific instruments. The robust beamlines at NSLS produce remarkable science, and we made excellent progress on developing NSLS-II beamlines and associated science programs." - Qun Shen Director, Photon Division While keeping the existing ring and beamline mechanical systems running, Photon Sciences staff completed a number of R&D projects this year that will improve the tools of researchers at NSLS and, in the near future, NSLS-II. One of the major accomplishments was the installation and commissioning of

345

Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation  

SciTech Connect

We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

Panaccione, G.; Vobornik, I.; Fujii, J.; Krizmancic, D.; Annese, E.; Giovanelli, L.; Maccherozzi, F.; Salvador, F.; De Luisa, A.; Benedetti, D.; Gruden, A.; Bertoch, P.; Rossi, G. [TASC Laboratory, INFM-CNR, S.S. 14-Km 163.5 in AREA Science Park, I-34012 Basovizza (Trieste) (Italy); Polack, F. [Synchrotron SOLEIL, B.P. 48, 91192 Gif-sur-Yvette (France); Cocco, D.; Sostero, G.; Diviacco, B. [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34012 Trieste (Italy); Hochstrasser, M.; Maier, U.; Pescia, D. [Laboratorium fuer Festkoerperphysik, ETH Hoenggerberg, CH-8093 Zuerich (Switzerland); and others

2009-04-15T23:59:59.000Z

346

Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline  

SciTech Connect

The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibration isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.

Simos, N.; Chu, Y. N.; Broadbent, A.; Nazaretski, E.; Margulies, L.; Dyling, O.; Shen, Q.; Fallier, M.

2010-08-30T23:59:59.000Z

347

Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches  

Science Journals Connector (OSTI)

Abstract A sustainable building is constructed of materials that could decrease environmental impacts, such as energy usage, during the lifecycle of the building. Building Information Modeling (BIM) has been identified as an effective tool for building performance analysis virtually in the design stage. The main aims of this study were to assess various combinations of materials using BIM and identify alternative, sustainable solutions to reduce operational energy consumption. The amount of energy consumed by a double story bungalow house in Johor, Malaysia, and assessments of alternative material configurations to determine the best energy performance were evaluated by using Revit Architecture 2012 and Autodesk Ecotect Analysis software to show which of the materials helped in reducing the operational energy use of the building to the greatest extent throughout its annual life cycle. At the end, some alternative, sustainable designs in terms of energy savings have been suggested.

Mojtaba Valinejad Shoubi; Masoud Valinejad Shoubi; Ashutosh Bagchi; Azin Shakiba Barough

2014-01-01T23:59:59.000Z

348

Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source  

Science Journals Connector (OSTI)

Beamline 2.1, a transmission soft X-ray microscope at the Advanced Light Source of Lawrence Berkeley National Laboratory, is described.

Le Gros, M.A.

2014-10-01T23:59:59.000Z

349

E-Print Network 3.0 - als infrared beamlines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2002 Advances in Bioengineering RADIATIVE PROPERTIES OF POLAR BEAR HAIR Summary: synchroton infrared spectromicroscopy beamline was utilized to provide a continuous spectrum of...

350

Mutual information and swap operation in the two-qubit Heisenberg model with Dzyaloshinskii-Moriya anisotropic antisymmetric interaction  

E-Print Network (OSTI)

Mutual information and swap operation in the two-qubit Heisenberg model with the Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction are investigated. It is found that the mutual information I of such a quantum channel is sensitive to the initial conditions and declines with the increase of the temperature. The DM interaction can lead to a higher mutual information, especially for the ferromagnetic case. The entanglement quality of input states cannot enhance the mutual information of the quantum channel. When the DM interaction is large, the mutual information will be the maximum value 2 for a non-entangled input state, but it is 1 for a maximally entangled input one. It is also shown that the swap operation can be implemented for some kinds of DM coupling. The conditions of the DM coupling under which the swap operation is feasible are established.

Guo-Feng Zhang

2008-08-20T23:59:59.000Z

351

The Nanofocus Endstation of the MINAXS Beamline of PETRA III  

SciTech Connect

The Micro- and Nanofocus X-ray Scattering Beamline (MINAXS) of the new 3rd generation source PETRA III is equipped with two endstations, out of which the farthest from the high beta undulator source is designed to provide a high flux, monochromatic X-ray beam focused to a size in the order of 100 nmx100 nm routinely used for microdiffraction experiments (nanofocus endstation). This contribution presents an overview on the current status of the nanofocus endstation and outlines the to-be-used experimental setup.

Krywka, C. A. [IEAP, Christian-Albrechts-Universitaet zu Kiel, Leibnizstrasse 19, D-24098 Kiel (Germany); Doehrmann, R.; Roth, S. V. [DESY, Notkestrasse 85, D-22063 Hamburg (Germany); Mueller, M. [GKSS Forschungszentrum Geesthacht, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

2010-06-23T23:59:59.000Z

352

The holography endstation of beamline P10 at PETRA III  

SciTech Connect

We present the design and instrumentation of a novel holography endstation for the P10 coherence beamline at PETRA III at DESY. The experimental imaging scheme is based on a highly coherent and divergent (cone) beam illumination, achieved by fixed curvature focusing mirrors with additional spatial and coherence filtering by x-ray waveguides. The optical elements along the beam path and the instrument under construction are described. Preliminary results obtained in a similar setting under comparable parameters are given as a benchmark, and first simulations of one of the two mirrors are presented to study the effect of imperfections on the field distribution in the focal plane.

Kalbfleisch, S.; Osterhoff, M.; Giewekemeyer, K.; Neubauer, H.; Krueger, S. P.; Hartmann, B.; Bartels, M.; Salditt, T. [Institut fuer Roentgenphysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Sprung, M.; Leupold, O. [HASYLAB at DESY, Notkestr. 85, 22607 Hamburg (Germany); Siewert, F. [Helmholtz Zentrum Berlin, BESSY-II, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

2010-06-23T23:59:59.000Z

353

Innovations in the design of mechanical components for a beamline -- The SRl`95 Workshop 2 summary  

SciTech Connect

The Synchrotron Radiation Instrumentation 1995 Conference (SRI`95) was hosted by the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Of the many workshops within the conference, the SRI`95 Workshop 2 was ``Innovations in the Design of Mechanical Components of a Beamline``. The workshop was attended well with over 140 registrants. The following topics were discussed. Industry`s perspective on the status and future was provided by Huber Diffrationtechnik, Oxford Instruments, and Kohzu Seiko Ltd. on goniometers/diffractometers, advanced manufacturing technique of high heat load components, such as the APS photon shutter, and the specialties of monochromators provided to the third-generation synchrotrons, respectively. This was followed by a description of the engineering of a dual function monochromator design for water-cooled diamond or cryogenically cooled silicon monochromators by CMC CAT/APS. Another category was the nagging problem of sensitivity of the photon beam position monitors (XBPM) to bending magnet radiation (``BM contamination``) and the undulator magnet gap changes. Problem descriptions and suggested solutions were provided by both the Advanced Light Source (ALS) and the APS. Other innovative ideas were the cooling schemes (enhanced cooling of beamline components using metallic porous meshes including cryo-cooled applications); Glidcop photon shutter design using microchannels at the ALS; and window/filter design, manufacture and operational experiences at CHESS and PETRA/HASYLAB. Additional discussions were held on designing for micromotions and precision in the optical support systems and smart user filter schemes. This is a summary of the presentations at the Workshop. 5 refs., 5 figs.

Kuzay, T.M. [Argonne National Lab., IL (United States); Warwick, T. [Lawrence Berkeley Lab., CA (United States)

1995-12-31T23:59:59.000Z

354

Automation of the EMBL Hamburg protein crystallography beamline BW7B  

Science Journals Connector (OSTI)

The automation of the EMBL Hamburg wiggler beamline BW7B for protein crystallography is described. The beamline features an automated end-station, a robotic sample changer, semi-automated sample centering based on UV fluorescence and new control software including intuitive graphical user interfaces.

Pohl, E.

2004-08-17T23:59:59.000Z

355

A Beamline for Fast Polarization Switching at NSLS-II  

SciTech Connect

The first XUV beamline (200-2000 eV) at NSLS-II will have two branches, one optimized for photon hungry experiments requiring high coherent flux and one optimized for studies of polarization sensitive materials and interfaces based on fast polarization switching. We describe here the branch designed for fast polarization switching with frequencies up to 1 kHz, high photon flux, and good energy resolution. The beamline will be served by two canted undulators and is based on the focusing variable line spacing grating monochromator. The two beams will be focused at the same spot of approximately 80x10 {mu}m (hor.xver.). The expected circular polarized flux at the sample from each device up to 1.4 keV will be higher than 10{sup 12} photons/s at a resolving power better than 10{sup 4}. An additional KB focusing system will deliver the two beams to a spot in the {mu}m range.

Reininger, R.; Sanchez-Hanke, C.; Hulbert, S. L. [NSLS and NSLS-II, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2010-06-23T23:59:59.000Z

356

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

357

Measuring The Source Brilliance at An Undulator Beamline  

SciTech Connect

Third-generation X-ray synchrotrons like the European Synchrotron Radiation Facility (ESRF) are optimized to produce intense undulator radiation. Insertion devices, such as undulators, ensure the highest possible brilliance--the key parameter for the success of e.g. coherent scattering, which is one of the main techniques employed at ESRF's TROIKA beamline. Nowadays, the constant efforts to reduce the emittance and improve the stability of the electron beam allow using small-gap insertion devices and increase the brilliance. Obviously, it is important to have an experimental technique for evaluating the performance of the undulator source. Here we present a method based on measuring the diffuse scattering from a light amorphous material by a photon counting detector. The measured spectral intensities show a very good agreement with the simulated spectra, demonstrating the high brilliance (above 10{sup 20} ph/s/0.1%bw/mrad{sup 2}/mm{sup 2}) achieved at modern facilities.

Zontone, Federico; Madsen, Anders; Konovalov, Oleg [European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex (France)

2010-06-23T23:59:59.000Z

358

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

359

ANL/APS/TB-54, Dose Calculations using MARS for Bremsstrahlung Beam Stops and Collimators in APS Beamline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOSE CALCULATIONS USING MARS FOR BREMSSTRAHLUNG BEAM STOPS AND COLLIMATORS IN APS BEAMLINE STATIONS Jeffrey C. Dooling Accelerator Systems Division Advanced Photon Source August 2010 This work is sponsored by the US Department of Energy Office of Science The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display

360

ANL/APS/TB-44, Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS/TB-44 Rev. 4 APS/TB-44 Rev. 4 Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source Revision 4 Advanced Photon Source About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ANL/APS/TB-21 Radiation Shielding of Insertion Device Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Radiation Shielding of Insertion Device Beamlines Using a Mirror as the First Optical Element W. Yun, B. Lai, K. J. Randall, S. Davey, D. R. Haeffner, P. K. Job, and D. Shu February 1995 Abstract The radiation shielding for an Advanced Photon Source (APS) insertion device beamline using a mirror as the first optical component is discussed. The beamline layout for a specific Synchrotron Radiation Instrumentation Collaborative Access Team beamline (sector 2 of SRI CAT) is described, and the methodology used to determine the radiation shielding is presented. Results indicate that, by using a x-ray mirror with a critical energy of 32 keV for total reflection, an undulator beam containing nearly all x-rays in the 0 - 32 keV spectral range can be delivered

362

E-Print Network 3.0 - aps beamline front Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 11 Policy& Procedure : 3.1.37 Summary: The beamline front end provides the UHV transition from the APS storage ring through the ratchet wall... to the portions of the...

363

Time Resolved Detectors and Measurements for Accelerators and Beamlines at the Australian Synchrotron  

SciTech Connect

Time resolved experiments require precision timing equipment and careful configuration of the machine and the beamline. The Australian Synchrotron has a state of the art timing system that allows flexible, real-time control of the machine and beamline timing parameters to target specific electron bunches. Results from a proof-of-principle measurement with a pulsed laser and a streak camera on the optical diagnostic beamline will be presented. The timing system was also used to fast trigger the PILATUS detector on an x-ray beamline to measure the fill pattern dependent effects of the detector. PILATUS was able to coarsely measure the fill pattern in the storage ring which implies that fill pattern intensity variations need to be corrected for when using the detector in this mode.

Boland, M. J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Rassool, R. P.; Peake, D. J.; Sobott, B. A.; Lee, V.; Schubert, A. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); LeBlanc, G. S.; Kirby, N. [Australian Synchrotron, Clayton, Victoria 3168 (Australia)

2010-06-23T23:59:59.000Z

364

New Soft X-ray Beamline (BL10) at the SAGA Light Source  

SciTech Connect

A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

Yoshimura, D.; Setoyama, H.; Okajima, T. [Beamline group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

365

Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source  

SciTech Connect

This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ? 10{sup ?10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

Phase, D. M., E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Potdar, S., E-mail: mgupta@csr.res.in; Behera, L., E-mail: mgupta@csr.res.in; Sah, R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452001 (India)

2014-04-24T23:59:59.000Z

366

E-Print Network 3.0 - aps wiggler beamline Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

SPX BEAMLINES The crab cavity scheme (sections 3.5 and 6... .1), offers a unique tunable high average flux source of 1ps x-rays. We propose to develop two ... Source:...

367

ANL/APS/TB-14 APS Beamline Design and Construction Requirements:  

NLE Websites -- All DOE Office Websites (Extended Search)

14 14 APS Beamline Design and Construction Requirements: A Reference Manual for Designers and Builders Version 1.0 May 1994 iii TABLE OF CONTENTS SECTION I DEFINITIONS, GUIDELINES, AND REVIEW CRITERIA ............................1 1. Introduction (July 21, 1998) ...............................................................................................1 1.1 About the Advanced Photon Source ...........................................................................1 1.2 About this Manual.......................................................................................................1 2. Beamline Definitions and Responsibilities (July 21, 1998) .................................................2 2.1 Definitions...................................................................................................................2

368

Fundamental Neutron Physics Beamline at the Spallation Neutron Source at ORNL  

E-Print Network (OSTI)

We describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. We present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

N. Fomin; G. L. Greene; R. Allen; V. Cianciolo; C. Crawford; T. Ito; P. R. Huffman; E. B. Iverson; R. Mahurin; W. M. Snow

2014-08-04T23:59:59.000Z

369

GRR/Section 15-WA-b - Air Operating Permit | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 15-WA-b - Air Operating Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-WA-b - Air Operating Permit 15-WA-b - Air Operating Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies WAC 173-401-500 WAC 173-401-800 WAC 173-401-810 WAC 173-401-735 WAC 173-401-610 Triggers None specified This flowchart illustrates the process for obtaining an Air Operating Permit in Washington State. The Washington State Department of Ecology (WSDE) issues Air Operating Permit under WAC 173-401. An Air Operating Permit is required if a facility has the potential to emit

370

GRR/Section 4-FD-d - BLM Exploration Operations | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-FD-d - BLM Exploration Operations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-d - BLM Exploration Operations 04-FD-d - BLM Exploration Operations .pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3252 43 CFR 3253. Triggers None specified Exploration operations on Bureau of Land Management (BLM) managed public lands must comply with BLM rules for conducting exploration operations 43 CFR 3252 and require a completion report at the conclusion of exploration

371

Property:EIA/861/OperatesGeneratingPlant | Open Energy Information  

Open Energy Info (EERE)

OperatesGeneratingPlant OperatesGeneratingPlant Jump to: navigation, search This is a property of type Boolean. Description: Operates Generating Plant Entity operates power generating plants (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/OperatesGeneratingPlant" Showing 25 pages using this property. (previous 25) (next 25) A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + Akiachak Native Community Electric Co + true + Alabama Municipal Elec Authority + true + Alabama Power Co + true + Alaska Electric & Energy Coop + true + Alaska Electric Light&Power Co + true + Alaska Energy Authority + true +

372

Higher Order Suppressor (HOS) for the PolLux Microspectroscope Beamline at the Swiss Light Source SLS  

SciTech Connect

The mechanical design and performance of a device to suppress higher orders of a spherical grating monochromator at a constant deviation angle is described. The higher order suppressor (HOS) is used for a scanning transmission x-ray microspectroscope beamline (PolLux) at a bending magnet of the Swiss Light Source (SLS). The instruments allow microspectroscopy in polymer science, of biological samples in the water window as well as the study of magnetic materials with circular or linear polarized light in a photon energy range of 200 eV to 1400 eV. The HOS uses three mirrors acting as a low pass filter for soft x-rays to improve the absorption spectroscopy of carbon, oxygen and nitrogen 1s core levels. The successful installation and operation of the HOS located after the monochromator is reported. First results obtained using samples from materials research and environmental sciences exemplify the improved spectroscopy capabilities of the instrument.

Frommherz, U.; Stefani, R.; Ellenberger, U. [Paul Scherrer Institut, Division of Mechanical Engineering Sciences, 5232 Villigen PSI (Switzerland); Raabe, J.; Watts, B. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

373

Automatic sample Dewar for MX beam-line  

SciTech Connect

It is very common for crystals of large biological macromolecules to show considerable variation in quality of their diffraction. In order to increase the number of samples that are tested for diffraction quality before any full data collections at the ESRF*, an automatic sample Dewar has been implemented. Conception and performances of the Dewar are reported in this paper. The automatic sample Dewar has 240 samples capability with automatic loading/unloading ports. The storing Dewar is capable to work with robots and it can be integrated in a full automatic MX** beam-line. The samples are positioned in the front of the loading/unloading ports with and automatic rotating plate. A view port has been implemented for data matrix camera reading on each sample loaded in the Dewar. At last, the Dewar is insulated with polyurethane foam that keeps the liquid nitrogen consumption below 1.6 L/h. At last, the static insulation also makes vacuum equipment and maintenance unnecessary. This Dewar will be useful for increasing the number of samples tested in synchrotrons.

Charignon, T.; Tanchon, J.; Trollier, T.; Ravex, A. [Absolut-System, Meylan, 38240 (France); Theveneau, P. [European Synchrotron Radiation Facility, Grenoble, 38000 (France)

2014-01-29T23:59:59.000Z

374

Trav Info Evaluation ( Technology Element ) Traveler Information Center ( TIC ) Study: Operator Interface Analysis - Phase III  

E-Print Network (OSTI)

and evaluator visits to the TIC. The objective of this workthe different aspects of the TIC working environment. Thecontribute to or hinder the TIC operators job performance.

Miller, Mark; Loukakos, Dimitri

1998-01-01T23:59:59.000Z

375

Study on Safety Operation Support System by Using the Risk Management Information  

Science Journals Connector (OSTI)

In case of abnormal situation of chemical process plant, it is required to judge the plant condition correctly and carry out the unerring response. Many operation support systems were proposed to help the plant o...

Yukiyasu Shimada; Takashi Hamaguchi

2006-01-01T23:59:59.000Z

376

Disclosure of Energy Operating Cost Information: A Silver Bullet for Overcoming the Energy-Efficiency Gap?  

Science Journals Connector (OSTI)

Consumers frequently act contrary to rational economic theory by overvaluing an initially higher purchase price while heavily discounting future energy operating costs. One opportunity to help limit the scale ......

Stefanie Lena Heinzle

2012-03-01T23:59:59.000Z

377

Case Studies of Energy Information Systems and Related Technology: Operational Practices, Costs, and Benefits  

E-Print Network (OSTI)

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs...

Motegi, N.; Piette, M. A.; Kinney, S.; Dewey, J.

2003-01-01T23:59:59.000Z

378

Application of Partially coherent Wavefront Propagation Calculations for Design of Coherence-Preserving Synchrotron Radiation Beamlines  

SciTech Connect

Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. 'Extraction' of 'coherent portion' of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using 'Synchrotron Radiation Workshop' (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

O Chubar; Y Chu; K Kaznatcheev; h Yan

2011-12-31T23:59:59.000Z

379

GRR/Section 15-AK-c - Title V Operating Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-AK-c - Title V Operating Permit GRR/Section 15-AK-c - Title V Operating Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-c - Title V Operating Permit 15AKCTitleVOperatingPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code 18 AAC 50 Air Quality Control Triggers None specified Click "Edit With Form" above to add content 15AKCTitleVOperatingPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative One of the major initiatives Congress added to the Clean Air Act in 1990 is

380

Optical Design of VLS-PGM Soft X-Ray Beamline on Indus-2  

SciTech Connect

The optical design of a soft x-ray beamline on the bending magnet of Indus-2 synchrotron source is presented. A Varied Line Spacing Plane Grating Monochromator (VLS-PGM) was adopted with Hettrick type optics. The VLS-PGM consists of a spherical mirror and three interchangeable gratings of line densities 1200 l/mm, 400 l/mm and 150 l/mm to efficiently cover the energy region 50-1500 eV. The VLS groove parameters were obtained by minimizing defocus aberration, coma and spherical aberration. The overall performance of the beamline was estimated by detailed raytracing calculations. The beamline design, results of the raytracing calculations and the expected performances are presented.

Prasad, T. T.; Modi, M. H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Ultilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Design of Superconducting Wiggler Beamline BL7 at SAGA-LS  

SciTech Connect

A new hard X-ray beamline has been designed at Saga Light Source. The beamline, named BL7, uses a newly developed 4-Tesla superconducting wiggler as a light source in order to cover a wide energy range to 30 keV. This beamline has a simple optics: a double-crystal monochromator and a Rh-coated bent-cylindrical mirror and can supply a focused beam with a photon flux about 1x10{sup 10} photons/s and a sub-millimeter size. Several experiments will be performed in the experimental station: e.g. protein crystallography; X-ray micro computed tomography; X-ray absorption fine structure measurement.

Kawamoto, M.; Sumitani, K.; Okajima, T. [Beamline Group, Kyushu Synchrotron Light Research Center, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

382

Independent Oversight Inspection of Classification and Information Control Programs at the Richland Operations Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 2.2 Authorities ............................................................................... 2 2.3 Guidance ................................................................................. 3 2.4 Training ................................................................................... 3 2.5 Document Reviews ................................................................. 4 2.6 Program Evaluation ................................................................. 4 3.0 CONCLUSIONS ................................................................................ 5 4.0 RATINGS ............................................................................................ 5 5.0 OPPORTUNITIES FOR IMPROVEMENT ..................................... 6 APPENDIX A: SUPPLEMENTAL INFORMATION

383

File:04-FD-d - BLM Exploration Operations .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:04-FD-d - BLM Exploration Operations .pdf Jump to: navigation, search File File history File usage Metadata File:04-FD-d - BLM Exploration Operations .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 22 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:14, 11 December 2013 Thumbnail for version as of 17:14, 11 December 2013 1,275 × 1,650 (22 KB) Alevine (Talk | contribs)

384

An interpretation of information gained from residence time distribution studies for operation of biological reactors  

E-Print Network (OSTI)

comparison of the same two models, that there was no definitive parameter by which to choose; the single exception being a direct comparison of the predicted to the actual conversions from operating reactors. Comparison itself is a formidable and tinre.... (May 1971) Marlow Lee Dodge, B. A. , Rockford College Directed by: Dr. Robert L. Irvine Most rational designs of biological reactors include the use of mass balances and an assumption of a particular hydraulic descrip- tion such as plug...

Dodge, Marlow Lee

2012-06-07T23:59:59.000Z

385

APS beamline standard components handbook, Version 1.3. Revision 1  

SciTech Connect

This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

Hahn, U.; Shu, D.; Kuzay, T.M.

1993-02-01T23:59:59.000Z

386

The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory  

SciTech Connect

BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K. [Insttitute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

387

Design of the First Infrared Beamline at the Siam Photon Laboratory  

SciTech Connect

This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

Pattanasiriwisawa, W. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, P. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand); Dumas, P. [SOLEIL Synchrotron, L'Orme des Merisiers, BP48, F-91192 Gif sur Yvette Cedex (France)

2010-06-23T23:59:59.000Z

388

Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C  

SciTech Connect

The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D. K.; Skinner, J. M.; Skinner, M. J.; Stoner-Ma, D.; Sweet, R. M.

2011-05-01T23:59:59.000Z

389

Correlated Single-Crystal Electronic Absorption Spectroscopy and X-ray Crystallography at NSLS Beamline X26-C  

SciTech Connect

The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

A Orville; R Buono; M Cowan; A Heroux; G Shea-McCarthy; D Schneider; J Skinner; M Skinner; D Stoner-Ma; R Sweet

2011-12-31T23:59:59.000Z

390

UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS  

SciTech Connect

Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future STs in the West Slit Trench Group based on the Impacted Final SOFs for existing STs in that area.

Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

2014-10-06T23:59:59.000Z

391

Magnetically operated beam dump for dumping high power beams in a neutral beamline  

DOE Patents (OSTI)

It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

Dagenhart, W.K.

1984-01-27T23:59:59.000Z

392

Performance of new infrared beamline U12IR at the National Synchrotron Light Source  

E-Print Network (OSTI)

frequency limit of 2 cm 1 i.e., 60 GHz or a photon energy of 250 eV . The infrared light from infrared beamline at the NSLS and, with increasing demand for measurement time, has been followed by a series of new infrared ports presently under construction and com- missioning. This also allowed for some

Tanner, David B.

393

7-GeV advanced photon source beamline initiative: Conceptual design report  

SciTech Connect

The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

Not Available

1993-05-01T23:59:59.000Z

394

National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition  

SciTech Connect

The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

Gmuer, N.F. [ed.

1993-04-01T23:59:59.000Z

395

Optical design and performance of the inelastic scattering beamline at the National Synchrotron Light Source  

SciTech Connect

Phase I of the X21 beamline at the National Synchrotron Light Source was commissioned during 1993. The research program at the X21 beamline is focused on the study of electronic excitations in condensed matter with total energy resolution of 0.1 eV to 1.0 eV. The source is a 27 pole hybrid wiggler. A water-cooled horizontal focusing Si(220) monochromator and a spherically bent Si(444) analyzer were installed and commissioned. At 8 keV the energy resolution of the monochromator is about 0.7 eV, and the energy resolution of the analyzer is about 0.1 eV. Results from several selected experiments are also discussed.

Kao, C.C.; Siddons, D.P.; Oversluizen, T.; Hastings, J.B. [Brookhaven National Lab., Upton, NY (United States); Hamalainen, K. [Helsinki Univ. (Finland). Dept. of Physics; Krisch, M. [European Synchrotron Radiation Facility, 38 - Grenoble (France)

1994-12-31T23:59:59.000Z

396

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Diamond Monochromators for APS Undulator-A Beamlines R.C. Blasdell, L. A. Assoufid, and D. M. Mills TABLE OF CONTENTS 1. INTRODUCTION .................................................................................1 2. PHYSICAL PROPERTIES OF DIAMONDS ..................................................5 2.1 Varieties of Diamonds ....................................................................5 2.2 The Lattice Parameter .....................................................................5 2.3 Bulk Thermal and Mechanical Properties ...............................................6 2.4 Typical Surface and Lattice Plane Morphology ......................................8 2.5 The Liquid-GaIn/Diamond Interface ...................................................10 3. DIFFRACTION PROPERTIES OF DIAMOND

397

Beamline Front-End for Minipole Undulator at the Photon Factory Storage Ring  

SciTech Connect

The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum minipole undulators. The first to third minipole undulators SGU no. 17, SGU no. 03 and SGU no. 01 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006 and 2009, respectively. The beamline front ends for SGU0 no. 3 and SGU0 no. 1 are described in this paper.

Miyauchi, Hiroshi; Tahara, Toshihiro; Asaoka, Seiji [Photon Factory, High Energy Accelerator Research Organization, KEK Oho, Tsukuba, Ibakaki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

398

Time-Resolved Research at the Advanced Photon Source Beamline 7-ID  

SciTech Connect

The Sector 7 undulator beamline (7-ID) of the Advanced Photon Source (APS) is dedicated to time-resolved x-ray research and is capable of ultrafast measurements on the order of 100 ps. Beamline 7-ID has a laser laboratory featuring a Ti:Sapphire system (average power of 2.5W, pulse duration <50 fs, repetition rate 1-5 kHz) that can be synchronized to the bunch pattern of the storage ring. The laser is deliverable to x-ray enclosures, which contain diffractometers, as well as motorized optical tables for table-top experiments. Beamline 7-ID has a single APS Undulator A and uses a diamond (111) double-crystal monochromator, providing good energy resolution over a range of 6-24 keV. Available optics include Kirkpatrick-Baez (KB) mirrors to microfocus the x-ray beam. A variety of time-resolved diffraction and spectroscopy research is available at 7-ID, with experiments being done in the atomic, molecular, optical, chemistry, and solid state (bulk and surface) fields.

Dufresne, Eric M.; Adams, Bernhard; Arms, Dohn A.; Chollet, Matthieu; Landahl, Eric C.; Li, Yuelin; Walko, Donald A.; Wang, Jin

2010-08-02T23:59:59.000Z

399

Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY  

SciTech Connect

I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

Wagner, Ulrich H. [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Rau, Christoph [Science, Diamond Light Source Ltd., Didcot, Oxon OX11 0DE (United Kingdom); Northwestern University, Chicago (United States)

2010-06-23T23:59:59.000Z

400

Photon Sciences | Beamlines | XPD: X-ray Powder Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

XPD: X-ray Powder Diffraction XPD: X-ray Powder Diffraction Poster | Fact Sheet | Preliminary Design Report Scientific Scope XPD is a tunable facility with the ability to collect diffraction data at high x-ray energies (40keV-80keV), offering rapid acquisition (millisecond) and high angular resolution capabilities on the same instrument. XPD addresses future scientific challenges in, for example, hydrogen storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. Such materials of high technological value often are complex, nanostructured and heterogeneous. The scientific grand challenge is to obtain robust and quantitative (micro)structural information, not only in the ground state at ambient conditions, but also in situ or in operando with varying temperature, pressure, magnetic/electric/stress

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The New X-Ray Lithography Beamline BL1 At DELTA  

SciTech Connect

Lithography using synchrotron radiation in the x-ray regime provides a powerful method to produce mechanical components of sub-millimeter size with a very good quality for microtechnological applications. In recent years the demand for x-ray lithography beamtime for industrial production of microparts increased rapidly resulting in the development of new experimental endstations at synchrotron radiation sources dedicated for the production of micromechanical devices. We present in this work the layout of the new x-ray lithography beamline BL1 at the synchrotron radiation source DELTA in Dortmund and discuss first results of exposure tests.

Lietz, D.; Paulus, M.; Sternemann, C.; Berges, U.; Hippert, B.; Tolan, M. [Fakultaet Physik / DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund (Germany)

2010-06-23T23:59:59.000Z

402

X-ray Experiments for Students at the SLS Optics Beamline  

SciTech Connect

We present a X-ray training course for students. The course covers fundamental properties of synchrotron radiation and basic techniques like scattering and absorption. We prepared ten experiments together with a tutorial. The whole course takes about a week. A first student group from the University of Copenhagen passed the course in June 2009. The experiments were performed at the optics beamline of the Swiss Light Source which can be part-time allocated for training purposes. Two experiments are described in more detail: scattering from a hanging drop of water turning into ice and measurement of the power of a pink synchrotron beam using a simple calorimeter.

Flechsig, U.; Jaggi, A.; Krempasky, J.; Oberta, P.; Spielmann, S.; Veen, J. F. van der [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Als-Nielsen, J. [University of Copenhagen, Universitetsparken 5, DK 2100 Copenhagen (Denmark)

2010-06-23T23:59:59.000Z

403

Parallel-beam imaging at the ESRF beamline ID19: current status and plans for the future  

SciTech Connect

The ESRF synchrotron beamline ID19, dedicated to full-field parallel-beam imaging techniques such as phase-contrast and absorption microtomography and X-ray topography, is one of the most versatile instruments of its kind. This paper presents key characteristics of ID19 in its present form, names examples for research and development performed on the beamline, and outlines the plans for an upgrade on the beamline in coming years, to adapt to the growing needs of the user community. The technical goals envisioned include an increase in available beam size and maximum photon energy, and a substantial increase in flux density for applications using beams of small and intermediate size.

Weitkamp, T.; Tafforeau, P.; Boller, E.; Cloetens, P.; Valade, J.-P.; Bernard, P.; Baruchel, J. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); Peyrin, F. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); Creatis / INSA Lyon (France); Ludwig, W. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); INSA Lyon (France); Helfen, L. [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble (France); ISS / ANKA Light Source, Forschungszentrum Karlsruhe / KIT, Karlsruhe (Germany)

2010-06-23T23:59:59.000Z

404

The role of historical operations information for supporting remedial investigation work at the former Harshaw Chemical Site - 8279.  

SciTech Connect

In the early stages of hazardous, toxic, and radioactive waste (HTRW) site investigations, basic record searches are performed to help direct the agencies investigating contaminated sites to areas of concern and to identify contaminants of interest (COI). Plans developed on the basis of this preliminary research alone are often incomplete and result in unexpected discoveries either while in the field investigating the site or after the reports have been written. Many of the sites investigated under the Formerly Utilized Sites Remedial Action program (FUSRAP) have complex histories that are slowly uncovered over the life of the project. Because of programmatic constraints, nuances of these sites are often discovered late in their programs and result in increased expenditures in order to fully characterize the site, perform a robust feasibility study, and recommend appropriate alternatives for remediation. By identifying resources for public records, classified records, historic aerial photographs, and other sources of site-specific historical information, a process can be established to optimize the collection of information and to develop efficient and complete project plans. In many cases, interviews with past site employees are very useful tools. In combining what is found in the records, observed on historic aerial photographs, and heard from former employees and family members, teams investigating these sites can begin to compile sound and more complete conceptual site models (CSMs). The former Harshaw Chemical Site (HCS) illustrates this discovery process. HCS is part of FUSRAP. Preliminary investigations by the US Department of Energy (DOE) in the 1970s provided an initial CSM of activities that had taken place that may have resulted in contamination. The remedial investigation (RI) conducted by the US Army Corps of Engineers (USACE) was designed around this CSM. The RI work, however, identified a number of site conditions that were unexpected, including new potential COI associated with recycled uranium and contaminant locations that were inconsistent with the original CSM. As part of an RI Addendum effort, the USACE reconsidered its understanding of HCS historical activities. This effort included an intensive review of available historical aerial photography, an in-depth Potentially Responsible Parties (PRP) investigation, additional analysis of the production processes in place at HCS, and targeted supplemental data collection. The result of this effort was a revised CSM that included a number of previously unidentified potential COI and a much clearer understanding of the processes and resulting waste streams potentially associated with environmental contamination. Because of their complex and often poorly documented operational histories, unexpected discoveries will always be a part of investigating sites such as HCS. Taking advantage of available resources and expending funds for thorough historical research early in the life of a project will help to reduce the chances for expensive field remobilizations and significant schedule delays. A complete and accurate site history also allows for more efficient long-term technical and budgetary planning, thus eliminating many obstacles associated with the ultimate disposition of HTRW sites.

Johnson, R.; Peterson, J.; Picel, K.; Kolhoff, A.; Devaughn, J.; Environmental Science Division; U. S.Army Corps of Engineers, Buffalo District; Science Applications International Corp.

2008-01-01T23:59:59.000Z

405

The Role of Historical Operations Information for Supporting Remedial Investigation Work at the Former Harshaw Chemical Site  

SciTech Connect

In the early stages of hazardous, toxic, and radioactive waste (HTRW) site investigations, basic record searches are performed to help direct the agencies investigating contaminated sites to areas of concern and to identify contaminants of interest (COI). Plans developed on the basis of this preliminary research alone are often incomplete and result in unexpected discoveries either while in the field investigating the site or after the reports have been written. Many of the sites investigated under the Formerly Utilized Sites Remedial Action Program (FUSRAP) have complex histories that are slowly uncovered over the life of the project. Because of programmatic constraints, nuances of these sites are often discovered late in their programs and result in increased expenditures in order to fully characterize the site, perform a robust feasibility study, and recommend appropriate alternatives for remediation. By identifying resources for public records, classified records, historic aerial photographs, and other sources of site-specific historical information, a process can be established to optimize the collection of information and to develop efficient and complete project plans. In many cases, interviews with past site employees are very useful tools. In combining what is found in the records, observed on historic aerial photographs, and heard from former employees and family members, teams investigating these sites can begin to compile sound and more complete conceptual site models (CSM(s). The former Harshaw Chemical Site (HCS) illustrates this discovery process. HCS is part of FUSRAP. Preliminary investigations by the U.S. Department of Energy (DOE) in the 1970's provided an initial CSM of activities that had taken place that may have resulted in contamination. The remedial investigation (RI) conducted by the U.S. Army Corps of Engineers (USACE) was designed around this CSM. The RI work, however, identified a number of site conditions that were unexpected, including new potential COI associated with recycled uranium and contaminant locations that were inconsistent with the original CSM. As part of an RI Addendum effort, the USACE reconsidered its understanding of HCS historical activities. This effort included an intensive review of available historical aerial photography, an in-depth Potentially Responsible Parties (PRP) investigation, additional analysis of the production processes in place at HCS, and targeted supplemental data collection. The result of this effort was a revised CSM that included a number of previously unidentified potential COI and a much clearer understanding of the processes and resulting waste streams potentially associated with environmental contamination. Because of their complex and often poorly documented operational histories, unexpected discoveries will always be a part of investigating sites such as HCS. Taking advantage of available resources and expending funds for thorough historical research early in the life of a project will help to reduce the chances for expensive field re-mobilizations and significant schedule delays. A complete and accurate site history also allows for more efficient long-term technical and budgetary planning, thus eliminating many obstacles associated with the ultimate disposition of HTRW sites. (authors)

Kolhoff, A. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, NY (United States); Johnson, R.; Peterson, J.; Picel, K. [Argonne National Laboratory, Argonne, IL (United States); DeVaughn, J. [Science Applications International Corporation, Twinsburg, OH (United States)

2008-07-01T23:59:59.000Z

406

X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source  

Science Journals Connector (OSTI)

Advances in synchrotron beamlines bring opportunities with accompanying challenges for the study of soft condensed (biological) matter. This article describes improvements to the BioCAT beamline that include micro-focus, scanning and cryo-cooling of soft connective tissues yielding X-ray data from whole rat-tail tendons to better than 4 ?.

Barrea, R.A.

2014-08-08T23:59:59.000Z

407

Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source  

Science Journals Connector (OSTI)

The design of an undulator beamline at the Advanced Photon Source optimized for performing coherent small-angle X-ray scattering is described. The beamline has been characterized by measuring and analysing static speckle patterns from isotropically disordered samples. The measured speckle widths and amplitudes are compared with a theory described herein and found to be in good agreement with its predictions.

Sandy, A.R.

1999-11-01T23:59:59.000Z

408

Full-Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring-8  

SciTech Connect

The Engineering Science Research II beamline BL14B2 at SPring-8 is a hard X-ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV, and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in-situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system, in which the adjustment of X-ray optics and the XAFS measurement in transmission mode can be performed automatically.

Honma, Tetsuo; Takagaki, Masashi [Japan Synchrotron Radiation Research Institute, 1-1-1, kouto, Sayo, Hyogo 679-5198 (Japan); Oji, Hiroshi; Hirayama, Sayaka; Taniguchi, Yosuke; Ofuchi, Hironori [Japan Synchrotron Radiation Research Institute, 1-1-1, kouto, Sayo, Hyogo 679-5198 (Japan); SPring-8 Service Co., Ltd., 2-23-1 Kouto, Kamigori, Hyogo 678-1205 (Japan)

2010-06-23T23:59:59.000Z

409

Full?Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring?8  

Science Journals Connector (OSTI)

The Engineering Science Research II beamline BL14B2 at SPring?8 is a hard X?ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in?situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system in which the adjustment of X?ray optics and the XAFS measurement in transmission mode can be performed automatically.

Tetsuo Honma; Hiroshi Oji; Sayaka Hirayama; Yosuke Taniguchi; Hironori Ofuchi; Masashi Takagaki

2010-01-01T23:59:59.000Z

410

220 Communications of the Association for Information Systems (Volume 13, 2004)220-232 The Australian Produce Co-Operative; A Global Information Systems Project by H. Lehmann  

E-Print Network (OSTI)

is intertwined with the pre-existing politically charged environment that characterizes the global firm. Further an international information system as it follows APCO's global system development. It shows the difficulties systems implementation, multinational companies, politics in multinational companies, international

Bieber, Michael

411

Application of Goubau Surface Wave Transmission Line for Improved Bench Testing of Diagnostic Beamline Elements  

SciTech Connect

In-air test fixtures for beamline elements typically utilize an X-Y positioning stage, and a wire antenna excited by an RF source. In most cases, the antenna contains a standing wave, and is useful only for coarse alignment measurements in CW mode. A surface-wave (SW) based transmission line permits RF energy to be launched on the wire, travel through the beamline component, and then be absorbed in a load. Since SW transmission lines employ travelling waves, the RF energy can be made to resemble the electron beam, limited only by ohmic losses and dispersion. Although lossy coaxial systems are also a consideration, the diameter of the coax introduces large uncertainties in centroid location. A SW wire is easily constructed out of 200 micron magnet wire, which more accurately approximates the physical profile of the electron beam. Benefits of this test fixture include accurate field mapping, absolute calibration for given beam currents, Z-axis independence, and temporal response measurements of sub-nanosecond pulse structures. Descriptions of the surface wave launching technique, transmission line, and instrumentation are presented, along with measurement data.

John Musson, Keith Cole, Sheldon Rubin

2009-05-01T23:59:59.000Z

412

Travinfo Evaluation (technology Element) Traveler Information Center (tic) Study: Operator Interface Component-phase Iv: Institutional Analysis  

E-Print Network (OSTI)

Objective: a. Looking back on TIC operations from the timestart of your tenure at the TIC), what do you feel are theorganization such as the TIC? b. Do you have any remaining

Miller, Mark; Loukakos, Dimitri

1998-01-01T23:59:59.000Z

413

A Case Study of the Use of BIM and Construction Operations Building Information Exchange (COBie) for Facility Management  

E-Print Network (OSTI)

This study investigates the use of Building Information Modeling (BIM) and COBie for Facility Management on three projects where these concepts were used. Factors which affect these concepts are identified through a literature review. The study...

Jawadekar, Salil

2012-10-19T23:59:59.000Z

414

This paper describes the use of Bayesian networks (BNs) to model the operational risk to information technology (IT)  

E-Print Network (OSTI)

from the financial, rail transport, civil aviation, and nuclear power sectors to sup- port his case failures, slow degrada- tion or collapse of safety procedures, changes in culture and management, lack risk in other industries, especially the Aviation and Nuclear sectors, readily translate to operational

Neil, Martin

415

A New Tomography Beamline at a Wiggler Port at the Center for Advanced Microstructures and Devices (CAMD) Storage Ring  

Science Journals Connector (OSTI)

A new tomography beamline has been built and commissioned at the 7 T wiggler of the CAMD storage ring. This beamline is equipped with two monochromators that can be used interchangeably for X?ray absorption spectroscopy or high resolution X?ray tomography at best 23 ?m pixel size. The high?flux double multilayer?mirror monochromator (W?B4C multilayers) can be used in the energy range from 6 to 35 keV with a resolution (?E/E ) between 0.010.03. The second is a channel?cut Si(311)?crystal monochromator with a range of 15 to 36 keV and resolution of ca. 10?4 this is not yet tested. Tomography has the potential for high?throughput materials analysis; however there are some significant obstacles to be overcome in the areas of data acquisition reconstruction visualization and analysis. Data acquisition is facilitated by the multilayer monochromator as this provides high photon flux thus reducing measurement time. At the beamline Matlab routines provide simple x y z fly?throughs of the sample. Off?beamline processing with Amira can yield more sophisticated inspection of the sample. Standard data acquisition based on fixed angle increments is not optimal however new patterns based on Greek golden ratio angle increments offer faster convergence to a high signal?to?noise?ratio image. The image reconstruction has traditionally been done by back?projection reconstruction. In this presentation we will show first results from samples studied at the new beamline.

Kyungmin Ham; Heath A. Barnett; Leslie G. Butler; Clinton S. Willson; Kevin J. Morris; Roland C. Tittsworth; John D. Scott

2007-01-01T23:59:59.000Z

416

Operations and Information Engineering Course description: We look at the world from the perspective of resource management. There  

E-Print Network (OSTI)

at the world from the perspective of resource management. There are six classes of resources: three active classes (physical, financial and informational) and three passive classes (time, energy and risk Blackboard. Prerequisites: Students are expected to have a background in statistics (ORF 245/405, or ECO 300

Powell, Warren B.

417

HARWI-II, The New High-Energy Beamline for Materials Science at HASYLAB/DESY  

SciTech Connect

The GKSS Forschungszentrum Geesthacht, Germany, will setup a new high-energy beamline specialized for texture, strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen-Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI-II. The high pressure cell will be run by the GFZ Potsdam, Germany, the high-energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm x 0.5 mm) and a large monochromatic X-ray beam (50 mm x 10 mm) with an energy range of 20 to 250 keV.

Beckmann, Felix; Lippmann, Thomas; Metge, Joachim; Dose, Thomas; Donath, Tilman; Schreyer, Andreas [GKSS Forschungszentrum, Max-Planck-Strasse, 21502 Geesthacht (Germany); Tischer, Markus [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Liss, Klaus Dieter [Technische Universitaet, Hamburg-Harburg, 21071 Hamburg (Germany)

2004-05-12T23:59:59.000Z

418

Characterizations and Applications of the Insertion Device of the SPring-8 Diagnostics Beamline II  

SciTech Connect

An insertion device (ID05) of the SPring-8 diagnostics beamline II (BL05SS) was characterized from the aspects of both the magnetic field performance and the spectral performance as a high K wiggler, which was confirmed to have the field performance with the rms phase error less than 2 degree. Meanwhile, the spectral performance of ID05 as an undulator with small K was also investigated by the energy spectrum measurements. The rms phase error less than 2degree leads us to apply the wiggler radiation on the higher harmonics to the beam diagnostics. We successfully demonstrated an application to the energy-spread diagnostics of electron beam using the 19th harmonics.

Masaki, Mitsuhiro; Takano, Shiro; Tamura, Kazuhiro; Mochihashi, Akira; Oishi, Masaya; Shoji, Masazumi; Fujita, Takahiro; Takashima, Takeo; Ohkuma, Haruo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo (Japan); Yamamoto, Shigeru [High Energy Accelerator Research Organization (KEK)/Institute of Materials Structure Science, 1-1 Oho, Tsukuba, Ibaraki (Japan)

2010-06-23T23:59:59.000Z

419

HARWI?II, The New High?Energy Beamline for Materials Science at HASYLAB/DESY  

Science Journals Connector (OSTI)

The GKSS Forschungszentrum Geesthacht Germany will setup a new high?energy beamline specialized for texture strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen?Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI?II. The high pressure cell will be run by the GFZ Potsdam Germany the high?energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm 0.5 mm) and a large monochromatic X?ray beam (50 mm 10 mm) with an energy range of 20 to 250 keV.

Felix Beckmann; Thomas Lippmann; Joachim Metge; Thomas Dose; Tilman Donath; Markus Tischer; Klaus Dieter Liss

2004-01-01T23:59:59.000Z

420

Annular Vortex Generation for Inertial Fusion Energy Beam-Line Protection  

SciTech Connect

The use of swirling annular vortex flow inside beam entrance tubes can protect beam-line structural materials in chambers for heavy-ion inertial fusion energy (IFE) applications. An annular wall jet, or vortex tube, is generated by injecting liquid tangent to the inner surface of a tube wall with both axially and azimuthally directed velocity components. A layer of liquid then lines the beam tube wall, which may improve the effectiveness of neutron shielding, and condenses and removes vaporized coolant that may enter the beam tubes. Vortex tubes have been constructed and tested with a thickness of three-tenths the pipe radius. Analysis of the flow is given, along with experimental examples of vortex tube fluid mechanics and an estimate of the layer thickness, based on simple mass conservation considerations.

Pemberton, Steven J.; Abbott, Ryan P.; Peterson, Per F. [University of California (United States)

2003-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

X-ray multilayer characterization using reflectivity beamline at Indus-1  

SciTech Connect

Poor knowledge of optical constants of various materials in the soft x-ray region requires to test the soft x-ray optical devices at actual wavelengths. For such purposes a soft x-ray/vacuum ultraviolet reflectivity beamline has been setup on Indus-1 synchrotron.X-ray multilayer structures are also being developed at RRCAT. Silicon based different multilayer optics fabricated in house for 100-200A ring wavelength region show a very high reflectivity performance. A new multilayer combination comprised of NbC/Si is proposed for achieving good thermal stability high reflectivity in the Si L-edge region. A high reflectivity of 63% in near normal incidence region is obtained with a sputter deposited Mo/Si combination. Results prospects of growing NbC/Si multilayer are presented.

Modi, Mohammed H.; Prasad, T. T.; Nayak, M.; Pothana, N.; Jaiswal, A.; Rai, S. K.; Lodha, G. S. [X-ray Optics Section Raja Ramanna Centre for Advanced Technology (RRCAT) Indore 452013 (India)

2010-06-23T23:59:59.000Z

422

The Current Performance of the Wide Range (90-2500 eV) Soft X-ray Beamline at the Australian Synchrotron  

SciTech Connect

The Soft X-ray beamline at the Australian synchrotron has been constructed around a collimated light Plane Grating Monochromator taking light from an Elliptically Polarized Undulator (EPU). The beamline covers a wide photon energy range between 90 to 2500 eV, using two gratings of 250 l/mm and 1200 l/mm. At present the output from the monochromator is directed into one branchline with a dedicated UHV endstation. The measured performance of the beamline in flux and resolution is shown to be very close to that of theoretical calculations.

Cowie, B. C. C.; Tadich, A.; Thomsen, L. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria (Australia)

2010-06-23T23:59:59.000Z

423

Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator  

SciTech Connect

The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

424

An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot  

Science Journals Connector (OSTI)

A system, implemented at SSRL, for automatically mounting and dismounting pre-frozen crystals at a synchrotron beamline is described. The system is based on a small industrial robot and compact cylindrical sample cassettes.

Cohen, A.E.

2002-11-13T23:59:59.000Z

425

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially-manufactured superconducting magnets and limited to 17 T. A  

E-Print Network (OSTI)

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially, this was the first designed specifically for neutron scattering and the first to include resistive suitable for neutron scattering, diffraction and spectroscopy experiments with the neutron beam passing

Weston, Ken

426

ARM - SGP Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Operations SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Operations Routine Operations SGP central facility offices. SGP central facility offices. The overwhelming majority of the measurements with the highest priority, on which the existing experimental designs are based, are regular routine observations, as specified in the ARM Program Plan, 1990 (U.S. Department of Energy 1990). Scientifically and logistically, routine operations also serve as the basis and background for all nonroutine operations, including

427

The BioCAT undulator beamline 18ID: A facility for biological non-crystalline diffraction and x-ray absorption spectroscopy at the APS  

SciTech Connect

The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

Fischetti, R.; Stepanov, S.; Rosenbaum, G.; Barrea, R.; Black, E.; Gore, D.; Heurich, R.; Kondrashkina, E.; Kropf, A.J.; Wang, S.; Zhang, K.; Irving, T.C.; Bunker, G.B. (IIT); (Georgia)

2008-07-02T23:59:59.000Z

428

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters  

Energy.gov (U.S. Department of Energy (DOE))

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters.

429

The UHV Experimental Chamber For Optical Measurements (Reflectivity and Absorption) and Angle Resolved Photoemission of the BEAR Beamline at ELETTRA  

SciTech Connect

The experimental station of the BEAR (Bending magnet for Emission, Absorption and Reflectivity) beamline at ELETTRA (Trieste, Italy) is an UHV chamber conceived to fully exploit the spectroscopic possibilities offered by the light spot produced by the beamline. Spectroscopies include reflectivity ({theta}-2{theta} and diffuse), optical absorption, fluorescence and angle resolved photoemission. The chamber can be rotated around the beam axis to select the s (TE) or p (TM) incidence conditions and/or the position of the ellipse of polarization with respect to the sample. Photon detectors (e.g. photodiodes) and electron detector (hemispherical analyzer - 1 deg. angular resolution, 20 meV energy resolution) cover about completely the full 2{pi} solid angle above the sample surface in any light incidence condition.

Pasquali, L.; Nannarone, S. [UdR-INFM Modena, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Universita di Modena and Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); De Luisa, A. [TASC-INFM, MM building in Area Science Park, s.s.14 km 163.5, 34012 Basovizza, Trieste (Italy)

2004-05-12T23:59:59.000Z

430

Business Operations Contacts  

Office of Energy Efficiency and Renewable Energy (EERE)

If you have a question for the Office of Business Operations, you can use this contact information to reach the office you're interested in:

431

Development of Operation System  

Science Journals Connector (OSTI)

We are gradually developing a total hospital information system known as GUNMAS (Gunma University Network for Medical-Hospital- Information Archiving System). an operation system is also being developed as part o...

Seiji Kato M.D.; Yasuharu Kitani M.D.

1992-01-01T23:59:59.000Z

432

Long-Working-Distance Kirkpatrick-Baez Mirrors for Hard X-ray Beamlines at SPring-8  

SciTech Connect

We designed and installed two types of long-working-distance Kirkpatrick-Baez (KB) mirrors and mirror manipulators, which were customized into each experiment for hard x-ray undulator beamlines at SPring-8. For the BL32XU RIKEN Targeted Proteins beamline, 400-mm-long KB focusing mirrors for a beam size of 1 {mu}m with a 730-mm-long working distance were designed for carrying out the structural analysis of protein microcrystals. We realized a focusing beam size of 0.9x0.9 {mu}m{sup 2}(FWHM) and a focusing intensity of 6x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV. For the BL19LXU RIKEN SR Physics beamline, we developed KB mirrors for 100-nm focusing with a 100-mm-working distance for the purpose of nano-focus x-ray diffraction. A focusing beam size of 100x100 nm{sup 2}(FWHM) and a high focusing intensity of 3.7x10{sup 10} (photons/s) at an x-ray energy of 12.4 keV were realized.

Yumoto, H.; Koyama, T. [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hirata, K.; Kawano, Y.; Ueno, G.; Nisawa, A.; Hikima, T.; Takeshita, S.; Ito, K.; Tanaka, Y.; Arima, T.; Yamamoto, M. [RIKEN/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohsumi, H.; Ohashi, H.; Goto, S. [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

2011-09-09T23:59:59.000Z

433

Jansen, B.J. 2003. Operators Not Needed? The Impact of Query Structure on Web Searching Results?. Information Resource Management Association International Conference, p. 814 817. Philadelphia, PA, 18 -21 May 2003.  

E-Print Network (OSTI)

Jansen, B.J. 2003. Operators Not Needed? The Impact of Query Structure on Web Searching Results. Jansen School of Information Sciences and Technology The Pennsylvania State University 001 Thomas Bldg are discussed. INTRODUCTION The vast majority of Web queries contain no query operators (Hoelscher, 1998; Jansen

Jansen, James

434

Integration of an Atomic Force Microscope in a Beamline Sample Environment  

SciTech Connect

We developed and optimised an optics-free Atomic Force Microscope (AFM) that can be directly installed on most of the synchrotron radiation end-stations. The combination of Scanning Probe Microscopies with X-ray microbeams adds new possibilities to the variety of synchrotron radiation techniques. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharpness of the tip that gives the opportunity to measure the photons flux impinging on it giving beam position monitor features, or allows to locally measure the absorption coefficient or the shape of the diffraction pattern. As an example of the possibilities opened by the instrument we will show diffraction measurements performed on a Ge/Si island while being indented with the AFM tip providing local measure of the Young coefficient. Three ESRF beamlines are going to be equipped with this new instrument.

Rodrigues, M. S.; Hrouzek, M.; Dhez, O.; Comin, F. [ESRF, 6 rue Horowitz 38042 Grenoble Cedex (France); Chevrier, J. [Institut Neel-CNRS and Universite Joseph Fourier, 38042 Grenoble (France)

2010-06-23T23:59:59.000Z

435

Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline  

Science Journals Connector (OSTI)

A prototype was developed to perform online purification and automatic loading of protein solutions at a small-angle X-ray scattering beamline.

David, G.

2009-09-08T23:59:59.000Z

436

E-Print Network 3.0 - atf extraction beamline Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

with for safe operations of the LINAC as required by the ATF Guidelines for Conduct of Operations. This set... for operation of the ATF and must be complied with. As a LINAC...

437

Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II  

SciTech Connect

The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

2011-08-21T23:59:59.000Z

438

Information Security Policy Policy Title Information Security Policy  

E-Print Network (OSTI)

Information Security Policy Policy Title Information Security Policy Responsible Executive Vice President of Information Technology and CIO Jay Dominick Responsible Office Office of Information Technology, Operations and Planning Endorsed by Information Security Policy Committee Contact Chief Information Security

Rowley, Clarence W.

439

Low Impedance Bellows for High-current Beam Operations  

SciTech Connect

In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J

2012-07-01T23:59:59.000Z

440

Set-up of an XAFS beamline for measurements between 2.4-8 keV at DORIS III  

SciTech Connect

In this paper results from the commissioning phase and from first user experiments of a new EXAFS beamline at the DORIS III storage ring are presented. The bending magnet EXAFS beamline A1 underwent a complete rebuild and now covers the energy range 2.4-8 keV. A Ni-coated toroidal mirror, placed in a 2:1 focusing position and a plane mirror with one Ni coated stripe and one uncoated (SiO{sub 2}) stripe are used for effective higher harmonics suppression and focusing. The UHV-compatible fixed-exit Double Crystal Monochromator (DCM) is equipped with two Si(111) crystal pairs. The second crystal of one of the two crystal pairs is tilted by 90 deg. around the surface normal to shift the position of glitches. It allows Bragg angles between 5 deg. and 55.5 deg. and continuous scans in quick-EXAFS mode. Test measurements during the commissioning phase proved the excellent performance of the monochromator and a high quality of the XAFS spectra over the entire working range.

Welter, Edmund [Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association, Notkestrasse 85, D-22607 Hamburg (Germany)

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Experimental results with cryogenically cooled, thin, silicon crystal x-ray monochromators on high-heat-flux beamlines  

SciTech Connect

A novel, silicon crystal monochromator has been designed and tested for use on undulator and focused wiggler beamlines at third-generation synchrotron sources. The crystal utilizes a thin, partially transmitting diffracting element fabricated within a liquid-nitrogen cooled, monolithic block of silicon. This report summarizes the results from performance tests conducted at the European Synchrotron Radiation Facility (ESRF) using a focused wiggler beam and at the Advanced Photon Source (APS) on an undulator beamline. These experiments indicate that a cryogenic crystal can handle the very high power and power density x-ray beams of modem synchrotrons with sub-arcsec thermal broadening of the rocking curve. The peak power density absorbed on the surface of the crystal at the ESRF exceeded go W/mm{sup 2} with an absorbed power of 166 W, this takes into account the spreading of the beam due to the Bragg angle of 11.4{degrees}. At the APS, the peak heat flux incident on the crystal was 1.5 W/mA/mm{sup 2} with a power of 6.1 W/mA for a 2.0 H x 2.5 V mm{sup 2} beam at an undulator gap of 11.1 mm and stored current up to 96 mA.

Rogers, C.S.; Mills, D.M.; Lee, W.K.; Fernandez, P.B.; Graber, T.

1996-08-01T23:59:59.000Z

442

Concentrating Information  

E-Print Network (OSTI)

We introduce the concentrated information of tripartite quantum states. For three parties Alice, Bob and Charlie, it is defined as the maximal mutual information achievable between Alice and Charlie via local operations and classical communication performed by Charlie and Bob. The gap between classical and quantum concentrated information is shown to be an operational figure of merit for a state merging protocol involving shared mixed states and no distributed entanglement. We derive upper and lower bounds on the concentrated information, and obtain a closed expression for arbitrary pure tripartite states in the asymptotic setting. In this situation, one-way classical communication is shown to be sufficient for optimal information concentration.

Alexander Streltsov; Soojoon Lee; Gerardo Adesso

2014-10-23T23:59:59.000Z

443

Crane Operation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

remove power from the crane and inform the facility management or CAMD safety. Place a lockout tag on the remote control unit. All CAMD crane operations are conducted using the...

444

Corporate Operating Experience Program  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Corporate Operating Experience Program helps to prevent the recurrence of significant adverse events/trends by sharing performance information, lessons learned and good practices across the DOE complex.

445

Laser Controlled Area Standard Operating Procedure (SOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

90 90 1 Effective: Page 1 of 11 06/20/12 Subject: Laser Safety Program Documentation - Raman X18/19 Frenkel Group 3.1/2g03e011.doc 1 (02/2010) BROOKHAVEN NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines the safety management program for the laser system(s) listed below. All American National Standard Institute (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use of this form. Each system must be reviewed annually. Modify the template for this document to fit your particular circumstance. System description: Raman fiber optic system with class 3B laser source Location: Currently in NSLS room 1-127, but will be utilized with beamlines X18A, X18B, and X19A

446

Laser Controlled Area Standard Operating Procedure (SOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 4 6 4 Effective: Page 1 of 18 09/16/2011 Subject: Laser Safety Program Documentation: U2A The only official copy of this file is the one on-line in the PS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the PS ESH website. BROOKHAVEN NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) U2A Laser Systems This document defines the safety management program for the laser system(s) listed below. All American National Standard Institute (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use of this form. Each system must be reviewed annually. System description: There are 4 lasers installed at beamline U2A for diamond anvil cell experiments:

447

Looking beyond 'information provision': the importance of being a kiosk operator in the sustainable access in rural India (SARI) project, Tamilnadu, India  

Science Journals Connector (OSTI)

Development projects based on Information and Communication Technologies (ICTs) attract significant funding support. Many such projects are initiated on the premise that ICTs can play an important role in reducing acute information asymmetries in low-income ... Keywords: India, egovernance, gender, information asymmetries, kiosk projects

Janaki Srinivasan

2010-12-01T23:59:59.000Z

448

Emergency management information systems| Application of an intranet portal for disaster training and response. An examination of emerging technologies in a local Emergency Operations Center.  

E-Print Network (OSTI)

?? This dissertation examined one city's implementation of an intranet virtual web portal for improved emergency management. Municipal Emergency Operation Center (EOC) managers face many (more)

Dove, Kathleen

2008-01-01T23:59:59.000Z

449

High Power Operation of the JLab IR FEL Driver Accelerator  

SciTech Connect

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

2007-08-01T23:59:59.000Z

450

Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines  

SciTech Connect

We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

Yoon, P.S.; Siddons, D. P.

2009-05-25T23:59:59.000Z

451

Liquid and gaseous waste operations section. Annual operating report CY 1997  

SciTech Connect

This document presents information on the liquid and gaseous wastes operations section for calendar year 1997. Operating activities, upgrade activities, and maintenance activities are described.

Maddox, J.J.; Scott, C.B.

1998-03-01T23:59:59.000Z

452

CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations - Y-12 Enriched Uranium Operations Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

453

High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline  

SciTech Connect

Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

Llorens, Isabelle [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); Synchrotron SOLEIL - MARS beamline, L'Orme des Merisiers, F-91192 Gif sur Yvette (France); Lahera, Eric; Delnet, William; Proux, Olivier [Observatoire des Sciences de l'Univers de Grenoble, UMS 832 CNRS Universite Joseph Fourier, F-38041 Grenoble cedex 9 (France); BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Braillard, Aurelien; Hazemann, Jean-Louis; Prat, Alain; Testemale, Denis [BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9 (France); Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay [Institut de Mineralogie et de Physique des Milieux Condenses, UMR 7590, 4 place Jussieu, F-75005 Paris (France); Bardou, Nathalie [Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, Route de Nozay, F-91460 Marcoussis (France); Ulrich, Olivier [CEA/DSM/INAC/SP2M/NRS, F-38054 Grenoble cedex 9 (France); BM32/IF beamline, ESRF, F-38043 Grenoble cedex 9 (France); Arnaud, Stephan; Berar, Jean-Francois; Boudet, Nathalie; Caillot, Bernard [Institut Neel, UPR 2940 CNRS, F-38042 Grenoble cedex 9 (France); BM02/D2AM beamline, ESRF, F-38043 Grenoble cedex 9 (France); Chaurand, Perrine; Rose, Jerome [Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement, UMR 7730, F-13545 Aix en Provence (France); and others

2012-06-15T23:59:59.000Z

454

Operations Research Analysts  

U.S. Energy Information Administration (EIA) Indexed Site

Operations Research Analysts Operations Research Analysts The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Operations Research Analyst, whose work is associated with the development and main- tenance of energy modeling systems. Responsibilities: Operations Research Analysts perform or participate in one or more of the following important functions: * Develop, design, perform, and document a broad range of analyses and studies involving current and projected energy pricing, production, supply, and distribution, and consumption * Using computer programming skills and knowledge of energy industries and markets, designs and develops math-

455

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on  

E-Print Network (OSTI)

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

Kirschner, Denise

456

OPERATIONS (OPS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPS) OPS) OBJECTIVE OPS.1 The formality and discipline of operations is adequate to conduct work safely and programs are in place to maintain this formality and discipline. (CR 13) Scope: The Conduct of Operations Program was evaluated during the recent KE Basin FTS ORR and was found to be adequately implemented. Based on this result and the subsequent program enhancements, the scope of the review is to be limited to the SWS operating and maintenance evolutions. Criteria * Programmatic elements of conduct of operations are in place for SWS operations. (DOE Order 5480.19) * The SWS operations personnel adequately demonstrate the principles of conduct of operations requirements during the shift performance period. (DOE Order 5480.19)

457

AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory  

SciTech Connect

Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi [Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tukuba, Ibaraki, 300-8585 (Japan)

2010-06-23T23:59:59.000Z

458

Personnel Safety System for the beamlines at the Advanced Photon Source  

Science Journals Connector (OSTI)

The Personnel Safety System (PSS) at the Advanced Photon Source is a high reliability fail?safe redundant engineered safety system that provides personnel access control to prevent inadvertent entry into experimental stations when hazardous radiation conditions exist and warns personnel of changes in safe operating conditions inside these stations. Single fault tolerant access control is provided by two independent interlock chains implemented via programmable logic controllers (PLCs). Reduction of common mode failures is accomplished by different hardware and software platforms for the two chains. The system design is presented.

J. Hawkins; C. Seaver; J. Stein; J. Stoffel; N. Friedman

1996-01-01T23:59:59.000Z

459

SPEAR Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Interface 1113 N. Kurita J. Langton Vacuum TSP's 1120 J. Corbett A. Terebilo MATLAB Applications - Basics 1121 F. Rafael Booster Kicker Upgrade, Operation Manual 1121...

460

operations center  

National Nuclear Security Administration (NNSA)

1%2A en Operations Center http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismoperationscenter

...

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information  

SciTech Connect

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

462

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I  

SciTech Connect

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-03-01T23:59:59.000Z

463

Business Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Operations Business Operations Business Operations The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) business products, processes, and systems. The three main offices of Business Operations - Office of Budget, Office of Business Services, and Office of Information and Business Management - and their managers are outlined in the Business Operations organization chart. Offices Image of the Department of Energy Forrestal building in DC. Office of Budget The Office of Budget provides information that informs policy development and program planning, including basic market and economic data relevant to EERE's programs, market and economic analysis, estimation of the public benefits of EERE's programs, evaluation of past program performance and

464

Information Technology Specialist (Applications Software)  

Energy.gov (U.S. Department of Energy (DOE))

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Information Technology, (J2600) Operations Systems Computer...

465

Operational Plan  

Energy Savers (EERE)

and Employment website provides job fair information, job posting, and job search engine. Publications: There are numerous military publications that can be used to...

466

Operations & Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Information Transmission Planning Western OATT Revision Maintenance Services Meter policy (pdf) Meter application agreement Behind the Meter Generation policy (doc)...

467

Design operators  

E-Print Network (OSTI)

Design operators is a thesis that investigates the nature and characteristics of the design process by examining the interaction of computation with architectural design. The effects of the introduction of these media in ...

Dritsas, Stylianos, 1978-

2004-01-01T23:59:59.000Z

468

Business Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) business products, processes, and systems. The three main offices of...

469

Operating Costs  

Directives, Delegations, and Requirements

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

470

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

ASD General Information ASD General Information APS Resources & Information A list of useful links for APS staff and users. APS Technical Publications Links to APS technical publications. APS Publications Database The official and comprehensive source of references for APS-related journal articles, conference papers, book chapters, dissertations, abstracts, awards, invited talks, etc. Image Library A collection of APS images. Responsibilities & Interfaces for APS Technical Systems Descriptions of the responsibilities of APS technical groups and how they interface with one another. APS Procedures Operational procedures for the APS. APS Specifications Specifications and approvals for upgrades or changes to existing APS hardware and software. APS Radiation Safety Policy & Procedures Committee Minutes

471

Operation Diagnostics: Use of Visualization Techniques and Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Operation Diagnostics: Use of Visualization Techniques and Operation Operation Diagnostics: Use of Visualization Techniques and Operation Patterns to Verify and Optimize Dynamic Building and System Operation Speaker(s): Oliver Baumann Date: December 7, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Peng Xu Building automation systems (BAS) and building energy management systems (BEMS) have been used in modern edifices for the last 2 decades. These systems measure, process, and monitor a huge amount of data to operate the building and systems more or less properly. Often, the data is only used to signal failures or break-downs of systems or components. Further information of the data to analyze and diagnose the building operation is not used due to the lack of analysis methods and tools. Within the Operation Diagnostics, different visualization techniques are applied to

472

BOREAS Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Study Area Operations/Thompson Airport (NSA-Ops) Study Area Operations/Thompson Airport (NSA-Ops) NSA Operations (NSA-Ops) The Keewatin Air Hanger: site of BOREAS Ops 1994 Dr. Piers Sellers working in Ops, 1994 BOREAS "Air Force" The NASA C-130 The University of Wyoming King Air The NASA Helicopter The NRC Twin Otter The NCAR Electra The Ontario Chieftain Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help |

473

SSA Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Operations (SSA-Ops) Area Operations (SSA-Ops) "BOREAS Ops" was located at the Snodrifters Lodge, in Candle Lake, Saskatchewan. Radiosonde balloon launch at Ops The NASA Helicopter lands at Ops A meeting at the Snodrifter's Lodge Release of a radiosonde at the SSA operations center in Candle Lake. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

474

Oak Ridge National Laboratory - Facilities and Operations Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Operations Directorate Administrative information for the Facilities and Operations Directorate is provided below. Contacts Jimmy Stone, Director Kay Thacker,...

475

Substation Operation  

Science Journals Connector (OSTI)

... THIS book is intended to help the workman to understand the principles of substation operation. It is a good attempt at giving somewhat advanced technical knowledge in such ... ." We are told not to use water to put out a fire at a substation before the station has been made completely " dead." The reason given for this ...

1925-08-01T23:59:59.000Z

476

Information on Biodeterioration  

Science Journals Connector (OSTI)

... Information. It was the first of several information centres now functioning to be sponsored by OSTI. The centre is now fully operational and a press conference to publicize it was ... now fully operational and a press conference to publicize it was held last week- the OSTI grant runs out this year, and the organizers naturally hope that more money will ...

1968-03-16T23:59:59.000Z

477

Operation Poorman  

SciTech Connect

The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system.

Pruvost, N.; Tsitouras, J.

1981-03-18T23:59:59.000Z

478

Multipartite information causality  

Science Journals Connector (OSTI)

As a physical principle, information causality has thus far only been studied by using bipartite protocols. In this paper, we consider information causality in multireceiver random access codes, in which no receiver can gain any information only from classical communication. To precisely distinguish physical correlations from nonphysical ones, information causality in the multipartite scenario can be stated as follows: The information gain of total receivers cannot be greater than the amount of classical communication. Operationally, the distributive multiparty physical nonlocal resource can be exploited only for information splitting, rather than for accessing more information. Multipartite information causality is demonstrated to yield entanglement monogamy.

Li-Yi Hsu

2012-03-12T23:59:59.000Z

479

BEAMLINE 4-1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: X-ray Absorption Spectroscopy MAIN SCIENTIFIC DISCIPLINES: Environmental / Materials / Chemistry / Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla Wiggler, 0.75 mrad, side station BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance unfocused 5,500-38,000eV 10-4 4x18mm 0.75 mrad OPTICS: M0 mirror: Flat, bent vertically collimating, 1 m, Si, Rh-coated, cutoff 9-23 keV, LN2-cooled monochromator. Energies over 22keV are run with the mirror out. MONOCHROMATOR: Si(220) f=0° or Si(220) f=90° double-crystal, non-fixed exit slit Monochromator Crystal Glitch Library

480

BEAMLINE 2-2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CURRENT STATUS: Open with limited support SUPPORTED TECHNIQUES: White light station MAIN SCIENTIFIC DISCIPLINES: X-ray optics characterization and development % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bend Magnet Side Station BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance unfocused 1000-40000 eV NA 4.0 x 8.0 mm NA 0.4 mrad OPTICS: None MONOCHROMATOR: None (white beam) ABSORPTION: 673 microns Be, 12.4 meters He, 15.2 microns C INSTRUMENTATION: X-Y stages, ion chambers, PMT DATA ACQUISITION AND ANALYSIS: SPEC For questions and issues related to SPEC, contact beam line staff or send an email to M$SPEC@ssrl.slac.stanford.edu SUPER

Note: This page contains sample records for the topic "beamline information operational" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BEAMLINE 8-1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Photoemission spectroscopy MAIN SCIENTIFIC DISCIPLINES: BL8-1a: Materials / Surface Chemistry BL8-1b: Materials % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: Bending magnet station (vacuum ultraviolet) BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size (FWHM) flux angular acceptance focused 15 - 185 eV ~1 x 10-3 0.1 mm2 8.0 mrad OPTICS: M0 mirror: Cylindrical, SiC M1 mirror: Spherical, Fused Silica MONOCHROMATOR: 6m toroidal grating monochromator (TGM) Grating Monochromator References Monochromator Crystal Glitch Library Crystal changes need to be scheduled and coordinated in advance with BL support staff.

482

BEAMLINE 4-2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 CURRENT STATUS: Open SUPPORTED TECHNIQUES: Biological Small Angle X-ray Scattering/Diffraction Macromolecular solution x-ray scattering Lipid membrane diffraction Fiber diffraction Time-resolved x-ray scattering/diffraction Small-angle single crystal diffraction Ultra small-angle x-ray scattering (under development) MAIN SCIENTIFIC DISCIPLINES: Biology % TIME GENERAL USE: 100% SCHEDULING: Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE: 20-pole, 2.0-Tesla Wiggler ID End Station BEAM LINE SPECIFICATIONS: energy range grating type resolution DE/E spot size flux angular acceptance focused (crystal) 6000-18000 eV ~5 x 10-4 ~0.2 x 1.0mm < 1.0 mrad focused (multilayers) 8000-12000 eV ~3 x 10-2 ~0.2 x 1.0mm < 1.0 mrad