National Library of Energy BETA

Sample records for beam time user

  1. User 'To Do' List as Soon as Beam Time is Assigned | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is required for users who were born in, are citizens of, or have had afffiliations with Cuba, Iran, Sudan or Syria. Review Safety of Scheduled Experiments Identify potential...

  2. User 'To Do' List after Beam Time is Assigned | Linac Coherent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is required for users who were born in, are citizens of, or have had afffiliations with Cuba, Iran, Sudan or Syria. Review Safety of Scheduled Experiments & Complete Training...

  3. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  4. User Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Information User Information Print ALSHub User Portal User Guide A step-by-step guide for users about how to apply and prepare for beam time at the ALS. Experiment Safety Upon receiving beam time, complete an Experiment Safety Sheet Prospective Users Users from Industry Contacts for Users User Policy Data Management Users' Executive Committee (UEC) User Meeting

  5. User Experiment Time-Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Experiment Time-Line Event Target Call for proposal 2 months before proposals are due PAC Proposals Due 7 weeks before PAC meeting TAC Report for PAC Proposals (includes Independent Technical Review) 4 weeks after proposals are due PAC Report Published 1-2 months after PAC

  6. Beam Stability Complaint Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For New Users For Current Users For Administrators MX Users APS User Portal APS Data Management Practices Find a Beamline Apply for Beam Time ESAF Contacts Calendars User...

  7. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals for beam time User publications database Guest logistics and parking Loan of laptop, stealth phone and projector Logisitics for the annual users' meeting ALS Experiment...

  8. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Print 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment Safety...

  9. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide User Guide Print 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment...

  10. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide User Guide Print Wednesday, 16 September 2009 08:53 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment Safety Requirements Upon receiving beam time, complete an Experiment Safety Sheet. 5. Get Access to Work Onsite 6. Complete Online Safety Training 7. Utilize Available Resources 8. Complete the User Satisfaction Survey 9. Report Publications, Awards, Talks, Acknowledging Work at

  11. A real-time intercepting beam-profile monitor for a medical cyclotron

    SciTech Connect (OSTI)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C.

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  12. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Print 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment Safety Requirements Upon receiving beam time, complete an Experiment Safety Sheet. 5. Get Access to Work Onsite 6. Complete Online Safety Training 7. Utilize Available Resources 8. Complete the User Satisfaction Survey 9. Report Publications, Awards, Talks, Acknowledging Work at ALS

  13. LANSCE | Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosen Scholar Rosen Prize Users dotline User Information Planning for Arrival: Contact the User Office several weeks before arriving at LANSCE. The LANSCE User Office will assist you in preparing for your visit to LANSCE. Plan to arrive one day prior to your scheduled beam time. User Office Contacts Division Office Ph: 505.667.5051 Lujan Center User Office lujan-uo@lanl.gov WNR User Program Administrator Tanya Herrera Ph: 505.667.6797 User Office Main Desk Email: lansce-user-office@lanl.gov Ph:

  14. Monitoring external beam radiotherapy using real-time beam visualization

    SciTech Connect (OSTI)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  15. Time Structure of the LANSCE Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The proton beam is delivered to Target-1 after passing through the proton storage ring (PSR). The time it takes an 800 MeV proton to travel one circuit of the PSR is 360 ns. The...

  16. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  17. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  18. Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions to CAMD Policy on Acknowledgements Policy on Collaborations Hotel Accommodations User Information All users | New users | Returning users Non-consortium users may apply...

  19. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time will be based on the resources contributed by the PRT, as negotiated with the ALS management. The amount of beam time set aside for the PRT and for general users is...

  20. LANSCE | User Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the initial proposal process to the completion of the experiment, LANSCE provides its users with resources critical to their experiements and their experience. Lujan Resources WNR Resources Submit a proposal for beam time Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Submit a proposal for beam time Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews User Program Administration lujan-uo@lanl.gov Ph: 505.667.6069 User Program

  1. Prospective Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ALS with all the technical, experiment, and administrative support they require for successful and efficient use of beam time. The kinds of access for users, i.e., General...

  2. About the User Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program at LANSCE LANSCE's User Program ensures the research it oversees represents the cutting edge of nuclear science. Neutron and Nuclear Science (WNR) User Program Proposal Process Those interested in obtaining beam time for experiments at one of the LANSCE neutron sources should follow the proposal process. Calls for proposals to all potential users are made yearly. The proposal consists of information about the research team, amount of beam time requested and a description of the

  3. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  4. U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities were reported in Apple QuickTime. A remote user can cause arbitrary code to be executed on the target user's system.

  5. V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code November 9, 2012 - 6:00am...

  6. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOE Patents [OSTI]

    Eastman, Jay M. (Pittsford, NY); Miller, Theodore L. (Rochester, NY)

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  7. Beam Time Request - Radiation Effects Facility / Cyclotron Institute /

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas A&M University Beam-Time Request Information about scheduling beam-time: HOURLY RATE: Contact Henry Clark, 979-845-1411 or clark@comp.tamu.edu MINIMUM BILLING: There is an eight hour minimum billing, after that you are billed for time used including tuning time. CANCELLATION POLICY: If you schedule cyclotron time and need to cancel at a later date, you must notify Henry Clark two weeks prior to the start date to avoid the cancellation fee. The fee is in the amount of one half of

  8. MyNERSC Gives Users Easier Access to Data, Jobs, Wait Times

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MyNERSC Gives NERSC Users Easy Access to Data, Projects MyNERSC Gives Users Easier Access to Data, Jobs, Wait Times April 6, 2015 MyNERSC, a web-based portal that provides NERSC users with real-time information on their jobs, disk usage, allocations and queue wait times, is garnering rave reviews following recent upgrades that have broadened its functionality and streamlined its ease of use. "The new interface at https://my.nersc.gov/ is AWESOME!" said one NERSC user following the

  9. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect (OSTI)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  10. Radial electron-beam-breakup transit-time oscillator

    DOE Patents [OSTI]

    Kwan, Thomas J. T. (Los Alamos, NM); Mostrom, Michael A. (Albuquerque, NM)

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  11. MyNERSC Gives Users Easier Access to Data, Jobs, Wait Times

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MyNERSC Gives Users Easier Access to Data, Jobs, Wait Times April 6, 2015 MyNERSC, a web-b... MyNERSC was originally developed 10 years ago, and in 2014 both the web and mobile ...

  12. As you prepare for your upcoming beam time, please be aware that construction is planned to update SLAC Gate 17 with RFID proximity card access hardware and to change the stairs next to the Security hut to an ADA compliant ramp. Please forward this to your proposal collaborators (and ensure that all users have registered and completed training before they arrive). This construction is scheduled to begin Tuesday 5/28 and be completed by 6/28. During this construction, access to the LCLS and SSRL buildings and experimental facilities will be provided as follows: VEHICLES ONLY THROUGH GATE 17 5/28-6/28 0600-1530 (6 am-3:30 pm) Construction Zone. Only VEHICLE traffic will be allowed access through Gate 17 and flagman will provide traffic control. 1530-1800 (3:30-6:00 pm) Assumes construction will have stopped for the day; both traffic lanes will be open for vehicles. 1800-0600 (6 pm-6 am) As now, Gate 17 will be closed or barricaded overnight. PEDESTRIANS ONLY THROUGH GATE 16 5/28-6/28 The pedestrian turnstile at Gate 16A will not change. The turnstile is available for pedestrian use 24/7 as long as the individual has a valid SLAC ID badge (and there is a guard at Gate 30 to 'buzz' them through). 0700-1600 (6 am-4 pm) Pedestrians who would normally walk through Gate 17 will instead follow the detour to Gate 16 swing gate which will be unlocked and staffed by Security. A valid SLAC ID badge is needed to enter; new users without IDs will be allowed to proceed for check-in and badging after confirmation with the User Research Administration Office (see detour map attached). FYI - After the construction is completed and proximity card readers are fully functional, users and staff will enter Gates 17 and 30 using an activated RFID proximity card. More details to follow.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated Proximity Access at Gate 17 and Sector 30 New SLAC ID badges with embedded RFID are used to activate these gates and for off-hours access at the main entrance off Sand Hill Road as well as Alpine Road (gates will be accessible 24/7) . New user badges include this proximity gate activation feature, but older photo IDs need to be updated. Users are advised to register, complete training and contact the User Research Administration (URA) office before arrival for beam time to help

  13. Time-delayed directional beam phased array antenna

    DOE Patents [OSTI]

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  14. Nuclear Physics: Experiment Research - Call for Beam Time Requests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks ... Jefferson Lab Users Group From : Nuclear Physics Experiment Scheduling Committee Subject: ...

  15. General User Proposals (GUPs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General User Proposals (GUPs) Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the Participating Research Team (PRT) that operates the beamline. Before Submitting a Proposal Review the ALS Beamlines Directory to learn about the research capabilities of individual beamlines at the ALS. Contact the beamline scientist or the local contact listed in the tables, for additional information about the

  16. LANSCE | User Resources | Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedules You will be notified of your experiment schedule at least 3-6 weeks prior to your start date. Two (2) weeks post-review, beam-time will be scheduled by the Instrument Scientist in consultation with the user. Three (3) weeks post review, schedule letters are sent to the Principal Investigator. After scheduling experiments, the LANSCE User Office will contact you to determine and schedule applicable training, assist with travel arrangements, initiate and required foreign national access

  17. New Users - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Users Welcome! Congratulations on getting your experiment approved and scheduled at the 88-Inch Cyclotron. This section details how to register with LBNL, acquire gate access and parking, and take the required safety courses to run an experiment at the 88-Inch Cyclotron. 6 Weeks Ahead Set up a user agreement between your organization and LBNL, if there is not already one in place. Recharge customers (those who pay for beam time) must have a user agreement, purchase order, and an advance

  18. T-654: Apple QuickTime Multiple Bugs Let Remote Users Execute Arbitrary

    Broader source: Energy.gov [DOE]

    A remote user can create a specially crafted file that, when loaded by the target user, will execute arbitrary code on the target system. The code will run with the privileges of the target user.

  19. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect (OSTI)

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  20. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    DOE Patents [OSTI]

    Majewski, Stanislaw (Yorktown, VA); Proffitt, James (Newport News, VA); Macey, Daniel J. (Birmingham, AL); Weisenberger, Andrew G. (Yorktown, VA)

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  1. Notification of General User Proposal and Approved Program Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notification of General User Proposal and Approved Program Results Notification of General User Proposal and Approved Program Results Print by Sue Bailey, User Services Group Leader The Proposal Study Panel (PSP) met on October 23 to oversee and finalize the scoring of General User Proposals for the 2016-1 Feb-June operating cycle and to make recommendations to the ALS Scientific Advisory Committee (SAC) on Approved Program applications. Beam time allocations are completed and users have been

  2. Fidelity of a Time-Resolved Imaging Diagnostic for Electron Beam Profiles

    SciTech Connect (OSTI)

    Frayer, Daniel; Ekdahl, Carl A.; Johnson, Douglas

    2014-10-01

    An optical tomographic diagnostic instrument has been fielded at the Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory. Four optical lines of sight create projections of an image of an electron beam on a Cerenkov target, which are relayed via optical fiber to streak cameras. From these projections, a reconstruction algorithm creates time histories of the beam’s cross section. The instrument was fielded during and after facility commissioning, and tomographic reconstructions reported beam parameters. Results from reconstructions and analysis are noted.

  3. General User Proposals (GUPs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposals (GUPs) Print General Users are granted beam time through a peer review proposal process. They may use beamlines and endstations provided by the ALS or the Participating Research Team (PRT) that operates the beamline. Before Submitting a Proposal Review the ALS Beamlines Directory to learn about the research capabilities of individual beamlines at the ALS. Contact the beamline scientist or the local contact listed in the tables, for additional information about the beamline. You can

  4. Call for General User Proposals - Upcoming Deadline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for General User Proposals - Upcoming Deadline Call for General User Proposals - Upcoming Deadline Print The User Office is accepting new General User Proposals (GUPs) from scientists who wish to conduct research at the ALS in the 2016-2 July-Dec cycle. PROPOSAL SUBMISSION DEADLINE: March 2, 2016 Please log in to ALSHub to submit a new GUP or to make a Beam Time Request (BTR) on an existing active proposal. Users are reminded that they need to have an ALSHub account to submit proposals, and

  5. U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    overflow CVE-2012-0670. A specially crafted '.pict' file can trigger a memory corruption error CVE-2012-0671. Impact: A remote user can create a file that, when loaded by...

  6. Heavy ion beam probe operation in time va

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operation in time varying equilibria of improved confinement reversed field pinch discharges D. R. Demers, X. Chen, P. M. Schoch, and P. J. Fimognari Citation: Rev. Sci. Instrum. 81, 10E109 (2010); doi: 10.1063/1.3479109 View online: http://dx.doi.org/10.1063/1.3479109 View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v81/i10 Published by the American Institute of Physics. Additional information on Rev. Sci. Instrum. Journal Homepage: http://rsi.aip.org Journal Information:

  7. Time-dependent simulation of prebunched one and two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S.; Maraghechi, B.

    2014-04-15

    A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.

  8. 27th Annual SSRL Users' Meeting -- Lytle Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3rd Annual Farrel W. Lytle Award -- Nominations Due October 2 The SSRL Users' Organization Executive Committee has established this award to promote important technical or scientific accomplishments in synchrotron radiation-based science and to foster collaboration and efficient use of beam time among users and staff at SSRL. All SSRL users and staff are eligible for this award. The Lytle Award consists of a plaque that is displayed in the User Research Administration Office at SSRL and $1000.

  9. LANSCE | Training Office | User Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phone: 505.665.1010 mesa header Beam Status Accelerator Ops (Internal) Operating Schedule Long Range Operating Schedule User Resources User Agreements Proposals Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User Program Headlines About LANSCE History Leadership LINAC Outreach Affiliations

  10. LANSCE | Users | LUG | Election Ballot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phone: 505.665.1010 mesa header Beam Status Accelerator Ops (Internal) Operating Schedule Long Range Operating Schedule User Resources User Agreements Proposals Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User Program Headlines About LANSCE History Leadership LINAC Outreach Affiliations

  11. LANSCE | Users | User Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Office LANSCE User Office and Visitor Center The LANSCE User Office is responsible for coordinating the users with LANSCE instrument scientist and the facility. Users contact the User Office weeks before they arrive at the LANSCE Visitor Center at Technical Area 53. Among their many responsibilities, the team issues the call for proposals, coordinates proposal experiment schedules, directs users to the training center, issues badges and dosimeters, helps to arrange tours of the facilities,

  12. Vacuum Performance and Beam Life Time in the PEP-II Storage Rings

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Vacuum Performance and Beam Life Time in the PEP-II Storage Rings Citation Details In-Document Search Title: Vacuum Performance and Beam Life Time in the PEP-II Storage Rings × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources

  13. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    SciTech Connect (OSTI)

    Yang, B.X.; Lumpkin, A.H.; Borland, M.

    1997-06-01

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the {open_quotes}top-view{close_quotes} of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf.

  14. LANSCE | Users | User Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE User Program LANSCE's User Program ensures the research it oversees represents the cutting edge of nuclear and materials science and technology. The User Program plays a key role in training the next generation of top scientists, attracting the best graduate students, postdoctoral researchers, and early-career scientists (defined as those less than 40-years old). The User Program typically begins with the first call for proposals and run until the end of the run-cycle. The User-Program

  15. Becoming a User | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Becoming a User LCLS beam lines are open to academic and industrial users for scientific research. All research proposals are subjected to peer review and ranked against competing...

  16. LANSCE | User Resources | Experiment Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Reports For experiment report guidance, examples or a blank form, select one of the following .pdf files: Instructions.pdf Experiment Report Form.pdf Send reports to the LANSCE User Office. Reports are due three months after you receive beam time. If you didn't complete a User Survey during your visit, please do so when you complete your Experiment Report. The responses to the survey are used by LANSCE to identify and address issues and are also reported to the agencies providing

  17. FNAL Users Meeting Morgan Wascko

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FNAL Users Meeting Morgan Wascko 3 June, 2004 LSU Slide 1 Quo Vadis, MiniBooNE? Context ν oscillation landscape LSND Implications What if the signal is confirmed? Latest MiniBooNE news Beam and Booster performance Detector performance calibration sources optical modeling of the oil detected neutrino rate vs. time Neutrino data flux, cross section progress Updated Oscillation Sensitivity based on measured neutrino rates during first year of data New physics? Many answers for many questions

  18. Registration of clinical volumes to beams-eye-view images for real-time tracking

    SciTech Connect (OSTI)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I.; Keall, Paul J.

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  19. User Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status...

  20. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Contact User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment...

  1. Using time separation of signals to obtain independent proton and antiproton beam position measurements around the Tevatron

    SciTech Connect (OSTI)

    Webber, R.; /Fermilab

    2005-05-01

    Independent position measurement of the counter-circulating proton and antiproton beams in the Tevatron, never supported by the original Tevatron Beam Position Monitor (BPM) system, presents a challenge to upgrading that system. This paper discusses the possibilities and complications of using time separation of proton and antiproton signals at the numerous BPM locations and for the dynamic Tevatron operating conditions. Results of measurements using one such method are presented.

  2. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    SciTech Connect (OSTI)

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q?=?31eV for O{sup 7+}, while it is kT{sub q}/q?=?25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  3. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  4. Time of Decline in Sexual Function After External Beam Radiotherapy for Prostate Cancer

    SciTech Connect (OSTI)

    Siglin, Joshua; Kubicek, Gregory J.; Leiby, Benjamin; Valicenti, Richard K.

    2010-01-15

    Purpose: Erectile dysfunction is one of the most concerning toxicities for patients in the treatment of prostate cancer. The inconsistent evaluation of sexual function (SF) and limited follow-up data have necessitated additional study to clarify the rate and timing of erectile dysfunction after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: A total of 143 men completed baseline data on SF before treatment and at the subsequent follow-up visits. A total of 1187 validated SF inventories were analyzed from the study participants. Multiple domains of SF (sex drive, erectile function, ejaculatory function, and overall satisfaction) were analyzed for <=8 years of follow-up. Results: The median follow-up was 4.03 years. The strongest predictor of SF after EBRT was SF before treatment. For all domains of SF, the only statistically significant decrease in function occurred in the first 24 months after EBRT. SF stabilized 2 years after treatment completion, with no statistically significant change in any area of SF >2 years after the end of EBRT. Conclusion: These data suggest that SF does not have a continuous decline after EBRT. Instead, SF decreases maximally within the first 24 months after EBRT, with no significant changes thereafter.

  5. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users...

  6. General User Proposal Scores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Scores Print Scoring Proposals are scored on a scale of 1 to 5, with 1 being the best score and 5 the worst. Reviewers are requested to use the following ranking schema: Must do High Priority Medium Priority Low priority Don't do Beam time is assigned based on each proposal's score in relation to all other proposals for a given beamline. For beamlines where beam time requests exceed available beam time, a cutoff score is assigned after which no beam time is allocated. Individual Beam

  7. SSRL 32nd Users' Meeting Oct 17 - 19, 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8th Annual Farrel W. Lytle Award Farrel W. Lyttle The SSRL Users' Organization solicits nominations for the 2005 Farrel W. Lytle Award. This Award was established by the SSRL Organization Executive Committee to promote important technical or scientific accomplishments in synchrotron radiation-based science and to foster collaboration and efficient use of beam time among users and staff at SSRL. The Lytle Award consists of a certificate and $1000 (awardee names are added to a plaque displayed in

  8. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  9. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    SciTech Connect (OSTI)

    Via, Riccardo Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.

  10. Time-of-flight energy analyzer for the plasma potential measurements by a heavy ion beam diagnostic

    SciTech Connect (OSTI)

    Nedzelskiy, I.S.; Malaquias, A.; Goncalves, B.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.

    2004-10-01

    A time-of-flight (TOF) technique for the plasma potential measurements by a heavy ion beam diagnostic (HIBD) with a multiple cell array detector has been elaborated on tokamak ISTTOK as an alternative to the traditional electrostatic energy analyzer. This article describes the design and operation of a four-channel TOF energy analyzer (TOFEA). First results of plasma potential measurements by TOFEA are presented proving the feasibility of this technique in experiments with HIBD.

  11. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  12. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities /collaboration/_assets/images/icon-collaboration.jpg User Facilities A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities.

  13. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing

  14. User Packages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Packages User Packages There is more than one way for users to manage installation of Python packages on their own. Users of the Anaconda distribution may create their own environments as described here. Users of the NERSC-built modules can use virtualenv, pip, or compile and install Python packages directly. Using "pip" on Edison and Cori There is an issue with the pip command on the Cray systems because of an SSL certificate verification problem. One symptom is that you create

  15. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Guidelines User Services Print General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address

  16. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Services General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address is being protected from

  17. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Services Print General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address is being protected

  18. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Services Print General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address is being protected

  19. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Services Print General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address is being protected

  20. PST user`s guide

    SciTech Connect (OSTI)

    Rempe, J.L.; Cebull, M.J.; Gilbert, B.G.

    1996-10-01

    The Parametric Source Term (PST) software allows estimation of radioactivity release fractions for Level 2 Probabilistic Safety Assessments (PSAs). PST was developed at the Idaho National Engineering Laboratory (INEL) for the Nuclear Regulatory Commission`s (NRC`s) Accident Sequence Precursor (ASP) Program. PST contains a framework of equations that model activity transport between volumes in the release pathway from the core, through the vessel, through the containment, and to the environment. PST quickly obtains exact solutions to differential equations for activity transport in each volume for each time interval. PST provides a superior method for source term estimation because it: ensures conservation of activity transported across various volumes in the release pathway; provides limited consideration of the time-dependent behavior of input parameter uncertainty distributions; allows input to be quantified using state-of-the-art severe accident analysis code results; increases modeling flexibility because linkage between volumes is specified by user input; and allows other types of Light Water Reactor (LWR) plant designs to be evaluated with minimal modifications. PST is a microcomputer-based system that allows the analyst more flexibility than a mainframe system. PST has been developed to run with both MS DOS and MS Windows 95/NT operating systems. PST has the capability to load ASP Source Term Vector (STV) information, import pre-specified default input for the 6 Pressurized Water Reactors (PWRs) initially analyzed in the NRC ASP program, allow input value modifications for release fraction sensitivity studies, export user-specified default input for the LWR being modeled, report results of radioactivity release calculations at each time interval, and generate formatted results that can interface with other risk assessment codes. This report describes the PST model and provides guidelines for using PST.

  1. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment...

  2. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Print General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address is being protected from

  3. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Print General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 (dial last four numbers from on-site phones) Location: Building 6 mezzanine, Room 6-2212 Office hours: Monday-Friday 8am - 5pm (new users should arrive before 4pm) Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Group Leader User Services Sue Bailey Prospective users, Industry users This e-mail address is being protected from

  4. Prospective Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from universities, government labs, and industry who are interested in performing experiments at the general sciences and structural biology beamlines open to users. An...

  5. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    SciTech Connect (OSTI)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  6. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  7. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  8. User Program | Prospective Users US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist you plan to work with. If you need training, plan to arrive here at least 1 day before your experiment is scheduled to begin. All non-government users need to have a...

  9. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  10. JLF User Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLF User Program The Jupiter Laser Facility User Program is open to all qualified applicants; US and non-US PIs are welcome to submit proposals. A proposal is necessary for shot-time allocated on the Titan, Janus, and COMET laser platforms at JLF. Using technical evaluations from experts, proposals will be reviewed and ranked by the JLF Advisory Committee based on scientific and/or programmatic quality, impact, and feasibility. Typically, all platforms are overrequested by a factor of two or

  11. GPU accelerated fully space and time resolved numerical simulations of self-focusing laser beams in SBS-active media

    SciTech Connect (OSTI)

    Mauger, Sarah; Colin de Verdière, Guillaume; Bergé, Luc; Skupin, Stefan; Friedrich Schiller University, Institute of Condensed Matter Theory and Optics, 07743 Jena

    2013-02-15

    A computer cluster equipped with Graphics Processing Units (GPUs) is used for simulating nonlinear optical wave packets undergoing Kerr self-focusing and stimulated Brillouin scattering in fused silica. We first recall the model equations in full (3+1) dimensions. These consist of two coupled nonlinear Schrödinger equations for counterpropagating optical beams closed with a source equation for light-induced acoustic waves seeded by thermal noise. Compared with simulations on a conventional cluster of Central Processing Units (CPUs), GPU-based computations allow us to use a significant (16 times) larger number of mesh points within similar computation times. Reciprocally, simulations employing the same number of mesh points are between 3 and 20 times faster on GPUs than on the same number of classical CPUs. Performance speedups close to 45 are reported for isolated functions evaluating, e.g., the optical nonlinearities. Since the field intensities may reach the ionization threshold of silica, the action of a defocusing electron plasma is also addressed.

  12. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a.m. - 12.00 p.m. and 1.00 p.m. - 4.00 p.m. User Office Staff Deborah Smith adriana reza This e-mail address is being protected from spambots. You need JavaScript enabled to...

  13. TH-C-17A-07: Visualizing and Quantifying Radiation Therapy in Real-Time Using a Novel Beam Imaging Technique

    SciTech Connect (OSTI)

    Jenkins, C; Naczynski, D; Xing, L

    2014-06-15

    Purpose: Radiation therapy uses invisible high energy X-rays to treat an invisible tumor. Proper positioning of the treatment beam relative to the patient's anatomy during dose delivery is critically important to the success of treatment. We develop and characterize a novel radiation therapy beam visualization technique for real-time monitoring of patient treatment. Methods: Custom made flexible scintillator sheets were fabricated from gadolinium oxysulfide (GOS) particles that had been doped with terbium within a silicone elastomer matrix. Sheets of several thicknesses ranging from 0.3 to 1mm were prepared and tested. Sheets were exposed to megavoltage X-ray and electron beams from a Varian linac and the resulting optical signal was collected by multiple CMOS cameras placed in the treatment room. Real-time images were collected for different beam energies and dose rates. Signal intensity and SNR were calculated by processing the acquired images. Results: All signals were detectable in the presence of full room lighting and at an integration time of 45ms. Average signal intensity and SNR increased with both sheet thickness and dose rate and decreased with beam energy and incident light. For a given sheet thickness and beam energy the correlation between dose rate and signal intensity was highly linear. Increased sheet thickness or dose rate results in a linear increase in the detected signal. All results are consistent with analytical approximations. Conclusion: The technique offers a means of accurately visualizing a radiation therapy beam shape and fluence in real time. The effects of salient parameters have been characterized and will enable further optimization of the technique as it is implemented into the clinical workflow. The project described was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health through UL1 TR001085.

  14. Weekly User Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly User Schedule Print Requests for special operations use of the "scrubbing" shift should be sent directly to Warren Byrne (486-7517) by 1:00 p.m. Friday. Any requests for changes in beam energy, bucket fill pattern, scrubbing shifts, or machine setup must be submitted to This e-mail address is being protected from spambots. You need JavaScript enabled to view it by 4:00 pm on Wednesday, the week before the scheduled run, for consideration during Thursday's Physics meeting. These

  15. Weekly User Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly User Schedule Print Requests for special operations use of the "scrubbing" shift should be sent directly to Warren Byrne (486-7517) by 1:00 p.m. Friday. Any requests for changes in beam energy, bucket fill pattern, scrubbing shifts, or machine setup must be submitted to This e-mail address is being protected from spambots. You need JavaScript enabled to view it by 4:00 pm on Wednesday, the week before the scheduled run, for consideration during Thursday's Physics meeting. These

  16. LANSCE | User Resources | Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Resources dotline 2015 WNR Call for Proposals Proposal Submission WNR call for proposals opens April 6, 2015. Deadline: Friday, May 15, 2015, 5:00 pm (MDT). PAC: June 4 and 5, 2015. lansce.lanl.gov wnr.lanl.gov The Los Alamos Neutron Science Center (LANSCE) is issuing a Call for Proposals for the WNR facility for run cycle September - December, 2015. The Neutron and Nuclear Science Research Facility (WNR) provides neutron and proton beams, as well as detector arrays for basic, applied,

  17. Weekly User Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly User Schedule Print Requests for special operations use of the "scrubbing" shift should be sent directly to Warren Byrne (486-7517) by 1:00 p.m. Friday. Any requests for changes in beam energy, bucket fill pattern, scrubbing shifts, or machine setup must be submitted to This e-mail address is being protected from spambots. You need JavaScript enabled to view it by 4:00 pm on Wednesday, the week before the scheduled run, for consideration during Thursday's Physics meeting. These

  18. NIF Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF Users Research Opportunities at the National Ignition Facility The National Ignition Facility provides the scientific community with an unprecedented capability for studying materials at extreme pressures, temperatures, and densities. NIF is expected to achieve temperatures and densities almost an order of magnitude greater than those in the sun's core and pressures far in excess of those at the core of Jupiter. The density of neutrons during the tens of picoseconds the NIF target undergoes

  19. SU-D-BRE-02: Development and Commissioning of A Gated Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking

    SciTech Connect (OSTI)

    Umegaki, K; Matsuura, T.; Takao, S.; Nihongi, H.; Yamada, T.; Miyamoto, N.; Shimizu, S.; Shirato, H.; Matsuda, K.; Nakamura, F.; Umezawa, M.; Hiramoto, K.

    2014-06-01

    Purpose: A novel Proton Beam Therapy system has been developed by integrating Real-Time Tumor-Tracking (RTRT) and discrete spot scanning techniques. The system dedicated for spot scanning delivers significant advantages for both clinical and economical points of view. The system has the ability to control dose distribution with spot scanning beams and to gate the beams from the synchrotron to irradiate moving tumors only when the actual positions of them are within the planned position. Methods: The newly designed system consists of a synchrotron, beam transport systems, a compact and rotating gantry system with robotic couch and two orthogonal sets of X-ray fluoroscopes. The fully compact design of the system has been realized by reducing the maximum energy of the beam to 220MeV, corresponding to 30g/cm2 range and the number of circulating protons per synchrotron operation cycle, due to higher beam utilization efficiency in spot scanning. To improve the irradiation efficiency in the integration of RTRT and spot scanning, a new control system has been developed to enable multiple gated irradiation per operation cycle according to the gating signals. After the completion of the equipment installation, beam tests and commissioning has been successfully performed. Results: The basic performances and beam characteristics through the synchrotron accelerator to iso-center have been confirmed and the performance test of the irradiation nozzle and whole system has been appropriately completed. CBCT image has been checked and sufficient quality was obtained. RTRT system has been demonstrated and realized accurate dose distributions for moving targets. Conclusion: The gated spot scanning Proton Beam Therapy system with Real-Time Tumor-Tracking has been developed, successfully installed and tested. The new system enables us to deliver higher dose to the moving target tumors while sparing surrounding normal tissues and to realize the compact design of the system and facility by maximizing the efficiency of proton beam utilization. This research is granted by the Japan Society for the Promotion of Science(JSPS) through the “Funding Program for World-Leading Innovative R and D on Science and Technology(FIRST Program)”, initiated by the Council for Science and Technology Policy(CSTP)

  20. NIF and Jupiter User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nif workshops / user group 2014 NIF and Jupiter User Group Meeting 2014 About the NIF and Jupiter User Group Meeting The 192-beam National Ignition Facility (NIF), the most energetic inertial confinement fusion (ICF) facility in the world, is now operational. The NIF laser's unprecedented power, precision, and reproducibility, coupled with over 50 available diagnostics and sophisticated target fabrication capability, enable a wide range of leading edge scientific experiments. Initial

  1. BL 11-2 User Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Support - header Beam Line Status Optics Configuration Model Compound Library Glitch Curves Instrumentation - header Detectors Data Collecting Software Experimental Design Beam Line Manual FAQ Photo Gallery Contact Us Welcome to beam line 11-2. It is the focus of the MEIS staff to make your visit here as productive as possible. We hope the information here will improve your experience at BL11-2 and aid you in collecting the highest quality data possible during your visit. Contact: Joe

  2. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS User Meeting Print web banner ALS User Meeting: October 5-7, 2015 Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting...

  3. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22013 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user ...

  4. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    102115 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user ...

  5. LANSCE | News | User Program Headlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program Headlines dotline CY 2016 Run Schedule I FY2017 pRad: Call for Proposals The CY 2016 schedule extends the production cycle to all areas through February 2016, an H- ion source recycle was added on February 2, 2016 to accommodate the extended production, defines four weeks of Low-Level RF testing through module 2 with H+ beam starting February 29, 2016, and defines the resumption of beam production on September 6, 2016. The LANSCE accelerator regained its design specification for

  6. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  7. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    backing needs assurance of adequate access to the facility. On the other hand, qualified groups that make a large commitment of time and resources need some assurance of an...

  8. User Program Performance Monitor

    Energy Science and Technology Software Center (OSTI)

    1983-09-30

    PROGLOOK makes it possible to monitor the execution of virtually any OS/MVT or OS/VS2 Release 1.6 load module. The main reason for using PROGLOOK is to find out which portions of a code use most of the CPU time so that those parts of the program can be rewritten to reduce CPU time. For large production programs, users have typically found it possible to reduce CPU time by 10 to 30 percent without changing themore »program''s function.« less

  9. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Users Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? JLab Users Group User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events At-A-Glance Member Institutions News Users Group Mailing

  10. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Executive Committee Users' Executive Committee Print The ALS Users' Executive Committee (UEC) is responsible for conveying the concerns and interests of users to ALS management. Members are elected annually by ALS users. To contact a member of the UEC, please email This e-mail address is being protected from spambots. You need JavaScript enabled to view it . ALS Users' Executive Committee Web Site ALS Users' Association Charter The current members of the committee (with terms), as of

  11. 2012 NERSC User Survey Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 User Survey Text 2010/2011 User Survey Results 2009/2010 User Survey Results 2008/2009 User Survey Results 2007/2008 User Survey Results 2006 User Survey Results 2005 User Survey Results 2004 User Survey Results 2003 User Survey Results 2002 User Survey Results 2001 User Survey Results 2000 User Survey Results 1999 User Survey Results 1998 User Survey Results HPC Requirements for Science HPC Workshop Reports NERSC Staff Publications & Presentations Journal Cover Stories Galleries

  12. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  13. LANSCE | Users | LUG | Topical User Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Topical User Meeting | January 9-10 2012 LANSCE Topical User Workshop LANSCE will host the 2012 Topical User Workshop, January 9-10, 2012. We hope to see you there! Registration | Accommodations | Agenda (some presentations are included on the agenda) LANL foreign nationals may register at anytime. | Poster Dimensions: 32 in x 40 in This workshop will solicit user input for the scientific opportunities offered by the pulse stacker and superconducting accelerator that LANSCE has proposed

  14. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users and will enable users to plan more efficiently the utilization of the facility. The role of the ALSUA shall be to advise the ALS Director on matters of concern to users....

  15. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLF User Group NIF and Jupiter User Group Meeting 2016 The 2016 NIF User Group Meeting will take place the first week of February. The exact dates are Sunday evening, January 31th,...

  16. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  17. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Executive Committee Print The ALS Users' Executive Committee (UEC) is responsible for conveying the concerns and interests of users to ALS management. Members are elected annually by ALS users. To contact a member of the UEC, please email This e-mail address is being protected from spambots. You need JavaScript enabled to view it . ALS Users' Executive Committee Web Site ALS Users' Association Charter The current members of the committee (with terms), as of January 1, 2016, are David

  18. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Executive Committee Print The ALS Users' Executive Committee (UEC) is responsible for conveying the concerns and interests of users to ALS management. Members are elected annually by ALS users. To contact a member of the UEC, please email This e-mail address is being protected from spambots. You need JavaScript enabled to view it . ALS Users' Executive Committee Web Site ALS Users' Association Charter The current members of the committee (with terms), as of January 1, 2016, are David

  19. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Liaison Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? User Liaison Office User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version ULO Services Driving in VA Housing Accomodations Office Space Student Affairs Office Telephone Services ULO Staff Lorelei Chopard User Liaison (ULO) (757) 269-6388 Bldg 12 L111 Hari Areti Head of

  20. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Executive Committee Print The ALS Users' Executive Committee (UEC) is responsible for conveying the concerns and interests of users to ALS management. Members are elected annually by ALS users. To contact a member of the UEC, please email This e-mail address is being protected from spambots. You need JavaScript enabled to view it . ALS Users' Executive Committee Web Site ALS Users' Association Charter The current members of the committee (with terms), as of January 1, 2016, are David

  1. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Executive Committee Print The ALS Users' Executive Committee (UEC) is responsible for conveying the concerns and interests of users to ALS management. Members are elected annually by ALS users. To contact a member of the UEC, please email This e-mail address is being protected from spambots. You need JavaScript enabled to view it . ALS Users' Executive Committee Web Site ALS Users' Association Charter The current members of the committee (with terms), as of January 1, 2016, are David

  2. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  3. User Accounts and Emails

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Accounts and Emails Print User Accounts Once a User Agreement is signed, users may set up an account for miscellaneous supplies and expenses at the ALS. To establish a user account, please contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it , Budget and Planning, (x 6889). Users can keep track of expenses charged to their Berkeley Lab accounts through the Lab's Integrated Reporting and Information System (IRIS) . User Emails Users may sign up

  4. User Accounts and Emails

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Accounts and Emails Print User Accounts Once a User Agreement is signed, users may set up an account for miscellaneous supplies and expenses at the ALS. To establish a user account, please contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it , Budget and Planning, (x 6889). Users can keep track of expenses charged to their Berkeley Lab accounts through the Lab's Integrated Reporting and Information System (IRIS) . User Emails Users may sign up

  5. User Accounts and Emails

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Accounts and Emails Print User Accounts Once a User Agreement is signed, users may set up an account for miscellaneous supplies and expenses at the ALS. To establish a user account, please contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it , Budget and Planning, (x 6889). Users can keep track of expenses charged to their Berkeley Lab accounts through the Lab's Integrated Reporting and Information System (IRIS) . User Emails Users may sign up

  6. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect (OSTI)

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  7. Co: clqrt. Beam

    Office of Legacy Management (LM)

    Co: clqrt. Beam*/:

  8. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS User Meeting October 3-5, 2011 Lawrence Berkeley National Laboratory, California

  9. Managing Your User Account

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managing Your Account Managing Your User Account Use the NERSC Information Management (NIM) system to customize your user account and keep your personal information up-to-date. See the NIM User's Guide, especially the "Managing Your User Account with NIM" section. Last edited: 2016-02-01 08:07:2

  10. Franklin: User Experiences

    SciTech Connect (OSTI)

    National Energy Research Supercomputing Center; He, Yun; Kramer, William T.C.; Carter, Jonathan; Cardo, Nicholas

    2008-05-07

    The newest workhorse of the National Energy Research Scientific Computing Center is a Cray XT4 with 9,736 dual core nodes. This paper summarizes Franklin user experiences from friendly early user period to production period. Selected successful user stories along with top issues affecting user experiences are presented.

  11. Interactive visualization of particle beams for accelerator design

    SciTech Connect (OSTI)

    Wilson, Brett; Ma, Kwan-Liu; Qiang, Ji; Ryne, Robert

    2002-01-15

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques.

  12. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Bruce, R.; Blaskiewicz, M.; Jowett, J.M.; Fischer, W.

    2010-09-07

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon {sup 197}Au{sup 79}+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future {sup 208}Pb+{sup 82+} beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  13. User Program | Prospective Users Non-US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UserAgreements.shtml When you Arrive You must bring your current visa, passport, and any other documents necessary. First, go to the Los Alamos National Laboratory's...

  14. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  15. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data-Intensive Computing Panel: 20 Minutes Into Our Future Near-term technology panel discussion between facility operations, applications developer, and users 2 Joint Facilities User Forum Guiding Thoughts of this Panel * Talking to the Compute, Store, Analyze cycle - Users - Developers - Operators/integrators * What problems have we solved? * What problems have we found? * How do we inspire interesting dinner conversation for participants? 3 Joint Facilities User Forum Format *

  16. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Meeting ALS User Meeting web banner ALS User Meeting: October 5-7, 2015 Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Meeting Highlights Plenary sessions with keynote speakers Reports from Washington and DOE Director's science and facility updates Invited talks featuring recent science highlights from the ALS Poster session and reception Student poster competition "Poster Slam" for

  17. Establish a User Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establish a User Agreement Print User Agreements are Required Before a user group can begin their research at the ALS, a User Agreement between Berkeley Lab and the user's sponsoring organization must be signed. Many organizations already have a signed agreement, however if your organization has not established an agreement, please send an email to This e-mail address is being protected from spambots. You need JavaScript enabled to view it to set one up. The User Agreement is valid for up to

  18. Establish a User Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establish a User Agreement Print User Agreements are Required Before a user group can begin their research at the ALS, a User Agreement between Berkeley Lab and the user's sponsoring organization must be signed. Many organizations already have a signed agreement, however if your organization has not established an agreement, please send an email to This e-mail address is being protected from spambots. You need JavaScript enabled to view it to set one up. The User Agreement is valid for up to

  19. User Information | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Accelerator Magnets Magnets ready for installation at Jefferson Lab as part of the 12 GeV Upgrade project. A D D I T I O N A L L I N K S: User Liaison User Training International Services User Registration User Group Wiki PAC Three-Year Accelerator Schedule Students Advisors top-right bottom-left-corner bottom-right-corner Users: Scientists, Students & Postdocs New User Checklist us citizen non-us-citizen An invitation letter is required at the port of entry for all non-U.S.citizens

  20. The LTS timing analysis program : user%3CU%2B2019%3Es manual and description of the methods of analysis.

    SciTech Connect (OSTI)

    Armstrong, Darrell Jewell; Schwarz, Jens

    2013-08-01

    The LTS Timing Analysis program described in this report uses signals from the Tempest Lasers, Pulse Forming Lines, and Laser Spark Detectors to carry out calculations to quantify and monitor the performance of the the Z-Accelerator's laser triggered SF6 switches. The program analyzes Z-shots beginning with Z2457, when Laser Spark Detector data became available for all lines.

  1. Growth, steady-state, and time-resolved photoluminescence study of CdTe/MgCdTe double heterostructures on InSb substrates using molecular beam epitaxy

    SciTech Connect (OSTI)

    DiNezza, Michael J.; Liu, Shi; Kirk, Alexander P.; Zhang, Yong-Hang; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 ; Zhao, Xin-Hao; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287

    2013-11-04

    CdTe/MgCdTe double heterostructures (DHs) are grown on InSb substrates using molecular beam epitaxy and reveal strong photoluminescence with over double the intensity of a GaAs/AlGaAs DH with an identical layer structure design grown on GaAs. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a Shockley-Read-Hall recombination lifetime of 86 ns, which is more than one order of magnitude longer than that of typical polycrystalline CdTe films. These findings indicate that monocrystalline CdTe/MgCdTe DHs effectively reduce surface recombination, have limited nonradiative interface recombination, and are promising for solar cells that could reach power conversion efficiencies similar to that of GaAs.

  2. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility. Thorough discussion with users of current projects, as well as plans for the future, will place ALS management in a better position to evaluate the needs of users and...

  3. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Facilities Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence

  4. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/20/13 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated

  5. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  6. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  7. TRL Computer System User’s Guide

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.

    2014-01-31

    We have developed a wiki-based graphical user-interface system that implements our technology readiness level (TRL) uncertainty models. This document contains the instructions for using this wiki-based system.

  8. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect (OSTI)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}

  9. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect (OSTI)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-07-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.

  10. As you prepare for your upcoming beam time, please be aware that construction is planned to update SLAC Gate 17 with RFID proximity card access hardware and to change the stairs next to the Security hut to an ADA compliant ramp. Please forward this to your proposal collaborators (and ensure that all users have registered and completed training before they arrive). This construction is scheduled to begin Tuesday 5/28 and be completed by 6/28. During this construction, access to the LCLS and SSRL buildings and experimental facilities will be provided as follows: VEHICLES ONLY THROUGH GATE 17 5/28-6/28 0600-1530 (6 am-3:30 pm) Construction Zone. Only VEHICLE traffic will be allowed access through Gate 17 and flagman will provide traffic control. 1530-1800 (3:30-6:00 pm) Assumes construction will have stopped for the day; both traffic lanes will be open for vehicles. 1800-0600 (6 pm-6 am) As now, Gate 17 will be closed or barricaded overnight. PEDESTRIANS ONLY THROUGH GATE 16 5/28-6/28 The pedestrian turnstile at Gate 16A will not change. The turnstile is available for pedestrian use 24/7 as long as the individual has a valid SLAC ID badge (and there is a guard at Gate 30 to 'buzz' them through). 0700-1600 (6 am-4 pm) Pedestrians who would normally walk through Gate 17 will instead follow the detour to Gate 16 swing gate which will be unlocked and staffed by Security. A valid SLAC ID badge is needed to enter; new users without IDs will be allowed to proceed for check-in and badging after confirmation with the User Research Administration Office (see detour map attached). FYI - After the construction is completed and proximity card readers are fully functional, users and staff will enter Gates 17 and 30 using an activated RFID proximity card. More details to follow.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 137 Bldg. 270 CONSTRUCTION IMPACTS PEDESTRIAN AND VEHICLE ACCESS THROUGH SLAC SECURITY GATE 17 ~ May 28-June 28, 2013 The stairs next to the Gate 17 Guard House will be replaced with an ADA compliant ramp; the turnstile and fence at SLAC Gate 17 will be updated with RFID proximity card access hardware. During this construction, access beyond the fence, including the SSRL and LCLS buildings and user facilities will be provided as follows: VEHICLES ONLY THROUGH GATE 17 Security will

  11. NERSC Users Group (NUG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUGEX Elections Charter User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » NERSC Users Group NERSC Users Group (NUG) The NERSC Users' Group, NUG, welcomes participation from all

  12. CombinePlt and CombineThs user manual: Merging multiple, processor-local plot and time-history data bases produced during a parallel calculation. Revision 1

    SciTech Connect (OSTI)

    Procassini, R.J.; DeGroot, A.J.

    1995-09-21

    The CombinePlt and CombineThs post-processing utilities are designed to merge the data in multiple, processor-local plot and time-history data bases produced by the parallel versions of the analysis codes DYNA3D, NIKE3D or PING into a serial database which is compatible with the existing versions of the GRIZ and THUG visualization tools. These utilities make use of the partition assignment file produced by the PartMesh suite for pre-processing utilities to map the data from the processor-local order to global order. These utilities are also capable of translating 64-bit IEEE data bases into 32-bit IEEE data bases which are required for post-processing with GRIZ or THUG on an SGI workstation.

  13. CombinePlt and CombineThs user manual: Merging multiple, processor-local plot and time-history data bases produced during a parallel calculation

    SciTech Connect (OSTI)

    Procassini, R.J.; DeGroot, A.J.

    1995-06-01

    The CombinePlt and CombineThs post-processing utilities are designed to merge the data in multiple, processor-local plot and time-history data bases produced by the parallel versions of the analysis codes DYNA3D, NIKE3D or PING into a serial data base which is compatible with the existing versions of the GRIZ and THUG visualization tools. These utilities make use of the partition assignment file produced by the PartMesh suite of pre-processing utilities to map the data from the processor-local order to global order. These utilities are also capable of translating 64-bit IEEE data bases into 32-bit IEEE data bases which are required for post-processing with GRIZ or THUG on an SGI workstation.

  14. Early Edison Users Deliver Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early Edison Users Deliver Results Early Edison Users Deliver Results January 31, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Before any supercomputer is accepted at NERSC, scientists are invited to put the system through its paces during an "early science" phase. While the main aim of this period is to test the new system, many scientists are able to use the time to significantly advance their work. (»Related story: "Edison Electrifies Scientific

  15. 2012 ALS User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 ALS User Meeting Awards Print Recipients of the 2012 Users' Executive Committee awards and Student Poster Competition were announced Tuesday, October 9, at the ALS User...

  16. 2012 ALS User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ALS User Meeting Awards Recipients of the 2012 Users' Executive Committee awards and Student Poster Competition were announced Tuesday, October 9, at the ALS User Meeting. David...

  17. NERSC Usage and User Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Demographics Users and Projects Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics NERSC Usage and User Demographics Usage...

  18. Monthly PDSF User Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status...

  19. PIA - Advanced Test Reactor National Scientific User Facility Users Week

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PDF icon PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - INL SECURITY INFORMATION

  20. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  1. LANSCE | User Resources | User Satisfaction Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Satisfaction Survey We hope that your research at the Los Alamos Neutron Science Center was productive and successful. Your feedback is important to the Department of Energy and us. Please take a few minutes to respond to the questions on the following page. Your assessment of your experience at LANSCE is used by DOE to evaluate and fund the facility, by the User Group Executive Committee to determine issues and to make recommendations to address them, and by the management and staff of

  2. Beam Time Changes.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He 45 55 55 55 55 55 55 55 70 70 70 14 N 40 40 40 40 40 40 40 40 50 50 50 20 Ne 50 40 25* 35 30 30 30 30 45 45 45 40 Ar 50 40 25* 35 30 30 30 30 45 45 45 63 Cu 50 40 35 35 35 35 35 35 45 45 45 84 Kr 50 40 30 30 35 25* 25 30 45 45 45 109 Ag 50 40 30 30* 35 15 15 30 45 45 45 129 Xe 50 40 30 30 35 25 25* 30 45 45 45 141 Pr 50 40 25 20* 35 25 25 25 45 45 45 165 Ho 60 50 45 45 45 45 45 45 45 30 30 181 Ta 60 50 45 45 45 45 45 45 45 30 20 197 Au 60 55 50 50 50 50 50 50 50 30 20 He N Ne Ar Cu Kr Ag Xe

  3. 2012 User Meeting Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops 2012 ALS User Meeting Workshops Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Meeting Archives Users' Executive Committee Advanced Characterization of Critical Magnetic Materials Catherine Jenkins, Peter Fischer, Elke Arenholz, and David Shuh (LBNL) 67-3111 (Wed.) Automating Tomographic Data Analysis: Transfer, Storage, Processing, and Simulation Dula

  4. 2013 ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ALS User Meeting banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee 2013 Meeting Highlights Celebrating 20 Years of Great Science! Plenary sessions with keynote speakers Reports from Washington and DOE Director's science and facility updates Invited talks featuring recent science highlights from the ALS Science communications strategies talk Poster session and reception Student

  5. 2013 ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 ALS User Meeting Print banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee 2013 Meeting Highlights Celebrating 20 Years of Great Science! Plenary sessions with keynote speakers Reports from Washington and DOE Director's science and facility updates Invited talks featuring recent science highlights from the ALS Science communications strategies talk Poster session and reception

  6. 2013 User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 User Meeting Awards Recipients of the 2013 Users' Executive Committee awards and the Student Poster Competition awards, were presented Tuesday, October 8, at the ALS User Meeting. David A. Shirley Award for Outstanding Scientific Achievement at the ALS 2013-shirley The David A. Shirley Award for Scientific Achievement went to Harald Ade, North Carolina State University, "For achievements in polymer science and in particular the elucidation of the chemical nano-morphology of complex

  7. 2015 CAMD Users Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD 2015 Symposium followed by the CAMD Users' Meeting SAXS Workshop Thursday, April 23th, 2015 CAMD, 6980 Jefferson Highway, Baton Rouge, LA 70806 CAMD 2015 Symposium followed by the CAMD Users' Meeting Friday, April 24th, 2015 LTRC Transportation Training and Education Center (Map) The CAMD 2015 Symposium followed by the CAMD Users' Meeting will be held on Friday, April 24th at the LTRC Transportation Training and Education Center, 4099 Gourrier Avenue, Baton Rouge, LA 70808, directly behind

  8. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Executive Committee ALS Users' Association Charter Print The purpose of the Advanced Light Source Users' Association (ALSUA) is to provide an organized framework for the interaction between those who use the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) for their research and the ALS management, as well as to provide a channel for communication with other synchrotron radiation laboratories and, on suitable occasions, with federal agencies. The ALSUA, representing

  9. Shifter: User Defined Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shifter: User Defined Images Shifter: User Defined Images Shifter: Bringing Linux containers to HPC NERSC is working to increase flexibility and usability of its HPC systems by enabling Docker-like Linux container technology. Linux containers allow an application to be packaged with its entire software stack - including some portions of the base OS files - as well defining needed user environment variables and application "entry point.". Containers may provide an abstract way of

  10. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  11. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    DOE Patents [OSTI]

    Brown, Jr., R. Malcolm (Austin, TX); Barnes, Zack (Austin, TX); Sawatari, Chie (Shizuoka, JP); Kondo, Tetsuo (Kukuoka, JP)

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  12. 2012 User Meeting Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops Print 2012 ALS User Meeting Workshops Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops This e-mail address is being protected from...

  13. 2012 User Meeting Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 User Meeting Agenda Print Agenda Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops This e-mail address is being protected from spambots. You...

  14. 2014 NERSC User Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Survey 2014 NERSC User Survey December 17, 2014 by Francesca Verdier Please take a few minutes to fill out NERSC's annual user survey. Your feedback is important because it allows us to judge the quality of our services, give DOE information on how we are doing, and point us to areas in which we can improve. The survey is on the web at the URL: https://www.nersc.gov/news-publications/publications-reports/user-surveys/2014/ and covers the allocation year 2014. Subscribe via RSS Subscribe

  15. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards: David A. Shirley Award for Outstanding Scientific Achievement at the ALS Klaus Halbach Award for Innovative Instrumentation at the ALS Tim Renner User Services Award for...

  16. 2001 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Questions and Changes from Previous Years NERSC Information Management (NIM) System Web and Communications Hardware Resources Software Training User Services Comments about...

  17. CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Standards and Technology (NIST) and he is working towards developing novel scanning force probes using cavity optomechanics. Research Highlights CNMS User Newsletter Page 7...

  18. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  19. LANSCE | Users | LUG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LUG-EC EC Onsite Meeting 2014 Summary and Charge LUG Charter LUG Election LUG 2012 Meeting Rosen Scholar Rosen Prize Users dotline LANSCE User Group (LUG) 2016 LUG Election Nominations are due January 25. Send nominations to lansce-user-office@lanl.gov The Executive Committee of the LANSCE User Group (LUG-EC) is seeking nominations for representatives to serve on the Executive Committee beginning CY 2016. The LUG-EC meets at LANSCE annually and engages in monthly teleconferences with LANSCE

  20. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... quantify variability affects on preprocessing - Drying data to support Algae blending TEA 17 | Bioenergy Technologies Office 4 - Relevance * User Facility projects highlight the ...

  1. 2004 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 | Next 2004 User Survey Results Table of Contents Response Summary Respondent Demographics Overall Satisfaction and Importance All Satisfaction, Importance and Usefulness...

  2. 2005 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 | Next 2005 User Survey Results Table of Contents Response Summary Respondent Demographics All Satisfaction, Importance and Usefulness Ratings Hardware Resources Software...

  3. 2003 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 | Next 2003 User Survey Results Table of Contents Response Summary Respondent Demographics Overall Satisfaction and Importance All Satisfaction Topics and Changes from...

  4. LANSCE | Users | LUG | Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Congress, and advisory and review committees, either by itself or in partnership with umbrella groups such as the National User Facility Organization. III. MEMBERSHIP...

  5. NERSC User Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment NERSC User Environment Home Directories, Shells and Dotfiles All NERSC systems use global home directories, which are are pre-populated with shell initialization files...

  6. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  7. KDYNA user's manual

    SciTech Connect (OSTI)

    Levatin, J.A.L.; Attia, A.V.; Hallquist, J.O.

    1990-09-28

    This report is a complete user's manual for KDYNA, the Earth Sciences version of DYNA2D. Because most features of DYNA2D have been retained in KDYNA much of this manual is identical to the DYNA2D user's manual.

  8. SSRL Users' Organization Ballot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in enzymes involved in sulfate activationassimilation and viral proteins that suppress apoptosis. . His research has required extensive use of SSRL beam lines over the past...

  9. The PANTHER User Experience

    SciTech Connect (OSTI)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using both geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.

  10. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    SciTech Connect (OSTI)

    Melchior, M; Salinas Aranda, F; Sciutto, S; Dodat, D; Larragueta, N

    2014-06-01

    Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanning system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.

  11. User`s guide to MIDAS

    SciTech Connect (OSTI)

    Tisue, S.A.; Williams, N.B.; Huber, C.C.; Chun, K.C.

    1995-12-01

    Welcome to the MIDAS User`s Guide. This document describes the goals of the Munitions Items Disposition Action System (MIDAS) program and documents the MIDAS software. The main text first describes the equipment and software you need to run MIDAS and tells how to install and start it. It lists the contents of the database and explains how it is organized. Finally, it tells how to perform various functions, such as locating, entering, viewing, deleting, changing, transferring, and printing both textual and graphical data. Images of the actual computer screens accompany these explanations and guidelines. Appendix A contains a glossary of names for the various abbreviations, codes, and chemicals; Appendix B is a list of modem names; Appendix C provides a database dictionary and rules for entering data; and Appendix D describes procedures for troubleshooting problems associated with connecting to the MIDAS server and using MIDAS.

  12. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  13. OSG New User Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance and Debugging Tools Grid Software and Services Globus Online at NERSC Grid Certificates Grid Data Transfer Running Grid Jobs Client Tools Open Science Grid NERSC Software Downloads Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting

  14. User' Software Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MM-Group Home MMG Advisory Committees 4-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info FAQs 4-ID-D Beamline Software Manual Introduction...

  15. CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems. Access is provided at no cost to users for research that is in the public do- main and intended for publica on in the open literature. The submission deadline is...

  16. CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the 4th annual Na onal User Facility Science Expo for the U.S. House of Representa ves in the foyer of the Ray- burn House Office Building, Capitol Hill Washington D.C.....

  17. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office Space User space is available in the ARC, reserve space here. arc-thumb.jpg Click to see Virtual Tour 12000 Jefferson Avenue, Newport News, VA 23606 Phone: (757) 269-7255...

  18. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | pdf | 1.3 MB W01: File Systems at NERSC June 18, 2014 | Author(s): David Turner, NERSC User Services | Download File: W01-NERSCFileSystems.pdf | pdf | 6 MB T03: Data...

  19. NIM Guide for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NERSC Information Management (NIM) system is a web portal that contains user, login ... Logging In To log into the NIM system, point your web browser to the URL http:...

  20. 2012 User Meeting Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Amorphous-to-Crystalline Transitions in CaCO3 Biominerals, with 20-nm Resolution Pupa Gilbert, University of Wisconsin 13:55 User Services Update Sue Bailey, LBNL 14:10...

  1. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13

  2. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2  http://www.exelisvis.com/ProductsServices/IDL.aspx 

  3. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Association Charter Print The purpose of the Advanced Light Source Users' Association (ALSUA) is to provide an organized framework for the interaction between those who use the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) for their research and the ALS management, as well as to provide a channel for communication with other synchrotron radiation laboratories and, on suitable occasions, with federal agencies. The ALSUA, representing the research workers, will be in

  4. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Association Charter Print The purpose of the Advanced Light Source Users' Association (ALSUA) is to provide an organized framework for the interaction between those who use the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) for their research and the ALS management, as well as to provide a channel for communication with other synchrotron radiation laboratories and, on suitable occasions, with federal agencies. The ALSUA, representing the research workers, will be in

  5. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs » Office of Science » Programs & User Facilities Programs & User Facilities Enabling remarkable discoveries, tools that transform our understanding of energy and matter and advance national, economic, and energy security Advanced Scientific Computing Research Applied Mathematics Co-Design Centers Exascale Co-design Center for Materials in Extreme Environments (ExMatEx) Center for Exascale Simulation of Advanced Reactors (CESAR) Center for Exascale Simulation of

  6. VOLTTRON: User Guide

    SciTech Connect (OSTI)

    Lutes, Robert G.; Katipamula, Srinivas; Akyol, Bora A.; Tenney, Nathan D.; Haack, Jereme N.; Monson, Kyle E.; Carpenter, Brandon J.

    2014-04-24

    This document is a user guide for the deployment of the Transactional Network platform and agent/application development within the VOLTTRON. The intent of this user guide is to provide a description of the functionality of the Transactional Network Platform. This document describes how to deploy the platform, including installation, use, guidance, and limitations. It also describes how additional features can be added to enhance its current functionality.

  7. 2013 User Survey Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 User Survey Text 2013 User Survey Text Section 1: Overall Satisfaction with NERSC For each item you use, please indicate both your satisfaction and its importance to you. Please rate: How satisfied are you? How important is this to you? Overall satisfaction with NERSC Not Answered Very Satisfied Mostly Satisfied Somewhat Sat. Neutral Somewhat Dissat. Mostly Dissat. Very Dissatisfied I Do Not Use This Not Answered Very Important Somewhat Important Not Important I Do Not Use This NERSC

  8. LANSCE | Users | Rosen Prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosen Prize Current Recipient Past Recipients Call for Nominations Users dotline The Louis Rosen Prize Adam T. Holley Adam T. Holley Named 24th Rosen Prize Recipient The LANSCE User Group Executive Committee is pleased to announce that Adam Holley has been awarded the 2013 Rosen Prize for his doctoral thesis on "Ultracold Neutron Polarimetry in a Measurement of the β Asymmetry". His work demonstrated excellence in a number of facets the selection committee considered, including

  9. Become A User

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Become a User TRACC facilities, applications software, and resource allocations are available to the national transportation research community for sponsored research. TRACC welcomes discussions with potential researchers in the development of their proposals for allocations. Submit a User Proposal TRACC welcomes transportation related account applications that fit one of the following categories: The proposed project is a large-scale, complex application of national or regional transportation

  10. ALS User Meeting Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS User Meeting Archives Past User Meeting Agendas, Workshops, and Awards Year David A. Shirley (Science) Klaus Halbach (Instrumentation) Tim Renner (Service) 2014 Agenda Workshops Chuck Fadley, "For significant contributions to a better understanding of surfaces and interfaces through the development of novel x-ray photoemission spectroscopy techniques." More... Alastair MacDowell, James Nasiatka, Dula Parkinson, Abdel Haboub, Hrishikesh Bale, and Rob Ritchie, "For the

  11. Restoration Prioritization Toolset: Documentation and User’s Guides 2007

    SciTech Connect (OSTI)

    Judd, Chaeli; Woodruff, Dana L.; Thom, Ronald M.; Anderson, Michael G.; Borde, Amy B.

    2007-10-26

    This user’s guide provides technical background and details on the Restoration Prioritization Toolset developed for GoMRC as well as instructions for use.

  12. 2011 NERSC User Survey (Read Only)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010/2011 User Survey Results Survey Text 2009/2010 User Survey Results 2008/2009 User Survey Results 2007/2008 User Survey Results 2006 User Survey Results 2005 User Survey Results 2004 User Survey Results 2003 User Survey Results 2002 User Survey Results 2001 User Survey Results 2000 User Survey Results 1999 User Survey Results 1998 User Survey Results HPC Requirements for Science HPC Workshop Reports NERSC Staff Publications & Presentations Journal Cover Stories Galleries facebook icon

  13. Time of Flight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beam is pulsed, the energy of the neutrons that are produced can be determined by Time-of-Flight (TOF) techniques. Neutron Time-of-Flight Since the LANSCE proton beam is...

  14. Proceedings of the seventeenth LAMPF Users Group meeting

    SciTech Connect (OSTI)

    Bradbury, J.N.

    1984-04-01

    The seventeenth annual LAMPF Users Group meeting was held November 7-8, 1983, at the Clinton P. Anderson Meson Physics Facility. The program included a number of invited talks on various aspects of nuclear and particle physics as well as status reports on LAMPF. A panel discussion on the LAMPF II concept provided an exchange of views among an advisory group, Users, and LAMPF staff. The LAMPF working groups met and discussed plans for each of the secondary beam lines.

  15. User Facility Science Highlights

    Office of Science (SC) Website

    In this experiment, a 5.5-GeV beam of electrons was directed onto a target of liquid hydrogen, which has a single proton in its nucleus. The researchers collected data on...

  16. User account | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User account User account Primary tabs Log in Request new password(active tab) Username or e-mail address * E-mail new password

  17. 2014 ALCF User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    survey, improved questions, and a representative user response to the survey. Demographics ALCF users are located around the world and are representative across different...

  18. ORPS User Registration Form

    Energy Savers [EERE]

    DEPARTMENT OF ENERGY OPERATIONAL EVENT INFORMATION SYSTEMS REGISTRATION FORM User Registration For:  ORPS Submit Completed Form To: EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 U.S. Department of Energy AU User Support (Type or Print) 1. Name Birth date / (Last) (First) (Middle Initial) (Month) (Day) 2.JobTitle 3. Company Name 4. Address Mail Stop City State Zip 5. Work Phone Work Fax 6. Internet E-Mail Address (e.g. orpssupport@hq.doe.gov 7. USA Citizenship (check one)

  19. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  20. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  1. DOE Designated User Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designated User Facilities DOE Designated User Facilities DOE Designated User Facilities Sept 30 2015 More Documents & Publications Microsoft Word - DesignatedUserFacilitiesApri...

  2. SMARTSware for SMARTS users to facilitate data reduction and data analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The software package SMARTSware is made by one of the instrument scientist on the engineering neutron diffractometer SMARTS at the Lujan Center, a national user facility at Los Alamos Neutron Scattering Center (LANSCE). The purpose of the software is to facilitate the data analysis of powder diffraction data recorded at the Lujan Center, and hence the target audience is users performing experiments at the one of the powder diffractometers (SMARTS, HIPPO, HIPD and NPDF) atmore » the Lujan Center. The beam time at the Lujan Center is allocated by peer review of internally and extenally submitted proposals, and therefore many of the users who are granted beam time are from the international science community. Generally, the users are only at the Lujan Center for a short period of time while they are performing the experiments, and often they leave with several data sets that have not been analyzed. The distribution of the SMARTSware software package will minimize their efforts when analyzing the data once they are back at their institution. Description of software: There are two main parts of the software; a part used to generate instrument parameter files from a set of calibration runs (Smartslparm, SmartsBin, SmartsFitDif and SmartsFitspec); and a part that facilitates the batch refinement of multiple diffraction patterns (SmartsRunRep, SmartsABC, SmartsSPF and SmartsExtract). The former part may only be peripheral to most users, but is a critical part of the instrument scientists' efforts in calibrating their instruments. The latter part is highly applicable to the users as they often need to analyze or re-analyze large sets of data. The programs within the SMARTSware package heavily rely on GSAS for the Rietveld and single peak refinements of diffraction data. GSAS (General Structure Analysis System) is a public available software also originating from LANL. Subroutines and libraries from the NeXus project (a world wide trust to standardize diffraction data formats) and National Center for Supercomputing Applications (NCSA) at the University of Illinois (the Hierarchical Data Format Software Library and Utilities) are used in the programs. All these subroutines and libraries are publicly available through the GNU Public License and/or Freeware. The package also contains sample input and output text files and a manual (LA-UR 04-6581). The executables and sample files will be available for down load at http://public.lanl.gov/clausen/SMARTSware.html and ftp://lansce.lanl.gov/clausen/SMARTSware/SMARTSware.zip, but the source codes will only be made available by written request to clausen@lanl.gov.« less

  3. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect (OSTI)

    Rybarcyk, Lawrence J.

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  4. Measuring the Monitoring User Interactive Experiences on Franklin Interactive Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Node Responsiveness Richard Gerber User Services Group National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Berkeley, CA June 9, 2008 Introduction Anecdotal reports of slow interactive response on Franklin's login nodes have been documented via comments on the 2007 NERSC User Survey. Users report that sluggish command-line response at times makes it difficult to work. The cause, or causes, of the poor response time is unknown. In an attempt to

  5. U-074: Microsoft.NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users

    Broader source: Energy.gov [DOE]

    A remote user can execute arbitrary commands on the target system. A remote user can access a target user's account. A remote user can redirect users to arbitrary sites.

  6. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  7. RELAP-7 User's Guide

    SciTech Connect (OSTI)

    Zhang, Hongbin; Zhao, Haihua; Zou, Ling; Andrs, David; Berry, Ray Alden; Martineau, Richard Charles

    2014-12-01

    The document contains a user's guide on how to run the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory. RELAP-7 will become the main reactor systems simulation toolkit for the LWRS (Light Water Reactor Sustainability) program’s RISMC (Risk Informed Safety Margin Characterization) effort and the next generation tool in the RELAP reactor safety/systems analysis application series. RELAP-7 is written with object oriented programming language C++. A number of example problems and their associated input files are presented in this document to guide users to run the RELAP-7 code starting with simple pipe problems to problems with increasing complexity.

  8. LANSCE | Users | Rosen Scholar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Past Scholars Call for Nominations Rosen Prize Users dotline Rosen Scholar | Dr. Edwin Fohtung Edwin Fohtung Dr. Edwin Fohtung has been named the 2015 Rosen Scholar at the Los Alamos Neutron Science Center (LANSCE) of Los Alamos National Laboratory (LANL) and is the current LANSCE Professor in conjunction with the Department of Physics at New Mexico State University. A materials physicist, Edwin obtained his PhD from the University of Freiburg in Germany and performed research at ANKA

  9. INFORMATION TO USERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TO USERS The negative microfilm of this dissertation was prepared and inspected by the school granting the degree. We are using this film without further inspection or change. If there are any questions about the content, please write directly to the school. The quality of this reproduction is heavily dependent upon the quality of the original material The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not

  10. NERSC Users Group Teleconference May 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users Group Teleconference May 12 NERSC Users Group Teleconference May 12 May 11, 2011 by Francesca Verdier The next NUG teleconference is Thursday May 12, at 11:00 AM Pacific time. On the agenda: new NX server wait times table for nodes requested versus hours requested: Jobs Summary Statistics restricting access to the premium queue NUG feedback on hopper in production To receive an invitation to participate in NUG teleconferences, join the nug e-mail list: send e-mail to nug-request@nersc.gov

  11. AVRAM user's manual

    SciTech Connect (OSTI)

    McGrady, P.W.

    1988-02-01

    This document details the use of the reliability code for the Atomic Vapor Laser Isotope Separation (AVLIS) project. This code was designed by Tom Anklam and John Harris. In late 1984 Patrick McGrady and Elena Koontz of C and TD/TA were assigned the task of improving the code and converting it for use on the DEC-10 system. In early 1986, Patric McGrady converted it to the CRAY. The AVRAM code is divided into distinct parts (often referred to as programs in this document). There is a COSMOS file that controls the execution of the FORTRAN code and controls the naming of output datasets and the deletion of temporary datasets created by the code. The FORTRAN code consists of a main program as a driver and of three main subroutines: EDIT, PARAM, and AVRAM. The EDIT program allows the user to create a new user defined system or add to an existing system or to change certain parameters. The PARAM program allows the user to alter system parameters and to select options such as economics run, criticality analysis or sensitivity studies. The AVRAM program does a reliability analysis of the system.

  12. 2011 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  13. 2012 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  14. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, Richard J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Miller, Robert B. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM); Smith, David L. (Albuquerque, NM)

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  15. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  16. Setting Up Your User Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDSF Defined Environment When new users are added to the PDSF machines, the login shell is set according to the user's request. You can choose between csh, tcsh, or bash. You...

  17. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facility Center for Nanoscale Materials Center for Nanoscale Materials More Electron Microscopy Center More The Nanoscience and Technology Division hosts the following user facility: The Center for Nanoscale Materials (CNM) at Argonne National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research.

  18. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations User Data Forum Presentations Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category M01: Perspectives from DOE June 16, 2014 | Author(s): Laura Biven, Ph.D. Senior Science and Technology Advisor, DOE Office of the Deputy Director for Science Programs | Download File: M01-2014JuneNERSCBIVEN.pdf | pdf | 2.6 MB M02: The Future of Data and Scientific Workflow June 16, 2014 | Author(s): Michael Wilde, University of Chicago and Argonne National Laboratory |

  19. Rad Toolbox User's Guide

    SciTech Connect (OSTI)

    Eckerman, Keith F.; Sjoreen, Andrea L.

    2013-05-01

    The Radiological Toolbox software developed by Oak Ridge National Laboratory (ORNL) for U. S. Nuclear Regulatory Commission (NRC) is designed to provide electronic access to the vast and varied data that underlies the field of radiation protection. These data represent physical, chemical, anatomical, physiological, and mathematical parameters detailed in various handbooks which a health physicist might consult while in his office. The initial motivation for the software was to serve the needs of the health physicist away from his office and without access to his handbooks; e.g., NRC inspectors. The earlier releases of the software were widely used and accepted around the world by not only practicing health physicist but also those within educational programs. This release updates the software to accommodate changes in Windows operating systems and, in some aspects, radiation protection. This release has been tested on Windows 7 and 8 and on 32- and 64-bit machines. The nuclear decay data has been updated and thermal neutron capture cross sections and cancer risk coefficients have been included. This document and the software’s user’s guide provide further details and documentation of the information captured within the Radiological Toolbox.

  20. Macro System Model (MSM) User Guide, Version 1.3

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.

    2011-09-01

    This user guide describes the macro system model (MSM). The MSM has been designed to allow users to analyze the financial, environmental, transitional, geographical, and R&D issues associated with the transition to a hydrogen economy. Basic end users can use the MSM to answer cross-cutting questions that were previously difficult to answer in a consistent and timely manner due to various assumptions and methodologies among different models.

  1. User Survey | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey User Survey Results The ALCF conducts yearly surveys to gain a better understanding of how we can improve the user experience at ALCF. Below are the numeric results of these surveys. 2014 ALCF User Survey Results 2013 ALCF User Survey Results 2012 ALCF User Survey Results 2011 ALCF User Survey Results 2010 ALCF User Survey Results 2009 ALCF User Survey Results 2008 ALCF User Survey Results

  2. User Support | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services The ALCF User Experience Help Desk assists users with support requests related to their ALCF projects. The help desk is open from 9 a.m. until 5 p.m. (Central time) Monday through Friday, exclusive of holidays. Contact Us Email: support@alcf.anl.gov Telephone: 630-252-3111 866-508-9181 Help Desk: Building 240, 2-D-15/16 Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Help Tickets To submit a help ticket for a technical issue, please email support@alcf.anl.gov and to

  3. APS User News | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Calendars Users Home APS User News User Announcements Proposal Deadlines and Related Meetings Conferences and Workshops APS Seminars and Meetings APS Committees and Reviews...

  4. User Financial Accounts | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support their ...

  5. User Financial Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your ...

  6. CEBAF beam loss accounting

    SciTech Connect (OSTI)

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  7. Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific User Facility | Department of Energy Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility March 20, 2014 - 3:11pm Addthis From left to right: Congressman Rogers, Senator Stabenow, Deputy Under Secretary for Science and Energy Dr. Michael Knotek, President Lou Anna Simon of Michigan State University, and Senator Levin break ground on the FRIB

  8. Monthly PDSF User Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDSF Selected Announcements Email Announcements Archive PDSF Mailing Lists In Case of Difficulty Accessing PDSF or HPSS Cluster Statistics Getting help Group Pages Using Carver for PDSF jobs PDSF Completed Jobs Genepool Testbeds Retired Systems Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs

  9. User Facilities Expert Team - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMG_2298.JPG User Facilities Expert Team Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  10. 2011 User Meeting Award Recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 User Meeting Award Recipients Print Recipients of the 2011 Users' Executive Committee awards, Student Poster Competition awards, and Photography Contest awards were announced Tuesday, October 4th at the ALS User Meeting. Winners are pictured below with UEC Chair David Obsorn. David A. Shirley Award for Outstanding Scientific Achievement at the ALS Dr. Subrata Chakraborty, for "the design and execution of the most important and difficult experiment relevant to understanding the origin

  11. LANSCE | Users | LUG | LUG EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LUG 2014 Summary and Charge LANSCE User Group Executive Committee Onsite Meeting, March 2014 Summary On March 14th, 2014, the LANSCE user group executive committee (LUG-EC) convened a meeting with representatives from LANSCE management, and the management of each represented user facility - Weapons Neutron Research / Nuclear Science (WNR), Ultracold Neutrons (UCN), Proton Radiography (pRad), Isotope Production Facility (IPF), and the Lujan Neutron Scattering Center (Lujan Center). Each facility

  12. NERSC User Announcements RSS Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements RSS Feed NERSC User Announcements RSS Feed June 30, 2014 by Richard Gerber NERSC's User Announcements (not these "Featured Announcements") are now available as an RSS feed. Point your RSS reader to http://www.nersc.gov/users/announcements/rss Subscribe via RSS Subscribe Browse by Date January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December 2014 November 2014 October 2014 August 2014 June 2014

  13. 2012 ALS User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ALS User Meeting Awards Recipients of the 2012 Users' Executive Committee awards and Student Poster Competition were announced Tuesday, October 9, at the ALS User Meeting. David A. Shirley Award for Outstanding Scientific Achievement at the ALS shirley award The David A. Shirley Award for Scientific Achievement went to, from left, Carl Percival (University of Manchester), Dudley Shallcross [(University of Bristol) not pictured], and Craig Taatjes and David Osborn (Sandia), for making the first

  14. Office of Science User Facilities

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information on the Office of Science User Facilities, which was given during the webinar on the DOE BRIDGE funding opportunity.

  15. Jefferson Lab Users Group News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User InformationRegistration print version UG Resources Background & Purpose By Laws Board of Directors Board of Directors Meetings Directory of Members Events At-A-Glance Member...

  16. User account | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use of authorized users only. Unauthorized access is prohibited and makes you liable to civil and criminal penalties. Individuals using this computer system without authority, or...

  17. JGI Compute User Training Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer and Archiving Using the Cray XE6 NERSC User Group Training Remote Setup 2010 Training Events Online Tutorials Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminars Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or

  18. January 2016 CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2016 CNMS User Newsletter http://cnms.ornl.gov/ Important Dates: Call for Proposals: 2016B -Deadline: May 4 to be announced in spring! CNMS User Meeting -August 10-12, 2016 Visit CNMS on Facebook! Check out our website! Behind the Scenes at CNMS Like you, I am a user of CNMS. I know first hand how me at a user facility can enhance the produc vity of a research program and focused interac on with CNMS staff can offer new perspec- ves. I also know that CNMS will need to con nue

  19. April 2013 CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our understanding of nanoscale phenomena and develop functional nanomaterials systems. Access is provided at no cost to users for research that is in the public do- main and...

  20. APS User News, Issue 88

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- John Rogers to be Keynote at Users Meeting -- 2015 APS Compton Award goes to Ice, Larson, and Sparks BRIEFLY NOTED -- Congratulations to Daniel Haskel, Winner of the 2015...

  1. 2009 PDSF Users Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    122209 Attending: Eric and Jay from PDSF and users Andrei, Marjorie, and Jeff P. Cluster status: Utilization has been relatively light, mostly STAR and some ATLASUCI jobs....

  2. National Library of Energy : User Account

    Office of Scientific and Technical Information (OSTI)

    Reset your password Enter either your User Name or Email Address to reset your password. User Name: Email Address: Go...

  3. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular geometries but using fewer beams. Furthermore, SBA provides the value of the objective function as the number of beams is increased, allowing the planner to select the minimal beam number that achieves the clinical goals. The method is simple to implement and could readily be incorporated into an existing optimization system.

  4. SOLDESIGN user's manual copyright

    SciTech Connect (OSTI)

    Pillsbury, R.D. Jr.

    1991-02-01

    SOLDESIGN is a general purpose program for calculating and plotting magnetic fields, Lorentz body forces, resistances and inductances for a system of coaxial uniform current density solenoidal elements. The program was originally written in 1980 and has been evolving ever since. SOLDESIGN can be used with either interactive (terminal) or file input. Output can be to the terminal or to a file. All input is free-field with comma or space separators. SOLDESIGN contains an interactive help feature that allows the user to examine documentation while executing the program. Input to the program consists of a sequence of word commands and numeric data. Initially, the geometry of the elements or coils is defined by specifying either the coordinates of one corner of the coil or the coil centroid, a symmetry parameter to allow certain reflections of the coil (e.g., a split pair), the radial and axial builds, and either the overall current density or the total ampere-turns (NI). A more general quadrilateral element is also available. If inductances or resistances are desired, the number of turns must be specified. Field, force, and inductance calculations also require the number of radial current sheets (or integration points). Work is underway to extend the field, force, and, possibly, inductances to non-coaxial solenoidal elements.

  5. 2002 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recommendations NERSC did the following: Improved debug and interactive turnaround during prime time by setting aside 5% of the SP compute pool for interactive and debug jobs from...

  6. NMMSS Users Training

    National Nuclear Security Administration (NNSA)

    and timely information. * Sites will report required data to single data entry point. * Improves data quality and timeliness. 15 Integration Plan Underlying...

  7. NERSC User James Drake Receives 2010 APS Maxwell Prize for Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User James Drake Receives 2010 APS Maxwell Prize for Plasma Physics NERSC User James Drake Receives 2010 APS Maxwell Prize for Plasma Physics January 31, 2011 drake10.jpg Long-time...

  8. Guide to user facilities at the Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility. (GHT)

  9. User Statistics Collection Practices Archives | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policies and Processes User Statistics Collection Practices User Statistics Collection Practices Archives User Facilities User Facilities Home User Facilities at a Glance...

  10. User Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes...

  11. 1999 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helpful. At times they went beyond the scope of my request which resulted in making my job easier." "Provides reliable machines, which are well-maintained and have scheduling...

  12. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    just before the star dies, showing a slice through a corner of the event. Shell radius (red knots) is about 500 times the Earth-Sun distance. Colors represent gas density (red is...

  13. On the future of BNL user facilities

    SciTech Connect (OSTI)

    Ben-Zvi, I.

    2010-08-01

    The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

  14. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab | Jefferson Lab Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at Jefferson Lab Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time. NEWPORT NEWS, VA, May 14, 2014 - The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S.

  15. Scott French! NERSC User Services Group! New User Training!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    login node based on: - Number o f c onnec3ons - Memory o f p revious c onnec3ons f rom s ame I P --- 4 --- Login Node Usage * Login nodes are shared by many users, all the Dme *...

  16. DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimensions) user's manual

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1988-04-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-eight material models and eleven equations of state to cover a wide range of material behavior. 56 refs., 46 figs.

  17. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1987-07-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-five material models and eleven equations of state to cover a wide range of material behavior.

  18. DYNA3D user's manual: (Nonlinear dynamic analysis of structures in three dimensions): Revision 5

    SciTech Connect (OSTI)

    Hallquist, J.O.; Whirley, R.G.

    1989-05-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. Using a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. The 1989 version of DYNA3D contains thirty material models and ten equations of state to cover a wide range of material behavior.

  19. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions). Revision 2

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1986-03-01

    The user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures is updated. A contact-impact algorithm permit gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains sixteen material models and nine equations of state to cover a wide range of material behavior. 40 refs., 43 figs.

  20. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Wetherington, Jr., Grady R. (Harriman, TN)

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  1. 2009 PDSF Users Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 PDSF Users Meeting Minutes December 22 PDSF Users Meeting 12/22/09 Attending: Eric and Jay from PDSF and users Andrei, Marjorie, and Jeff P. Cluster status: Utilization has been relatively light, mostly STAR and some ATLASUCI jobs. Outages: Discussed slowness caused by atlasusi jobs and the possibility of making /common read-only but no decision on how to do that was reached. The issue of using the NERSC global homes was also discussed as a possibility in the future. Upcoming downtimes:

  2. 2010 PDSF Users Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 PDSF Users Meeting Minutes December 21 PDSF Users Meeting 12/21/10 Attending: Eric and Jay from NERSC and users Andrei and Jeff P. Cluster status and utilization: Cluster has been loaded to capacity recently. STAR is running a lot of jobs, many of the grid-based and submitted from BNL. ALICE, ATLAS and icecube also running. Outages and Downtimes: There was an NGF downtime on the 16th, otherwise things have been stable for the most part. Procurements and New Hardware: Will get more storage

  3. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  4. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  5. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  6. atlasUserMeeting14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GRETINA Mario Cromaz, LBNL Work supported under contract number DE-AC02-05CH11231. 2014 ATLAS User's Meeting ANL - May 15-16, 2014 The GRETINA Spectrometer 2 * first generation...

  7. OpenEIS. Users Guide

    SciTech Connect (OSTI)

    Kim, Woohyun; Lutes, Robert G.; Katipamula, Srinivas; Haack, Jereme N.; Carpenter, Brandon J.; Akyol, Bora A.; Monson, Kyle E.; Allwardt, Craig H.; Kang, Timothy; Sharma, Poorva

    2015-02-28

    This document is a users guide for OpenEIS, a software code designed to provide standard methods for authoring, sharing, testing, using and improving algorithms for operational building energy efficiency.

  8. User Experience Research and Statistics

    Broader source: Energy.gov [DOE]

    To improve your website or application, especially for new projects, EERE strongly recommends, but does not require, conducting user experience (UX) research. We only require that you get the...

  9. Soybean (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Stacey, Gary

    2011-04-26

    Gary Stacey, associate director of the National Center for Soybean Biotechnology at the University of Missouri, gives a talk simply titled "Soybean" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  10. Proteus-SN user manual

    SciTech Connect (OSTI)

    Shemon, Emily R.; Smith, Micheal A.; Lee, Changho

    2015-07-31

    This user manual describes how to set up a neutron transport simulation with the PROTEUS-SN code. A companion methodology manual describes the theory and algorithms within PROTEUS-SN.

  11. LANSCE | User Resources | Visitor Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visit Registration Users must register online at least: 4 weeks prior to experiment for U.S. citizens 2 months prior to experiment for foreign nationals. Lujan Center WNR Visit Registration Visit Registration

  12. User Experience Research Online Tools

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) has a variety of online tools to help you conduct user experience (UX) research. The following tools are free for use by staff and contractors who work on the EERE website.

  13. 2011 User Meeting Award Recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award Recipients Recipients of the 2011 Users' Executive Committee awards, Student Poster Competition awards, and Photography Contest awards were announced Tuesday, October 4th at the ALS User Meeting. Winners are pictured below with UEC Chair David Obsorn. David A. Shirley Award for Outstanding Scientific Achievement at the ALS Dr. Subrata Chakraborty, for "the design and execution of the most important and difficult experiment relevant to understanding the origin and evolution of the

  14. User Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Bioenergy Technologies Office » User Facilities User Facilities Feedstock Preprocessing at INL The Process Demonstration Unit at Idaho National Laboratory's Energy Systems Laboratory facility provides pilot- and industrial-scale testing for a variety of preprocessing techniques. Preprocessing is essential to preparing biomass feedstock for conversion, ensuring the material is high-quality and provides as much fuel as possible. The facility's Characterization Laboratory enables

  15. User Training | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Training Before performing work at the CNM, you must take certain orientation and safety training courses. We encourage you to take these courses remotely before you arrive at Argonne. Go to the Remote Training web site. Enter your Argonne badge number. Locate the "CNM Facilitiy Core Courses" section and follow the links to the courses. For your information, the CNM core courses are: CNM 101: Center for Nanoscale Materials User Orientation (2-year training interval) ESH 100U:

  16. LANSCE | Users | LUG | LUG EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Committee Message from the LUG EC Regarding 2015 Elections Dear Users, Thank you very much for participating in the recent email vote regarding the formation of an interim executive committee for the LANSCE User Group. We received a strong response, with the measure passing by a vote of 113-2. As such, the interim executive committee has been convened. The charge of this interim committee is to (a) guide LANSCE management in transforming the mission of the Lujan Center, and more

  17. NERSC User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 2014 Planck @ NERSC Theodore Kisner Computational Cosmology Center, LBNL On behalf of the Planck collaboration NERSC User Group Meeting 2014 The Cosmic Microwave Background * Universe begins with hot Big Bang and then expands and cools. * After 370,000 years temperature drops to 3000K. * p + + e - => H : Universe becomes neutral & transparent. * Photons free-stream to observers today. They are redshifted and appear as a 3K blackbody. Source: NASA Temp = 3K Today NERSC User Group

  18. 2014 User Meeting Award Recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 User Meeting Award Recipients 2014 ALS User Meeting Award Recipients Presented on Tuesday, October 7, 2014, by Peter Nico (UEC Chair). David A. Shirley Award for Outstanding Scientific Achievement at the ALS The David A. Shirley Award for Scientific Achievement went to Chuck Fadley (UC Davis and Berkeley Lab), "For significant contributions to a better understanding of surfaces and interfaces through the development of novel x-ray photoemission spectroscopy techniques." David Shirley

  19. Summary of the LARP Mini-Workshop on Beam-Beam Compensation 2007

    SciTech Connect (OSTI)

    Fischer, Wolfram; Bruning, Oliver S.; Koutchouk, J.P.; Zimmermann, F.; Sen, T.; Shiltsev, V.; Ohmi, K.; Furman, M.; Cai, Y.; Chao, A.; /SLAC

    2011-11-07

    The LARP Mini-Workshop on Beam-Beam Compensation 2007 was held at SLAC, 2-4 July 2007. It was attended by 33 participants from 10 institutions in Asia, Europe, and America. 26 presentations were given, while more than one third of the time was allocated to discussions. The workshop web site is Ref. [1]. The workshop's main focus was on long-range and head-on beam-beam compensation, with a view towards application in the LHC. Other topics included the beam-beam performance of previous, existing and future circular colliders; beam-beam simulations; new operating modes, theory, and unexplained phenomena. This summary is also published as Ref. [2].

  20. NIF and Jupiter User Group Meeting 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home nif workshops NIF and Jupiter User Group Meeting 2015 Information on the NIF User Facility About the NIF and Jupiter Laser Facility User Group Meeting The NIF and Jupiter...

  1. Help:User page | Open Energy Information

    Open Energy Info (EERE)

    User page Jump to: navigation, search A user page is a page about a wiki user; someone who registered on the wiki, and is (most probably) a contributor. If you have registered, you...

  2. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    SciTech Connect (OSTI)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  3. Light beam range finder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  4. Light beam range finder

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  5. Jack Deslippe Joins NERSC User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jack Deslippe Joins NERSC User Services Jack Deslippe Joins NERSC User Services December 19, 2011 Jack Deslippe has joined NERSC's User Services Group as a consultant with expertise in materials sciences and chemistry. As the newest materials science and chemistry consultant in NERSC's User Services Group, Jack Deslippe will be building and evaluating materials sciences packages, working with users on materials sciences application needs, and providing general user support. He will also be

  6. Users Executive Committee | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides advice to the Director on matters affecting the user community, and ensures good communication between the CNM user community and CNM management. The CNM UEC is also...

  7. Canopy 2.1 User Guide

    SciTech Connect (OSTI)

    Burtner, Edwin R.

    2012-09-15

    Its user guide for the Canopy system. Its design to be used electronically or printed out in conjunction with the application to teach users about the features.

  8. User:Selena Miller | Open Energy Information

    Open Energy Info (EERE)

    User page Edit with form History User:Selena Miller Jump to: navigation, search 12.jpg Name Selena Miller Location Los Angeles, California Edits 2 Retrieved from "http:...

  9. SLAC Linac Coherent Light Source User Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committees & Contacts LCLS Scientific Advisory Committee (SAC) LCLS Detector Advisory Committee (LDAC) LCLS Proposal Review Panel LCLS Users' Organization LCLS Collaborators User...

  10. User:Woodjr/Sandbox | Open Energy Information

    Open Energy Info (EERE)

    Sandbox < User:Woodjr Jump to: navigation, search Test link: Dataset 40 Retrieved from "http:en.openei.orgwindex.php?titleUser:WoodjrSandbox&oldid332192...

  11. JOBAID-APPROVE A USERS TRAINING REQUEST

    Broader source: Energy.gov [DOE]

    The purpose of this job aid is to guide users through the step-by-step process of approving a user training request.

  12. New User Guide | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. Feedback Form New User Guide USER TIP:...

  13. PIA - Environmental Molecular Sciences Laboratory (EMSL) User...

    Broader source: Energy.gov (indexed) [DOE]

    Molecular Sciences Laboratory (EMSL) User System (ESU) PDF icon PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) More Documents & Publications PIA - WEB ...

  14. Carolina users sue Transco for natural gas carriage

    SciTech Connect (OSTI)

    Hume, M.

    1985-05-27

    Carolina Utility Customers Association, Inc., which represents 65 industrial natural gas users, is suing Transcontinental Gas Pipe Line Corp. on antitrust grounds to gain greater access to the system. The litigants claim that the pipeline is carrying only for users who would otherwise buy oil, which violates sections 1 and 2 of the Sherman Act. Similar suits are already in federal courts at a time when pipelines are also experiencing pressure to deliver more and cheaper gas to all users without class discrimination. Improved transportation would help industries, such as textiles, which are already at a competitive disadvantage due to imports.

  15. David Turner to Retire from NERSC User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Turner to Retire from NERSC User Services Group David Turner to Retire from NERSC User Services Group June 17, 2015 davidturnernow2 David Turner in the NERSC machine room, in front of Carver, circa 2015 Long-time User Services Group consultant David Turner is hanging up his headset after 17 years at NERSC. His love of math, science and computers began when he was still in high school, and it has not waned over the years. Here Turner, whose last official day is June 26, talks about how he

  16. EMBOS User Manual

    SciTech Connect (OSTI)

    Metcalf, J. R.

    2011-10-01

    The Electronic Medical Business Operations System (EMBOS) is a state-of-the-art, web-based electronic medical records (EMR) system. It captures all patient data and the medical workflow, giving the medical provider a knowledge-based tool to support the health assessment process. EMBOS is a comprehensive system providing the following features: (1) Easy-to-use interface that reflects provider and support staff real-world workflows; (2) On-line patient questionnaires that enable pre-appointment updating of medical histories; (3) Patient scheduling and auto-scheduling of recurring exams with automated preappointment notifications and single-click patient registration; (4) Automated interfaces to lab devices and digital imaging systems; (5) Easy navigation to patient electronic health record summaries with drill-down functionality; (6) Support of psychological evaluation with results imported from standard psychological tools; (7) Real-time entry of clinical notes in easy-to-use exam forms; and (8) Roll-based function and data access, ensuring maximum security of patient health information.

  17. CPLOAS_2 User Manual.

    SciTech Connect (OSTI)

    Sallaberry, Cedric Jean-Marie; Helton, Jon C.

    2015-05-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high - consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to d eactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time - dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before f ailure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2. Keywords: Aleatory uncertainty, CPLOAS_2, Epistemic uncertainty, Probability of loss of assured safety, Strong link, Uncertainty analysis, Weak link

  18. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  19. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  20. 6.21 Improving Neutron Beams for Cancer Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 612011 6.21 Improving Neutron Beams for Cancer Treatment Beams of neutrons long have been used in scientific experiments, but recently, for the first time, a novel type of...

  1. Data Transfer Considerations for ALS Scientists and Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Considerations for ALS Scientists and Users Print Introduction Working at the ALS generates huge amounts of data, and for many years this has caused users to have to carry hard drives and USB drives between the ALS and their home institutions for acquisition and analysis of experimental data. To avoid the physical transport of data and to make real-time analysis possible, staff at the ALS, ESnet, and Berkeley Lab's IT Division have collaborated to implement several best practices

  2. Data Transfer Considerations for ALS Scientists and Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Considerations for ALS Scientists and Users Print Introduction Working at the ALS generates huge amounts of data, and for many years this has caused users to have to carry hard drives and USB drives between the ALS and their home institutions for acquisition and analysis of experimental data. To avoid the physical transport of data and to make real-time analysis possible, staff at the ALS, ESnet, and Berkeley Lab's IT Division have collaborated to implement several best practices

  3. User Agreements | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Agreements User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources User Agreements Print Text Size: A A A

  4. User Safety | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Safety User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources User Safety Print Text Size: A A A

  5. Test and User Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility C Controllable Grid Interface Test System D Distributed Energy Resources Test Facility

  6. 2015 User Meeting Award Recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 User Meeting Award Recipients 2015 ALS User Meeting Award Recipients Presented on Tuesday, October 6, 2015, by Chris Cappa (UEC Chair). David A. Shirley Award for Outstanding Scientific Achievement at the ALS The David A. Shirley Award for Scientific Achievement went to Wanli Yang, "For new concepts optimizing battery materials with the aid of soft x-ray microscopy." David Shirley was a Professor of Chemistry at UC Berkeley and Director of LBNL from 1980 to 1989, and was instrumental

  7. PIA - Advanced Test Reactor National Scientific User Facility...

    Office of Environmental Management (EM)

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor ...

  8. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.

  9. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user

  10. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  11. SLAC Linac Coherent Light Source User Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to the LCLS User Resources Site Resource moved to: LCLS Resources

  12. SSRL and LCLS Users' Meeting and Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL and LCLS Users' Meeting and Workshops October 24-26, 2011 Menlo Park

  13. Pyramid beam splitter

    DOE Patents [OSTI]

    McKeown, Mark H. (Golden, CO); Beason, Steven C. (Lakewood, CO); Fairer, George (Boulder, CO)

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  14. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  15. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  16. User Advisory Council | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Overview History Staff Directory Our Teams User Advisory Council Careers Margaret Butler Fellowship Visiting Us Contact Us User Advisory Council The User Advisory Council meets regularly to review major policies and to provide user feedback to the facility leadership. All council members are active Principal Investigators or users of ALCF computational resources through one or more of the allocation programs. Martin Berzins Professor Department of Computer Science Scientific Computing and

  17. Bevatron/Bevalac user's handbook: biology and medicine. Revision

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    The Bevalac Biomedical Facility develops a source of near-relativistic heavy ions for applications to radiation biology, radiation therapy and diagnostic radiology. Pulsed beams of high LET heavy ions with variable pulse width, frequency, intensity and energy are produced and delivered to the Biomedical Facility by the Bevatron/Bevalac accelerator complex. Dosimetry equipment under computer control provides accurate determinations of absorbed doses in all regions of the Bragg curve. Depth-dose modifying devices and precise specimen positioning equipment are available. Animal housing and tissue culture facilities are convenient to the experimenter. This handbook is designed to provide the user with the relevant information for planning, proposing and executing an experiment.

  18. Nuclear Energy Infrastructure Database Description and User’s Manual

    SciTech Connect (OSTI)

    Heidrich, Brenden

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  19. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  20. All users now enabled on the new Cray XC30, Edison Phase I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users now enabled on the new Cray XC30, Edison Phase I All users now enabled on the new Cray XC30, Edison Phase I March 5, 2013 by Francesca Verdier All user accounts have been enabled on the first phase of Edison, NERSC's newest HPC resource, a Cray XC30. The system was installed last December and is currently in the pre-production phase, a time when NERSC users are given access to the machine, and also when NERSC and Cray staff are still making improvements to the system. Users are invited to

  1. Electron gun jitter effects on beam bunching

    SciTech Connect (OSTI)

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  2. Measurements - Ion Beams - Radiation Effects Facility / Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Texas A&M University Ion Beams Available Beams / Beam Change Times / Measurements / Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each detector is made up with a plastic scintillator coupled to photo-multiplier tubes. Four of the detectors are fixed in position and set up to measure beam particle counting rates continuously at four characteristic points 1.64 inches (4.71 mm) away from the beam axis. The fifth scintillator can

  3. SOWFA + Super Controller User's Manual

    SciTech Connect (OSTI)

    Fleming, P.; Gebraad, P.; Churchfield, M.; Lee, S.; Johnson, K.; Michalakes, J.; van Wingerden, J. W.; Moriarty, P.

    2013-08-01

    SOWFA + Super Controller is a modification of the NREL's SOWFA tool which allows for a user to apply multiturbine or centralized wind plant control algorithms within the high-fidelity SOWFA simulation environment. The tool is currently a branch of the main SOWFA program, but will one day will be merged into a single version. This manual introduces the tool and provides examples such that a user can implement their own super controller and set up and run simulations. The manual only discusses enough about SOWFA itself to allow for the customization of controllers and running of simulations, and details of SOWFA itself are reported elsewhere Churchfield and Lee (2013); Churchfield et al. (2012). SOWFA + Super Controller, and this manual, are in alpha mode.

  4. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; Fisher, Alan; Huang, Xiaobiao; Safranek, James; Westerman, Stuart; Cheng, Weixing; Mok, Walter; /Unlisted

    2012-06-21

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  5. 2012 LANSCE Topical User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Topical User Meeting January 9-10, 2012 The Office of Defense Programs is developing a long-term strategy for the construction of new experimental science facilities supporting NNSA missions. The new facilities will provide the critical science and technology capabilities necessary to execute the 21 st century responsibilities of NNSA in executing its mission and in supporting the broader national security agenda. The call focuses on large facilities with costs exceeding $100M. The NNSA

  6. Cohesive Zone Model User Element

    Energy Science and Technology Software Center (OSTI)

    2007-04-17

    Cohesive Zone Model User Element (CZM UEL) is an implementation of a Cohesive Zone Model as an element for use in finite element simulations. CZM UEL computes a nodal force vector and stiffness matrix from a vector of nodal displacements. It is designed for structural analysts using finite element software to predict crack initiation, crack propagation, and the effect of a crack on the rest of a structure.

  7. NuMAD User's Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7028 Unlimited Release Printed August 2012 Numerical Manufacturing And Design Tool (NuMAD v2.0) for Wind Turbine Blades: User's Guide Jonathan C. Berg and Brian R. Resor Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  8. 2013 PDSF User Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Minutes 2013 PDSF User Meeting Minutes December 3 Attending Shusu, Ernst, Mike, Craig, Iwona, Larry, Lisa Outages/Downtimes November 12 - 15: Mendel nodes offline for recabling Various Dates: Rolling upgrades of various PDSF interactive nodes Upcoming Downtimes January: Possible project outage December 16: Eliza 3, 8, 9 will no longer be accessible Other Issues New Mendel rack is in place, new interactives are open to a few beta testers. Amount of available scratch now tracked properly by

  9. Cray XC30 User Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software and Tools Coarray Fortran cChapel Shared and Dynamic Libraries Cluster Compatibility Mode Debugging and Profiling Performance and Optimization Cray XC30 Documentation Alva - Test and Development System for Edison HPX - 5 on Edison, Cori and Babbage PDSF Genepool Testbeds Retired Systems Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training & Tutorials Software Policies User Surveys NERSC

  10. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Dr. Riccardo Betti University of Rochester Dr. Alexis Casner Centre d'Études de Bruyère Le Châtel Professor Paul Drake Co-Chair Committee Elections University of Michigan Dr. Hans Hermann Los Alamos National Laboratory Dr. Paul Neumayer GSI Darmstadt Dr. Hye-Sook Park Lawrence Livermore National Laboratory Dr. Mingsheng Wei General Atomics Jena Meineche Young Researcher: Oxford University Gianluca Gregori Oxford

  11. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Feedstock National User Facility Kevin L. Kenney July 29, 2014 Mission: Engage commercial, industrial, governmental, and educational entities through the utilization/deployment of DOE-BETO developed capabilities What's New? New tools for capability deployment Approach: Active industry engagement to establish a partnership between DOE and industry * Satisfy DOE-BETO interests * Provide products that reduce risk and guide industrial technologies Biomass Feedstock Process Demonstration Unit

  12. Sierra Structural Dynamics User's Notes

    SciTech Connect (OSTI)

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  13. RADTRAN/RADCAT USER GUIDE

    National Nuclear Security Administration (NNSA)

    SANDIA REPORT SAND2009-5129P Unlimited Release Printed: May 2009 Updated: RadCat 3.0 User Guide Ruth F. Weiner, Matthew L. Dennis, Daniel Hinojosa, Terence J. Heames, Janelle J. Penisten, Michelle K. Marincel, Douglas M. Osborn Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security

  14. Continuous Electron Beam Accelerator Facility (CEBAF) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Continuous Electron Beam Accelerator Facility (CEBAF) Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department

  15. User instructions for programs NEDIT and NPRED

    SciTech Connect (OSTI)

    Gross, R.J.

    1983-02-01

    NEDIT and NPRED are computer programs developed for the Strategic Petroleum Reserve (SPR) Program to assist the SPR system designers and operators in scheduling the leaching and oil-filling of the SPR salt caverns. NEDIT is an interactive program which assists the user in creating or editing a data set; NPRED in turn uses this data set to perform the engineering calculations. Various activities are necessary to achieve a man-made cavern filled with a maximum quantity of oil in minimum time. NPRED predicts the time required for each such activity, thus providing a site oil-capacity schedule. Instructions for using the codes are presented and examples are shown. 1 figure, 5 tables.

  16. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H. (Livermore, CA)

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  17. WIMS-D4M user manual

    SciTech Connect (OSTI)

    Deen, J.R.; Woodruff, W.L.; Costescu, C.I.

    1995-07-01

    The Winfrith Improved Multigroup Scheme (WIMS) code has been used extensively throughout the world for power and research reactor lattice physics analysis. There are many WIMS versions currently in use. The D4 version selected by the RERTR program was originally developed in 1980). It was chosen for the accurate lattice physics capability and an unrestricted distribution privilege. The code and its 69-group library tape 166259 generated in Winfrith were obtained from the Oak Ridge National Laboratory Radiation Shielding Information Center (RSIC) in 1992. Since that time the RERTR program has added three important features. The first was the capability to generate up to 20 broad-group bumup-dependent macroscopic or microscopic ISOTXS cross sections for each composition of the unit cell, a new ENDF/B-V based nuclear data library, and a new Supercell option. As a result of these modifications and other minor ones, the code is now named WIMS-D4M. A supplementary reference guide can be obtained from the RSIC that contains detailed explanations of all user options, library contents, along with several sample problems. Primary applications of WIMS for research reactor modeling do not require an extensive knowledge of all WIMS user options. This user guide is primarily addressed to the needs of the research reactor community although the code can be used for most thermal reactor lattices. The guide is written based on the experience of the RERTR staff with WIMS-D4M and will discuss only the most needed options for research reactor analyses.

  18. User-Driven Sampling Strategies in Image Exploitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harvey, Neal R.; Porter, Reid B.

    2013-12-23

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less

  19. David Turner! NERSC User Services Group! NUG New User Training!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Overview * Na#onal E nergy R esearch Scien#fic Compu#ng Center - Established 1 974, fi rst u nclassified supercomputer c enter - Original m ission: t o e nable computa<onal s cience a s a complement t o m agne<cally controlled p lasma e xperiment * Today's mission: Accelerate scientific discovery at the DOE Office of Science through high performance computing and extreme data analysis * A national user facility NERSC Today's Talk * A b rief i ntroduc#on t o t he C enter a nd s ome s

  20. David Turner! NERSC User Services Group! New User Training!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Overview * Na#onal E nergy R esearch Scien#fic Compu#ng Center - Established 1 974, fi rst u nclassified supercomputer c enter - Original m ission: t o e nable computa<onal s cience a s a complement t o m agne<cally controlled p lasma e xperiment * Today's mission: Accelerate scientific discovery at the DOE Office of Science through high performance computing and extreme data analysis * A national user facility NERSC Today's Talk * A b rief i ntroduc#on t o t he C enter a nd s ome s

  1. 2013 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  2. User Data Forum and HPCOR Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logistics User Data Forum and HPCOR Logistics Joint Facilities User Forum on Data Intensive Computing June 16-18, 2014 Oakland City Center Conference Center 500 12th Street, Suite...

  3. New User Training: Sep. 10, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training New User Training: Sep. 10, 2013 September 10, 2013 NERSC will present a four-hour training for new users on Sep. 10, 2013 from 10:00 to 14:00 PDT. This event is targeted...

  4. New User Training: October 30, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10302014 New User Training: October 30, 2014 October 30, 2014 NERSC will present a three-hour training for new users on October 30, 2014 from 09:00 to 12:00 PDT. This event is...

  5. NERSC Releases Mobile Apps to Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Mobile Apps to Users NERSC Releases Mobile Apps to Users Job Status, MOTD and Pilot of VASP Submission Available with More to Come April 23, 2012 In an effort to make...

  6. User:Harris | Open Energy Information

    Open Energy Info (EERE)

    Harris Jump to: navigation, search Name harris Location Houston, Texas Edits 2 Friends User Edits DWC Bot 12006 Retrieved from "http:en.openei.orgwindex.php?titleUser:Harris&o...

  7. E-print Network : User Account

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Search | My Selections (0) | | | | Alerts | E-print Network Create User Account User Name: Email Address: I want to: Always receive emails Receive emails if there are new...

  8. Advanced Notification of Awards (ANA) User Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Notification of Awards (ANA) User Guide A service of iManage ANA User Guide Page 2 Table of Content: Introduction........................................................................... 3 Approval Process Overview.................................................... 3 Role Descriptions................................................................... 3 Accessing the ANA system..................................................... 5 Termination

  9. User:Joebloggs | Open Energy Information

    Open Energy Info (EERE)

    search Doofenshmirtz biteguard.png Name Joe Bloggs Location World Edits 3 This is a test user from someone on the OpenEI team. This user will simulate various spam to make sure...

  10. User:GregZiebold | Open Energy Information

    Open Energy Info (EERE)

    Energy Info Google Group Open Energy Info Twitter OpenEI YouTube Channel OpenEI Blog My test pages: User:GregZieboldGateway test User:GregZieboldSemantic Map test...

  11. User:Myenergy | Open Energy Information

    Open Energy Info (EERE)

    User page Edit with form History User:Myenergy Jump to: navigation, search Myenergy vertical styled.png Name MyEnergy Location Boston, Massachusetts Edits 4 MyEnergy is a leading...

  12. MAMA- User Feedback and Training Summary

    SciTech Connect (OSTI)

    Porter, Reid B.; Ruggiero, Christy E.

    2014-05-21

    This document describes the current state of the MAMA (Morphological Analysis of Materials) software user identified bugs, issues, and requests for improvements. It also lists Current users and current training methods.

  13. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect (OSTI)

    Singleton, L.; Yao, C.Y.

    1993-12-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  14. Manufactured Home Energy Audit user`s manual

    SciTech Connect (OSTI)

    1997-09-01

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

  15. User:Clarknd | Open Energy Information

    Open Energy Info (EERE)

    Clarknd Jump to: navigation, search Edits 1961 Retrieved from "http:en.openei.orgwindex.php?titleUser:Clarknd&oldid508286...

  16. User:Mptonko | Open Energy Information

    Open Energy Info (EERE)

    Mptonko Jump to: navigation, search Edits 456 Retrieved from "http:en.openei.orgwindex.php?titleUser:Mptonko&oldid74785...

  17. User:Pgray | Open Energy Information

    Open Energy Info (EERE)

    Pgray Jump to: navigation, search Edits 203 Retrieved from "http:en.openei.orgwindex.php?titleUser:Pgray&oldid814210...

  18. EMC User Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Policies Safety at Work EMC User Safety Scheduled Maintenance Periods Transportation For Industrial Users Acknowledgment Statements for Publications End of Experiment Survey Users Executive Committee People Publications 2015 Publications 2014 Publications 2013 Publications 2012 Publications 2011 Publications 2010 Publications 2009 Publications 2008 Publications 2007 Publications 2006 Publications Fact Sheets & Other Documents Acknowledgment Statement News & Events RESEARCH

  19. SeisTool Ver. 2.1 User`s Guide

    SciTech Connect (OSTI)

    Yu, A.K.

    1993-08-01

    SeisTool is an interactive graphical tool that allows you to analyse seismograms. It runs under the X window environment. The current version employs an OpenLook graphical user interface. It is designed for convenient display of seismograms and handling of events for routine analysis. It also allows phase picking to be done smoothly. A number of time-series analysis operations have also been implemented. Here, is a brief guide to the operation of SeisTool. The intention of this User`s Guide is not to guide you through SeisTool step by step, (The best way of learning how to use SeisTool is run the program and experiment with it.) but, to present a few basic concepts behind SeisTool to acquaint you with the program. The goal of this prototype is to make analysing seismograms as easy and convenient as browsing a file with a text editor. Think of SeisTool as nothing more than a seismogram data file browser.

  20. CADCAM-009: VERTRAN user's manual

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1985-01-01

    Sandia National Laboratories has been assigned Lead Lab responsibility by the Department of Energy (DOE) for integrating computer-aided design/computer-aided manufacturing (CAD/CAM) activities throughout DOE's Nuclear Weapons Complex (NWC). A primary objective is automating the exchange of product definition data within the NWC. It is essential that data integrity be preserved and verified following each such data exchange. VERTRAN (for VERification of TRANsferred data) is a software based method for detecting differences in the geometric data of a computer product definition file that has been transferred from one CAD system to another. Complete user instructions and program responses are provided.

  1. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  2. 26th Annual Users' Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    99users_conf.jpg (48161 bytes) registration_button.jpg (2015 bytes) program_button.jpg (1761 bytes) poster_button.jpg (1838 bytes) lytle_award.jpg ballot_button.jpg (2231 bytes) lodging_button.jpg (1708 bytes) directions_button.jpg (2196 bytes) visitor_button.jpg (1800 bytes) For Additional Information Contact: Michelle Steger steger.gif (1133 bytes) SSRL, MS 99 PO Box 4349 Stanford, CA 94309-0210 Phone: (650) 926-3011 Fax: (650) 926-3600 Last Update: August 3, 1999 by Lisa Dunn Image16.gif (32

  3. NuMAD User's Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    028 Unlimited Release Printed August 2012 Numerical Manufacturing And Design Tool (NuMAD v2.0) for Wind Turbine Blades: User's Guide Jonathan C. Berg Brian R. Resor Wind Energy Technologies Department Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-1124 Abstract Sandia National Laboratories has an on-going effort to reduce the cost of energy and improve reliability for wind systems through improved blade design and manufacture. As part of this effort, a software tool named NuMAD

  4. Ahn-ANL_User_Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPPORTUNITIES WITH THE PROTOTYPE AT-TPC AT ATLAS Tan Ahn! National Superconducting Cyclotron Lab, Michigan State University! ! Single-Particle Structure and Reactions Session! ATLAS Users Meeting! May 15, 2014 PROTOTYPE AT-TPC e - e - e - e - e - e - e - e - e - e - e - e - D. Suzuki et al., NIM A 660, 64 (2011) PROTOTYPE AT-TPC e - e - e - e - e - e - e - e - e - e - e - e - active-target volume D. Suzuki et al., NIM A 660, 64 (2011) PROTOTYPE AT-TPC e - e - e - e - e - e - e - e - e - e - e -

  5. MRDAP User/Developer Documentation

    SciTech Connect (OSTI)

    Joshua Cogliati; Michael Milvich

    2009-09-01

    The Multi-Reactor Design and Analysis Platform (MRDAP) is designed to simplify the creation, transfer and processing of data between computational codes. MRDAP accomplishes these objectives with three parts: 1. allows each integrated code, through a plugin, to specify the required input for execution and the required output needed, 2. creates an interface for execution and data transfer, 3. enables the creation of Graphical User Interfaces (GUI) to assist with input preparation and data visualization. Ultimately, the main motivation of this work is to enable analysts (who perform reactor physics calculations routinely), by providing a tool that increases efficiency and minimizes the potential for errors or failed executions.

  6. 2011 PDSF Users Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 PDSF Users Meeting Minutes December 20 Attending: Eric Larry Iwona Mike Alex Hiroshi JeffP Lisa December 6 Attending: Eric, Iwona, Mike, Larry, Lisa November 22 Attending: Eric Iwona Mike Larry Lisa JeffP Ernst November 8 Attending: Eric Iwona JeffP JeffA Mike Craig October 25 Attending: Eric Marjorie Lisa Elizabeth October 11 Attending: Eric Mike Larry Iwona JeffA September 27 Attending: Eric Elizabeth, Larry, Lisa, JeffP, JeffA, Craig, Iwona, Mike September 13 Attending: Eric, Larry,

  7. 2012 PDSF Users Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 PDSF Users Meeting Minutes June 19 Attending: Larry, Katie, Craig, Mike Hence, Jay, Ernst Read More » June 5 Attending: Larry, Katie, Craig, Mike Hence, Jay, Ernst Read More » May 22 Attending: Larry, Katie, Craig, Mike Hence, Jay, Ernst Read More » May 8 Attending: Eric Iwona Ernst Mike Lisa JeffP Larry Read More » April 24 Attending: Eric, Iwona, Chris Powell, Clayton, Mike, Lisa Read More » April 10 Attending: Eric Iwona Larry Evan JeffP Lisa Tom Mike Gene Read More » March 27

  8. 2014 PDSF User Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Minutes 2014 PDSF User Meeting Minutes December 2 Attending Jeff Outages / Downtimes 11/11 NERSC / PDSF maintenance 11/18 project hours Upcoming Downtime None Other Issues New Mendel nodes are online. Slides The slides from the meeting can be found here. November 4 Attending Jeff, Mike Outages / Downtime 10/20 NERSC CA and NEWT outage Upcoming Downtime 11/11 8:00 am to 6:00 pm maintenance Other Issues PDSF old home hardware is being retired. Please check your scripts for "/home" or

  9. 2015 PDSF User Meeting Minutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Minutes 2015 PDSF User Meeting Minutes January 6 Attending Jeff, Craig, Ernst, Lisa Outages/Downtimes None Upcoming Downtimes February 11 all day maintenance Other Issues Would like to retire SL53, please let Lisa know who's still using it and what's needed in SL6x. Slides You can find the slides shown at the meeting here. February 3 Attending Mike, Jeff, Lisa Outages/Downtimes 1/13: pdsfdtn2 maintenance 1/20: Power sag caused several nodes to lose GPFS, jobs failed 1/22: Global homes and

  10. Michael Stewart! NERSC User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stewart! NERSC User Services Compilers on NERSC Systems --- 1 --- September 10, 2013 Compilers on NERSC Systems Crays ( Hopper a nd E dison) PrgEnv m odules p rovide l inks t o M PI a nd m ath l ibrary l ibraries a nd includes. Invoke c ompilers w ith w rapper c ommands a nd t he l oaded PrgEnv m odule will i nvoke t he p roper c ompiler: ?n ( Fortran), c c ( C c ompiler), a nd C C ( C+ +). Available c ompiler m odules: pgi ( only o n H opper), i ntel, c ray, a nd g nu (gcc). Default PrgEnv m

  11. User Statistics Collection Practices | U.S. DOE Office of Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Statistics Collection Practices User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Definition Designation...

  12. SPEAR3 Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on each, and the projected date when regular user scheduling resumes is summarized below: Beam Line Beam Line Type Beam Time Type Technique(s) User Scheduling Resumed...

  13. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect (OSTI)

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  14. Status of RHIC head-on beam-beam compensation project

    SciTech Connect (OSTI)

    Fischer, W.; Anerella, M.; Beebe, E.; Bruno, D.; Gassner, D.M.; Gu, X.; Gupta, R.C.; Hock, J.; Jain, A.K.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Montag, C.; Oerter, B.; Okamura, M.; Pikin, A.I.; Raparia, D.; Tan, Y.; Than, R.; Thieberger, P.; Tuozzolo, J.; Zhang, W.

    2011-03-28

    Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosities. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing. An overview of the RHIC head-on beam-beam compensation project is given in [1], and more details in [2]. With 2 head-on beam-beam interactions in IP6 and IP8, a third interaction with a low-energy electron beam is added near IP10 to partially compensate the the head-on beam-beam effect. Two electron lenses are under construction, one for each ring. Both will be located in a region common to both beams, but each lens will act only on one beam. With head-on beam-beam compensation up to a factor of two improvement in luminosity is expected together with a polarized source upgrade. The current RHIC polarized proton performance is documented in Ref. [4]. An electron lens (Fig. 1) consists of an DC electron gun, warm solenoids to focus the electron beam during transport, a superconducting main solenoid in which the interaction with the proton beam occurs, steering magnets, a collector, and instrumentation. The main developments in the last year are given below. The experimental program for polarized program at 100 GeV was expected to be finished by the time the electron lenses are commissioned. However, decadal plans by the RHIC experiments STAR and PHENIX show a continuing interest at both 100 GeV and 250 GeV, and a larger proton beam size has been accommodated in the design (Tab. 1). Over the last year beam and lattice parameters were optimized, and RHIC proton lattices are under development for optimized electron lens performance. The effect of the electron lens magnetic structure on the proton beam was evaluated, and found to be correctable. Experiments were done in RHIC and the Tevatron.

  15. 2012 PATRIOT SCRIPT User's Guide

    SciTech Connect (OSTI)

    Cuellar, Leticia; Cleland, Timothy J.; Kubicek, Deborah A.; Mathis, Mark M.; Stroud, Phillip D.

    2012-05-31

    PATRIOT Script is an application that executes Patriot batch runs. This document provides a description of this application and how to run it. The basic user access tool PATRIOT Client allows a user to generate several most reliable paths in one run: one can specify a list of sources (origins) and targets, and PATRIOT finds for a given architecture option and one choice of device all the most reliable paths between all these sources and targets. The main objective of PATRIOT Script is to provide a tool for making automatic PATRIOT runs not only for a prespecified set of sources and targets, but also for a pre-specified set of devices and various architecture options. Running PATRIOT Script requires two basic steps that will be explained in more detail next: (1) Pre-preparation of an excel spreadsheet with the information about the desired runs; and (2) Opening the PATRIOT Script application, reading in the excel-spreadsheet and running the desired scenarios. Sections 1 and 2 explain each of these steps, and section 3 describes the output of the PATRIOT Script. For a detail description of the models and data behind PATRIOT and a detailed explanation of all the architecture options see [1]. For instructions of how to run PATRIOT Client see [2].

  16. Beam Instrumentation Workshop

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-01-01

    The fifth annual Beam Instrumentation Workshop was hosted by Los Alamos National Laboratory in Santa Fe, New Mexico. These proceedings represent the papers presented at the Workshop. A variety of topics were covered including beam emittance diagnostics, fluorescent screens, control systems for many accelerators and photon sources. Beam monitoring was discussed in great detail. There were thirty seven papers presented at the Workshop and all have been abstracted for the Energy and Science Technology database. (AIP)

  17. NERSC Releases Mobile Apps to Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Mobile Apps to Users NERSC Releases Mobile Apps to Users Job Status, MOTD and Pilot of VASP Submission Available with More to Come April 23, 2012 In an effort to make NERSC resources more accessible to its users, the facility is rolling out a number of applications that allow researchers to access scientific data on their web browsers, tablets and smart phones. This month, NERSC announced two new applications now available to its users: The NERSC mobile user portal (http://m.nersc.gov)

  18. HFBR handbook, 1992: High flux beam reactor

    SciTech Connect (OSTI)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance.

  19. David Turner! NERSC User Services Group! NUG New User Training!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUG New User Training! February 23, 2015 Next Steps You A re N ot A lone ! A c alcula'on o f t he s elf--- generated p lasma current i n t he W 7---X reactor, p erformed u sing the S FINCS c ode o n Edison. T he c olors represent t he a mount o f electric c urrent a long the magne'c field, and the b lack l ines s how magne'c fi eld l ines. Image: M aH L andreman You W ill B e S uccessful ! Collision b etween t wo shells o f m aHer e jected in t wo s upernova erup'ons, s howing a slice t hrough a

  20. David Turner! NERSC User Services Group! New User Training!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New User Training! October 30, 2014 Next Steps You A re N ot A lone ! A c alcula'on o f t he s elf--- generated p lasma current i n t he W 7---X reactor, p erformed u sing the S FINCS c ode o n Edison. T he c olors represent t he a mount o f electric c urrent a long the magne'c field, and the b lack l ines s how magne'c fi eld l ines. Image: M aH L andreman You W ill B e S uccessful ! Collision b etween t wo shells o f m aHer e jected in t wo s upernova erup'ons, s howing a slice t hrough a c

  1. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  2. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  3. FEDIX: User`s guide, Version 5.0/Release 3.0

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    FEDIX is an on-line information service that links the education community and the federal government to facilitate research, education, and services. The system provides accurate, timely federal agency information to colleges, universities, and other research organizations. Participating agencies include DOE, FAA, NASA, ONR, AFOSR, DOC, HUD, AID, USDA, and DISA/DARIC. This guide is intended to help users access and utilize the FEDIX system. Because the system is frequently updated, some menus and tables in the text may not exactly match those displayed on the live system.

  4. Control and manipulation of electron beams

    SciTech Connect (OSTI)

    Piot, Philippe; /NICADD, DeKalb /Northern Illinois U. /Fermilab

    2008-09-01

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  5. SNS BEAM COMMISSIONING TOOLS AND EXPERIENCE

    SciTech Connect (OSTI)

    Shishlo, Andrei P; Galambos, John D

    2008-01-01

    The Spallation Neutron Source (SNS) successfully met the primary construction project completion milestones in April 2006. An important ingredient of this successful commissioning was the development and use of software tools. With the increasing digitalization of beam diagnostics and increasing complexity of Integrated Control Systems of large accelerators, the need for high level software tools is critical for smooth commissioning. At SNS a special Java based infrastructure called XAL was prepared for beam commissioning. XAL provides a hierarchal view of the accelerator, is data base configured, and includes a physics model of the beam. This infrastructure and individual applications development along with a historical time line of the SNS commissioning will be discussed.

  6. 2015 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events RESEARCH HIGHLIGHTS COLLOQUIUM SERIES SEMINAR SERIES Argonne Press

  7. PETSc Users Manual Revision 3.4

    SciTech Connect (OSTI)

    Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W.; Kaushik, D.; Knepley, M.; McInnes, L. Curfman; Smith, B.; Zhang, H.

    2014-06-29

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.

  8. PETSc Users Manual Revision 3.5

    SciTech Connect (OSTI)

    Balay, S.; Abhyankar, S.; Adams, M.; Brown, J.; Brune, P.; Buschelman, K.; Eijkhout, V.; Gropp, W.; Kaushik, D.; Knepley, M.; McInnes, L. Curfman; Rupp, K.; Smith, B.; Zhang, H.

    2014-09-08

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself. ;For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.

  9. PETSc Users Manual Revision 3.3

    SciTech Connect (OSTI)

    Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W.; Kaushik, D.; Knepley, M.; McInnes, L. Curfman; Smith, B.; Zhang, H.

    2013-05-11

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.

  10. GADRAS-DRF 18.5 User's Manual.

    SciTech Connect (OSTI)

    Horne, Steven M.; Thoreson, Gregory G; Theisen, Lisa A.; Mitchell, Dean J.; Harding, Lee; Amai, Wendy A.

    2014-12-01

    The Gamma Detector Response and Analysis Software - Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  11. GENII Version 2 Users’ Guide

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2004-03-08

    The GENII Version 2 computer code was developed for the Environmental Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) and the radiological risk estimating procedures of Federal Guidance Report 13 into updated versions of existing environmental pathway analysis models. The resulting environmental dosimetry computer codes are compiled in the GENII Environmental Dosimetry System. The GENII system was developed to provide a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The codes were designed with the flexibility to accommodate input parameters for a wide variety of generic sites. Operation of a new version of the codes, GENII Version 2, is described in this report. Two versions of the GENII Version 2 code system are available, a full-featured version and a version specifically designed for demonstrating compliance with the dose limits specified in 40 CFR 61.93(a), the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for radionuclides. The only differences lie in the limitation of the capabilities of the user to change specific parameters in the NESHAPS version. This report describes the data entry, accomplished via interactive, menu-driven user interfaces. Default exposure and consumption parameters are provided for both the average (population) and maximum individual; however, these may be modified by the user. Source term information may be entered as radionuclide release quantities for transport scenarios, or as basic radionuclide concentrations in environmental media (air, water, soil). For input of basic or derived concentrations, decay of parent radionuclides and ingrowth of radioactive decay products prior to the start of the exposure scenario may be considered. A single code run can accommodate unlimited numbers of radionuclides including the source term and any radionuclides that accumulate from decay of the parent, because the system works sequentially on individual decay chains. The code package also provides interfaces, through the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES), for external calculations of atmospheric dispersion, geohydrology, biotic transport, and surface water transport.

  12. V-093: Symantec PGP Desktop Buffer Overflows Let Local Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secure Mobility Client Heap Overflow Lets Local Users Gain Elevated Privileges V-066: Adobe AcrobatReader Multiple Flaws Lets Remote Users Execute Arbitrary Code and Local Users...

  13. Notification of General User Proposal and Approved Program Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notification of General User Proposal and Approved Program Results Notification of General User Proposal and Approved Program Results Print by Sue Bailey, User Services Group...

  14. Biomass Feedstock National User Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstock National User Facility Biomass Feedstock National User Facility Breakout Session 1B-Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User ...

  15. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics Users and Projects Through the Years Number of NERSC Users and Projects Through...

  16. Apparatus for laser beam profile measurements

    DOE Patents [OSTI]

    Barnes, N.P.; Gettemy, D.J.

    1985-01-30

    Apparatus for measuring the spatial intensity profile of the output beam from a continuous-wave laser oscillator. The rapid and repetitive passing of a small aperture through the otherwise totally blocked output beam of the laser under investigation provides an easily interpretable, real-time measure of the intensity characteristics thereof when detected by a single detector and the signal generated thereby displayed on an oscilloscope synthronized to the motion of the aperture.

  17. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  18. High sensitivity charge amplifier for ion beam uniformity monitor

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  19. Fifteen Years of Beam on Target | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fifteen Years of Beam on Target First beam enters Hall C First beam enters Hall C. On July 1, 1994, Jefferson Lab's accelerator delivered an electron beam into one of its experimental halls for the first time. It was just 10 years after the lab's founding and the construction of its first-of-a-kind accelerator. Great Expectations Initial plans called for a machine that could "accelerate" a more-or-less continuous beam of electrons by stuffing each electron with up to four billion

  20. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  1. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  2. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  3. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  4. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  5. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams Citation Details In-Document Search Title: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design

  6. Electron Lens for Beam-Beam Compensation at LHC

    SciTech Connect (OSTI)

    Valishev, A.; Shiltsev, V.; /Fermilab

    2009-05-01

    Head-on beam-beam effect may become a major performance limitation for the LHC in some of the upgrade scenarios. Given the vast experience gained from the operation of Tevatron electron lenses, a similar device provides significant potential for mitigation of beam-beam effects at the LHC. In this report we present the results of simulation studies of beam-beam compensation and analyze potential application of electron lense at LHC and RHIC.

  7. STOMP Subsurface Transport Over Multiple Phases: User`s guide

    SciTech Connect (OSTI)

    White, M.D.; Oostrom, M.

    1997-10-01

    The U.S. Department of Energy, through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and groundwater at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride, on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineer simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest National Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator theory and discussions on the governing equations, constitutive relations, and numerical solution algorithms for the STOMP simulator.

  8. Anaerobic digestion analysis model: User`s manual

    SciTech Connect (OSTI)

    Ruth, M.; Landucci, R.

    1994-08-01

    The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

  9. STUDY OF ELECTRON -PROTON BEAM-BEAM INTERACTION IN ERHIC

    SciTech Connect (OSTI)

    HAO,Y.; LITVINENKO, V.N.; MONTAG, C.; POZDEYEV, E.; PTITSYN, V.

    2007-06-25

    Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects, which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as a ''kink'' instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth.

  10. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-12-01

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4{times}10{sup {minus}17}cm{sup 2} at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. {copyright} {ital 1998 American Institute of Physics.}

  11. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-05-05

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4 {times} 10{sup {minus}17} cm{sup 2} at 1.5 eV, a 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10-ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  12. Microsoft Word - CR Users Policy1110.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD Cleanroom Users Policy revised 04/11 Statement of Work: A cleanroom environment for processing and m etrology is required for precisi on and reproducibility in Microfabrication. Rules and regulations have been devised to ensure sa fety, high yield, and reliable operation for users and the facility. I. Equipment Use  Equipment training is conducted by the designated equipment manager or appointed Cleanroom Staff . Staff members are ass igned designated machines in which users can request

  13. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    SciTech Connect (OSTI)

    EMAM, M; Eldib, A; Lin, M; Li, J; Chibani, O; Ma, C

    2014-06-01

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process.

  14. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect (OSTI)

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  15. User:Psuwind | Open Energy Information

    Open Energy Info (EERE)

    Psuwind Jump to: navigation, search Name Pennsylvania Wind Application Center Location PA Edits 11 Retrieved from "http:en.openei.orgwindex.php?titleUser:Psuwind&oldid762655...

  16. SSRL Users' Organization | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users, particularly students, to share their research results or new techniques; promoting, selecting recipients, and presenting the Farrel W. Lytle Award and the Melvin P....

  17. RTECS 1994 Public Use User's Guide

    U.S. Energy Information Administration (EIA) Indexed Site

    Banner 1994 RTECS Public Use Data User's Guide TABLE OF CONTENTS Survey Background 1994 RTECS Published Report How to Obtain Products and Services Printed Publications...

  18. Diatom Genomics (2009 JGI User Meeting)

    ScienceCinema (OSTI)

    Ambrust, Ginger

    2011-04-25

    Ginger Armbrust from the University of Washington spoke about diatom genomics on March 26, 2009 at the DOE JGI User Meeting

  19. APS User Information | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to APS, site access permission, user agreement, training, contactbio information your research: proposals, ESAFs, EEFs action items: things that need to be addressed before you...

  20. Ocean Viral Metagenomics (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Rohwer, Forest

    2011-04-26

    Forest Rohwer from San Diego State University talks about "Ocean Viral Metagenomics" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  1. User:Dmulcahy | Open Energy Information

    Open Energy Info (EERE)

    Dmulcahy Jump to: navigation, search Name David Mulcahy Location Chapel Hill, North Carolina Edits 50 Friends User Edits ylin 14 Retrieved from "http:en.openei.orgw...

  2. Giselle Jiles and Angel Hernandez, User Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Giselle Jiles and Angel Hernandez, User Office Print User office guest registration "specialists" Angel Hernandez and Giselle Jiles play a unique role at the ALS-they are often the first line of face-to-face contact new users have when they arrive for their beamtime. As such, the two see themselves as the caregivers of the ALS user experience. "We are here to do everything in our powers to make sure they get down to that beamline," says Jiles. "And the best customer

  3. Advanced Notification of Awards (ANA) User Guide

    Energy Savers [EERE]

    a pop-up window with instructions appears as displayed below. The user selects the "OK" button to exit the instructions. Approving Notifications When there is pending award...

  4. User:Lkastler | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Edits 1 Retrieved from "http:en.openei.orgwindex.php?titleUser:Lkastler&oldid888618" Feedback Contact needs updating Image needs...

  5. User:Dbgrantham | Open Energy Information

    Open Energy Info (EERE)

    Dbgrantham Jump to: navigation, search Name dbgrantham Edits 1 Retrieved from "http:en.openei.orgwindex.php?titleUser:Dbgrantham&oldid2970...

  6. User:Angeliecook | Open Energy Information

    Open Energy Info (EERE)

    Angeliecook Jump to: navigation, search Name Angelie Cook Edits 2 Retrieved from "http:en.openei.orgwindex.php?titleUser:Angeliecook&oldid712575...

  7. User:Enaname | Open Energy Information

    Open Energy Info (EERE)

    Enaname Jump to: navigation, search Name ENANAME Location San Diego County, California Edits 1 Retrieved from "http:en.openei.orgwindex.php?titleUser:Enaname&oldid522220...

  8. User:Dflower | Open Energy Information

    Open Energy Info (EERE)

    Dflower Jump to: navigation, search Name Drew Flower Edits 5 ABCD Retrieved from "http:en.openei.orgwindex.php?titleUser:Dflower&oldid576860...

  9. User:Arondobos | Open Energy Information

    Open Energy Info (EERE)

    Arondobos Jump to: navigation, search Name Aron Dobos Location Denver, CO Edits 1 Retrieved from "http:en.openei.orgwindex.php?titleUser:Arondobos&oldid266766...

  10. User:WolfgangFahl | Open Energy Information

    Open Energy Info (EERE)

    WolfgangFahl Jump to: navigation, search Name Wolfgang Fahl Edits 1 Retrieved from "http:en.openei.orgwindex.php?titleUser:WolfgangFahl&oldid877450...

  11. User:Imasonaz | Open Energy Information

    Open Energy Info (EERE)

    Imasonaz Jump to: navigation, search Location Arizona Edits 74 Retrieved from "http:en.openei.orgwindex.php?titleUser:Imasonaz&oldid805916...

  12. User:Nmatin | Open Energy Information

    Open Energy Info (EERE)

    Nmatin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleUser:Nmatin&oldid658628" Feedback Contact needs updating Image needs updating...

  13. User:Cookjj05 | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Jeff Cook Location National Renewable Energy Laboratory Edits 1 Retrieved from "http:en.openei.orgwindex.php?titleUser:Cookjj05&oldid8...

  14. User:Abergfel | Open Energy Information

    Open Energy Info (EERE)

    Abergfel Jump to: navigation, search Edits 578 National Renewable Energies Laboratory Retrieved from "http:en.openei.orgwindex.php?titleUser:Abergfel&oldid643249...

  15. New User and Data Analytics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New User and Data Analytics Training New User and Data Analytics Training February 23, 2015 Monday, Feb. 23 - New User and Data Analytics Training NERSC (Berkeley Lab Building 943), 415 20th Street, Oakland, CA If you plan to attend, please register here. There is no registration fee, but your registration helps us plan the event. To attend remotely via WebEx, please see Remote Setup. Note that the morning session "New User Training" and the afternoon session "Data and Analytics

  16. Property:Tool Users | Open Energy Information

    Open Energy Info (EERE)

    "Tool Users" Showing 1 page using this property. N National Residential Efficiency Measures Database + The National Residential Efficiency Measures Database is a publicly...

  17. AIRMaster+ User Manual | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AIRMaster+ compressed air software. AIRMaster+ User Manual (2000) More Documents & Publications AIRMaster+ Tool Introduction AIRMaster+ Fact Sheet Pre-In-Plant Training Webinar...

  18. User Facility Access Policy | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discrimination based on nationality, country of origin, ethnicity, gender, race, or religion. This User Facility Access Policy provides a concise overview of the framework for...

  19. User:Jamescook | Open Energy Information

    Open Energy Info (EERE)

    Jamescook Jump to: navigation, search Name James Cook Location Alabama Edits 6 Retrieved from "http:en.openei.orgwindex.php?titleUser:Jamescook&oldid795136...

  20. 2008/2009 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next 20082009 User Survey Results Table of Contents Response Survey Respondent Demographics Overall Satisfaction and Importance All Satisfaction and Importance Ratings...

  1. 2009/2010 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next 20092010 User Survey Results Table of Contents Response Summary Respondent Demographics Overall Satisfaction All Satisfaction and Importance Ratings HPC Resources NERSC...

  2. 2010/2011 User Survey Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next 20102011 User Survey Results Table of Contents Response Summary Respondent Demographics Score Legend Satisfaction and Importance Scores HPC Resources Software Services...

  3. Berkeley Lab Welcomes the NERSC Users' Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jonathan Carter Berkeley Lab Welcomes the NERSC Users' Group February 4, 2014 Jonathan Carter. Berkeley Lab Downloads Carter-NUG14.pdf | Adobe Acrobat PDF file Berkeley Lab...

  4. 27th Annual SSRL Users' Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Users' Meeting Stanford, California USA October 18-21, 2000 Meeting Chairs: Paul Foster (UC San Francisco) Jan Lning (SSRL) The Stanford Synchrotron Radiation...

  5. APS User Information | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found the Office of Science SCGSR Program website. The Midwest Center for Sturctural Genomics is now accepting applications for access to the MCSG User Resource. MCSG's structure...

  6. BEAMS: Curiosity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAMS: Curiosity January 9, 2013 BEAMS, Becoming Excited About Math and Science, is one of our education programs. In particular, it is the only one in which I participate with more than a ceremonial role. I try my best to pull my full share of BEAMS visits. Today was the first of the year, and it went really well. There were about a dozen middle school kids in my office, plus the teacher. Of course, the lab's education team ensures complete immersion by making themselves scarce for the allotted

  7. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  8. Vegetation Change Analysis User's Manual

    SciTech Connect (OSTI)

    D. J. Hansen; W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  9. KAYENTA: Theory and User's Guide

    SciTech Connect (OSTI)

    Brannon, Rebecca Moss; Fuller, Timothy Jesse; Strack, Otto Eric; Fossum, Arlo Frederick; Sanchez, Jason James

    2015-02-01

    The physical foundations and domain of applicability of the Kayenta constitutive model are presented along with descriptions of the source code and user instructions. Kayenta, which is an outgrowth of the Sandia GeoModel, includes features and fitting functions appropriate to a broad class of materials including rocks, rock-like engineered materials (such as concretes and ceramics), and metals. Fundamentally, Kayenta is a computational framework for generalized plasticity models. As such, it includes a yield surface, but the term (3z(Byield(3y (Bis generalized to include any form of inelastic material response (including microcrack growth and pore collapse) that can result in non-recovered strain upon removal of loads on a material element. Kayenta supports optional anisotropic elasticity associated with joint sets, as well as optional deformation-induced anisotropy through kinematic hardening (in which the initially isotropic yield surface is permitted to translate in deviatoric stress space to model Bauschinger effects). The governing equations are otherwise isotropic. Because Kayenta is a unification and generalization of simpler models, it can be run using as few as 2 parameters (for linear elasticity) to as many as 40 material and control parameters in the exceptionally rare case when all features are used. For high-strain-rate applications, Kayenta supports rate dependence through an overstress model. Isotropic damage is modeled through loss of stiffness and strength.

  10. KAYENTA : theory and user's guide.

    SciTech Connect (OSTI)

    Brannon, Rebecca Moss; Fossum, Arlo Frederick; Strack, Otto Eric

    2009-03-01

    The physical foundations and domain of applicability of the Kayenta constitutive model are presented along with descriptions of the source code and user instructions. Kayenta, which is an outgrowth of the Sandia GeoModel, includes features and fitting functions appropriate to a broad class of materials including rocks, rock-like engineered materials (such as concretes and ceramics), and metals. Fundamentally, Kayenta is a computational framework for generalized plasticity models. As such, it includes a yield surface, but the term 'yield' is generalized to include any form of inelastic material response including microcrack growth and pore collapse. Kayenta supports optional anisotropic elasticity associated with ubiquitous joint sets. Kayenta supports optional deformation-induced anisotropy through kinematic hardening (in which the initially isotropic yield surface is permitted to translate in deviatoric stress space to model Bauschinger effects). The governing equations are otherwise isotropic. Because Kayenta is a unification and generalization of simpler models, it can be run using as few as 2 parameters (for linear elasticity) to as many as 40 material and control parameters in the exceptionally rare case when all features are used. For high-strain-rate applications, Kayenta supports rate dependence through an overstress model. Isotropic damage is modeled through loss of stiffness and strength.

  11. Systems and methods of varying charged particle beam spot size

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  12. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect (OSTI)

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  13. T-606: Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data

    Broader source: Energy.gov [DOE]

    Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data.

  14. ASCR User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ASCR User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facilities at a

  15. NP User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    NP User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facilities at a Glance

  16. FES User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facilities at a

  17. HEP User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facilities at a

  18. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  19. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug. 17, 2015 Back to Table of Contents WEEK OF Nov. 17, 2014 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 BEAM LINE 5-4 Nov....

  20. Beam! Magic! | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with all the changes, the accelerator can be made to work. Beam Since my first serious introduction to nuclear and particle physics - when I worked for a few weeks one summer at...

  1. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  2. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  3. Beam instrumentation for the Tevatron Collider

    SciTech Connect (OSTI)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  4. DAKOTA JAGUAR 2.1 user's Manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  5. Builders and Users | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders and Users Constructing the National Spherical Torus Experiment Upgrade took years of detailed planning and oversight. The team in charge brought decades of experience to the task, working together to make the $94 million upgrade a reality. Publication File: PDF icon NSTX-U_presskit_print_Builders-Users

  6. Becoming a User | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Process in Brief Proposal Form Guidelines Preparing for Your Visit Working at CNM For Industrial Users Acknowledgment Statements for Publications End of Experiment Survey Users Executive Committee People Publications 2015 Publications 2014 Publications 2013 Publications 2012 Publications 2011 Publications 2010 Publications 2009 Publications 2008 Publications 2007 Publications 2006 Publications Fact Sheets & Other Documents Acknowledgment Statement News & Events RESEARCH

  7. 2006 XSD Scientific Software User Survey.

    SciTech Connect (OSTI)

    Jemian, P. R.

    2007-01-22

    In preparation for the 2006 XSD Scientific Software workshop, our committee sent a survey on June 16 to 100 users in the APS user community. This report contains the survey and the responses we received. The responses are presented in the order received.

  8. TMAC User Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TMAC User Program TMAC User Program 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_10_norris.pdf More Documents & Publications Composite Underbody Attachment Carbon Fiber Technology Facility Carbon Fiber Technology Facility

  9. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  10. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, Tuncer M. (Naperville, IL); Shu, Deming (Darien, IL)

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  11. OVIS 3.2 user's guide.

    SciTech Connect (OSTI)

    Mayo, Jackson R.; Gentile, Ann C.; Brandt, James M.; Houf, Catherine A.; Thompson, David C.; Roe, Diana C.; Wong, Matthew H.; Pebay, Philippe Pierre

    2010-10-01

    This document describes how to obtain, install, use, and enjoy a better life with OVIS version 3.2. The OVIS project targets scalable, real-time analysis of very large data sets. We characterize the behaviors of elements and aggregations of elements (e.g., across space and time) in data sets in order to detect meaningful conditions and anomalous behaviors. We are particularly interested in determining anomalous behaviors that can be used as advance indicators of significant events of which notification can be made or upon which action can be taken or invoked. The OVIS open source tool (BSD license) is available for download at ovis.ca.sandia.gov. While we intend for it to support a variety of application domains, the OVIS tool was initially developed for, and continues to be primarily tuned for, the investigation of High Performance Compute (HPC) cluster system health. In this application it is intended to be both a system administrator tool for monitoring and a system engineer tool for exploring the system state in depth. OVIS 3.2 provides a variety of statistical tools for examining the behavior of elements in a cluster (e.g., nodes, racks) and associated resources (e.g., storage appliances and network switches). It provides an interactive 3-D physical view in which the cluster elements can be colored by raw or derived element values (e.g., temperatures, memory errors). The visual display allows the user to easily determine abnormal or outlier behaviors. Additionally, it provides search capabilities for certain scheduler logs. The OVIS capabilities were designed to be highly interactive - for example, the job search may drive an analysis which in turn may drive the user generation of a derived value which would then be examined on the physical display. The OVIS project envisions the capabilities of its tools applied to compute cluster monitoring. In the future, integration with the scheduler or resource manager will be included in a release to enable intelligent resource utilization. For example, nodes that are deemed less healthy (i.e., nodes that exhibit outlier behavior with respect to some set of variables shown to be correlated with future failure) can be discovered and assigned to shorter duration or less important jobs. Further, HPC applications with fault-tolerant capabilities would respond to changes in resource health and other OVIS notifications as needed, rather than undertaking preventative measures (e.g. checkpointing) at regular intervals unnecessarily.

  12. MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide

    SciTech Connect (OSTI)

    Salinger, A.; Devine, K.; Hennigan, G.; Moffat, H.

    1996-09-01

    This manual describes the use of MPSalsa, an unstructured finite element (FE) code for solving chemically reacting flow problems on massively parallel computers. MPSalsa has been written to enable the rigorous modeling of the complex geometry and physics found in engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed reactions. In addition, considerable effort has been made to ensure that the code makes efficient use of the computational resources of massively parallel (MP), distributed memory architectures in a way that is nearly transparent to the user. The result is the ability to simultaneously model both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely manner on MT computers, an ability we believe to be unique. MPSalsa has been designed to allow the experienced researcher considerable flexibility in modeling a system. Any combination of the momentum equations, energy balance, and an arbitrary number of species mass balances can be solved. The physical and transport properties can be specified as constants, as functions, or taken from the Chemkin library and associated database. Any of the standard set of boundary conditions and source terms can be adapted by writing user functions, for which templates and examples exist.

  13. Code manual for MACCS2: Volume 1, user`s guide

    SciTech Connect (OSTI)

    Chanin, D.I.; Young, M.L.

    1997-03-01

    This report describes the use of the MACCS2 code. The document is primarily a user`s guide, though some model description information is included. MACCS2 represents a major enhancement of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, distributed by government code centers since 1990, was developed to evaluate the impacts of severe accidents at nuclear power plants on the surrounding public. The principal phenomena considered are atmospheric transport and deposition under time-variant meteorology, short- and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. No other U.S. code that is publicly available at present offers all these capabilities. MACCS2 was developed as a general-purpose tool applicable to diverse reactor and nonreactor facilities licensed by the Nuclear Regulatory Commission or operated by the Department of Energy or the Department of Defense. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency-response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. Other improvements are in the areas of phenomenological modeling and new output options. Initial installation of the code, written in FORTRAN 77, requires a 486 or higher IBM-compatible PC with 8 MB of RAM.

  14. Beam/seam alignment control for electron beam welding

    DOE Patents [OSTI]

    Burkhardt, Jr., James H. (Knoxville, TN); Henry, J. James (Oak Ridge, TN); Davenport, Clyde M. (Knoxville, TN)

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  15. Electron beam magnetic switch for a plurality of free electron lasers

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA)

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  16. User's Guide for RESRAD-OFFSITE

    SciTech Connect (OSTI)

    Gnanapragasam, E.; Yu, C.

    2015-04-01

    The RESRAD-OFFSITE code can be used to model the radiological dose or risk to an offsite receptor. This User’s Guide for RESRAD-OFFSITE Version 3.1 is an update of the User’s Guide for RESRAD-OFFSITE Version 2 contained in the Appendix A of the User’s Manual for RESRAD-OFFSITE Version 2 (ANL/EVS/TM/07-1, DOE/HS-0005, NUREG/CR-6937). This user’s guide presents the basic information necessary to use Version 3.1 of the code. It also points to the help file and other documents that provide more detailed information about the inputs, the input forms and features/tools in the code; two of the features (overriding the source term and computing area factors) are discussed in the appendices to this guide. Section 2 describes how to download and install the code and then verify the installation of the code. Section 3 shows ways to navigate through the input screens to simulate various exposure scenarios and to view the results in graphics and text reports. Section 4 has screen shots of each input form in the code and provides basic information about each parameter to increase the user’s understanding of the code. Section 5 outlines the contents of all the text reports and the graphical output. It also describes the commands in the two output viewers. Section 6 deals with the probabilistic and sensitivity analysis tools available in the code. Section 7 details the various ways of obtaining help in the code.

  17. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Zimmer, Carl [New York Times

    2013-01-22

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  18. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Zimmer, Carl [New York Times] [New York Times

    2012-03-20

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  19. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  20. Poster session: Fifth users meeting for the Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The Advanced Photon Source (APS), which is currently under construction as a national user facility at Argonne National Laboratory is a third-generation synchrotron x-ray source, one of only three in the world. It is expected to produce x-rays that are 10,000 times brighter than any currently produced elsewhere for use in research in a wide range of scientific areas. Users from industry, national laboratories, universities, and business will be able to come to the APS to conduct research either as members of Collaborative Access Teams (CATS) or as Independent Investigators. Principal users will be members of CATS, which will be building and operating all of the beamlines present in the first phase of APS beamline development. The first set of CATs has been selected through a competitive proposal process involving peer scientific review, thorough technical evaluation, and significant management oversight by the APS. This document is a compilation of posters presented at the Fifth Users Meeting for the Advanced Photon Source, held at Argonne National Laboratory on October 14--15, 1992. All CATs whose scientific cases were approved by the APS Proposal Evaluation Board are included. In addition, this document contains a poster from the Center for Synchrotron Radiation and Research and Instrumentation at the Illinois Institute of Technology.