Sample records for beam time esaf

  1. Web-Based ESAF System FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation of the Web-Based ESAF System. What is new in the Web ESAF process? (662012) Do all Beamlines use the APS web system? How does the process work? How do I submit a...

  2. Laser Telecommunication timeLaser beam

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Laser Telecommunication Experiment Laser time Laser beam intensity timeLaser beam Laser battery Laser connected to a circuit without a modulator. Bottom graph illustrates what happen when a modulating signal is superimposed to the DC voltage driving the laser Laser beam intensity DC Input voltage DC

  3. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training See also: Argonne WBT Argonne eJHQ ASDACIS Training Courses Training All core...

  4. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training See also: Argonne WBT Argonne eJHQ APS Beamline Shielding ASDACIS Training Courses...

  5. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  6. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16T23:59:59.000Z

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  7. Time Structure of the LANSCE Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis ofwas publishedThree scientistsDepartmentTime

  8. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect (OSTI)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15T23:59:59.000Z

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  9. Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth

    SciTech Connect (OSTI)

    Powell, A.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Avyle, J. van den [Sandia National Labs., Albuquerque, NM (United States)

    1997-02-01T23:59:59.000Z

    Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

  10. Radial electron-beam-breakup transit-time oscillator

    DOE Patents [OSTI]

    Kwan, Thomas J. T. (Los Alamos, NM); Mostrom, Michael A. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  11. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect (OSTI)

    Hastings, J.B.; /SLAC; Rudakov, F.M.; /Brown U.; Dowell, D.H.; Schmerge, J.F.; /SLAC; Cardoza, J.D.; /Brown U.; Castro, J.M.; Gierman, S.M.; Loos, H.; /SLAC; Weber, P.M.; /Brown U.

    2006-10-24T23:59:59.000Z

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  12. A real-time intercepting beam-profile monitor for a medical cyclotron

    SciTech Connect (OSTI)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)] [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)

    2013-11-15T23:59:59.000Z

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  13. Time-delayed directional beam phased array antenna

    DOE Patents [OSTI]

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19T23:59:59.000Z

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  14. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect (OSTI)

    Wang, Qiushi, E-mail: qiushiwork@gmail.com; Peng, Shuyuan [Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100080 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Jirun [Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100080 (China)

    2014-08-15T23:59:59.000Z

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  15. Fidelity of a Time-Resolved Imaging Diagnostic for Electron Beam Profiles

    SciTech Connect (OSTI)

    Frayer, Daniel; Ekdahl, Carl A.; Johnson, Douglas

    2014-10-01T23:59:59.000Z

    An optical tomographic diagnostic instrument has been fielded at the Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory. Four optical lines of sight create projections of an image of an electron beam on a Cerenkov target, which are relayed via optical fiber to streak cameras. From these projections, a reconstruction algorithm creates time histories of the beam’s cross section. The instrument was fielded during and after facility commissioning, and tomographic reconstructions reported beam parameters. Results from reconstructions and analysis are noted.

  16. Development of picoseconds Time of Flight systems in Meson Test Beam Facility at Fermilab

    SciTech Connect (OSTI)

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; /Fermilab; Malik, S.; /Rockefeller U.; Pronko, S.; Ramberg, E.; /Fermilab; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-11-01T23:59:59.000Z

    The goal of the work is to develop time of flight (TOF) system with about 10 picosecond time resolution in real beam line when start and stop counters separated by some distance. We name the distance as 'base' for the TOF. This 'real' TOF setup is different from another one when start and stop counters located next to each other. The real TOF is sensitive to beam momentum spread, beam divergence, etc. Anyway some preliminary measurements are useful with close placement of start and stop counter. We name it 'close geometry'. The work started about 2 years ago at Fermilab Meson Test Beam Facility (MTBF). The devices tested in 'close geometry' were Microchannel Plate Photomultipliers (MCP PMT) with Cherenkov radiators. TOF counters based on Silicon Photomultipliers (SiPms) with Cherenkov radiators also in 'close geometry' were tested. We report here new results obtained with the counters in the MTBF at Fermilab, including beam line data.

  17. Beam Time Request - Radiation Effects Facility / Cyclotron Institute /

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users LiveBattlingBeamTexas

  18. Time-dependent simulation of prebunched one and two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S., E-mail: najmeh.mirian@ipm.ir [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), Post code 19395-5531 Tehran (Iran, Islamic Republic of); Maraghechi, B. [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, Post code 15875-4413 Tehran (Iran, Islamic Republic of)

    2014-04-15T23:59:59.000Z

    A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.

  19. Heavy ion beam probe operation in time va

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer inoperation in time

  20. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery

    SciTech Connect (OSTI)

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Computer Science and Department of Surgery, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2010-12-15T23:59:59.000Z

    Purpose: The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. Methods: A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Results: Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as would be enabled by real-time imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Conclusions: Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.

  1. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    SciTech Connect (OSTI)

    Yang, B.X.; Lumpkin, A.H.; Borland, M. [and others

    1997-06-01T23:59:59.000Z

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the {open_quotes}top-view{close_quotes} of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf.

  2. An Estimate of Out of Time Beam Upon Extraction for Mu2e

    SciTech Connect (OSTI)

    Prebys, E.; /Fermilab; Evans, N.J.; Kopp, S.E.; /Texas U.

    2012-05-01T23:59:59.000Z

    For future experiments at the intensity frontier precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment calls for {approx} 200ns (FW, 40 ns rms) bunches of 3 x 10{sup 7} 8 GeV protons and a bunch spacing of 1695 ns. The interbunch beam must be suppressed from the main pulse by a factor of 10{sup -10}, this is known as the beam extinction requirement. Beam from Fermilab's Booster will be formed into 2.5 MHz buckets in the Fermilab Recycler then transferred to the Delivery Ring (formerly the Debuncher) and slow spilled from a single filled bucket in an h = 4 RF system. Because the final extinction level is not expected from the Delivery Ring an AC dipole and collimation system will be used to achieve final extinction. Here I present calculations leading to a first estimate of the extinction level expected upon extraction from the Delivery Ring of {le} 3.36 x 10{sup -4}. Intrabunch, residual gas scattering and scattering off the extraction septum are included. Contributions from bunch formation are not considered.

  3. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01T23:59:59.000Z

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  4. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Y. Arimoto; N. Higashi; Y. Igarashi; Y. Iwashita; T. Ino; R. Katayama; R. Kitahara; M. Kitaguchi; H. Matsumura; K. Mishima; H. Oide; H. Otono; R. Sakakibara; T. Shima; H. M. Shimizu; T. Sugino; N. Sumi; H. Sumino; K. Taketani; G. Tanaka; M. Tanaka; K. Tauchi; A. Toyoda; T. Yamada; S. Yamashita; H. Yokoyama; T. Yoshioka

    2015-03-27T23:59:59.000Z

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  5. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect (OSTI)

    Lastras-Martínez, A., E-mail: alm@cactus.iico.uaslp.mx, E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F. [Instituto de Investigación en Comunicación Optica, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, San Luis Potosí, SLP 78000 (Mexico); Lastras-Montaño, L. A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Lastras-Montaño, M. A. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2014-03-01T23:59:59.000Z

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  6. Using time separation of signals to obtain independent proton and antiproton beam position measurements around the Tevatron

    SciTech Connect (OSTI)

    Webber, R.; /Fermilab

    2005-05-01T23:59:59.000Z

    Independent position measurement of the counter-circulating proton and antiproton beams in the Tevatron, never supported by the original Tevatron Beam Position Monitor (BPM) system, presents a challenge to upgrading that system. This paper discusses the possibilities and complications of using time separation of proton and antiproton signals at the numerous BPM locations and for the dynamic Tevatron operating conditions. Results of measurements using one such method are presented.

  7. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    SciTech Connect (OSTI)

    Crist, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D. [Lawrence Livermore National Lab., CA (United States); Krogh, M. [AlliedSignal FM and T, Kansas City, MO (United States)

    1998-11-01T23:59:59.000Z

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

  8. Time-resolved reflectivity techniques for dynamic studies of electron beam recrystallization of silicon-on-insulator films

    SciTech Connect (OSTI)

    Timans, P.J.; McMahon, R.A.; Ahmed, H.

    1988-11-07T23:59:59.000Z

    A time-resolved reflectivity (TRR) technique has been developed for dynamic studies of swept beam heating of silicon-on-insulator (SOI) materials. The method exploits the temperature dependence of the reflectivity of SOI films to allow noncontact temperature measurement with high spatial and temporal resolution. This technique is of considerable practical importance for beam processing, since it allows the temperature distribution induced by a beam being scanned across a specimen to be determined. The temperature distribution produced by a line electron beam swept across a SOI specimen was experimentally measured and found to be consistent with a theoretical prediction. The TRR technique can also be used to study melting and will prove useful for characterizing zone melting recrystallization, where thermal modeling is often inadequate for the complex structures involved.

  9. Gains From Real-Time Tracking of Prostate Motion During External Beam Radiation Therapy

    SciTech Connect (OSTI)

    Li Jinsheng, E-mail: jinsheng.li@fccc.ed [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Jin Lihui; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.; Price, Robert A.; Ma Changming [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)

    2009-12-01T23:59:59.000Z

    Purpose: To study the gains from real-time tracking of prostate motion and threshold-based intervention and the feasibility of margin reduction for external beam radiation therapy of prostate cancer. Methods and Materials: Prostate intrafractional motion data from 775 randomly selected treatment fractions (105 prostate patients) were analyzed. Statistical distributions of prostate intrafractional displacement from baseline were used for treatment margin calculation together with other geometrical uncertainties for all patients and a subset of 7 patient who exhibited the largest intrafractional motion. Compared with treatment without any intrafractional intervention, potential reductions in treatment margins were evaluated for treatments with 5-mm and 3-mm threshold-based intervention and four-dimensional (4D) treatments with and without prostate rotation correction. Results: The percentage of time of prostate displacement from the baseline by 3 mm and 5 mm in any direction was 13.4% and 1.8%, respectively, for the general patient population. The ratios were 41% and 15% for the 7 selected patients. Reductions in the posterior margin were 0.2, 0.5, 1.3, and 3.1 mm from the original 7.7 mm, respectively, for 5-mm and 3-mm threshold-based treatments and 4D treatments with and without prostate rotation correction for all patients. They were 1.3, 1.9, 3.1 and 4.9 mm from the original 9.5 mm, corresponding to the 7 selected patients. The treatment margin reductions in other directions were even smaller. Conclusions: Real-time motion tracking and threshold-based intrafractional intervention may play a significant roll in treatment margin reduction for a small fraction of patients but not for the general patient population. Four-dimensional treatments with prostate rotation correction can reduce the treatment margin more significantly.

  10. A measurement of the energy and timing resolution of GlueX Forward Calorimeter using an electron beam

    SciTech Connect (OSTI)

    Moriya, Kei [Indiana U.; Leckey, John P. [Indiana U.; Shepherd, Matthew R. [Cornell U.; Bauer, Kevin [Indiana U.; Bennett, Daniel William [Indiana U.; Frye, John Michael [Indiana U.; Gonzalez, Juan Carlos [Christopher Newport U., JLAB; Henderson, Scott J. [Indiana U.; Lawrence, David W. [JLAB; Mitchell, Ryan E. [Indiana U.; Smith, Elton S. [JLAB; Smith, Paul T. [Indiana U.; Somov, Alexander Sergeyevich [JLAB; Egiyan, Hovanes [JLAB

    2013-10-01T23:59:59.000Z

    The performance of the GlueX Forward Calorimeter was studied using a small version of the detector and a variable energy electron beam derived from the Hall B tagger at Jefferson Lab. For electron energies from 110 MeV to 260 MeV, which are near the lower-limits of the design sensitivity, the fractional energy resolution was measured to range from 20% to 14%, which meets the design goals. The use of custom 250 MHz flash ADCs for readout allowed precise measurements of signal arrival times. The detector achieved timing resolutions of 0.38 ns for a single 100 mV pulse, which will allow timing discrimination of photon beam bunches and out-of-time background during the operation of the GlueX detector.

  11. Real-time spatial-phase-locked electron-beam lithography

    E-Print Network [OSTI]

    Zhang, Feng, 1973-

    2005-01-01T23:59:59.000Z

    The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system ...

  12. Multiple-ion-beam time-of-flight mass spectrometer Andreas Rohrbacher and Robert E. Continettia)

    E-Print Network [OSTI]

    Continetti, Robert E.

    /ionization and the molecular ions of two different proteins myoglobin and lysozyme , created by matrix assisted laser,7 and matrix assisted desorption and ionization MALDI 8­11 have become avail- able to allow the mass the samples with a robot- driven capillary,15 a scanning ion beam,16 or spatial resolu- tion was achieved

  13. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    SciTech Connect (OSTI)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.; Rodriguez, J. A.; Ryder, C. A.; Schwarz, S.; Sumithrarachchi, C.; Zhao, S. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Minamisono, K., E-mail: minamiso@nscl.msu.edu; Barquest, B. R.; Bollen, G.; Hughes, M.; Strum, R.; Tarazona, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Cooper, K.; Hammerton, K.; Mantica, P. F.; Morrissey, D. J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-09-15T23:59:59.000Z

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 ?s bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shift relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup ?1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift ??{sup 39,} {sup 37} = ?264(3) MHz are consistent with the previously determined values, where available.

  14. Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

    E-Print Network [OSTI]

    R. Asfandiyarov; R. Bayes; A. Blondel; M. Bogomilov; A. Bross; F. Cadoux; A. Cervera; A. Izmaylov; Y. Karadzhov; I. Karpikov; M. Khabibulin; A. Khotyantsev; A. Kopylov; Y. Kudenko; R. Matev; O. Mineev; Y. Musienko; M. Nessi; E. Noah; A. Rubbia; A. Shaykiev; P. Soler; R. Tsenov; G. Vankova-Kirilova; N. Yershov

    2014-05-23T23:59:59.000Z

    The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. The current proposal is submitted to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020.

  15. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01T23:59:59.000Z

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F,more »in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  16. Real-Time Study of Prostate Intrafraction Motion During External Beam Radiotherapy With Daily Endorectal Balloon

    SciTech Connect (OSTI)

    Both, Stefan, E-mail: Stefan.Both@uphs.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Wang, Ken Kang-Hsin; Plastaras, John P.; Deville, Curtiland; Bar Ad, Voika; Tochner, Zelig; Vapiwala, Neha [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2011-12-01T23:59:59.000Z

    Purpose: To prospectively investigate intrafraction prostate motion during radiofrequency-guided prostate radiotherapy with implanted electromagnetic transponders when daily endorectal balloon (ERB) is used. Methods and Materials: Intrafraction prostate motion from 24 patients in 787 treatment sessions was evaluated based on three-dimensional (3D), lateral, cranial-caudal (CC), and anterior-posterior (AP) displacements. The mean percentage of time with 3D, lateral, CC, and AP prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1 minute intervals was calculated for up to 6 minutes of treatment time. Correlation between the mean percentage time with 3D prostate displacement >3 mm vs. treatment week was investigated. Results: The percentage of time with 3D prostate movement >2, 3, and 4 mm increased with elapsed treatment time (p < 0.05). Prostate movement >5 mm was independent of elapsed treatment time (p = 0.11). The overall mean time with prostate excursions >3 mm was 5%. Directional analysis showed negligible lateral prostate motion; AP and CC motion were comparable. The fraction of time with 3D prostate movement >3 mm did not depend on treatment week of (p > 0.05) over a 4-minute mean treatment time. Conclusions: Daily endorectal balloon consistently stabilizes the prostate, preventing clinically significant displacement (>5 mm). A 3-mm internal margin may sufficiently account for 95% of intrafraction prostate movement for up to 6 minutes of treatment time. Directional analysis suggests that the lateral internal margin could be further reduced to 2 mm.

  17. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams

    SciTech Connect (OSTI)

    Beddar, Sam; Archambault, Louis; Sahoo, Narayan; Poenisch, Falk; Chen, George T.; Gillin, Michael T.; Mohan, Radhe [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States)

    2009-05-15T23:59:59.000Z

    In this study, the authors investigated the feasibility of using a 3D liquid scintillator (LS) detector system for the verification and characterization of proton beams in real time for intensity and energy-modulated proton therapy. A plastic tank filled with liquid scintillator was irradiated with pristine proton Bragg peaks. Scintillation light produced during the irradiation was measured with a CCD camera. Acquisition rates of 20 and 10 frames per second (fps) were used to image consecutive frame sequences. These measurements were then compared to ion chamber measurements and Monte Carlo simulations. The light distribution measured from the images acquired at rates of 20 and 10 fps have standard deviations of 1.1% and 0.7%, respectively, in the plateau region of the Bragg curve. Differences were seen between the raw LS signal and the ion chamber due to the quenching effects of the LS and due to the optical properties of the imaging system. The authors showed that this effect can be accounted for and corrected by Monte Carlo simulations. The liquid scintillator detector system has a good potential for performing fast proton beam verification and characterization.

  18. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  19. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    E-Print Network [OSTI]

    R. Bruce; M. Blaskiewicz; W. Fischer; J. M. Jowett

    2010-09-08T23:59:59.000Z

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon Au beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  20. Beam-energy and system-size dependence of the space-time extent of the pion emission source produced in heavy ion collisions

    E-Print Network [OSTI]

    A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; H. Al-Bataineh; H. Al-Ta'ani; J. Alexander; M. Alfred; A. Angerami; K. Aoki; N. Apadula; L. Aphecetche; Y. Aramaki; R. Armendariz; S. H. Aronson; J. Asai; H. Asano; E. C. Aschenauer; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; G. Baksay; L. Baksay; A. Baldisseri; N. S. Bandara; B. Bannier; K. N. Barish; P. D. Barnes; B. Bassalleck; A. T. Basye; S. Bathe; S. Batsouli; V. Baublis; C. Baumann; S. Baumgart; A. Bazilevsky; M. Beaumier; S. Beckman; S. Belikov; R. Belmont; R. Bennett; A. Berdnikov; Y. Berdnikov; A. A. Bickley; X. Bing; D. Black; D. S. Blau; J. G. Boissevain; J. S. Bok; H. Borel; K. Boyle; M. L. Brooks; J. Bryslawskyj; H. Buesching; V. Bumazhnov; G. Bunce; S. Butsyk; C. M. Camacho; S. Campbell; P. Castera; B. S. Chang; J. -L. Charvet; C. -H. Chen; S. Chernichenko; C. Y. Chi; J. Chiba; M. Chiu; I. J. Choi; J. B. Choi; S. Choi; R. K. Choudhury; P. Christiansen; T. Chujo; P. Chung; A. Churyn; O. Chvala; V. Cianciolo; Z. Citron; C. R. Cleven; B. A. Cole; M. P. Comets; M. Connors; P. Constantin; M. Csanád; T. Csörg?; T. Dahms; S. Dairaku; I. Danchev; K. Das; A. Datta; M. S. Daugherity; G. David; M. B. Deaton; K. DeBlasio; K. Dehmelt; H. Delagrange; A. Denisov; D. d'Enterria; A. Deshpande; E. J. Desmond; K. V. Dharmawardane; O. Dietzsch; L. Ding; A. Dion; J. H. Do; M. Donadelli; O. Drapier; A. Drees; K. A. Drees; A. K. Dubey; J. M. Durham; A. Durum; D. Dutta; V. Dzhordzhadze; L. D'Orazio; S. Edwards; Y. V. Efremenko; J. Egdemir; F. Ellinghaus; W. S. Emam; T. Engelmore; A. Enokizono; H. En'yo; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. Finger; \\, Jr.; F. Fleuret; S. L. Fokin; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; T. Fusayasu; S. Gadrat; K. Gainey; C. Gal; P. Gallus; P. Garg; A. Garishvili; I. Garishvili; H. Ge; F. Giordano; A. Glenn; H. Gong; X. Gong; M. Gonin; J. Gosset; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; Y. Gu; T. Gunji; L. Guo; H. Guragain; H. -Å. Gustafsson; T. Hachiya; A. Hadj Henni; C. Haegemann; J. S. Haggerty; K. I. Hahn; H. Hamagaki; J. Hamblen; R. Han; S. Y. Han; J. Hanks; H. Harada; E. P. Hartouni; K. Haruna; S. Hasegawa; K. Hashimoto; E. Haslum; R. Hayano; X. He; M. Heffner; T. K. Hemmick; T. Hester; H. Hiejima; J. C. Hill; R. Hobbs; M. Hohlmann; R. S. Hollis; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; Y. Hori; D. Hornback; T. Hoshino; J. Huang; S. Huang; T. Ichihara; R. Ichimiya; J. Ide; H. Iinuma; Y. Ikeda; K. Imai; Y. Imazu; J. Imrek; M. Inaba; Y. Inoue; A. Iordanova; D. Isenhower; L. Isenhower; M. Ishihara; T. Isobe; M. Issah; A. Isupov; D. Ivanischev; D. Ivanishchev; B. V. Jacak; M. Javani; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; J. Jin; O. Jinnouchi; B. M. Johnson; E. Joo; K. S. Joo; D. Jouan; D. S. Jumper; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; M. Kaneta; S. Kaneti; B. H. Kang; J. H. Kang; J. S. Kang; H. Kanou; J. Kapustinsky; K. Karatsu; M. Kasai; D. Kawall; M. Kawashima; A. V. Kazantsev; T. Kempel; J. A. Key; V. Khachatryan; A. Khanzadeev; K. Kihara; K. M. Kijima; J. Kikuchi; B. I. Kim; C. Kim; D. H. Kim; D. J. Kim; E. Kim; E. -J. Kim; H. -J. Kim; H. J. Kim; K. -B. Kim; M. Kim; S. H. Kim; Y. -J. Kim; Y. K. Kim; E. Kinney; K. Kiriluk; Á. Kiss; E. Kistenev; A. Kiyomichi; J. Klatsky; J. Klay; C. Klein-Boesing; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; V. Kochetkov; M. Kofarago; Y. Komatsu; B. Komkov; M. Konno; J. Koster; D. Kotchetkov; D. Kotov; A. Kozlov; A. Král; A. Kravitz; F. Krizek; J. Kubart; G. J. Kunde; N. Kurihara; K. Kurita; M. Kurosawa; M. J. Kweon; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; B. Lee; D. M. Lee; J. Lee; K. Lee; K. B. Lee; K. S. Lee; M. K. Lee; S. H. Lee; S. R. Lee; T. Lee; M. J. Leitch; M. A. L. Leite; M. Leitgab; E. Leitner; B. Lenzi; B. Lewis; X. Li; P. Liebing; S. H. Lim; L. A. Linden Levy; T. Liška; A. Litvinenko; H. Liu; M. X. Liu; B. Love; R. Luechtenborg; D. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; A. Malakhov; M. D. Malik; A. Manion; V. I. Manko; E. Mannel; Y. Mao; L. Mašek; H. Masui; S. Masumoto; F. Matathias; M. McCumber; P. L. McGaughey; D. McGlinchey; C. McKinney; N. Means; A. Meles; M. Mendoza; B. Meredith; Y. Miake; T. Mibe; A. C. Mignerey; P. Mikeš; K. Miki; A. J. Miller; T. E. Miller; A. Milov; S. Mioduszewski; D. K. Mishra; M. Mishra; J. T. Mitchell; M. Mitrovski; Y. Miyachi; S. Miyasaka; S. Mizuno; A. K. Mohanty; P. Montuenga; H. J. Moon; T. Moon; Y. Morino; A. Morreale; D. P. Morrison; S. Motschwiller; T. V. Moukhanova; D. Mukhopadhyay; T. Murakami; J. Murata; A. Mwai; T. Nagae; S. Nagamiya; Y. Nagata; J. L. Nagle; M. Naglis; M. I. Nagy; I. Nakagawa; H. Nakagomi; Y. Nakamiya; K. R. Nakamura; T. Nakamura; K. Nakano; C. Nattrass; A. Nederlof; P. K. Netrakanti; J. Newby

    2014-10-09T23:59:59.000Z

    Two-pion interferometry measurements are used to extract the Gaussian radii $R_{{\\rm out}}$, $R_{{\\rm side}}$, and $R_{{\\rm long}}$, of the pion emission sources produced in Cu$+$Cu and Au$+$Au collisions at several beam collision energies $\\sqrt{s_{_{NN}}}$ at PHENIX. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse size $\\bar{R}$ of the collision systems and the transverse mass $m_T$ of the emitted pion pairs, consistent with hydrodynamiclike expansion. Specific combinations of the three-dimensional radii that are sensitive to the medium expansion velocity and lifetime, and the pion emission time duration show nonmonotonic $\\sqrt{s_{_{NN}}}$ dependencies. The nonmonotonic behaviors exhibited by these quantities point to a softening of the equation of state that may coincide with the critical end point in the phase diagram for nuclear matter.

  1. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    E-Print Network [OSTI]

    Bruce, R; Fischer, W; Jowett, J M

    2010-01-01T23:59:59.000Z

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon 197Au79+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both meth...

  2. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect (OSTI)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J. [Sandia National Laboratories Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories Albuquerque, New Mexico 87185 (United States)

    1997-01-01T23:59:59.000Z

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}

  3. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect (OSTI)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-07-01T23:59:59.000Z

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.

  4. Luminosity and beam-beam

    E-Print Network [OSTI]

    Papotti, G; Trad, G

    We report on observations on luminosity evolution and beam-beam interaction from the 2011 physics run. Extrapolations for 2012 are attempted and a list of desired studies and machine developments is included.

  5. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    DOE Patents [OSTI]

    Brown, Jr., R. Malcolm (Austin, TX); Barnes, Zack (Austin, TX); Sawatari, Chie (Shizuoka, JP); Kondo, Tetsuo (Kukuoka, JP)

    2008-02-26T23:59:59.000Z

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  6. Cone-Beam Computed Tomography–Guided Positioning of Laryngeal Cancer Patients with Large Interfraction Time Trends in Setup and Nonrigid Anatomy Variations

    SciTech Connect (OSTI)

    Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra; Levendag, Peter C.; Heijmen, Ben

    2013-10-01T23:59:59.000Z

    Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ?4 mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.

  7. Beam Time Changes.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like This Return to SearchHe 45 55 55 55 55 55

  8. Effect of rate of current rise in the output windings on the space -time distribution of the electron beam in a betatron

    SciTech Connect (OSTI)

    Chakhlov, V.L.; Filimonov, A.A.; Kashkovskii, V.V.

    1985-09-01T23:59:59.000Z

    This paper reports on the results of a study of the effect of the rate of current rise in the output windings of a betatron on the parameters of the resultant electron beam. It is shown that the rate of current rise in the windings only changes the duration of the radiation pulse associated with the beam and its delay relative to the initiation of the current pulse in the windings. The spatial distribution of the beam is determined mainly by the distribution of the magnetic field of the betatron. The findings of this study have made it possible to simplify the current pulse generator in the output-winding supply circuit of the PMB-6E betatron, reduce its size, and increase its reliability.

  9. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31T23:59:59.000Z

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  10. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, Richard J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Miller, Robert B. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM); Smith, David L. (Albuquerque, NM)

    1986-01-01T23:59:59.000Z

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  11. Brightest gamma ray on Earth-for a safer, healthier world The brightest gamma ray beam ever created-more than a thousand billion times more

    E-Print Network [OSTI]

    Strathclyde, University of

    that ultra-short duration laser pulses can interact with ionised gas to give off beams that are so intense the integrity of stored nuclear waste. In addition, the laser pulses are short enough- lasting a quadrillionth of gamma rays, which are a form of X-rays. The experiments were carried out on the Gemini laser

  12. Beams 92: Proceedings. Volume 2, Ion beams, electron beams, diagnostics

    SciTech Connect (OSTI)

    Mosher, D.; Cooperstein, G. [eds.] [Naval Research Lab., Washington, DC (United States)] [eds.; Naval Research Lab., Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    This report contains papers on the following topics. Ion beam papers; electron beam papers; and these papers have been indexed separately elsewhere.

  13. Accelerator beam profile analyzer

    DOE Patents [OSTI]

    Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

    1976-01-01T23:59:59.000Z

    A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

  14. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    E-Print Network [OSTI]

    Kawata, Shigeo

    2015-01-01T23:59:59.000Z

    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  15. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An error occurred. TryRing CurrentBeam

  16. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users LiveBattling birdBeam

  17. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users LiveBattlingBeam

  18. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A., E-mail: rpopple@uabmc.edu; Brezovich, Ivan A.; Fiveash, John B. [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)] [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)

    2014-05-15T23:59:59.000Z

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular geometries but using fewer beams. Furthermore, SBA provides the value of the objective function as the number of beams is increased, allowing the planner to select the minimal beam number that achieves the clinical goals. The method is simple to implement and could readily be incorporated into an existing optimization system.

  19. In-situ spectroscopic ellipsometry for real time composition control of Hg{sub 1{minus}x}Cd{sub x}Te grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Dat, R.; Aqariden, F.; Chandra, D.; Shih, H.D. [Raytheon TI Systems, Sensors and Infrared Lab., Dallas, TX (United States); Duncan, W.M. [Texas Instruments Inc., Dallas, TX (United States). Components and Materials Research Center

    1998-12-31T23:59:59.000Z

    Spectral ellipsometry (SE) was applied to in situ composition control of Hg{sub 1{minus}x}Cd{sub x}Te grown by molecular beam epitaxy (MBE), and the impact of surface topography of the Hg{sub 1{minus}x}Cd{sub x}Te layers on the accuracy of SE was investigated. Of particular importance is the presence of surface defects, such as voids in MBE-Hg{sub 1{minus}x}Cd{sub x}Te layers. While dislocations do not have any significant impact on the dielectric functions, the experimental data in this work show that MBE-Hg{sub 1{minus}x}Cd{sub x}Te samples having the same composition, but different void densities, have different effective dielectric functions.

  20. Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

    E-Print Network [OSTI]

    Kutter, T

    2015-01-01T23:59:59.000Z

    The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...

  1. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    SciTech Connect (OSTI)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24T23:59:59.000Z

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  2. A non-invasive beam profile monitor for charged particle beams

    SciTech Connect (OSTI)

    Tzoganis, Vasilis, E-mail: vasileios.tzoganis@cockcroft.ac.uk [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); RIKEN Nishina Centre, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Welsch, Carsten P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2014-05-19T23:59:59.000Z

    Non-interceptive beam profile monitors are highly desirable in almost all particle accelerators. Such techniques are especially valuable in applications where real time monitoring of the beam properties is required while beam preservation and minimal influence on the vacuum are of the greatest importance. This applies to many kinds of accelerators such as high energy machines where the normal diagnostics cannot withstand the beam's power, medical machines where treatment time is valuable and cannot be allocated to diagnostics and also low energy, low intensity accelerators where the beam's properties are difficult to measure. This paper presents the design of a gas-jet based beam profile monitor which was developed and commissioned at the Cockcroft Institute and can operate in a very large background pressure range from 10{sup ?7} down to below 10{sup ?11} millibars. The functioning principle of the monitor is described and the first experimental results obtained using a 5?keV electron beam are discussed.

  3. atomic beam measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequency Physics Websites Summary: beam pipe where they are removed by a high speed pumping system. Cooling of the cell reducesTime-of-Flight Measurements in Atomic Beam Devices...

  4. atomic beam frequency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequency Physics Websites Summary: beam pipe where they are removed by a high speed pumping system. Cooling of the cell reducesTime-of-Flight Measurements in Atomic Beam Devices...

  5. accelerator photon beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process...

  6. On-Line Measurement of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and TIme-Integrated Filter Sampling and Reference Method

    SciTech Connect (OSTI)

    Cheng, M.-D.; Vannice, R.W.

    2003-05-20T23:59:59.000Z

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. They had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  7. On-Line Measurements of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and Time-Integrated Filter Sampling Reference Method

    SciTech Connect (OSTI)

    Cheng, M.D.

    2003-05-15T23:59:59.000Z

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. We had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were subsequently analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  8. Relativistic atomic beam spectroscopy II

    SciTech Connect (OSTI)

    NONE

    1991-12-31T23:59:59.000Z

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  9. Improvements on the accuracy of beam bugs

    SciTech Connect (OSTI)

    Chen, Y.J.; Fessenden, T.

    1998-08-17T23:59:59.000Z

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughout linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.

  10. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25T23:59:59.000Z

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  11. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  12. Electron gun jitter effects on beam bunching

    SciTech Connect (OSTI)

    Liu, M. S. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)] [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan)

    2014-02-15T23:59:59.000Z

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  13. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22T23:59:59.000Z

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  14. First observation of beam-beam interactions in high intensity collisions at the LHC

    E-Print Network [OSTI]

    Arduini, G; Jowett, J; Laface, E; Meddahi, M; Schmidt, F

    2010-01-01T23:59:59.000Z

    For the rst time bunches were collided in the LHC with close to nominal parameters and so experienced head-on beam-beam eects comparable to those expected with the nominal LHC parameters. Among other things, this provided an opportunity to test the procedure of separating beams at IP2 to reduce the luminosity and pile-up in the ALICE experiment. We report on the observations made during these runs and related tests.

  15. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

    2012-06-21T23:59:59.000Z

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  16. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  17. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    interactions, ultra-high intensity lasers, 3D Laser Imagingconcepts, ultra-high intensity lasers, x-ray generation,interests: Ultra-high vacuum, particle beam and laser beam

  18. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    FEL Collaboration: Photocathode/SCRF Collaboration: Two-BeamUniversity on Photocathode/ SCRF technology, LBNL-BNL on

  19. Beam Dynamics for ARIA

    E-Print Network [OSTI]

    Ekdahl, Carl

    2015-01-01T23:59:59.000Z

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  20. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect (OSTI)

    Gras, S.; Blair, D. G.; Ju, L. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2010-02-15T23:59:59.000Z

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  1. SPALLATION NEUTRON SOURCE BEAM CURRENT MONITOR ELECTRONICS.

    SciTech Connect (OSTI)

    KESSELMAN, M.

    2001-06-18T23:59:59.000Z

    The Spallation Neutron Source (SNS) to be constructed at ORNL is a collaboration of six laboratories. Beam current monitors for SNS will be used to monitor H-minus and H-plus beams ranging from the 15 mA (tune-up in the Front End and Linac) to over 60 A fully accumulated in the Ring. The time structure of the beams to be measured range from 645 nsec ''mini'' bunches, at the 1.05 MHz ring revolution rate, to an overall 1 mS long macro pulse. Beam current monitors (BCMs) for SNS have requirements depending upon their location within the system. The development of a general approach to satisfy requirements of various locations with common components is a major design objective. This paper will describe the development of the beam current monitors and electronics.

  2. Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

    E-Print Network [OSTI]

    Nebot Del Busto, E; Branger, E; Holzer, E B; Doebert, S; Lillestol, R L; Welsch, C P

    2013-01-01T23:59:59.000Z

    The Test Beam Line (TBL) of the CLIC Test Facility 3 (CTF3) aims to validate the drive beam deceleration concept of CLIC, in which the RF power requested to boost particles to multi-TeV energies is obtained via deceleration of a high current and low energy drive beam (DB). Despite a TBL beam energy (150-80 MeV) significantly lower than the minimum nominal energy of the CLIC DB (250 MeV), the pulse time structure of the TBL provides the opportunity to measure beam losses with CLIC-like DB timing conditions. In this contribution, a simulation study on the detection of beam losses along the TBL for the commissioning of the recently installed beam loss monitoring system is presented. The most likely loss locations during stable beam conditions are studied by considering the beam envelope defined by the FODO lattice as well as the emittance growth due to the deceleration process. Moreover, the optimization of potential detector locations is discussed. Several factors are considered, namely: the distance to the bea...

  3. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect (OSTI)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Nocente, M.; Gorini, G. [Dipartimento di Fisica “G. Occhialini”, Università di Milano-Bicocca, Milano 20216 (Italy); Istituto di Fisica del Plasma “P. Caldirola”, Milano 20216 (Italy); Bonomo, F. [Consorzio RFX, Padova 35100 (Italy); Istituto Gas Ionizzati, CNR, Padova 35100 (Italy); Franzen, P.; Fröschle, M. [Max-Planck-Institut für Plasmaphysik, Garching 84518 (Germany); Grosso, G.; Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola”, Milano 20216 (Italy); Grünauer, F. [Physics Consulting, Zorneding 85604 (Germany); Pasqualotto, R. [Consorzio RFX, Padova 35100 (Italy)

    2014-11-15T23:59:59.000Z

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  4. LBNL-46223, CBP Note 350 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS IN THE LHC

    E-Print Network [OSTI]

    Furman, Miguel

    LBNL-46223, CBP Note 350 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS IN THE LHC M. A. Furman, W. C. Turner, Center for Beam Physics, LBNL, Berkeley, CA 94720, USA Abstract We present beam-beam simulation of simulations: (a) to as- sess undesirable effects from LBNL's luminosity monitor- ing scheme for the LHC [2

  5. LBNL-45363, CBP Note 333 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS

    E-Print Network [OSTI]

    Furman, Miguel

    LBNL-45363, CBP Note 333 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS Miguel A. Furman, Center for Beam Physics, LBNL, Berkeley, CA 94720 Abstract We present beam-beam simulation results from a strong undesirable effects from LBNL's sweeping lumi- nosity monitoring scheme for the LHC [1], and (b) to assess

  6. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S. [Tri Alpha Energy Inc., Rancho Santa Margarita, California 92688 (United States); Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2011-03-15T23:59:59.000Z

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  7. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  8. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01T23:59:59.000Z

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  9. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01T23:59:59.000Z

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  10. Courses on Beam Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an incomplete listing of course available for beam physics. United States Particle Accelerator School The US Particle Accelerator School provides educational programs in the...

  11. Considerations on ODR beam-size monitoring for gamma = 1000 beams

    SciTech Connect (OSTI)

    Lumpkin, A.H.; /Fermilab; Yao, C.-Y.; /Argonne; Chiadroni, E.; Castellano, M.; /LNF, Dafne Light; Cianchi, A.; /Rome U.,Tor Vergata

    2008-04-01T23:59:59.000Z

    We discuss the feasibility of monitoring the beam size of {gamma} = 1000 beams with 3000 times more charge in a video frame time and with a more sensitive 12- to 16-bit camera than were used in the previous electron beam studies at 7 GeV at the Advanced Photon Source. Such a beam would be generated at Fermilab in a new facility in the coming years. Numerical integrations of our base model show beam size sensitivity for {+-} 20% level changes at 200- and 400-{micro}m base beam sizes. We also evaluated impact parameters of 5 {sigma}{sub y} and 12 {sigma}{sub y} for both 800-nm and 10-{micro}m observation wavelengths. The latter examples are related to a proposal to apply the technique to an {approx}0.98 TeV proton beam, and this study shows there are trades on photon intensity and beam size sensitivity to be considered at such gammas. In addition, we report on first results at {gamma} = 1800 on a superconducting rf linac.

  12. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01T23:59:59.000Z

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  13. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  14. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  15. First Beam to FACET

    SciTech Connect (OSTI)

    Erickson, R.; Clarke, C.; Colocho, W.; Decker, F.-J.; Hogan, M.; Kalsi, S.; Lipkowitz, N.; Nelson, J.; Phinney, N.; Schuh, P.; Sheppard, J.; Smith, H.; Smith, T.; Stanek, M.; Turner, J.; Warren, J.; Weathersby, S.; Wienands, U.; Wittmer, W.; Woodley, M.; Yocky, G.; /SLAC

    2011-12-13T23:59:59.000Z

    The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new Facility for Advanced Accelerator Experimental Tests (FACET) while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). On June 23, 2011, the first electron beam was transported through this new facility. Commissioning of FACET is in progress. On June 23, 2011, an electron beam was successfully transported through the new FACET system to a dump in Sector 20 in the linac tunnel. This was achieved while the last third of the linac, operating from the same control room, but with a separate injector system, was providing an electron beam to the Linac Coherent Light Source (LCLS), demonstrating that concurrent operation of the two facilities is practical. With the initial checkout of the new transport line essentially complete, attention is now turning toward compressing the electron bunches longitudinally and focusing them transversely to support a variety of accelerator science experiments.

  16. Systems and methods of varying charged particle beam spot size

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-09-02T23:59:59.000Z

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  17. Transient beam losses in the LHC injection kickers from micron scale dust particles

    E-Print Network [OSTI]

    Goddard, B; Baer, T; Barnes, M J; Cerutti, F; Ferrari, A; Garrel, N; Gerardin, A; Guinchard, M; Lechner, A; Masi, A; Mertens, V; Morón Ballester, R; Redaelli, S; Uythoven, J; Vlachoudis, V; Zimmermann, F

    2012-01-01T23:59:59.000Z

    Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.

  18. STOCHASTIC COOLING OF BUNCHED BEAMS

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    March 11-13, 1981 STOCHASTIC COOLING OF BUNCHED BEAMS J.J.W-7406-BW-48 STOCHASTIC COOLING OF BUNCHED BEAMS* J.J.longitudinal stochastic cooling of bunched particle beams.

  19. Electron beam magnetic switch for a plurality of free electron lasers

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA)

    1984-01-01T23:59:59.000Z

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  20. Beam instrumentation for the Tevatron Collider

    SciTech Connect (OSTI)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01T23:59:59.000Z

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  1. Simulations of beam-beam and beam-wire interactions in RHIC

    SciTech Connect (OSTI)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01T23:59:59.000Z

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  2. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02T23:59:59.000Z

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  3. Coherent beam-beam mode in the LHC

    E-Print Network [OSTI]

    Buffat, X; Giachino, R; Herr, W; Papotti, G; Pieloni, T; White, S

    2014-01-01T23:59:59.000Z

    Observations of single bunch beam-beam coherent modes during dedicated experiments in the LHC are presented. Their role in standard operation for physics is discussed and, in particular, candidates of beam-beam coherent mode driven unstable by the machine impedance are presented.

  4. A High Count Rate Beam Monitor for Thermal Neutrons

    SciTech Connect (OSTI)

    Barnett, Amanda [University of Tennessee, Knoxville (UTK); Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hayward, J P [University of Tennessee, Knoxville (UTK); Menhard, Kocsis [European Synchrotron Radiation Facility (ESRF); Sedov, Vladislav N [ORNL

    2012-01-01T23:59:59.000Z

    Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. Neutron beam monitors indicate the number of neutrons incident on a scattering sample and allow neutron experimental data to be analyzed even when the source strength varies with time. At high flux neutron scattering facilities, neutron beam monitors with very low efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor which also offers position sensitivity to provide a beam profile. This beam monitor offers good timing (less than 1 s) in addition to position resolution and will therefore improve the counting statistics at neutron energies up to 10 eV and allow moderator studies. The detector s main characteristics will be presented including its background rate, its count rate capability which is an order of magnitude higher than present counting monitors, and its efficiency for thermal neutrons.

  5. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31T23:59:59.000Z

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  6. Final focus test beam

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  7. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B. (Lansing, NY)

    1997-01-01T23:59:59.000Z

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  8. LHC beam behaviour

    E-Print Network [OSTI]

    Herr, W

    2010-01-01T23:59:59.000Z

    An attempt is made to extract information on the LHC beam behaviour and dynamics from the observations made during the first runs in 2009. Although no systematic studies have been made, some basic properties can be established and in particular the observations in the presence of two beams and in collision are studied. They are analyzed in view of the foreseen runs at higher energy and possible improvements are proposed.

  9. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect (OSTI)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  10. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07T23:59:59.000Z

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  11. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    DOE Patents [OSTI]

    Degtiarenko, Pavel V. (Williamsburg, VA); Dotson, Danny Wayne (Gloucester, VA)

    2007-10-09T23:59:59.000Z

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  12. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    SciTech Connect (OSTI)

    Leung Shingyu, E-mail: masyleung@ust.h [Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Qian Jianliang, E-mail: qian@math.msu.ed [Department of Mathematics, Michigan State University, East Lansing, MI 48824 (United States)

    2010-11-20T23:59:59.000Z

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  13. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13T23:59:59.000Z

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  14. Precision monitoring of relative beam intensity for Mu2e

    SciTech Connect (OSTI)

    Evans, N.J.; Kopp, S.E.; /Texas U.; Prebys, E.; /Fermilab

    2011-04-01T23:59:59.000Z

    For future experiments at the intensity frontier, precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment will utilize {approx}200 ns (FW) bunches of 3 x 10{sup 7} protons at 8 GeV with a bunch-to-bunch period of 1695 ns. The out-of-bunch beam must be suppressed by a factor of 10{sup -10} relative to in-bunch beam and continuously monitored. I propose a Cerenkov-based particle telescope to measure secondary production from beam interactions in a several tens of microns thick foil. Correlating timing information with beam passage will allow the determination of relative beam intensity to arbitrary precision given a sufficiently long integration time. The goal is to verify out-of-bunch extinction to the level 10{sup -6} in the span of several seconds. This will allow near real-time monitoring of the initial extinction of the beam resonantly extracted from Fermilabs Debuncher before a system of AC dipoles and collimators, which will provide the final extinction. The effect on beam emittance is minimal, allowing the necessary continuous measurement. I will present the detector design and some concerns about bunch growth during the resonant extraction.

  15. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22T23:59:59.000Z

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  16. TESLA Report 2004-03 Comparison of Stripline and Cavity Beam

    E-Print Network [OSTI]

    characteristics of a beam position monitor (BPM) are position and time resolutions. Position resolution is the smallest deflection of the beam which a BPM can sense. Time resolution is the time which a BPM needs be performed, the BPM time resolution should be shorter than the distance between bunches. Different types

  17. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01T23:59:59.000Z

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  18. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    SciTech Connect (OSTI)

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.; /Fermilab /IIT, Chicago /PDT, Torino

    2012-05-15T23:59:59.000Z

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is {approx} 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  19. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOE Patents [OSTI]

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26T23:59:59.000Z

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  20. Grazing incidence beam expander

    SciTech Connect (OSTI)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01T23:59:59.000Z

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  1. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect (OSTI)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom)] [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom)] [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)] [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15T23:59:59.000Z

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40?cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed less variation with field size, the d{sub max} value was deeper for the matched FFF beam than the FFF beam and deeper than the flattened beam for field sizes greater than 5 cm × 5 cm. The head leakage when using the machine in FFF mode is less than half that for a flattened beam, but comparable for both FFF modes. The radiation protection dose-rate measurements show an increase of instantaneous dose-rates when operating the machines in FFF mode but that increase is less than the ratio of MU/min produced by the machine. Conclusions: The matching of a FFF beam to a flattened beam at a depth of 10 cm in water by increasing the FFF beam energy does not reduce any of the reported benefits of FFF beams. Conversely, there are a number of potential benefits resulting from matching the FFF beam; the depth of maximum dose is deeper, the out of field dose is potentially reduced, and the beam quality and penetration more closely resembles the flattened beams currently used in clinical practice, making dose distributions in water more alike. Highlighted in this work is the fact that some conventional specifications and methods for measurement of beam parameters such as penumbra are not relevant and further work is required to address this situation with respect to “matched” FFF beams and to determine methods of measurement that are not reliant on an associated flattened beam.

  2. Fan-beam intensity modulated proton therapy

    SciTech Connect (OSTI)

    Hill, Patrick [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States)] [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Westerly, David [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mackie, Thomas [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)] [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems.Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  3. augmented laser beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Steve Obenschain 2010-01-01 2 Laser Telecommunication timeLaser beam Physics Websites...

  4. alkali ion beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DT capsule a heavy-ion beam. and is presented in Fig.1. unknown authors 4 METHOD FOR EFFICIENCY AND TIME RESPONSE MEASUREMENT ON DIVERSE TARGET ION SOURCES WITH STABLE ALKALI...

  5. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOE Patents [OSTI]

    Beene, James R. (Oak Ridge, TN) [Oak Ridge, TN; Liu, Yuan (Knoxville, TN) [Knoxville, TN; Havener, Charles C. (Knoxville, TN) [Knoxville, TN

    2008-02-26T23:59:59.000Z

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  6. Collective Deceleration: Toward a Compact Beam Dump

    SciTech Connect (OSTI)

    Wu, H.-C.; /Munich, Max Planck Inst. Quantenopt.; Tajima, T.; Habs, D.; /Munich, Max Planck Inst. Quantenopt. /Munich U.; Chao, A.W.; /SLAC; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28T23:59:59.000Z

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  7. Observation of Coherent Beam-beam Effects in the LHC

    E-Print Network [OSTI]

    Buffat, X; Giachino, R; Herr, W; Papotti, G; Pieloni, T; Calaga, R; White, S M

    2011-01-01T23:59:59.000Z

    Early collisions in the LHC with a very limited number of bunches with high intensities indicated the presence of coherent beam-beam driven oscillations. Here we discuss the experimental results and compare with the expectations.

  8. Electron beam dynamics for the ISIS bremsstrahlung beam generation system

    E-Print Network [OSTI]

    Block, Robert E. (Robert Edward)

    2011-01-01T23:59:59.000Z

    An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...

  9. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation 

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22T23:59:59.000Z

    hydrocarbons. Second, we studied the energy transfer mechanism of E-Beam upgrading to optimize the process. Third, we conducted a preliminary economic analysis based on energy consumption and compared the economics of E-Beam upgrading with conventional...

  10. Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION OF ELECTROMAGNETIC

    E-Print Network [OSTI]

    Melamed, Timor

    Progress In Electromagnetics Research, Vol. 114, 317­332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed

  11. Comparison of Current Almond Pasteurization Methods and Electron Beam Irradiation as an Alternative

    E-Print Network [OSTI]

    Cuervo Pliego, Mary

    2012-02-14T23:59:59.000Z

    , almonds that were inoculated with S. Enteritidis PT 30 and S. Senftenberg, were treated with electron beam irradiation (e-beam), blanching and oil roasting. The thermal death time (D-value) for S. Enteritidis PT 30 when treated with e-beam was 0.90 kGy, 15...

  12. Center for beam physics 1996-1997

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    The Center for Beam Physics (CBP) is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Ernest Orlando Lawrence Berkeley National Laboratory of the University of California. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Special features of the Center`s program include addressing R&D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R&D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase space control, laser-beam-plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s outstanding team and gives a flavor of their multifaceted activities during 1996 and 1997.

  13. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12T23:59:59.000Z

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  14. Colliding beams of light

    E-Print Network [OSTI]

    B. V. Ivanov

    2002-12-28T23:59:59.000Z

    The stationary gravitational field of two identical counter-moving beams of pure radiation is found in full generality. The solution depends on an arbitrary function and a parameter which sets the scale of the energy density. Some of its properties are studied. Previous particular solutions are derived as subcases.

  15. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01T23:59:59.000Z

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  16. High-Performance Beam Simulator for the LANSCE Linac

    SciTech Connect (OSTI)

    Pang, Xiaoying [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory

    2012-05-14T23:59:59.000Z

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  17. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    67, 15. Hangst, J "Laser Cooling of a Stored Ion Beam - ATheorem an.d Phase Space Cooling", Proceedings of theWorkshop on Beam Cooling and Related Topics, Montreaux, CERN

  18. Hadron beams session-summary

    SciTech Connect (OSTI)

    Terwilliger, K.M. (University of Michigan, Ann Arbor, MI 48109-1120, USA (US))

    1989-05-05T23:59:59.000Z

    The status of presently operating polarized beams at Fermilab, the AGS, and KEK is discussed. Other schemes such as Siberian Snakes and self-polarization of a beam in situ are briefly analyzed.(AIP)

  19. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09T23:59:59.000Z

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  20. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect (OSTI)

    Evtushenko, Pavel E. [JLAB; Douglas, David R. [JLAB

    2013-06-01T23:59:59.000Z

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  1. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect (OSTI)

    Evtushenko, Pavel [JLAB; Douglas, David R. [JLAB; Legg, Robert A. [JLAB; Tennant, Christopher D. [JLAB

    2013-05-01T23:59:59.000Z

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  2. Recent advances of strong-strong beam-beam simulation

    SciTech Connect (OSTI)

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15T23:59:59.000Z

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  3. Metallic beam development for the Facility for Rare Isotope Beam

    SciTech Connect (OSTI)

    Machicoane, Guillaume, E-mail: machicoa@nscl.msu.edu; Cole, Dallas; Leitner, Daniela; Neben, Derek; Tobos, Larry [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)] [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15T23:59:59.000Z

    The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will accelerate a primary ion beam to energies beyond 200 MeV/u using a superconducting RF linac and will reach a maximum beam power of 400 kW on the fragmentation target. The beam intensity needed from the ECR ion source is expected to be between 0.4 and 0.5 emA for most medium mass to heavy mass elements. Adding to the challenge of reaching the required intensity, an expanded list of primary beams of interest has been established based on the production rate and the number of isotope beams that could be produced with FRIB. We report here on the development done for some of the beam in the list including mercury (natural), molybdenum ({sup 98}Mo), and selenium ({sup 82}Ser)

  4. Results of long-range beam-beam studies - scaling with beam separation and intensity

    E-Print Network [OSTI]

    Assmann, R; Buffat, X; Calaga, R; Giachino, R; Herr, W; Metral, E; Papotti, G; Pieloni, T; Roy, G; Trad, G; Kaltchev, D; CERN. Geneva. ATS Department

    2012-01-01T23:59:59.000Z

    We studied possible limitations due to the long-range beam-beam effects in the LHC. With a large number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long-range beam-beam effects to evaluate their influence on dynamic aperture and losses. Different beta* and intensities have been used in two dedicated experiments and allow the test of the expected scaling laws.

  5. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect (OSTI)

    Fedotov, A.

    2012-01-11T23:59:59.000Z

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under cooling which is essential if cooling is provided in a collider. The software needed for comparison with the experiments is already developed as part of the previous high-energy electron cooling studies for RHIC. Since electron beam will be non-magnetized and there will be no magnetic field in the cooling section it will be also a first demonstration of fully non-magnetized cooling. The purpose of these studies was to explore whether we would be able to observe conventional electron cooling with parameters expected in the CEC PoP experiment. Below we summarize requirements on electron beam and cooling section needed for such demonstration.

  6. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  7. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  8. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A. [Dipartimento di Fisica e Matematica, Universita del'Insubria, Via Valleggio 11, I-22100 Como (Italy); Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Faccio, D. [Dipartimento di Fisica e Matematica, Universita del'Insubria, Via Valleggio 11, I-22100 Como (Italy); School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Couairon, A. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Papazoglou, D. G. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Materials Science and Technology Department, University of Crete, GR-71003 Heraklion (Greece); Panagiotopoulos, P.; Tzortzakis, S. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Abdollahpour, D. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Physics Department, University of Crete, GR-71003 Heraklion (Greece)

    2011-08-15T23:59:59.000Z

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  9. Axion beams at HERA?

    E-Print Network [OSTI]

    K. Piotrzkowski

    2007-01-09T23:59:59.000Z

    If the recently observed anomaly in the PVLAS experiment is due to the axion, then the powerful beams of synchrotron photons, propagating through high magnetic field of the HERA beamline, become strong axion sources. This gives a unique opportunity of detection of the axion-photon interactions by installing a small detector in the HERA tunnel, and to corroborate the axion hypothesis within a few days of running.

  10. Understanding the Poor Resolution from Test Beam RunUnderstanding the Poor Resolution from Test Beam Run 2004 Straw Test beam results2004 Straw Test beam results

    E-Print Network [OSTI]

    1 Understanding the Poor Resolution from Test Beam RunUnderstanding the Poor Resolution from Test Beam Run aah #12;2 2004 Straw Test beam results2004 Straw Test beam results ! Doc # 3308 v#3 by A. Ledovskoy " Using Data from 2004 Test Beam " Used "triplet" method for beam nominally perpendicular to Straw

  11. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect (OSTI)

    Maggiore, M., E-mail: mario.maggiore@lnl.infn.it; Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S. [INFN-LNL, viale dell’Università 2, 35020 Legnaro (Italy)] [INFN-LNL, viale dell’Università 2, 35020 Legnaro (Italy); Caruso, A.; Longhitano, A. [INFN-LNS, via S. Sofia 54, 95123 Catania (Italy)] [INFN-LNS, via S. Sofia 54, 95123 Catania (Italy); Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M. [INFN Sezione di Milano and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [INFN Sezione di Milano and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2014-02-15T23:59:59.000Z

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  12. A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities

    SciTech Connect (OSTI)

    Barnett, Amanda [University of Tennessee, Knoxville (UTK); Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Hayward, J P [University of Tennessee, Knoxville (UTK); Hayward, Jason P [ORNL; Menhard, Kocsis [European Synchrotron Radiation Facility (ESRF); Sedov, Vladislav N [ORNL; Funk, Loren L [ORNL

    2013-01-01T23:59:59.000Z

    Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

  13. Apparatus and method for increasing the bandwidth of a laser beam

    DOE Patents [OSTI]

    Chaffee, Paul H. (Bolina, CA)

    1991-01-01T23:59:59.000Z

    A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  14. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    E-Print Network [OSTI]

    Rob Roy Fletcher; Linda Coney; Gail Hanson

    2011-05-03T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  15. Semiconductor spectrometer for beams of low-energy positive pions

    SciTech Connect (OSTI)

    Gaisak, I.I.; Gornov, M.G.; Gurov, Yu.B.; Merzlyakov, S.I.; Oganesyan, K.O.; Osipenko, B.P.; Pasyuk, E.A.; Porokhovoi, S.Yu.; Rudenko, A.I.; Khomutov, A.A.; Shishkov, A.V.

    1988-07-01T23:59:59.000Z

    A device for measurement of the momentum distribution of a beam of low-energy positive pions is described. A spectrum is determined by measurement of the energies of associated heavy charged particles (p, d, t, and ..cap alpha..) in a thin semiconductor detector. The accuracy of determination of average beam momentum is less than or less than or equal to 10/sup -3/. The proposed method permits real-time monitoring and correction of the parameters of a pion beam in an accelerator experiment.

  16. Positron lifetime spectrometer using a DC positron beam

    DOE Patents [OSTI]

    Xu, Jun; Moxom, Jeremy

    2003-10-21T23:59:59.000Z

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  17. Observations of beam-beam effects at the LHC

    E-Print Network [OSTI]

    Papotti, G; Herr, W; Giachino, R; Pieloni, T

    2014-01-01T23:59:59.000Z

    This paper introduces a list of observations related to the beam-beam interaction that were collected over the first years of LHC proton physics operation (2010-12). Beam-beam related effects not only have been extensively observed and recorded, but have also shaped the operation of the LHC for high-intensity proton running in a number of ways: the construction of the filling scheme, the choice of luminosity levelling techniques, measures to mitigate instabilities, and the choice of settings for improving performance (e.g. to reduce losses), among others.

  18. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect (OSTI)

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01T23:59:59.000Z

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  19. Neutral Beam Excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30 NewNetworks,Beam

  20. Development of a fast position-sensitive laser beam detector

    SciTech Connect (OSTI)

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G. [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2008-10-15T23:59:59.000Z

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  1. Formation of nanosize structures on a silicon substrate by method of focused ion beams

    SciTech Connect (OSTI)

    Ageev, O. A.; Kolomiytsev, A. S.; Konoplev, B. G., E-mail: kbg@tsure.ru [Technological Institute of the Southern Federal University (Russian Federation)

    2011-12-15T23:59:59.000Z

    The results of experimental studies of modes in which nanosize structures are formed on a silicon substrate by method of focused ion beams are presented. Dependences of the diameter and depth of the nanosize structures on the ion beam current and time of exposure to the ion beam at a point are obtained. It is demonstrated that the main factor determining the rate of ion-beam milling is the ion beam current. The results of the study can be used in the development of technological processes for the fabrication of components for nanoelectronics and nanosystems engineering.

  2. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10T23:59:59.000Z

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  3. Beam emittance measurements at Fermilab

    SciTech Connect (OSTI)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01T23:59:59.000Z

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  4. Low energy beta-beams

    E-Print Network [OSTI]

    Cristina Volpe

    2009-11-13T23:59:59.000Z

    The main goal of a beta-beam facility is to determine the possible existence of CP violation in the lepton sector, the value of the third neutrino mixing angle and the mass hierarchy. Here we argue that a much broader physics case can be covered since the beta-beam concept can also be used to establish a low energy beta-beam facility. We discuss that the availability of neutrino beams in the 100 MeV energy range offers a unique opportunity to perform neutrino scattering experiments of interest for nuclear physics, for the study of fundamental interactions and of core-collapse supernova physics.

  5. First LHC Beams in ATLAS

    E-Print Network [OSTI]

    Krieger, P

    2009-01-01T23:59:59.000Z

    This is a talk on the ATLAS single beam running, to be given on February 9th at the Aspen Winter Conference.

  6. ANL Beams and Applications Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization of the laser and electron beams of the Cornell Energy Recovery Linac Heng Li Cornell University June 18 Interbeam Scattering Studies at CesrTA Michael Ehrlichman...

  7. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01T23:59:59.000Z

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  8. NEUTRAL-BEAM INJECTION

    SciTech Connect (OSTI)

    Kunkel, W.B.

    1980-06-01T23:59:59.000Z

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

  9. High gradient lens for charged particle beam

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-04-29T23:59:59.000Z

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  10. The Scheme of Beam Synchronization in MEIC

    SciTech Connect (OSTI)

    Zhang, Yuhong; Derbenev, Yaroslav S.; Hutton, Andrew M.

    2013-06-01T23:59:59.000Z

    Synchronizing colliding beams at single or multiple collision points is a critical R&D issue in the design of a medium energy electron-ion collider (MEIC) at Jefferson Lab. The path-length variation due to changes in the ion energy, which varies over 20 to 100 GeV, could be more than several times the bunch spacing. The scheme adopted in the present MEIC baseline is centered on varying the number of bunches (i.e., harmonic number) stored in the collider ring. This could provide a set of discrete energies for proton or ions such that the beam synchronization condition is satisfied. To cover the ion energy between these synchronized values, we further propose to vary simultaneously the electron ring circumference and the frequency of the RF systems in both collider rings. We also present in this paper the requirement of frequency tunability of SRF cavities to support the scheme.

  11. Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect (OSTI)

    Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28T23:59:59.000Z

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

  12. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    SciTech Connect (OSTI)

    Solar, B.; Graafsma, H.; Potdevin, G.; Trunk, U. [Hasylab, Deutsches Elektronen Synchroton, Hamburg (Germany); Morse, J.; Salome, M. [Instrumentation Services and Development Division, European Synchroton Radiation Facility, Grenoble (France)

    2010-06-23T23:59:59.000Z

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (beams. We report on tests made at ESRF and DESY using diamond beam position monitors of simple quadrant electrode designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.

  13. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Kessler, Terrance J. (Rochester, NY); Short, Robert W. (Rochester, NY); Craxton, Stephen (Rochester, NY); Letzring, Samuel A. (Honeoye Falls, NY); Soures, John (Pittsford, NY)

    1991-01-01T23:59:59.000Z

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  14. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Craxton, R. Stephen (Rochester, NY); Soures, John (Pittsford, NY)

    1990-01-01T23:59:59.000Z

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.

  15. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02T23:59:59.000Z

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  16. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01T23:59:59.000Z

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  17. Head-on beam-beam collisions with high intensities and long range beam-beam studies in the LHC

    E-Print Network [OSTI]

    Albert, M; Assmann, R; Buffat, X; Calaga, R; Cornelis, K; Fitterer, M; Giachino, R; Herr, W; Miyamoto, R; Norman, L; Papotti, G; Pieloni, T; Ponce, L; Redaelli, S; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01T23:59:59.000Z

    In two experiments we studied possible limitations due to the beam-beam effects in the LHC. In the first experiment we collided high intensity bunches head-on to explore the region for high luminosity collisions. In the second test we reduced the crossing angle in the presence of long range encounters to increase their effects.

  18. Toward automated beam optics control

    SciTech Connect (OSTI)

    Silbar, R.R.; Schultz, D.E.

    1987-01-01T23:59:59.000Z

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs.

  19. Model Independent Analysis of Beam Centroid Dynamics in Accelerators

    SciTech Connect (OSTI)

    Wang, Chun-xi

    2003-04-21T23:59:59.000Z

    Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map measurements and shows that it is possible to measure the Poincare section map (in terms of Taylor series) of a circular accelerator to a surprisingly high order and accuracy based on present BPM technology. MIA can overcome the inherent limit of BPM resolution. Nonlinear map measurements will advance understanding of the beam dynamics of a ring.

  20. Temporal process of plasma discharge by an electron beam

    SciTech Connect (OSTI)

    Sugawa, M.; Sugaya, R.; Isobe, S.; Kumar, A. [Department of Physics, Faculty of Science, Ehime University, Matsuyama 790 (Japan); Honda, H. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565 (Japan)

    1996-05-01T23:59:59.000Z

    The process of the plasma discharge due to an electron beam is experimentally investigated. A pulse ({approximately}540 {mu}s) of an electron beam (0.5{endash}1.5 keV, {le}20 mA) is injected into argon gas (5{times}10{sup {minus}5}{endash}5{times}10{sup {minus}4} Torr) in a magnetic field (50{endash}300 G). The discharge based on a gas break down occurs cascade-likely in time. The gas beak down with some steps is explained by the two stream instability of an electron beam-plasma system, from the observation of the temporal evolution of the frequency spectra (0{endash}3.0 GHz) of the instability and the measurement of the temporal plasma density and temperature. {copyright} {ital 1996 American Institute of Physics.}

  1. Light beam range finder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  2. Light beam range finder

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-16T23:59:59.000Z

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  3. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-Print Network [OSTI]

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  4. Summary of working group g: beam material interaction

    SciTech Connect (OSTI)

    Kiselev, D.; /PSI, Villigen; Mokhov, N.V.; /Fermilab; Schmidt, R.; /CERN

    2010-11-01T23:59:59.000Z

    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

  5. Electron vortex beams in a magnetic field and spin filter

    E-Print Network [OSTI]

    Debashree Chowdhury; Banasri Basu; Pratul Bandyopadhyay

    2015-02-25T23:59:59.000Z

    We investigate the propagation of electron vortex beams in a magnetic field. It is pointed out that when electron vortex beams carrying orbital angular momentum propagate in a magnetic field, the Berry curvature associated with the scalar electron moving in a cyclic path around the vortex line is modified from that in free space. This alters the spin-orbit interaction, which affects the propagation of nonparaxial beams. The electron vortex beams with tilted vortex lead to spin Hall effect in free space. In presence of a magnetic field in time space we have spin filtering such that either positive or negative spin states emerge in spin Hall currents with clustering of spin $\\frac{1}{2}$ states.

  6. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect (OSTI)

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl [University of California, Los Angeles, Department of Physics and Astronomy, Los Angeles, CA 90095 (United States); University of Southern California, Department of Electrical Engineering, Los Angeles, CA 90089 U.S.A. and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Accelerator Test Facility, Brookhaven National Lab, Upton, NY, 11973 (United States)

    2012-12-21T23:59:59.000Z

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  7. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer, John W. (Pleasanton, CA)

    1996-01-01T23:59:59.000Z

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  8. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R. (Martinez, CA); Hammond, Robert B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  9. RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect (OSTI)

    Miniati, Francesco [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland); Elyiv, Andrii, E-mail: fm@phys.ethz.ch [Institut d'Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium)

    2013-06-10T23:59:59.000Z

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  10. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21T23:59:59.000Z

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  11. Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    E-Print Network [OSTI]

    Wouters, S H W; Notermans, R P M J W; Debernardi, N; Mutsaers, P H A; Luiten, O J; Vredenbregt, E J D

    2014-01-01T23:59:59.000Z

    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of $2.1 \\times 10^7 A/(m^2\\,sr\\,eV)$ at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.

  12. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    SciTech Connect (OSTI)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-09-01T23:59:59.000Z

    At the Advanced Photon Source (APS) the injector linac`s DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun`s beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained.

  13. Tile HCAL Test Beam Analysis: Positron and Hadron Studies

    E-Print Network [OSTI]

    Riccardo Fabbri

    2009-02-09T23:59:59.000Z

    The CALICE collaboration has constructed a hadronic sandwich calorimeter prototype with 7608 scintillating plates, individually read out by multi-pixel silicon photomultipliers (SiPMs). For the first time ever the read out is performed using SiPMs on a large scale. Results of test beam operations with muon, positron and hadron beams at CERN are presented here, validating the feasibility of the novel SiPM technology. Results of the application of the particle flow approach in shower energy reconstruction are presented for the first time ever using real data.

  14. A scanning wire beam profile monitor

    SciTech Connect (OSTI)

    Steinbach, Ch.; van Rooij, M.

    1985-10-01T23:59:59.000Z

    The transverse profile of the circulating beam of the CERN PS is obtained from the interaction between the particles and a thin wire rapidly moving through it. The signal from a secondary particles monitor or the secondary emission current of the wire is sampled against the wire position every four beam revolutions in the machine. A stand-alone desk computer performs the real-time control of the wire displacement as well as the acquisitions and calculations necessary to display the profiles and the corresponding emittances. A traversing speed of 20 m/s in the measurement area is reached, using a high torque motor rigidly linked to a U shaped wire holder. All elements are carefully designed and chosen for low inertia and minimum load on the wire. This enables measurements of high energy beams of more than 10/sup 13/ p/p in the PS with negligible emittance blow-up due to multiple scattering. This blow-up is still acceptable at injection energy. A link to the PS main computer allows operation from any one of the main consoles.

  15. MEASUREMENT OF BEAM CHARACTERISTICS FOR PHOTO- ELECTRON BEAM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron beam is expected to be used in a wide field, such as X-ray generation by inverse Compton scattering, pulse radiolysis, etc. The laser driven photo cathode rf gun system is...

  16. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09T23:59:59.000Z

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  17. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  18. Alight a beam and beaming light: A theme with variations

    SciTech Connect (OSTI)

    Chattopadhyay, S. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)] [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)

    1998-05-01T23:59:59.000Z

    The interaction of light (coherent and incoherent) with charged particle beams is explored in various configurations: incoherent scattering of coherent light (laser) from an incoherent particle beam (high temperature), coherent scattering of coherent light (laser) from a {open_quotes}cold{close_quotes} (bunched) beam, femtosecond generation of particle and light beams via {open_quotes}optical slicing{close_quotes} and Thomson/Compton scattering techniques, etc. The domains of ultrashort temporal duration (femtoseconds) as well as ultrashort wavelengths (x rays and shorter), with varying degrees of coherence, are explored. The relevance to a few critical areas of research in the natural sciences, e.g., ultrafast material, chemical and biological processes, protein folding, particle phase space cooling, etc. are touched upon. All the processes discussed involve proper interpretation and understanding of coherent states of matter and radiation, as well as the quality and quantity of information and energy embedded in them. {copyright} {ital 1998 American Institute of Physics.}

  19. Thermal stresses in laminated beams

    E-Print Network [OSTI]

    Marcano, Victor Manuel

    1983-01-01T23:59:59.000Z

    Stresses Acting on a Section of the Laminated Beam -------- 15 5. Loading Geometry and Material Characteristics of the Test Problem 21 6. Simply-Supported Beam with a Sinusoidal Load--------- 30 7. Shear Stress Distribution for a Simply- Supported... 24. Normal Stress Distribution for a Cantilever Laminated Beam, T-Z sinzx/L --------------- 58 m. i 25. Axial Stress Distribution for a Cantilever Laminated Bearq, T-T (2z/8+1) 2 mi 27. Normal Stress Distribution for ("/L) ? ---- 6O 2 a...

  20. Thermal stresses in laminated beams 

    E-Print Network [OSTI]

    Marcano, Victor Manuel

    1983-01-01T23:59:59.000Z

    Stresses Acting on a Section of the Laminated Beam -------- 15 5. Loading Geometry and Material Characteristics of the Test Problem 21 6. Simply-Supported Beam with a Sinusoidal Load--------- 30 7. Shear Stress Distribution for a Simply- Supported... 24. Normal Stress Distribution for a Cantilever Laminated Beam, T-Z sinzx/L --------------- 58 m. i 25. Axial Stress Distribution for a Cantilever Laminated Bearq, T-T (2z/8+1) 2 mi 27. Normal Stress Distribution for ("/L) ? ---- 6O 2 a...

  1. All-Stokes Parameterization of the Main Beam and First Sidelobe for the Arecibo Radio Telescope

    E-Print Network [OSTI]

    Carl Heiles; Phil Perillat; Michael Nolan; Duncan Lorimer; Ramesh Bhat; Tapasi Ghosh; Ellen Howell; Murray Lewis; Karen O'Neil; Chris Salter; Snezana Stanimirovic

    2001-07-18T23:59:59.000Z

    We describe a scheme that characterizes the main beam and sidelobe in all Stokes parameters employing parameters that allow reconstruction of the complete beam patterns and, also, afford an easy way to see how the beam changes with azimuth, zenith angle, and time. For the main beam in Stokes I the parameters include the beam width, ellipticity and its orientation, coma and its orientation, the point-source gain, the integrated gain (or, equivalently, the main beam efficiency); for the other Stokes parameters the beam parameters include beam squint and beam squash. For the first sidelobe ring in Stokes I the parameters include an 8-term Fourier series describing the height, radius, and radial width; for the other Stokes parameters they include only the sidelobe's fractional polarization. We illustrate the technique by applying it to the Arecibo telescope. The main beam width is smaller and the sidelobe levels higher than for a uniformly-illuminated aperture of the same effective area. These effects are modeled modestly well by a blocked aperture, with the blocked area equal to about 10% of the effective area (this corresponds to 5% physical blockage). In polarized emission, the effects of beam squint (difference in pointing direction between orthogonal polarizations) and squash (difference in beamwidth between orthogonal polarizations) do not correspond to theoretical expectation and are higher than expected; these effects are almost certainly caused by the blockage. The first sidelobe is highly polarized because of blockage.

  2. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23T23:59:59.000Z

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  3. One-way, real time wave front converters

    SciTech Connect (OSTI)

    Kwong, S.; Yariv, A.

    1986-03-03T23:59:59.000Z

    Optical one-way, real time wave front cleanup by means of photorefractively pumped oscillators is reported. A factor of 4000 increase in beam brightness has been achieved.

  4. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21T23:59:59.000Z

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  5. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

    1995-01-01T23:59:59.000Z

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  6. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, David G. (Naperville, IL)

    1993-01-01T23:59:59.000Z

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  7. Reflective echo tomographic imaging using acoustic beams

    DOE Patents [OSTI]

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25T23:59:59.000Z

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  8. Particle beam generator using a radioactive source

    DOE Patents [OSTI]

    Underwood, D.G.

    1993-03-30T23:59:59.000Z

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  9. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01T23:59:59.000Z

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  10. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J. (Los Alamos, NM); Blind, Barbara (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  11. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect (OSTI)

    BLASKIEWICZ, M.

    2005-05-16T23:59:59.000Z

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  12. Stability diagram of colliding beams

    E-Print Network [OSTI]

    Buffat, X; Mounet, N; Pieloni, T

    2014-01-01T23:59:59.000Z

    The effect of the beam-beam interactions on the stability of impedance mode is discussed. The detuning is evaluated by the means of single particle tracking in arbitrarily complex collision configurations, including lattice non-linearities, and used to numerically evaluate the dispersion integral. This approach also allows the effect of non-Gaussian distributions to be considered. Distributions modified by the action of external noise are discussed.

  13. Single lens laser beam shaper

    DOE Patents [OSTI]

    Liu, Chuyu (Newport News, VA); Zhang, Shukui (Yorktown, VA)

    2011-10-04T23:59:59.000Z

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  14. EXPERIMENTAL RESULTS FROM A MICROWAVE CAVITY BEAM POSITION MONITOR.

    SciTech Connect (OSTI)

    BALAKIN,V.; BAZHAN,A.; LUNEV,P.; SOLYAK,N.; VOGEL,V.; ZHOGOLEV,P.; LISITSYN,A.; YAKIMENKO,V.

    1999-03-29T23:59:59.000Z

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required.

  15. High energy electron beam joining of ceramic components

    SciTech Connect (OSTI)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A. [and others

    1997-07-01T23:59:59.000Z

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  16. KTeV beam systems design report

    SciTech Connect (OSTI)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01T23:59:59.000Z

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  17. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect (OSTI)

    Lidia, Steven M.

    1999-11-01T23:59:59.000Z

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also described.

  18. Progress in beam focusing and compression for warm-dense matter experiments

    E-Print Network [OSTI]

    Gilson, Erik

    control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time) with controlled ramps and forced neutralization. Using an injected 30-mA K+ ion beam with initial kinetic energy 0 with models assuming 80% and 0% neutralization, respectively. The Neutralized Transport Experiment (NTX), used

  19. Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy

    E-Print Network [OSTI]

    Myers, Tom

    Controlled oxygen doping of GaN using plasma assisted molecular-beam epitaxy A. J. Ptak, L. J-assisted molecular-beam epitaxy to study the dependence of oxygen incorporation on polarity and oxygen partial pressure. Oxygen incorporates at a rate ten times faster on nitrogen-polar GaN than on the Ga polarity

  20. Head-on beam-beam tune shifts with high brightness beams in the LHC

    E-Print Network [OSTI]

    Alemany, R; Calaga, R; Cornelis, K; Fitterer, M; Giachino, R; Herr, W; McPherson, A; Miyamoto, R; Papotti, G; Pieloni, T; Redaelli, S; Roncarolo, F; Schaumann, M; Suykerbuyk, R; Trad, G; Paret, S

    2011-01-01T23:59:59.000Z

    In this experiment (fills 1765, 1766) we have collided bunches with highest brightness, i.e. small emittances and high intensities, to explore the achievable beam-beam tune shift for head-on collisions. Different parameters and filling schemes have been used for this experiment and tune shifts above 0.015 have been achieved in single collisions and above 0.030 for two collision points.

  1. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04T23:59:59.000Z

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  2. Nufact 2008 The Beta Beam WP Beta beam R&D status

    E-Print Network [OSTI]

    McDonald, Kirk

    Nufact 2008 The Beta Beam WP Nufact 08 1 Beta beam R&D status Elena Wildner, CERN on behalf of the Beta Beam Study Group EURISOL/Euronu #12;Nufact 2008 The Beta Beam WP Nufact08Nufact08 Outline Recall, EURISOL Ion Production Loss Management Improvements New Program, EuroNu 2 #12;Nufact 2008 The Beta Beam WP

  3. Commissioning of the CMS zero degree calorimeter using LHC beam

    E-Print Network [OSTI]

    O. Grachov; M. Murray; J. Wood; Y. Onel; S. Sen; T. Yetkin

    2010-08-06T23:59:59.000Z

    This paper reports on the commissioning and first running experience of the CMS Zero Degree Calorimeters during December 2009. All channels worked correctly. The ZDCs were timed into the data acquisition system using beam splash events. These data also allowed us to make a first estimate of channel-by-channel variations in gain.

  4. Acceleration of trapped particles and beams

    E-Print Network [OSTI]

    Er'el Granot; Boris Malomed

    2011-07-30T23:59:59.000Z

    The dynamics of a quantum particle bound by an accelerating delta-functional potential is investigated. Three cases are considered, using the reference frame moving along with the {\\delta}-function, in which the acceleration is converted into the additional linear potential. (i) A stationary regime, which corresponds to a resonance state, with a minimum degree of delocalization, supported by the accelerating potential trap. (ii) A pulling scenario: an initially bound particle follows the accelerating delta-functional trap, within a finite time. (iii) The pushing scenario: the particle, which was initially localized to the right of the repulsive delta-function, is shoved to the right by the accelerating potential. For the two latter scenarios, the life time of the trapped particle, and the largest velocity to which it can be accelerated while staying trapped, are found. Analytical approximations are developed for the cases of small and large accelerations in the pulling regime, and also for a small acceleration in the stationary situation, and in the regime of pushing. The same regimes may be realized by Airy-like planar optical beams guided by a narrow bending potential channel or crest. Physical estimates are given for an atom steered by a stylus of a scanning tunneling microscope (STM), and for the optical beam guided by a bending stripe.

  5. Optical Beam Timing Monitor Experiments at the Advanced Light Source

    E-Print Network [OSTI]

    Byrd, John; De Santis, Stefano; Wilcox, Rusell; Yan, Yin

    2008-01-01T23:59:59.000Z

    compensated fiber TT>- -T BPM (Z~ Fig.2. Experimental setuplocked Laser E.O. Mod. BPM Scope PD Fig.4. Block diagram ofpossible bandwidth out of our BPM's. INITIAL E X P E R I M E

  6. How to Request & Access Beam Time | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years ofHonorsAbout » Contact

  7. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    E-Print Network [OSTI]

    Bhat, C M; Chaurize, S J; Garcia, F G; Seiya, K; Pellico, W A; Sullivan, T M; Triplett, A K

    2015-01-01T23:59:59.000Z

    We have measured the total energy spread (99 persent energy spread) of the Booster beam at its injection energy of 400 MeV by three different methods - 1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, 2) injecting partial turn beam and letting it to debunch, and 3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of RF systems in the ring and in the beam transfer line.

  8. Characterization and use of the spent beam for serial operation of LCLS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; et al

    2015-05-01T23:59:59.000Z

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore »particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

  9. Generate Uniform Transverse Distributed Electron Beam along a Beam Line

    E-Print Network [OSTI]

    Jiao, Y

    2015-01-01T23:59:59.000Z

    It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping almost uniform transverse distributed (UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A concrete design is presented, and numerical simulations are done to verify the proposed method.

  10. Mechanical beam isolator for high-power laser systems

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA); Vann, Charles S. (Fremont, CA)

    1998-01-01T23:59:59.000Z

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

  11. Electron beam evaporation for titanium metal matrix composites

    SciTech Connect (OSTI)

    Storer, J. [3M, Mendota Heights, MN (United States)

    1994-12-31T23:59:59.000Z

    3M, in partnership with ARPA, is developing electron beam evaporation as a method for producing titanium metal matrix composites (TMC`s). This paper discusses some of the opportunities presented by these strong and lightweight structural materials but also points out the many challenges which must be met. The excellent mechanical properties of titanium matrix composites have been recognized for quite some time; however use of these materials has been limited by the lack of a commercially viable process to produce them. 3M is removing this logjam in processing technology by using high rate electron beam evaporation technology to manufacture these materials on a significantly large scale.

  12. Physics Opportunities with Meson Beams

    E-Print Network [OSTI]

    Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

    2015-01-01T23:59:59.000Z

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  13. Divergence of optical vortex beams

    E-Print Network [OSTI]

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01T23:59:59.000Z

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  14. A Two Bunch Beam Position Monitor

    SciTech Connect (OSTI)

    Medvedko, E.; Aiello, R.; Smith, S.; /SLAC

    2011-09-12T23:59:59.000Z

    A new beam position monitor digitizer module has been designed, tested and tuned at SLAC. This module, the electron-positron beam position monitor (epBPM), measures position of single electron and positron bunches for the SLC, LINAC, PEPII injections lines and final focus. The epBPM has been designed to improve resolution of beam position measurements with respect to existing module and to speed feedback correction. The required dynamic range is from 5 x 10{sup 8} to 10{sup 11} particles per bunch (46dB). The epBPM input signal range is from {+-}2.5 mV to {+-}500 mV. The pulse-to-pulse resolution is less than 2 {mu}m for 5 x 10{sup 10} particles per bunch for the 12 cm long striplines, covering 30{sup o} at 9 mm radius. The epBPM module has been made in CAMAC standard, single width slot, with SLAC type timing connector. 45 modules have been fabricated. The epBPM module has four input channels X{sup +}, X{sup -}, Y{sup +}, Y{sup -} (Fig. 1), named to correspond with coordinates of four striplines - two in horizontal and two in vertical planes, processing signals to the epBPM inputs. The epBPM inputs are split for eight signal processing channels to catch two bunches, first - the positron, then the electron bunch in one cycle of measurements. The epBPM has internal and external trigger modes of operations. The internal mode has two options - with or without external timing, catching only first bunch in the untimed mode. The epBPM has an on board calibration circuit for measuring gain of the signal processing channels and for timing scan of programmable digital delays to synchronize the trigger and the epBPM input signal's peak. There is a mode for pedestal measurements. The epBPM has 3.6 {mu}s conversion time.

  15. Finding beam focus errors automatically

    SciTech Connect (OSTI)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.

    1987-01-01T23:59:59.000Z

    An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors. (LEW)

  16. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect (OSTI)

    Scarpine, Victor E.; /Fermilab

    2012-03-01T23:59:59.000Z

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  17. Thermographic calorimetry of the neutral beam injectors heating beams at TJ-II

    SciTech Connect (OSTI)

    Fuentes, C.; Liniers, M.; Guasp, J.; Doncel, J.; Botija, J.; Wolfers, G.; Alonso, J.; Acedo, M.; Sanchez, E.; Marcon, G.; Weber, M.; Carrasco, R.; Sarasola, X.; Zurro, B.; Tera, J. [Laboratorio Nacional de Fusion/Asociacion EURATOM-CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2006-10-15T23:59:59.000Z

    A new beam diagnostic based on infrared thermography has been developed for the neutral beam injectors of the stellarator TJ-II. A highly anisotropic movable target intercepts the beam at its entrance into the stellarator. The thermal print of the beam is captured with a high resolution infrared camera. The infrared images of the target can be translated, with the appropriate analysis, into power density patterns of the beam. The system is calibrated in situ with two thermocouples adiabatically mounted in the target. The two-dimensional beam power density distribution can be accurately characterized allowing beam optimization with respect to the different parameters involved in the beam formation and transport.

  18. Space-Charge Limits on the Transport of Ion Beams in a Long Alternating Gradient System

    E-Print Network [OSTI]

    Tiefenback, M.G.

    2011-01-01T23:59:59.000Z

    35j. The output voltage droops in time as the charge on thethe ion gun apertures. Any droop in beam energy re­ sults in0.6 msec (0.15% per /zsec droop) is coupled to the various

  19. Study of ion beam generation from interaction of 10 µm with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (but acceleration time is longer). Scaling of ion acceleration with CO 2 lasers Gas jet as an ion beam source * Pure (compared to solid targets which become quickly covered in...

  20. Entanglement dynamics of quantum states in a beam splitter

    E-Print Network [OSTI]

    M. Rohith; R. Rajeev; C. Sudheesh

    2015-05-11T23:59:59.000Z

    We theoretically study the dynamics of entangled states created in a beam splitter with a nonlinear Kerr medium placed into one input arm. Entanglement dynamics of initial classical and nonclassical states are studied and compared. Signatures of revival and fractional revival phenomena exhibited during the time evolution of states in the Kerr medium are captured in the entangled states produced by the beam splitter. Maximum entanglement is obtained at the instants of collapses of wave packets in the medium. Our analysis shows increase in entanglement with increase in the degree of nonclassicality of the initial states considered. We show that the states generated at the output of the beam splitter using initial nonclassical states are more robust against decoherence, due to photon absorption by an environment, than those formed by an initial classical state.

  1. Measuring beam intensity and lifetime in BESSY II

    E-Print Network [OSTI]

    Bakker, R; Kuske, P; Kuszynski, J

    2000-01-01T23:59:59.000Z

    The measurement of the intensity of the beam in the transfer lines and the storage ring are based on current transformers. The pulsed current in the transfer lines is measured with passive Integrating Beam Current Transformers (ICT). The bunch charge is transferred to a DC-voltage and sampled with a multifunction I/O-board of a PC. The beam current of the storage ring is measured with a high precision Parametric Current Transformer (PCT) and sampled by a high quality digital volt meter (DVM). A stand alone PC is used for synchronisation, real-time data acquisition and signal processing. Current and lifetime data are updated every second and send via CAN- bus to the BESSY II control system. All PC programs are written in LabVIEW.

  2. Generation of vector beams with liquid crystal disclination lines

    E-Print Network [OSTI]

    Miha ?an?ula; Miha Ravnik; Slobodan Žumer

    2014-08-12T23:59:59.000Z

    We report that guiding light beams, ranging from continuous beams to femtosecond pulses, along liquid crystal defect lines can transform them into vector beams with various polarization profiles. Using Finite Difference Time Domain numerical solving of Maxwell equations, we confirm that the defect in the orientational order of the liquid crystal induces a defect in the light field with twice the winding number of the liquid crystal defect, coupling the topological invariants of both fields. For example, it is possible to transform uniformly-polarized light into light with a radial polarization profile. Our approach also correctly yields a zero-intensity region near the defect core, which is always present in areas of discontinuous light polarization or phase. Using circularly polarized incident light, we show that defects with non-integer winding numbers can be obtained, where topological constants are preserved by phase vortices, demonstrating coupling between the light's spin, orbital angular momentum and polarization profile. Further, we find an ultrafast femtosecond laser pulse travelling along a defect line splits into multiple intensity regions, again depending on the defect's winding number, allowing applications in beam steering and filtering. Finally, our approach describing generation of complex optical fields via coupling with topological defect lines in optically birefringent nematic fluids can be easily extended to high-intensity beams that affect nematic ordering.

  3. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect (OSTI)

    Iverson, Erik B [ORNL; Baxter, David V [Center for the Exploration of Energy and Matter, Indiana University; Muhrer, Guenter [Los Alamos National Laboratory (LANL); Ansell, Stuart [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Gallmeier, Franz X [ORNL; Dalgliesh, Robert [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lu, Wei [ORNL; Kaiser, Helmut [Center for the Exploration of Energy and Matter, Indiana University

    2014-10-01T23:59:59.000Z

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  4. High energy laser beam dump

    DOE Patents [OSTI]

    Halpin, John (Tracy, CA)

    2004-09-14T23:59:59.000Z

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  5. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25T23:59:59.000Z

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  6. antinucleon beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  7. automatic beam alignment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  8. accidental beam loss: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  9. antiparticle beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  10. accelerating beam stability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle beams (beam intercepting devices BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases -...

  11. accelerated oxygen-14 beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle beams (beam intercepting devices BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases -...

  12. accelerator school beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle beams (beam intercepting devices BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases -...

  13. Dose-Response Effect of Charged Carbon Beam on Normal Rat Retina Assessed by Electroretinography

    SciTech Connect (OSTI)

    Mizota, Atsushi, E-mail: mizota-a@med.teikyo-u.ac.j [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu (Japan); Tanaka, Minoru [Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu (Japan); Kubota, Mariko; Negishi, Hisanari [Department of Ophthalmology, National Hospital Organization Chiba Medical Center, Chiba (Japan); Watanabe, Emiko [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Tsuji, Hiroshi; Miyahara, Nobuyuki; Furusawa, Yoshiya [National Institute of Radiological Sciences, Chiba (Japan)

    2010-12-01T23:59:59.000Z

    Purpose: To compare the effects of carbon beam irradiation with those of proton beam irradiation on the physiology of the retina of rats. Methods and Materials: Eight-week-old Wister rats were used. The right eyes were irradiated with carbon beam (1, 2, 4, 8, and 16 Gy) or proton beam (4, 8, 16, and 24 Gy) with the rats under general anesthesia. Electroretinograms were recorded 1, 3, 6, and 12 months after the irradiation, and the amplitudes of the a and b waves were compared with those of control rats. Results: The amplitude of b waves was reduced more than that of a waves at lower irradiation doses with both types of irradiation. With carbon ion irradiation, the amplitudes of the b wave were significantly reduced after radiation doses of 8 and 16 Gy at 6 months and by radiation doses of 4, 8, and 16 Gy at 12 months. With proton beam irradiation, the b-wave amplitudes were significantly reduced after 16 and 24 Gy at 6 months and with doses of 8 Gy or greater at 12 months. For the maximum b-wave amplitude, a significant difference was observed in rats irradiated with carbon beams of 4 Gy or more and with proton beams of 8 Gy or more at 12 months after irradiation. Conclusions: These results indicate that carbon beam irradiation is about two times more damaging than proton beam irradiation on the rat retina at the same dose.

  14. Transport of elliptic intense charged -particle beams

    E-Print Network [OSTI]

    Zhou, J. (Jing), 1978-

    2006-01-01T23:59:59.000Z

    The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

  15. Neutral particle beam sensing and steering

    DOE Patents [OSTI]

    Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  16. On Gaussian Beams Described by Jacobi's Equation

    E-Print Network [OSTI]

    Smith, Steven T.

    Gaussian beams describe the amplitude and phase of rays and are widely used to model acoustic propagation. This paper describes four new results in the theory of Gaussian beams. (1) A new version of the ?ervený equations ...

  17. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01T23:59:59.000Z

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  18. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    SciTech Connect (OSTI)

    Melchior, M [Terapia Radiante S.A., La Plata, Buenos Aires (Argentina); Salinas Aranda, F [Vidt Centro Medico, Ciudad Autonoma De Buenos Aires (Argentina); 21st Century Oncology, Ft. Myers, FL (United States); Sciutto, S [Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Dodat, D [Centro Medico Privado Dean Funes, La Plata, Buenos Aires (Argentina); Larragueta, N [Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Centro Medico Privado Dean Funes, La Plata, Buenos Aires (Argentina)

    2014-06-01T23:59:59.000Z

    Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanning system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.

  19. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10T23:59:59.000Z

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  20. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect (OSTI)

    Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

    2011-03-01T23:59:59.000Z

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.

  1. High Gradient Two-Beam Electron Accelerator

    SciTech Connect (OSTI)

    Jiang, Y. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Kazakov, S. Yu. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kuzikov, S. V. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Institute of Applied Physics, Nizhny Novgorod, 603600 (Russian Federation); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States)

    2010-11-04T23:59:59.000Z

    A high-gradient two-beam electron accelerator structure using detuned cavities is described. A self-consistent theory based on a circuit model is presented to calculate idealized acceleration gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam. Experimental efforts are being carried out to demonstrate this acceleration concept.

  2. Nondestructive Damage Detection in General Beams 

    E-Print Network [OSTI]

    Dincal, Selcuk

    2010-12-08T23:59:59.000Z

    Representation of the First Damage Case on the Finite Element Mesh of the Slender Beam ...................................................... 41 Figure 3.12 Schematic Representation of the Second Damage Case on the Finite Element Mesh... of the Slender Beam ...................................................... 42 Figure 3.13 Schematic Representation of the Third Damage Case on the Finite Element Mesh of the Slender Beam ...................................................... 44...

  3. JET neutral beam power upgrade Introduction

    E-Print Network [OSTI]

    JET neutral beam power upgrade Introduction A tokamak is a complex assembly, a system of systems the challenging requirements that fusion demands. The neutral beam heating system and its upgrade for the JET systems) are the main plasma heating scheme on fusion devices such as JET and ITER. The JET neutral beam

  4. Beam heat load in superconducting wigglers

    E-Print Network [OSTI]

    Casalbuoni, S

    2013-01-01T23:59:59.000Z

    The beam heat load is a fundamental input parameter for the design of superconducting wigglers since it is needed to specify the cooling power. In this presentation I will review the possible beam heat load sources and the measurements of beam heat load performed and planned onto the cold vacuum chambers installed at different synchrotron light sources.

  5. Lateral stability of long precast concrete beams

    E-Print Network [OSTI]

    Burgoyne, Chris

    buckling L length of beam vx lateral de¯ection measured in the minor- axis direction (which rotates with yLateral stability of long precast concrete beams T. J. Stratford, BA, BEng, and C. J. Burgoyne, BA, making them more susceptible to buckling failure. This paper shows that once the beam is positioned

  6. Results of long range beam-beam studies and observations during operation in the LHC

    E-Print Network [OSTI]

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01T23:59:59.000Z

    We studied possible limitations due to the long range beam-beam effects in the LHC. With a larger number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long range beam-beam effects to evaluate their influence on dynamic aperture and losses. Experience from operation with reduced separation was analysed and provides additional evidence.

  7. Corrugated Pipe as a Beam Dechirper

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-04-20T23:59:59.000Z

    We have studied the use of a metallic pipe with small corrugations for the purpose of passively dechirping, through its wakefield, a short, intense electron bunch. The corrugated pipe is attractive for this purpose because its wake: (i) has near maximal possible amplitude for a given aperture and (ii) has a relatively large oscillation wave length, even when the aperture is small. We showed how the corrugated structure can satisfy dechirping requirements encountered in the NGLS project at LBNL. We found that a linear chirp of -40 MeV/mm can be induced by an NGLS-like beam, by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full depth 450 {mu}m and period 1000 {mu}m. This structure is about 15 times as effective in the role of dechirper as an S-band accelerator structure used passively.

  8. Electron Cloud with Inverted Beam Screens

    E-Print Network [OSTI]

    Maury Cuna, H

    2011-01-01T23:59:59.000Z

    We report the results of computer simulations studying the effect of wrongly oriented LHC beam screens on the local electron-cloud heat load and density. At 3.5 or 7-TeV energy and for maximum secondary emission-yield values below 1.5, with the inverted sawtooth orientation about ten times higher heat load is expected than for the standard orientation, and the wrongly oriented sawtooth chambers could lead to a local heat-load bottleneck during the process of surface conditioning at 25-ns bunch spacing. The available cooling margin can be significantly increased by correcting the sawtooth orientations at least for two dipole magnets in LHC arc cells 26 and 32 R3, in order that there be no half-cell cooling loop containing more than one inverted screen.

  9. Are BL Lacertae Objects Beamed QSO Remnants?

    E-Print Network [OSTI]

    E. F. Borra

    1994-08-05T23:59:59.000Z

    This paper considers the hypothesis that BL Lacertae objects (BLLs) are the beamed remnants of Quasi Stellar Objects. The hypothesis explains why BLLs do not undergo the strong evolution seen in other active galactic nuclei since it naturally predicts that the space density of BLLs should increase with cosmic time, as shown by recent observations. Numerical models reproduce, with reasonable parameters, the known redshift and magnitude counts of BL Lac objects. It is assumed that radio-quiet as well as radio-loud quasars are capable of generating jets but that jets are snuffed in young radio-quiet objects and only emerge in aged ones. I argue that the observations allow this assumption.

  10. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect (OSTI)

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25T23:59:59.000Z

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  11. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01T23:59:59.000Z

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  12. Summary of session 3 on synchrotron radiation and beam dynamics

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab; Metral, E.; /CERN

    2010-12-01T23:59:59.000Z

    We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.

  13. Characteristics of flattening filter free beams at low monitor unit settings

    SciTech Connect (OSTI)

    Akino, Yuichi [Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871, Japan and Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan)] [Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871, Japan and Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Ota, Seiichi; Inoue, Shinichi; Mizuno, Hirokazu [Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871 (Japan)] [Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871 (Japan); Sumida, Iori; Yoshioka, Yasuo; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan)] [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Isohashi, Fumiaki [Oncology Center, Osaka University Hospital, Suita, Osaka 565-0871 (Japan)] [Oncology Center, Osaka University Hospital, Suita, Osaka 565-0871 (Japan)

    2013-11-15T23:59:59.000Z

    Purpose: Newer linear accelerators (linacs) have been equipped to deliver flattening filter free (FFF) beams. When FFF beams are used for step-and-shoot intensity-modulated radiotherapy (IMRT), the stability of delivery of small numbers of monitor units (MU) is important. The authors developed automatic measurement techniques to evaluate the stability of the dose profile, dose linearity, and consistency. Here, the authors report the performance of the Artiste™ accelerator (Siemens, Erlangen, Germany) in delivering low-MU FFF beams.Methods: A 6 MV flattened beam (6X) with 300 MU/min dose rate and FFF beams of 7 (7XU) and 11 MV (11XU), each with a 500 MU/min dose rate, were measured at 1, 2, 3, 5, 8, 10, and 20 MU settings. For the 2000 MU/min dose rate, the 7 (7XUH) and 11 MV (11XUH) beams were set at 10, 15, 20, 25, and 30 MU because of the limits of the minimum MU settings. Beams with 20 × 20 and 10 × 10 cm{sup 2} field sizes were alternately measured ten times in intensity modulated (IM) mode, with which Siemens linacs regulate beam delivery for step-and-shoot IMRT. The in- and crossplane beam profiles were measured using a Profiler™ Model 1170 (Sun Nuclear Corporation, Melbourne, FL) in multiframe mode. The frames of 20 × 20 cm{sup 2} beams were identified at the off-axis profile. The 6X beam profile was normalized at the central axis. The 7 and 11 MV FFF beam profiles were rescaled to set the dose at the central axis at 145% and 170%, respectively. Point doses were also measured using a Farmer-type ionization chamber and water-equivalent solid phantom to evaluate the linearity and consistency of low-MU beam delivery. The values displayed on the electrometer were recognized with a USB-type camera and read with open-source optical character recognition software.Results: The symmetry measurements of the 6X, 7XU, and 11XU beam profiles were better than 2% for beams ?2 MU and improved with increasing MU. The variations in flatness of FFF beams ?2 MU were ±5%. The standard deviation of the symmetry and flatness also decreased with increasing MU. The linearity of the 6X beam was ±1% and ±2% for the beams of ?5 and ?3 MU, respectively. The 7XU and 11XU beams of ?2 MU showed linearity with ±2% except the 7XU beam of 8 MU (+2.9%). The profiles of the FFF beams with 2000 and 500 MU/min dose rate were similar.Conclusions: The characteristics of low-MU beams delivered in IM mode were evaluated using an automatic measurement system developed in this study. The authors demonstrated that the profiles of FFF beams of the Artiste™ linac were highly stable, even at low MU. The linearity of dose output was also stable for beams ?2 MU.

  14. Automated analysis for detecting beams in laser wakefield simulations

    SciTech Connect (OSTI)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-07-03T23:59:59.000Z

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets.

  15. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO)

    1991-01-01T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  16. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  17. The MICE Muon Beam Line

    SciTech Connect (OSTI)

    Apollonio, Marco [High Energy Physics Group, Department of Physics, Imperial College London SW7 2AZ (United Kingdom)

    2011-10-06T23:59:59.000Z

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  18. Neutron beam testing of triblades

    SciTech Connect (OSTI)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16T23:59:59.000Z

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  19. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    SciTech Connect (OSTI)

    FOERSTER,C.

    1999-05-01T23:59:59.000Z

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.

  20. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01T23:59:59.000Z

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  1. Beam Cooling with ionisation losses

    E-Print Network [OSTI]

    C. Rubbia; A. Ferrari; Y. Kadi; V. Vlachoudis

    2006-02-03T23:59:59.000Z

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more favourably exploited with the heavier ion colliding against a gas-jet D2 target. Kinematics is generally very favourable, with emission angles in a narrow angular cone and a relatively concentrated outgoing energy spectrum which allows an efficient collection as a neutral gas in a tiny volume with a technology at high temperatures perfected at ISOLDE. It is however of a much more general applicability. The method appears capable of producing a "table top" storage ring with an accumulation rate in excess of 10**14 Li-8 radioactive ion/s for possible use for radioactive beams for physics studies (for example for beta-beams) or for therapy.

  2. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  3. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01T23:59:59.000Z

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  4. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  5. Collimation system design for beam loss localization with slipstacking injection in the Fermilab Main Injector

    SciTech Connect (OSTI)

    Drozhdin, A.I.; Brown, B.C.; Johnson, D.E.; Koba, K.; Kourbanis, I.; Mokhov, N.V.; Rakhno, I.L.; Sidorov, V.I.; /Fermilab

    2007-06-01T23:59:59.000Z

    Results of modeling with the 3-D STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a scraping rate of 5% of 5.5E+13 ppp, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.

  6. Modeling the interaction of high power ion or electron beams with solid target materials

    SciTech Connect (OSTI)

    Hassanein, A.M.

    1983-11-01T23:59:59.000Z

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam.

  7. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01T23:59:59.000Z

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  8. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14T23:59:59.000Z

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  9. Particle beam injector system and method

    DOE Patents [OSTI]

    Guethlein, Gary

    2013-06-18T23:59:59.000Z

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  10. Calculation of Neutral Beam Injection into SSPX

    SciTech Connect (OSTI)

    Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S

    2006-06-13T23:59:59.000Z

    The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.

  11. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect (OSTI)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01T23:59:59.000Z

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  12. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01T23:59:59.000Z

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  13. Photon trap for neutralization of negative ions beams

    E-Print Network [OSTI]

    Popov, S S; Ivanov, A A; Kotelnikov, I A

    2015-01-01T23:59:59.000Z

    For effectively neutralization of the powerful negative ions beams of hydrogen and deuterium the photon target is considered in long time. The attractiveness of the traditional approach (Fabry-Perot resonators) to their creation is limited to a number of stringent technical requirements and large economic costs. In this paper we propose a new concept of non-resonant photon trap (storage) for creation more technologically simple optical neutralizers.

  14. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01T23:59:59.000Z

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  15. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect (OSTI)

    Lipinski, R.J.; Meister, D.C.; Tucker, S. [and others

    1993-12-31T23:59:59.000Z

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kill and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  16. Projection imaging of photon beams by the Cerenkov effect

    SciTech Connect (OSTI)

    Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2013-01-15T23:59:59.000Z

    Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm, {+-}5% in the central beam region, and 2%-3% in the beam umbra. Conclusions: The results from this initial study demonstrate the first documented use of Cerenkov emission imaging to profile x-ray photon LINAC beams in water. The proposed modality has several potential advantages over alternative methods, and upon future refinement may prove to be a robust and novel dosimetry method.

  17. Cylindrical target Li-beam-driven hohlraum experiments

    SciTech Connect (OSTI)

    Derzon, M.S.; Aubert, J.; Chandler, G.A. [and others

    1998-06-01T23:59:59.000Z

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 {+-} 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy ({approximately}10 MeV at the gas cell) at the target at a peak power of 2.5 {+-} 0.3 TW/cm{sup 2} and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of {approximately}2 cm/{micro}s is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented.

  18. Heavy Ion Beam in Resolution of the Critical Point Problem for Uranium and Uranium Dioxide

    E-Print Network [OSTI]

    Igor Iosilevskiy; Victor Gryaznov

    2010-05-23T23:59:59.000Z

    Important advantages of heavy ion beam (HIB) irradiation of matter are discussed in comparison with traditional sources - laser heating, electron beam, electrical discharge etc. High penetration length (~ 10 mm) is of primary importance for investigation of dense matter properties. This gives an extraordinary chance to reach the uniform heating regime when HIB irradiation is being used for thermophysical property measurements. Advantages of HIB heating of highly-dispersive samples are claimed for providing free and relatively slow quasi-isobaric heating without fast hydrodynamic expansion of heated sample. Perspective of such HIB application are revised for resolution of long-time thermophysical problems for uranium and uranium-bearing compounds (UO2). The priorities in such HIB development are stressed: preferable energy levels, beam-time duration, beam focusing, deposition of the sample etc.

  19. Dispersion-free monochromatization method for selecting a single-order harmonic beam

    E-Print Network [OSTI]

    Takahashi, Eiji J; Ichimaru, Satoshi; Midorikawa, Katsumi

    2015-01-01T23:59:59.000Z

    We propose a method to monochromatize multiple orders of high harmonics by using a proper designed multilayer mirror. Multilayer mirrors designed by our concept realize the perfect extraction of a single-order harmonic from multiple-order harmonic beam, and exhibit broadband tenability and high reflectivity in the soft-x-ray region. Furthermore, the proposed monochromatization method can preserve the femtosecond to attosecond pulse duration for the reflected beam. This device is very useful for ultrafast soft x-ray experiments that require high-order harmonic beams, such as femtosecond/attosecond, time-resolved, pump-probe spectroscopy.

  20. Linear beam raster magnet driver based on H-bridge technique

    DOE Patents [OSTI]

    Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William

    2006-06-06T23:59:59.000Z

    An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.

  1. Production of pulsed, mass-selected beams of metal and semiconductor clusters

    SciTech Connect (OSTI)

    Kamalou, Omar; Rangama, Jimmy; Ramillon, Jean-Marc; Guinement, Patrick; Huber, Bernd A. [CIMAP, CEA-CNRS-ENSICaen-UCBN, Bv. Henry Becquerel (B.P. 5133), F-14070 Caen Cedex 05 (France)

    2008-06-15T23:59:59.000Z

    We report on the development of a beam line for mass-selected metal and semiconductor clusters. The cluster source combines the principles of plasma sputtering and gas condensation. Both techniques together allow to produce clusters in a wide size range. With the aid of a time-of-flight system, small clusters (i.e., Cu{sub n}{sup +}, n<100) are selected and pure beams containing only one cluster size are provided. For large clusters (containing several thousands of atoms), a beam with a narrow size distribution is obtained. A 90 deg. quadrupole deviator is used to separate charged clusters from neutral ones.

  2. Analytical calculation of the smear for long-range beam-beam interactions

    E-Print Network [OSTI]

    Kaltchev, D I

    2010-01-01T23:59:59.000Z

    The Lie-algebraic method is used to develop generalized Courant-Snyder invariant in the presence of an arbitrary number of beam-beam collisions, head-on or long-range, in a storage ring collider. The invariant is obtained by concatenating nonlinear beam-beam maps in the horizontal plane and to first order in the beam-beam parameter. Tracking evidence is presented to illustrate that with LHC parameters the invariant is indeed preserved and can be used to predict the smear of horizontal emittance observed in tracking simulations. We discuss the limits of applicability of this model for realistic LHC collision schemes.

  3. Synchrotron radiation damping, intrabeam scattering and beam-beam simulations for HE-LHC

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2011-03-01T23:59:59.000Z

    The proposed High-Energy LHC project presents an unusual combination of strong synchrotron radiation damping and intrabeam scattering, which is not seen in present-day hadron colliders. The subject of investigation reported in this paper was the simulation of beam-beam effect for the HE-LHC parameters. Parameters of SR and IBS are calculated, and the luminosity evolution is simulated in the absence of beam-beam interaction. Then, a weak-strong numerical simulation is used to predict the effect of beam-beam interaction on particle losses and emittance evolution.

  4. Integrating and automating the software environment for the Beam and Radiation Monitoring for CMS

    E-Print Network [OSTI]

    Filyushkina, Olga; Juslin, J

    2010-01-01T23:59:59.000Z

    The real-time online visualization framework used by the Beam and Radiation Monitoring group at the Compact Muon Solenoid at Large Hadron Collider, CERN. The purpose of the visualization framework is to provide real-time diagnostic of beam conditions, which defines the set of the requirements to be met by the framework. Those requirements include data quality assurance, vital safety issues, low latency, data caching, etc. The real-time visualization framework is written in the Java programming language and based on JDataViewer--a plotting package developed at CERN. At the current time the framework is run by the Beam and Radiation Monitoring, Pixel, Tracker groups, Run Field Manager and others. It contributed to real-time data analysis during 2009-2010 runs as a stable monitoring tool. The displays reflect the beam conditions in a real-time with the low latency level, thus it is the first place at the CMS detector where the beam collisions are observed.

  5. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  6. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  7. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18T23:59:59.000Z

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  8. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Redlands, CA); Olsen, Howard B. (Colton, CA); Salem, Dana (Riverside, CA)

    2008-07-08T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  9. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (San Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Longmeadow, MA); Olsen, Howard B. (Irvine, CA); Salem, Dana (Riverside, CA)

    2010-09-21T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  10. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2013-11-07T23:59:59.000Z

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  11. SPEAR3 Beam Line Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e p o rMarch 21,SPEAR3Beam

  12. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    E-Print Network [OSTI]

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01T23:59:59.000Z

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  13. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01T23:59:59.000Z

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  14. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27T23:59:59.000Z

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  15. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, Larry R. (Farragut, TN); Thomas, Clarence E. (Knoxville, TN); Voelkl, Edgar (Oak Ridge, TN); Moore, James A. (Powell, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  16. Rippled beam free electron laser amplifier

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  17. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect (OSTI)

    Eberle, C.C.

    1999-12-30T23:59:59.000Z

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  18. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect (OSTI)

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01T23:59:59.000Z

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  19. Composition monitoring of electron beam melting processes using diode lasers

    SciTech Connect (OSTI)

    Berzins, L.V.

    1991-11-20T23:59:59.000Z

    Electron beam melting processes are used to produce high purity alloys for a wide range of applications. Real time monitoring of the alloy constituents, however, has historically been difficult. Absorption spectroscopy using diode lasers provides a means for measuring constituent densities, and hence alloy composition, in real time. Diode lasers are suggested because they are inexpensive and require little maintenance. There is increasing interest in the composition and quality control of titanium alloys used in aircraft parts. For this reason we describe a proposed system for composition monitoring of titanium alloys. Performance and cost of the proposed system is addressed. We discuss the applicability of this approach to other alloys.

  20. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  1. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01T23:59:59.000Z

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  2. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24T23:59:59.000Z

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  3. Effect of Diffusion on Bunched Beam Echo

    SciTech Connect (OSTI)

    Stupakov, G.V.; Chao, A.W.; /SLAC

    2011-09-01T23:59:59.000Z

    When a beam receives a dipole kick, its centroid signal decoheres due to the betatron tune spread in the beam. Long after the signal has decohered, however, a followup quadrupole kick to the beam brings a pronounced echo back to the centroid signal. This echo effect has been analyzed for the case of a bunched beam in Ref. [1]. In this work, the perturbation calculation of Ref. [1] is extended to include a diffusion in betatron amplitude. The effect of diffusion on the magnitude of the echo is then parameterized and studied.

  4. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01T23:59:59.000Z

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  5. Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility

    E-Print Network [OSTI]

    Becchetti, Fred

    Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility of Philosophy (Nuclear Engineering and Radiological Sciences) in The University of Michigan 2010 Doctoral

  6. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect (OSTI)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)] [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15T23:59:59.000Z

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 ?A], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 ?A], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  7. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, Carol J. (Warrenville, IL)

    1998-01-01T23:59:59.000Z

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  8. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, C.J.

    1998-06-02T23:59:59.000Z

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  9. Commissioning of output factors for uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

    2011-04-15T23:59:59.000Z

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

  10. Studies on beam propagation pertaining to beamed microwave power transmission and open resonator quasi-optics

    E-Print Network [OSTI]

    McCleary, James Carlton

    1991-01-01T23:59:59.000Z

    on the space shuttle. A near-field program is used to compare the collection efficiencies obtainable with a parabolic dish and a resonant Gaussian beam antenna. The second application of the computer programs is the analysis of a reference system for beaming... characteristics of the maximum tapers in Table 4. . 81 45 Collection efficiency characteristics of the high efficiency tapers. 84 46 Proposed shuttle beamed power demonstration using an 8 ft. parabolic dish as the transmitter antenna. 89 47 Gaussian beam...

  11. Lattice design for head-on beam-beam compensation at RHIC

    SciTech Connect (OSTI)

    Montag, C.

    2011-03-28T23:59:59.000Z

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  12. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, B

    2012-03-19T23:59:59.000Z

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  13. Planck 2015 results. VII. HFI TOI and beam processing

    E-Print Network [OSTI]

    Adam, R; Aghanim, N; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bertincourt, B; Bielewicz, P; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Leahy, J P; Lellouch, E; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Moreno, R; Morgante, G; Mortlock, D; Moss, A; Mottet, S; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rusholme, B; Sandri, M; Santos, D; Sauvé, A; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01T23:59:59.000Z

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This paper describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map-making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the non-linearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a...

  14. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21T23:59:59.000Z

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  15. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOE Patents [OSTI]

    Karl, Jr., Robert R. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  16. Modulator considerations for beam chopping in the low energy beam transport at the SSC Laboratory

    SciTech Connect (OSTI)

    Anderson, D.; Pappas, G.

    1991-06-01T23:59:59.000Z

    Beam chopping in the low energy transport line at the Superconducting Super Collider Laboratory is accomplished using an electrostatic deflection system. LINAC requirements dictate the design of two modulators operating at 10 Hz with rise and fall times (as measured from approximately 10--99%) of {approximately}100 ns. Design of the first pulser, normally at 10 kV and pulsed to ground potential, utilizes a transformer-coupled diode-clamped solid state circuit to achieve the 2--35 {mu}s pulse width range required. The second pulser, which pulses from ground to approximately 7 kV, relies on a series vacuum tube circuit. The current designs, as well as recent test results and other circuit topologies considered, will be presented. 6 refs.

  17. Cold electron beams from cryo-cooled, alkali antimonide photocathodes

    E-Print Network [OSTI]

    Cultrera, Luca; Lee, Hyeri; Liu, Xianghong; Bazarov, Ivan

    2015-01-01T23:59:59.000Z

    In this letter we report on the generation of cold electron beams using a Cs3Sb photocathode grown by co-deposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long standing speculation that the lattice temperature contribution limits the mean transverse energy or thermal emittance near the photoemission threshold, opening new frontiers in generating ultra-bright beams. At 90 K, we achieve a record low thermal emittance of 0.2 $\\mu$m (rms) per mm of laser spot diameter from an ultrafast (sub-picosecond) photocathode with quantum efficiency greater than $7\\times 10^{-5}$ using a visible laser wavelength of 690 nm.

  18. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J. Warren (Castro Valley, CA); Kaplan, Selig N. (El Cerrito, CA); Pyle, Robert V. (Berkeley, CA); Anderson, L. Wilmer (Madison, WI); Ruby, Lawrence (Berkeley, CA); Schlachter, Alfred S. (Oakland, CA)

    1988-01-01T23:59:59.000Z

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  19. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann N. (Albuquerque, NM); Soden, Jerry M. (Placitas, NM)

    1998-01-01T23:59:59.000Z

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  20. LCDETxxxxxxx Improved TESLA Optics and Beam Induced

    E-Print Network [OSTI]

    LC­DET­xxxx­xxx Improved TESLA Optics and Beam Induced Backgrounds Update Karsten BË?uÃ?er, DESY and Olivier Napoly, CEA/Saclay LCWS 2002, Jeju, Korea Abstract A new tesla optics with l*=5m is under development. An update is given on the simulation of the beam induced backgrounds in the TESLA detector. 1

  1. Fast Beam-Based BPM Calibration

    SciTech Connect (OSTI)

    Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

    2012-10-15T23:59:59.000Z

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  2. High-energy electron beam technology

    SciTech Connect (OSTI)

    Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

    1994-09-01T23:59:59.000Z

    A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

  3. Polymer surface treatment with particle beams

    DOE Patents [OSTI]

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04T23:59:59.000Z

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  4. Emittance growth from electron beam modulation

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2009-12-01T23:59:59.000Z

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  5. Policy Issues for Retail Beamed Power Transmission

    E-Print Network [OSTI]

    solar electric power using retail delivery of beamed power. Recent advances in power beaming have made to enable widespread adoption of this clean and sustainable contribution to meeting energy needs. It is seen to micro-renewable energy resource exploitation since wired power transmission is only cost effective over

  6. Stability design of long precast concrete beams

    E-Print Network [OSTI]

    Burgoyne, Chris

    lateral de¯ection measured in the minor- axis direction (which rotates with y) v0 initial lateral imperfection w self-weight of beam per unit length wcr critical self-weight of beam to cause buckling, per unit length y lateral de¯ection measured along a ®xed axis y0 initial lateral imperfection yb distance

  7. GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders

    SciTech Connect (OSTI)

    Roblin, Yves [JLAB; Morozov, Vasiliy [JLAB; Terzic, Balsa [JLAB; Aturban, Mohamed A. [Old Dominion University; Ranjan, D. [Old Dominion University; Zubair, Mohammed [Old Dominion University

    2013-06-01T23:59:59.000Z

    We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

  8. Carbon Fiber Damage in Particle Beam

    E-Print Network [OSTI]

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01T23:59:59.000Z

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  9. Performance and measurements of the AGS and Booster beams

    SciTech Connect (OSTI)

    Weng, W.T. [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    1996-06-01T23:59:59.000Z

    In May 1995, the AGS reached its upgrade intensity goal of 6{times}10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2{times}10{sup 13} ppp surpassing the design goal of 1.5{times}10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The critical accelerator manipulations, such as resonance stopband corrections, second harmonics cavity, direct rf feedback, gamma-transition jump, longitudinal phase space dilution, and transverse instability damping, will be described as well as some beam measurements. Possible future intensity and brightness upgrades will also be reported. {copyright} {ital 1996 American Institute of Physics.}

  10. Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids

    SciTech Connect (OSTI)

    Tran, P.X.; Soong, Yee; Chyu, M.K.

    2007-12-01T23:59:59.000Z

    Multi-pulse laser ablation of silver in deionized water was studied. The laser beams were arranged in a cross-beam configuration. In our experiments, two single-mode, Q-switched Nd-Yag lasers operating at 1064 nm, pulse duration of 5.5 ns and 10 Hz rep rate were used. The laser fluence of the second beam was 0.265 J/cm2 for all tests. Two levels of the laser fluences were used for the ablating beam: 0.09 and 0.265 J/cm2 (11,014 and 33,042 J/cm2 at the focal point, respectively). The silver target was at 50mm from the cell window and 10mm deep. The second beam was aligned parallelly with the silver target and focused at 2mm in front of the focal point of the ablating beam. For all cases, the delay time between the ablating beam and the cross-beam was 40 ms. In general, the ablated particles were almost all spherical. For fluence of 0.09 J/cm 2 and single-beam approach, the mean particle size was about 29 nm. The majority of the particles, however, were in 19–35nm range and there were some big ones as large as 50–60nm in size. For double-beam approach, the particles were smaller with the average size of about 18nm and the majority of the particles were in 9–21nm range with few big one as large as 40 nm. For the beam fluence of 0.265 J/cm2 and single-beam configuration, the particle sizes were smaller, the mean particles size was about 18nm and the majority of the particles were in the range of 10–22nm with some big one as large as 40 nm. For double-beam approach, the mean particle size was larger (24.2 nm) and the majority of the particle were distributed from 14 to 35nm with some big particles can be found with sizes as big as 70 nm. Preliminary measurements of the thermal conductivity and viscosity of the produced samples showed that the thermal conductivity increased about 3–5% and the viscosity increased 3.7% above the base fluid viscosity even with the particle volume concentration as low as 0.01%.

  11. H-mode accelerating structures with permanent-magnet quadrupole beam focusing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kurennoy, S. S.; Rybarcyk, L. J.; O’Hara, J. F.; Olivas, E. R.; Wangler, T. P.

    2012-09-01T23:59:59.000Z

    We have developed high-efficiency normal-conducting rf accelerating structures by combining H -mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H -mode (IH-PMQ) structures is 10–20 times higher than that of a conventional drift-tube linac, while the transverse size is 4–5 times smaller. Results of the combined 3D modeling—electromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysis—for an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H -mode structures with PMQ focusing for higher beam velocities are also presented. H -PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.

  12. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2007-07-17T23:59:59.000Z

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  13. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect (OSTI)

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01T23:59:59.000Z

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  14. Laser Beam Profile Influence on LIBS Analytical Capabilities: Single vs. Multimode Beam

    E-Print Network [OSTI]

    Lednev, Vasily N; Bunkin, Alexey F

    2013-01-01T23:59:59.000Z

    Single vs. multimode laser beams have been compared for laser ablation on steel samples. Laser plasma properties and analytical capabilities (precision, limit of detection) were used as key parameters for comparison. Peak fluence at focal spot has been observed to be higher for Gaussian beam despite ~14-fold lower pulse energy. A comparison of Gaussian and multimode beams with equal energy was carried out in order to estimate influence of beam profile only. Single mode lasing (Gaussian beam) results in better reproducibility of analytical signals compared to multimode lasing while laser energy reproducibility was the same for both cases. Precision improvements were attributed to more stable laser ablation due to better reproducibility of beam profile fluence at laser spot. Plasma temperature and electron density were higher for Gaussian laser beam. Calibration curves were obtained for four elements under study (Cr, Mn, Si, Cu). Two sampling (drilling and scanning procedures) and two optical detection schemes ...

  15. Pulsed-electron-beam melting of Fe

    SciTech Connect (OSTI)

    Knapp, J.A.; Follstaedt, D.M.

    1981-01-01T23:59:59.000Z

    Pulsed (50 nsec) electron beams with deposited energies of 1.1 to 2.3 J/cm/sup 2/ have been used to rapidly melt a surface layer of Fe. Calculations show that this range of energies produces melt depths from 0.4 to 1.2 ..mu..m and melt times of 100 to 500 nsec. Optical microscopy and SEM of pulse treated polycrystalline foils show slip traces, as well as a general smoothing of surface features which shows that melting has occurred. TEM shows that the resolidified material is bcc, and that the material within a grain is epitaxial with the substrate. TEM also shows slip traces along (110) planes, as well as a high density of dislocations, both extended and loop. At the highest energy, subgrain boundaries are observed. Some samples were implanted with 1 x 10/sup 16/ Sn/cm/sup 2/ at 150 keV. After pulse treatment, the Sn depth profile was observed to have broadened, consistent with liquid phase diffusion. The Sn had the unexpected effect of suppressing slip at the sample surface.

  16. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10T23:59:59.000Z

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  17. World record neutron beam at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World record neutron beam at LANL World record neutron beam at Los Alamos National Laboratory Scientists have created the largest neutron beam ever made by a short-pulse laser,...

  18. Horizontal Beam Tubes - HFIR Technical Parameters | ORNL Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Tubes The reactor has four horizontal beam tubes that supply the neutrons to the neutron scattering instruments. Details for each beam tube and instrument can be found on...

  19. Intense ion beam propagation in a reactor sized chamber

    E-Print Network [OSTI]

    Vay, J.L.; Deutsch, C.

    2000-01-01T23:59:59.000Z

    beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.

  20. michael smith ornlradioactive beams: equipment & techniques recoil separators

    E-Print Network [OSTI]

    michael smith ornlradioactive beams: equipment & techniques recoil separators approach! · directly Smith, Rolfs, Barnes NIMA306 (1991) 233 #12;michael smith ornlradioactive beams: equipment & techniques;michael smith ornlradioactive beams: equipment & techniques recoil separators proof of concept with 12C

  1. The CERN Beam Interlock System: Principle and Operational Experience

    E-Print Network [OSTI]

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01T23:59:59.000Z

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  2. Vibration suppression, stabilization, motion planning and tracking for flexible beams

    E-Print Network [OSTI]

    Siranosian, Antranik Antonio

    2009-01-01T23:59:59.000Z

    Target System . . . . 3.2.3 Flexible Beams . . . 3.3 MotionPlanning and Tracking for Flexible Beams A Dissertationand De?ection Angle for Flexible Beams,” ASME Journal of

  3. Entropic Time

    SciTech Connect (OSTI)

    Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

    2011-03-14T23:59:59.000Z

    The formulation of quantum mechanics within the framework of entropic dynamics includes several new elements. In this paper we concentrate on one of them: the implications for the theory of time. Entropic time is introduced as a book-keeping device to keep track of the accumulation of changes. One new feature is that, unlike other concepts of time appearing in the so-called fundamental laws of physics, entropic time incorporates a natural distinction between past and future.

  4. Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging

    E-Print Network [OSTI]

    Purwar, Harsh; Rozé, Claude; Sedarsky, David; Blaisot, Jean-Bernard

    2015-01-01T23:59:59.000Z

    Imaging with ultrashort exposure times is generally achieved with a crossed-beam geometry. In the usual arrangement, an off-axis gating pulse induces birefringence in a medium exhibiting a strong Kerr response (commonly carbon disulfide) which is followed by a polarizer aligned to fully attenuate the on-axis imaging beam. By properly timing the gate pulse, imaging light experiences a polarization change allowing time-dependent transmission through the polarizer to form an ultrashort image. The crossed-beam system is effective in generating short gate times, however, signal transmission through the system is complicated by the crossing angle of the gate and imaging beams. This work presents a robust ultrafast time-gated imaging scheme based on a combination of type-I frequency doubling and a collinear optical arrangement in carbon disulfide. We discuss spatial effects arising from crossed-beam Kerr gating, and examine the imaging spatial resolution and transmission timing affected by collinear activation of th...

  5. Electrostatic wire for stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, Daniel S. (Livermore, CA); Caporaso, George J. (Livermore, CA); Briggs, Richard J. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  6. The trigger system of the ICARUS experiment for the CNGS beam

    E-Print Network [OSTI]

    M. Antonello; B. Baibussinov; P. Benetti; F. Boffelli; A. Bubak; E. Calligarich; S. Centro; A. Cesana; K. Cieslik; D. B. Cline; A. G. Cocco; A. Dabrowska; D. Dequal; A. Dermenev; R. Dolfini; A. Falcone; C. Farnese; A. Fava; A. Ferrari; G. Fiorillo; D. Gibin; S. Gninenko; A. Guglielmi; M. Haranczyk; J. Holeczek; M. Kirsanov; J. Kisiel; I. Kochanek; J. Lagoda; S. Mania; A. Menegolli; G. Meng; C. Montanari; M. Nicoletto; S. Otwinowski; P. Picchi; F. Pietropaolo; P. Plonski; A. Rappoldi; G. L. Raselli; M. Rossella; C. Rubbia; P. Sala; A. Scaramelli; E. Segreto; F. Sergiampietri; D. Stefan; R. Sulej; M. Szarska; M. Terrani; M. Torti; F. Varanini; S. Ventura; C. Vignoli; H. Wang; X. Yang; A. Zalewska; A. Zani; K. Zaremba

    2014-08-08T23:59:59.000Z

    The ICARUS T600 detector, with its 470 tons of active mass, is the largest liquid Argon TPC ever built. Operated for three years in the LNGS underground laboratory, it has collected thousands of CNGS neutrino beam interactions and cosmic ray events with energy spanning from tens of MeV to tens of GeV, with a trigger system based on scintillation light, charge signal on TPC wires and time information (for beam related events only). The performance of trigger system in terms of efficiency, background and live-time as a function of the event energy for the CNGS data taking is presented.

  7. ar ion beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The...

  8. argon ion beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The...

  9. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    E-Print Network [OSTI]

    Efthimion, P.C.

    2009-01-01T23:59:59.000Z

    neutralizing plasma column the heavy ion beam can focus to aPlasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus

  10. Beam manipulation by self-wakefield at ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee and the ATF Users' Meetings, April 26 - 27, 2012 Outline 1. Enhanced Transformer Ratio demonstration (wakefield mapping with the shaped beam) 2. Tunable beam energy...

  11. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); McDonald, Jimmie M. (Albuquerque, NM); Lutz, Thomas J. (Albuquerque, NM); Gallis, Michail A. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  12. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    SciTech Connect (OSTI)

    FERNOW,R.C.

    1999-03-25T23:59:59.000Z

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  13. Pitfalls of tungsten multileaf collimator in proton beam therapy

    SciTech Connect (OSTI)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15T23:59:59.000Z

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase due to {sup 179}Ta with a half-life of 1.82 yr and thus require prolonged storage for activity cooling. The H*(10) near the patient side of the tungsten block is about 100 {mu}Sv/h and is 27 times higher at the upstream side of the block. This would lead to an accumulated dose for therapists in a year that may exceed occupational maximum permissible dose (50 mSv/yr). The value of H*(10) at the upstream surface of the tungsten block is about 220 times higher than that of the brass. Conclusions: MLC is an efficient way for beam shaping and overall cost reduction device in proton therapy. However, based on this study, tungsten seems to be not an optimal material for MLC in proton beam therapy. Usage of tungsten MLC in clinic may create unnecessary risks associated with the secondary neutrons and induced radioactivity for patients and staff depending on the patient load. A careful selection of material for manufacturing of an optimal MLC for proton therapy is thus desired.

  14. Physics with Rare Isotope Beams

    SciTech Connect (OSTI)

    Segel, Ralph E. [Northwestern University] [Northwestern University

    2013-11-08T23:59:59.000Z

    Using stable and radioactive beams provided by ATLAS nuclear reactions of special interest in astrophysics have been studied with emphasis on breakout from the hot CNO cycle to the rp-process. The masses of nuclear fragments provided by a strong fission source have been measured in order to help trace the path of the r process. 8Li ions produced by the d(7Li,8Li)n reaction have been trapped and the electrons and alphas emitted in the ensuing beta-decay measured. The neutrino directions were therefore determined, which leads to a measurement of the electron-neutrino correlation. The energies and kinematics are such that a sensitive search for any tensor admixture could be performed and an upper limit of 0.6% was placed on any such admixture. Earlier work on the electromagnetic form factors of the proton was extended. Graduate students were active participants in all of these eperiments, which formed the basis for six PhD theses.

  15. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17T23:59:59.000Z

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  16. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  17. Automated beam steering using optimal control

    SciTech Connect (OSTI)

    Allen, C. K. (Christopher K.)

    2004-01-01T23:59:59.000Z

    We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.

  18. Fusion Induced by Radioactive Ion Beams

    E-Print Network [OSTI]

    J. F. Liang; C. Signorini

    2005-04-26T23:59:59.000Z

    The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

  19. Real Beamline Optics from a Synthetic Beam

    SciTech Connect (OSTI)

    Ryan Bodenstein,Michael Tiefenback,Yves Roblin

    2010-05-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab can be described as a series of concatenated beamlines. Methods used to measure the Twiss parameters in closed orbit machines are not applicable in such open ended systems. We are using properly selected sets of real orbits in the accelerator, as one would for numerical analysis. The evolution of these trajectories along the beamline models the behavior of a synthetic beam which deterministically supplements beam profile-based Twiss parameter measurements and optimizes the efficiency of beamline tuning. Examples will be presented alongside a description of the process.

  20. Acoustics of finite-aperture vortex beams

    E-Print Network [OSTI]

    Mitri, F G

    2014-01-01T23:59:59.000Z

    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  1. Non-Vacuum Electron Beam Welding

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2007-01-31T23:59:59.000Z

    Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and laser processes. Potential benefits from further R&D are that various processes involving electron ion and laser beams that have now restrictions can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates.

  2. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect (OSTI)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01T23:59:59.000Z

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  3. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOE Patents [OSTI]

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13T23:59:59.000Z

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  4. Signal processing for longitudinal parameters of the Tevatron beam

    SciTech Connect (OSTI)

    Pordes, S.; Crisp, J.; Fellenz, B.; Flora, R.; Para, A.; Tollestrup, A.V.; /Fermilab

    2005-05-01T23:59:59.000Z

    We describe the system known as the Tevatron SBD [1] which is used to provide information on the longitudinal parameters of coalesced beam bunches in the Tevatron. The system has been upgraded over the past year with a new digitizer and improved software. The quantities provided for each proton and antiproton bunch include the intensity, the longitudinal bunch profile, the timing of the bunch with respect to the low-level RF, the momentum spread and the longitudinal emittance. The system is capable of 2 Hz operation and is run at 1 Hz.

  5. Online optimization of storage ring nonlinear beam dynamics

    E-Print Network [OSTI]

    Huang, Xiaobiao

    2015-01-01T23:59:59.000Z

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  6. ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders

    E-Print Network [OSTI]

    Papotti, G; BB2013; BB 2013

    2014-01-01T23:59:59.000Z

    This report contains the Proceedings of the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders held at CERN from 18 to 22 March 2013. It was the first of its kind after the successful start of LHC operation where a vast amount of beam-beam observations emerged. It brought together 58 international experts in the field and the purpose of this workshop was to review the present knowledge in the fields of beam-beam theory, simulations and observations. In the summary session the participants acknowledged the enormous progress made in recent years and the introduction of new concepts and tools. The workshop was concluded by a discussion on future research work with emphasis on the LHC operation and future circular colliders.

  7. Electron beam related advances at ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to cavity loading. Compensation of the dispersion is needed at the level of a few mm. * Plasma Wakefield experiment needs extra small focus (10 micron) of the bunched beam...

  8. Synchronous Characterization of Semiconductor Microcavity Laser Beam

    E-Print Network [OSTI]

    Wang, Tao

    2015-01-01T23:59:59.000Z

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross-section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center and the defects-related spectrum can also be extracted from these high-resolution pictures.

  9. Optical chirped beam amplification and propagation

    DOE Patents [OSTI]

    Barty, Christopher P.

    2004-10-12T23:59:59.000Z

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  10. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  11. Shear Behaviour of Concrete Beams Reinforced with

    E-Print Network [OSTI]

    and Construction R&D Facility ofthe University ofManitoba to test a total ofnine beams reinforced with GFRP and encouragement went beyond the academic roles. Many special thanks are extended to Dr. Kenneth. R. Hughes. His

  12. Predicted Bremsstrahlung generation by energetic electron beams

    SciTech Connect (OSTI)

    Faehl, R.J.; Snell, C.M.; Keinigs, R.K.

    1991-01-01T23:59:59.000Z

    The CYLTRAN photon/electron Monte Carlo code has been employed to predict Bremsstrahlung generation by monoenergetic electron beams from 10 to 1000 MeV. The forward-directed Bremsstrahlung intensity is investigated as a function of beam energy converter thickness, and material. At high energies, the forward extraction efficiency is maximized by using converters that are about 0.1-electron ranges thick. The largest intensities are attained with low-Z converter materials such as beryllium. Because the Bremsstrahlung radiation is strongly forward-directed, low divergence of the incident electron beam is crucial. Under deal conditions, a 1000-MeV beam can produce intensities up to 10{sup 8} MeV per steradian, per incident electron. 9 refs., 32 figs., 12 tabs.

  13. High Brightness Beam Applications: Energy Recovered Linacs

    SciTech Connect (OSTI)

    Geoffrey A. Krafft

    2005-09-01T23:59:59.000Z

    In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

  14. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B., E-mail: stepanovib@tpu.ru; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A. [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)

    2014-02-15T23:59:59.000Z

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  15. The Radioactive Beam Program at Argonne

    E-Print Network [OSTI]

    B. B. Back

    2006-06-06T23:59:59.000Z

    In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

  16. Oblique reflections of internal gravity wave beams

    E-Print Network [OSTI]

    Karimi, Hussain H. (Hussain Habibullah)

    2012-01-01T23:59:59.000Z

    We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...

  17. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14T23:59:59.000Z

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  18. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08T23:59:59.000Z

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  19. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, R.W.

    1997-02-11T23:59:59.000Z

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided. 4 figs.

  20. BEAMS Lab at MIT: Status report

    E-Print Network [OSTI]

    Liberman, Rosa G.

    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively ...

  1. AGS fixed target program with nuclear beams

    SciTech Connect (OSTI)

    Foley, K.J.

    1984-01-01T23:59:59.000Z

    The recent approval of the beam transfer line from the Tandem Van de Graaf to the AGS signals the advent of a new era of Nuclear and Particle Physics at BNL. High Energy nuclear beams are expected to be available for experiments in 1986. I will discuss the direct link between the Tandems and the AGS. Two other proposed projects, the Relativistic Heavy Ion Collider and the Synchrotron Booster, are discussed in another presentation to this conference.

  2. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  3. Shielded beam delivery apparatus and method

    DOE Patents [OSTI]

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11T23:59:59.000Z

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  4. Simulation of the temperature distribution in the selective beam melting process for polymer material

    SciTech Connect (OSTI)

    Riedlbauer, D., E-mail: daniel.riedlbauer@ltm.uni-erlangen.de, E-mail: julia.mergheim@ltm.uni-erlangen.de, E-mail: paul.steinmann@ltm.uni-erlangen.de; Mergheim, J., E-mail: daniel.riedlbauer@ltm.uni-erlangen.de, E-mail: julia.mergheim@ltm.uni-erlangen.de, E-mail: paul.steinmann@ltm.uni-erlangen.de; Steinmann, P., E-mail: daniel.riedlbauer@ltm.uni-erlangen.de, E-mail: julia.mergheim@ltm.uni-erlangen.de, E-mail: paul.steinmann@ltm.uni-erlangen.de [Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

    2014-05-15T23:59:59.000Z

    In the present contribution the temperature distribution in the selective beam melting process for polymer materials is simulated to better understand the influence of process parameters on the properties of the produced part. The basis for the developed simulation tool is the nonlinear heat equation including temperature dependent functions for the heat capacity and the heat conduction which were obtained by experimental measurements. The effect of latent heat occurring in the process is also taken into account. The heat equation is discretized in time and space where a Runge-Kutta method of Radau IIA type is used for time integration. An adaptive finite element method is applied for the discretization in space and the model is implemented into the finite element library deal.II. The heat and cooling rate as important process parameters are simulated for different beam velocities. The ability for computing these process parameters makes the simulation tool suited for optimizing the process management of selective beam melting plants.

  5. Optimization of ion-atomic beam source for deposition of GaN ultrathin films

    SciTech Connect (OSTI)

    Mach, Jind?ich, E-mail: mach@fme.vutbr.cz; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); CEITEC BUT, Brno University of Technology, Technická 10, 61669 Brno (Czech Republic); Šamo?il, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2014-08-15T23:59:59.000Z

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20–200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ?15 mm by one order of magnitude (j ? 1000 nA/cm{sup 2}). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300?°C) than in conventional metalorganic chemical vapor deposition technologies (?1000?°C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  6. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    SciTech Connect (OSTI)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28T23:59:59.000Z

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  7. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWPORT NEWS, VA, May 14, 2014 - The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has...

  8. A study of beam-beam effects in hadron colliders with a large number of bunches

    E-Print Network [OSTI]

    Pieloni, Tatiana; Bay, Aurelio; Rivkin, Leonid

    2008-01-01T23:59:59.000Z

    A particle beam is a collection of a large number of charges and represents an electromagnetic potential for other charges, therefore exerting forces on itself and other beams. The control of this so called Beam-Beam Interactions (BBIs) in particle colliders is fundamental to preserve beam stability and achieve the collider maximal luminosity. In the case of the Large Hadron Collider (LHC) at CERN, these forces are experienced as localized periodic distortions when the two beams cross each other in the four experimental areas. The forces are most important for high density beams, i.e. high intensity and small beam sizes. Each LHC beam is composed of 2808 bunches, each containing $10^{11}$ protons and with a transverse size of 16~$\\mu $m at the interaction points. These extreme parameters are the key to obtain high ``luminosity'', i. e. the number of collisions per second needed to study rare physics phenomena. The BBI is therefore often the limiting factor for the luminosity of colliders. Within all BB effect...

  9. Observations of Instabilities in the LHC Due to Missing Head-On Beam-Beam Interactions

    E-Print Network [OSTI]

    Arduini, G; Herr, W; Metral, E; Papotti, G; Pieloni, T; Buffat, X; Mounet, N

    2013-01-01T23:59:59.000Z

    We report the observation of coherent instabilities on individual bunches out of the LHC bunch train. These instabilities occurred spontaneously after several hours of stable beam while in the other cases they were related to the application of a small transverse beam separation during a luminosity optimization. Only few bunches were affected, depending on their collision schemes and following various tests we interpret these instabilities as a sudden loss of Landau damping when the tune spread from the beam-beam interaction becomes insufficient.

  10. Electron-beam furnace with magnetic stabilization

    SciTech Connect (OSTI)

    Harker, H.R.; Knecht, J.A. II

    1986-10-07T23:59:59.000Z

    This patent describes an electron-beam comprising: a. An evacuable chamber having a port for coupling the chamber to vacuum pump means; b. a trough-shaped hearth within the chamber for holding material to be melted, the hearth having a spout for issuing a flow of molten material therefrom; c. a crucible positioned within the chamber for receiving molten material flowing from the hearth; d. one or more electron guns each for producing an energetic beam of electrons, each electron gun being positioned a relatively large distance away from the hearth and the crucible; e. magnetic beam deflection means forming an integral part of each electron gun for scanning and shaping the beam produced thereby across the hearth or the crucible; and f. magnetic means adjacent to the hearth and the crucible for producing a relatively weak magnetic field in the vicinity of the hearth and the crucible for preventing erratic deflections of the scanning electron beams without significantly altering the trajectories of such beams.

  11. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Pulsed Power Sciences Center

    1994-08-01T23:59:59.000Z

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  12. Timing system control software in the SLC

    SciTech Connect (OSTI)

    Thompson, K.; Phinney, N.

    1985-04-01T23:59:59.000Z

    A new timing system that allows precision (approx.1 to 2 ns) control of the trigger times of klystrons, beam position monitors, and other devices on a pulse-to-pulse basis at up to 360 Hz is in operation in the first third of the SLAC linear accelerator. The control software is divided between a central host VAX and local Intel 8086-based microprocessor clusters. Facilities exist to set up and adjust the timing of devices or groups of devices independently for beam pulses having different destinations and purposes, which are run in an interlaced fashion during normal machine operation. Upgrading of the system is currently underway, using a new version of the Programmable Delay Unit CAMAC module to allow pipelining of timing information for three machine pulses. An overview of the current state of the system is presented in this paper, with an emphasis on software control.

  13. TRANSVERSE ELECTRON-PROTON TWO-STREAM INSTABILITY IN A BUNCHED BEAM

    SciTech Connect (OSTI)

    Wang, T. F. (Tai-Sen F.); Channell, Paul J.; Macek, R. J. (Robert J.); Davidson, Ronald C.

    2001-01-01T23:59:59.000Z

    For intense proton beams, the focus of recent two-stream instability analyses has been on the transverse instability observed in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. The PSR stores a long proton bunch with a near triangular line density profile for a duration of about one millisecond. The instability is observed as rapidly growing transverse oscillations of the stored beam, usually occuring when the beam intensity reaches 2.5 x 10{sup 13} ppp or higher, causing fast beam loss. Experimental results support the conjecture that the instability in PSR is due to the two-stream interaction between the circulating proton beam and the electrons created in the ring, i.e., the so called e-p instability. However, the understanding of the physics of this instability is usually based on the theory developed for a continuous beam of uniform line density. Although computer simulations have been implemented or are being developed to study the e-p instability in bunched beams, a companion analytical theory still remains to be developed. The present work is an attempt to investigate the transverse e-p instability in a proton bunch using an analytical approach based on the centroid model built on the 'one-pass' interaction between the protons and the electrons. This paper is an analytical investigation of the transverse electron-proton (e-p) two-stream instability in a proton bunch propagating through a stationary electron background. The equations of motion, including the effect of damping, are derived for the centroids of the proton beam and the electron cloud. An approach is developed to solve the coupled linear centroid equations in the time domain describing the e-p instability in proton bunches with nonuniform line densities. Examples are presented for proton line densities corresponding to uniform and parabolic profiles.

  14. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    SciTech Connect (OSTI)

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People's Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

    2012-01-15T23:59:59.000Z

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  15. SERVICEABILITY LIMIT STATES OF CONCRETE BEAMS PRESTRESSED BY CFRP BARS

    E-Print Network [OSTI]

    reinforcements. The experimental program consisted of testing eight concrete beams prestressed by CFRP bars beams prestressed by Leadline CFRP bars were tested, in addition to two concrete beams prestressedAbstract SERVICEABILITY LIMIT STATES OF CONCRETE BEAMS PRESTRESSED BY CFRP BARS by Amr A

  16. Physics perspectives at JLab with a polarized positron beam

    SciTech Connect (OSTI)

    Voutier, Eric J.-M. [UNIV. JOSEPH FOURNIER, GRENOBLE, France

    2014-06-01T23:59:59.000Z

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  17. Seeing the invisible: Direct visualization of therapeutic radiation beams using air scintillation

    SciTech Connect (OSTI)

    Fahimian, Benjamin; Türkcan, Silvan; Kapp, Daniel S.; Pratx, Guillem, E-mail: pratx@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)] [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States); Ceballos, Andrew [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)] [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-01-15T23:59:59.000Z

    Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r{sup 2} = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r{sup 2} = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

  18. Respiratory correlated cone beam CT

    SciTech Connect (OSTI)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2005-04-01T23:59:59.000Z

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13{+-}0.09 mm for the regular motion and 0.39{+-}0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In conclusion, we have successfully implemented a respiratory correlated CBCT procedure yielding a 4D dataset. With respiratory correlated CBCT on a linear accelerator, the mean position, trajectory, and shape of a moving tumor can be verified just prior to treatment. Such verification reduces respiration induced geometrical uncertainties, enabling safe delivery of 4D radiotherapy such as gated radiotherapy with small margins.

  19. Robust Collimation Control of Laser-Generated Ion Beam

    E-Print Network [OSTI]

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01T23:59:59.000Z

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  20. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    E-Print Network [OSTI]

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01T23:59:59.000Z

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  1. Wavelet Bicoherence Analysis as a Method for Investigating Coherent Structures in an Electron Beam with an Overcritical Current

    E-Print Network [OSTI]

    A. A. Koronovskii; A. E. Hramov

    2006-01-31T23:59:59.000Z

    Results are presented from numerical modeling of the effect of the inhomogeneity of the ion background on the complicated spatiotemporal dynamics of an electron beam with a virtual cathode in plane geometry. The possibility is demonstrated of increasing the generation frequency without changing the beam current. The spatiotemporal structures that form in the beam and govern the complicated stochastic dynamics of the nonuniform electron-plasma system under consideration are investigated by the methods of wavelet bicoherence and by analyzing the calculated electron trajectories on the space-time diagrams

  2. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01T23:59:59.000Z

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  3. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19T23:59:59.000Z

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  4. New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

    E-Print Network [OSTI]

    Beck, A.

    We have measured the beam-normal single-spin asymmetry A[subscript n] in the elastic scattering of 1–3 GeV transversely polarized electrons from [superscript 1]H and for the first time from [superscript 4]He, [superscript ...

  5. Chapter 2 Deuterium Reaction with C(100): IonBeam Scattering Experiment

    E-Print Network [OSTI]

    Goddard III, William A.

    ­beam scattering techniques are easily calibrated by compari­ #12; 28 son to ion­implanted standards, and nuclear of 1560 ffi C from time­of­flight scattering and recoil­ion spectroscopy (TOF­SARS). However, Chin et al

  6. CFRP SHEAR STRENGTHENING OF REINFORCED CONCRETE T-BEAMS WITH CORRODED SHEAR LINKS

    E-Print Network [OSTI]

    Qin, Shunde; Dirar, Samir; Yang, Jian; Chan, Andrew H. C.; Elshafie, Mohammed

    2014-12-17T23:59:59.000Z

    is recommended that, where possible, all beams be cast at the same time using the same 133 concrete batch. This should at least ensure that all beans have comparable, if not similar, 134 concrete strength values. 135 Tensile tests were carried out on the steel...

  7. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G. [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Energy Department, Politecnico di Milano, Milano (Italy); Dipartimento di Fisica, Centro NAST, Universita degli Studi di Roma Tor Vergata, Roma (Italy); STFC, ISIS facility, Rutherford Appleton Laboratory, Chilton Didcot Oxfordshire (United Kingdom); Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy)

    2012-06-19T23:59:59.000Z

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  8. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect (OSTI)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B. [Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123 (United States); Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506 (United States); P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991 (Russian Federation); Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123 (Russian Federation)

    2012-07-30T23:59:59.000Z

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  9. PEP-II injection timing and controls

    SciTech Connect (OSTI)

    Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Ronan, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings.

  10. Emittance growth due to beam-beam effects with a static offset in collision in the LHC

    E-Print Network [OSTI]

    Pieloni, T; Qiang, J

    2010-01-01T23:59:59.000Z

    Under nominal operational conditions, the LHC bunches experience small unavoidable offset at the collision points caused by long range beam-beam interactions. Although the geometrical loss of luminosity is small, one may have to consider an increase of the beam transverse emittance, leading to a deterioration of the experimental conditions. In this work we evaluate and understand the dynamics of beam-beam interactions with static offsets at the collision point. A study of the emittance growth as a function of the offset amplitude in collisions is presented. Moreover, we address the effects coming from the beam parameters such as the initial transverse beam size, bunch intensity and tune.

  11. The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams,

    E-Print Network [OSTI]

    The Program in Muon and Neutrino Physics: Super Beams, Cold Muon Beams, Neutrino Factory.1 Neutrino Oscillation Physics . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 3.1.1 Evidence-oscillation physics at a Neutrino Factory . . . . . . . . . . . . . . . 3 - 16 iii #12;3.4 Physics that can be done

  12. Observation of bunch to bunch differences due to beam-beam effects

    E-Print Network [OSTI]

    Papotti, G; Giachino, R; Herr, W; Pieloni, T; Schaumann, M; Trad, G

    2011-01-01T23:59:59.000Z

    Due to the bunch filling schemes in the LHC the bunches experience a very different collision schedule and therefore different beam-beam effects. These differences and the effect on the performance have been observed and compared with the expectations. Possible limitations due to these effects are discussed

  13. Results on intense beam focusing and neutralization from the neutralized beam experimenta...

    E-Print Network [OSTI]

    Gilson, Erik

    Results on intense beam focusing and neutralization from the neutralized beam experimenta... P. K. Roy, S. S. Yu,b) S. Eylon, E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, B. G. Logan, W, Albuquerque, New Mexico 87110-3946 R. C. Davidson, P. C. Efthimion, E. P. Gilson, and A. B. Sefkow Princeton

  14. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect (OSTI)

    Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Back, J. J. [High Energy Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [ISIS Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Izaola, Z. [ESS Bilbao, Accelerator Physics Group, Edificio Cosimet Paseo Landabarri, 2, 1 Planta. 48940 Leioa (Spain)

    2012-02-15T23:59:59.000Z

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  15. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect (OSTI)

    Spädtke, Peter, E-mail: p.spaedtke@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)] [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2014-02-15T23:59:59.000Z

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  16. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOE Patents [OSTI]

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08T23:59:59.000Z

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  17. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOE Patents [OSTI]

    Bogaty, John M. (Lombard, IL); Clifft, Benny E. (Park Forest, IL); Bollinger, Lowell M. (Downers Grove, IL)

    1995-01-01T23:59:59.000Z

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  18. Beam halo formation from space-charge dominated beams in uniform focusing channels

    SciTech Connect (OSTI)

    O'Connell, J.S. (Booz, Allen and Hamilton, Inc., Arlington, VA (United States)); Wangler, T.P.; Mills, R.S. (Los Alamos National Lab., NM (United States)); Crandall, K.R. (AccSys Technology, Inc., Pleasanton, CA (United States))

    1993-01-01T23:59:59.000Z

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators.

  19. Beam halo formation from space-charge dominated beams in uniform focusing channels

    SciTech Connect (OSTI)

    O`Connell, J.S. [Booz, Allen and Hamilton, Inc., Arlington, VA (United States); Wangler, T.P.; Mills, R.S. [Los Alamos National Lab., NM (United States); Crandall, K.R. [AccSys Technology, Inc., Pleasanton, CA (United States)

    1993-06-01T23:59:59.000Z

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators.

  20. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y., E-mail: shibata.yoshihide@jaea.go.jp; Manabe, T.; Ohno, N.; Takagi, M. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Tsuchiya, H.; Morisaki, T. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan)

    2014-09-15T23:59:59.000Z

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 × 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  1. Effect of a spectrometer magnet on the beam-beam interaction

    SciTech Connect (OSTI)

    Cornacchia, M; Parzen, G

    1981-01-01T23:59:59.000Z

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors.

  2. Method for measuring and controlling beam current in ion beam processing

    DOE Patents [OSTI]

    Kearney, Patrick A. (Livermore, CA); Burkhart, Scott C. (Livermore, CA)

    2003-04-29T23:59:59.000Z

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  3. Optical parametric osicllators with improved beam quality

    DOE Patents [OSTI]

    Smith, Arlee V.; Alford, William J.

    2003-11-11T23:59:59.000Z

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  4. High power linear pulsed beam annealer

    DOE Patents [OSTI]

    Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

    1983-01-01T23:59:59.000Z

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  5. Error-Induced Beam Degradation in Fermilab's Accelerators

    SciTech Connect (OSTI)

    Yoon, Phil S.; /Rochester U.

    2007-08-01T23:59:59.000Z

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are currently distributed around the Booster ring. The ORBIT-FNAL simulations with space charge included show that rolled magnets, in particular, have substantial effects on the Booster beam. This survey-data-based misalignment model can predict how much improvement in machine performance can be achieved if prioritized or selected realignment work is done. In other words, this model can help us investigate different realignment scenarios for the Booster. In addition, by calculating average angular kicks from all misaligned magnets, we expect this misalignment model to serve as guidelines for resetting the strengths of corrector magnets. The third model for the Booster is a time-structured multi-turn injection model. Microbunch-injection scenarios with different time structures are explored in the presence of longitudinal space-charge force. Due to the radio-frequency (RF) bucket mismatch between the Booster and the 400-MeV transferline, RF-phase offsets can be parasitically introduced during the injection process. Using the microbunch multiturn injection, we carry out ESME-ORBIT-combined simulations. This combined simulation allows us to investigate realistic charge-density distribution under full space-charge effects. The growth rates of transverse emittances turned out to be 20 % in both planes. This microbunch-injection scenarios is also applicable to the future 8-GeV Superconducting Linac Proton Driver and the upgraded Main Injector at Fermilab. In Part II, the feasibility of momentum-stacking method of proton beams is investigated. When the Run2 collider program at Fermilab comes to an end around year 2009, the present antiproton source can be available for other purposes. One possible application is to convert the antiproton accumulator to a proton accumulator, so that the beam power from the Main Injector could be enhanced by a factor of four. Through adiabatic processes and optimized parameters of synchrotron motion, we demonstrate with an aid of the ESME code that up to four proton batches can be stacked in the momentum acceptance available for the Accumulator ri

  6. Machine studies during beam commissioning of the SPS-to-LHC transfer lines

    E-Print Network [OSTI]

    Meddahi, M; Fuchsberger, K; Goddard, B; Herr, Werner; Kain, V; Mertens, V; Missiaen, D; Risselada, Thys; Uythoven, J; Wenninger, J; Gianfelice, E

    2010-01-01T23:59:59.000Z

    Through May to September 2008, further beam commissioning of the SPS-to-LHC transfer lines was performed. For the first time, optics and dispersion measurements were also taken in the last part of the lines, and into the LHC. Extensive trajectory and optics studies were conducted, in parallel with hardware checks. In particular dispersion measurements and their comparison with the beam line model were analysed in detail and led to propose the addition of a dispersion-free steering algorithm in the existing trajectory correction program. Its effectiveness was simulated and is briefly discussed.

  7. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    E-Print Network [OSTI]

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A

    2015-01-01T23:59:59.000Z

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  8. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    E-Print Network [OSTI]

    Gambhir Ranjit; David P. Atherton; Jordan H. Stutz; Mark Cunningham; Andrew A. Geraci

    2015-03-30T23:59:59.000Z

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  9. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    E-Print Network [OSTI]

    Gambhir Ranjit; David P. Atherton; Jordan H. Stutz; Mark Cunningham; Andrew A. Geraci

    2015-04-03T23:59:59.000Z

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  10. SPALLATION NEUTRON SOURCE BEAM CURRENT MONITOR ELECTRONICS.

    SciTech Connect (OSTI)

    KESSELMAN,M.; DAWSON,W.C.

    2002-05-06T23:59:59.000Z

    This paper will discuss the present electronics design for the beam current monitor system to be used throughout the Spallation Neutron Source (SNS) under construction at Oak Ridge National Laboratory. The beam is composed of a micro-pulse structure due to the 402.5MHz RF, and is chopped into mini-pulses of 645ns duration with a 300ns gap, providing a macro-pulse of 1060 mini-pulses repeating at a 60Hz rate. Ring beam current will vary from about 15ma peak during studies, to about 50Amps peak (design to 100 amps). A digital approach to droop compensation has been implemented and initial test results presented.

  11. Beam optics issues for the antiproton decelerator

    E-Print Network [OSTI]

    Belochitskii, P; Eriksson, T; Giannini, R; Maury, S; Möhl, D; Pedersen, F

    1998-01-01T23:59:59.000Z

    The deceleration of the beam down to 0.1 GeV/c in the ring previously used as Antiproton Collector (AC) at 3.5 GeV/c, requires a number of modifications to the lattice. The insertion of the electron cooling, needed to cool the antiproton beam at low energy, implies the re-arrange-ment of quadrupoles. The optical functions then need to be readjusted in order to keep the large acceptance and to cope with the electron and stochastic cooling environ-ment. Calculations of the linear optics and of the accep-tance are reported. Tests of beam deceleration in the AC show the need for closed-orbit correction at low momentum in addition to the static correction by the movement of the quadrupoles available in the present configuration. The deceleration tests will be discussed and a correction system, which includes trim supplies on the main bending magnets, will be described.

  12. BEAM EMITTANCE MEASUREMENT TOOL FOR CEBAF OPERATIONS

    SciTech Connect (OSTI)

    Chevtsov, Pavel; Tiefenback, Michael

    2008-10-01T23:59:59.000Z

    A new software tool was created at Jefferson Lab to measure the emittance of the CEBAF electron beams. The tool consists of device control and data analysis applications. The device control application handles the work of wire scanners and writes their measurement results as well as the information about accelerator settings during these measurements into wire scanner data files. The data analysis application reads these files and calculates the beam emittance on the basis of a wire scanner data processing model. Both applications are computer platform independent but are mostly used on LINUX PCs recently installed in the accelerator control room. The new tool significantly simplifies beam emittance measurement procedures for accelerator operations and contributes to a very high availability of the CEBAF machine for the nuclear physics program at Jefferson Lab.

  13. Operational considerations on the stability of colliding beams

    E-Print Network [OSTI]

    Buffat, X; Pieloni, T

    2014-01-01T23:59:59.000Z

    While well studied in the absence of beam-beam and while colliding head-on, the stability of the LHC beams can be very critical in intermediate steps. During the squeeze, the long-range beam-beam interaction becomes a critical component of the beam's dynamics. Also, while the transverse separation at the interaction points is collapsed, the beam-beam forces change drastically, possibly deteriorating the beam's stability. Finally, during luminosity production, the configuration of the LHC in 2012 included few bunches without head-on collision in any of the interaction points having different stability properties. Stability diagrams are being evaluated numerically in these configurations in an attempt to explain instabilities observed in these phases during the 2012 proton run of the LHC.

  14. Beam-Spin Asymmetry Measurement at CLAS

    SciTech Connect (OSTI)

    Aghasyan, M

    2009-08-04T23:59:59.000Z

    Beam Single Spin Asymmetries in single neutral semi-inclusive pion electroproduction off an unpolarized hydrogen target in the deep inelastic scattering regime (Q{sup 2}>1 GeV{sup 2}, W{sup 2}>4 GeV{sup 2}) have been measured using a polarized electron beam of 5.776 GeV with the CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Accelerator Facility (JLab). The measured kinematical dependences are compared with published data and existing theoretical predictions.

  15. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew [JLAB

    2013-11-01T23:59:59.000Z

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  16. Free Electron Lasers using `Beam by Design'

    E-Print Network [OSTI]

    Henderson, J R; McNeil, B W J

    2015-01-01T23:59:59.000Z

    Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design' with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.

  17. From super beams to neutrino factories

    SciTech Connect (OSTI)

    Bross, Alan; /Fermilab

    2009-11-01T23:59:59.000Z

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  18. ATA diagnostic beam dump conceptual design

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium.

  19. Astrophysics experiments with radioactive beams at ATLAS

    SciTech Connect (OSTI)

    Back, B. B.; Clark, J. A.; Pardo, R. C.; Rehm, K. E., E-mail: rehm@anl.gov; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)] [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-04-15T23:59:59.000Z

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  20. Mechanical and tribological properties of ion beam-processed surfaces

    SciTech Connect (OSTI)

    Kodali, P.

    1998-01-01T23:59:59.000Z

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  1. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    SciTech Connect (OSTI)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01T23:59:59.000Z

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  2. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect (OSTI)

    Luo, Tianhuan; /Indiana U.

    2011-08-01T23:59:59.000Z

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  3. Generation of directional, coherent matter beams through dynamical instabilities in Bose-Einstein condensates

    SciTech Connect (OSTI)

    Dennis, Graham R.; Johnsson, Mattias T. [Department of Quantum Science, Australian National University, Canberra 0200, Australia and Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University, Canberra 0200 (Australia)

    2010-09-15T23:59:59.000Z

    We present a theoretical analysis of a coupled, two-state Bose-Einstein condensate with nonequal scattering lengths and show that dynamical instabilities can be excited. We demonstrate that these instabilities are exponentially amplified, resulting in highly directional, oppositely propagating, coherent matter beams at specific momenta. To accomplish this we prove that the mean field of our system is periodic and extend the standard Bogoliubov approach to consider a time-dependent, but cyclic, background. This allows us to use Floquet's theorem to gain analytic insight into such systems, rather than employing the usual Bogoliubov-de Gennes approach, which is usually limited to numerical solutions. We apply our theory to the metastable helium atom laser experiment by Dall et al. [Phys. Rev. A 79, 011601(R) (2009)] and show that it explains the anomalous beam profiles they observed. Finally, we demonstrate that the paired particle beams will be Einstein-Podolsky-Rosen entangled on formation.

  4. Prospects for titanium alloy comparison control by electron beam scan frequency manipulation

    SciTech Connect (OSTI)

    Powell, A.; Pal, U. [Massachusetts Institute of Technology, Cambridge, MA (United States); Avyle, J.V.D.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    Using mathematical modelling, the authors evaluate the prospects for using beam spot size and scan frequency to control titanium-aluminum alloy composition in electron beam melting and refining. Composition control is evaluated in terms of attainable steady-state extremes of composition, and the time scales required to change hearth and mold composition between those extremes. Mathematical models predict spot size-evaporation and frequency-evaporation relationships by simulating heat transfer in the surface of the melt, and predict overall composition change using simplifying assumptions about the fluid flow field in a melting hearth. Corroborating experiments were run on the electron beam furnace at Sandia National Laboratories in order to verify predicted relationships between frequency and evaporation and to calculate activity coefficients of aluminum and vanadium in titanium.

  5. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    SciTech Connect (OSTI)

    Chuyu Liu

    2012-12-31T23:59:59.000Z

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  6. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect (OSTI)

    Rybarcyk, Lawrence J. [Los Alamos National Laboratory

    2012-09-12T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  7. Analysis of beam loss induced abort kicker instability

    SciTech Connect (OSTI)

    Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

    2012-05-20T23:59:59.000Z

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

  8. Compact two-beam push-pull free electron laser

    DOE Patents [OSTI]

    Hutton, Andrew (Yorktown, VA)

    2009-03-03T23:59:59.000Z

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  9. Further Analysis of Real Beam Line Optics From A Synthetic Beam

    SciTech Connect (OSTI)

    Ryan Bodenstein, Michael Tiefenback, Yves Roblin

    2012-07-01T23:59:59.000Z

    Standard closed-orbit techniques for Twiss parameter measurement are not applicable to the open-ended Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. The evolution of selected sets of real orbits in the accelerator models the behavior of a 'synthetic' beam. This process will be validated against beam profile-based Twiss parameter measurements and should provide the distributed optical information needed to optimize beamline tuning for an open-ended system. This work will discuss the current and future states of this technique, as well as an example of its use in the CEBAF machine.

  10. Observations of beam-beam effects at high intensities in the LHC

    E-Print Network [OSTI]

    Herr, W; Laface, E; Papotti, G; Pieloni, T; Alemany-Fernandez, R; Giachino, R; Schaumann, M

    2011-01-01T23:59:59.000Z

    First observations with colliding beams in the LHC with bunch intensities close to nominal and above are reported. In 2010 the LHC initially operated with few bunches spaced around the circumference. Beam-beam tune shifts exceeding significantly the design value have been observed. In a later stage crossing angles were introduced around the experiments to allow the collisions of bunch trains. We report the first experience with head-on as well as long range interactions of high intensity bunches and discuss the possible performance reach

  11. Contributions to the mini-workshop on beam-beam compensation in the Tevatron

    SciTech Connect (OSTI)

    Shiltsev, V.

    1998-02-01T23:59:59.000Z

    The purpose of the Workshop was to assay the current understanding of compensation of the beam-beam effects in the Tevatron with use of low-energy high-current electron beam, relevant accelerator technology, along with other novel techniques of the compensation and previous attempts. About 30 scientists representing seven institutions from four countries--FNAL, SLAC, BNL, Novosibirsk, CERN, and Dubna were in attendance. Twenty one talks were presented. The event gave firm ground for wider collaboration on experimental test of the compensation at the Tevatron collider. This report consists of vugraphs of talks given at the meeting.

  12. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    SciTech Connect (OSTI)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15T23:59:59.000Z

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  13. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    SciTech Connect (OSTI)

    Laine, Vivien E. [Universite Blaise Pascal

    2013-10-01T23:59:59.000Z

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  14. Neutral Beam Injection Experiments and Related Behavior of Neutral Particles in the GAMMA 10 Tandem Mirror

    SciTech Connect (OSTI)

    Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Watanabe, K. [Plasma Research Center, University of Tsukuba (Japan); Higashizono, Y. [Plasma Research Center, University of Tsukuba (Japan); Ohki, T. [Plasma Research Center, University of Tsukuba (Japan); Ogita, T. [Plasma Research Center, University of Tsukuba (Japan); Shoji, M. [National Institute for Fusion Science(Japan); Kobayashi, S. [Institute of Advanced Energy, Kyoto University (Japan); Islam, M.K. [Plasma Research Center, University of Tsukuba (Japan); Kubota, Y. [Plasma Research Center, University of Tsukuba (Japan); Yoshikawa, M. [Plasma Research Center, University of Tsukuba (Japan); Kobayashi, T. [Plasma Research Center, University of Tsukuba (Japan); Yamada, M. [Plasma Research Center, University of Tsukuba (Japan); Murakami, R. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15T23:59:59.000Z

    Results of neutral beam injection (NBI) experiments in the GAMMA 10 tandem mirror plasmas are presented together with the neutral particle behavior observed in the experiments. A hydrogen neural beam was injected into the hot-ion-mode plasmas by using the injector installed in the central-cell for the plasma heating and fueling. High-energy ions produced by NBI were observed and its energy distribution was measured for the first time with a neutral particle analyzer installed in the central-cell. The temporal and spatial behavior of hydrogen was observed with axially aligned H{sub {alpha}} detectors installed from the central midplane to anchor-cell. Enhancement of hydrogen recycling due to the beam injection and the cause of the observed decrease in plasma diamagnetism are discussed. The Monte-Carlo code DEGAS for neutral transport simulation was applied to the GAMMA 10 central-cell and a 3-dimensional simulation was performed in the NBI experiment. Localization of neutral particle during the beam injection is investigated based on the simulation and it was found that the increased recycling due to the beam injection was dominant near the injection port.

  15. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect (OSTI)

    M. Spata, G.A. Krafft

    2011-09-01T23:59:59.000Z

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  16. Proton-proton colliding beam facility ISABELLE

    SciTech Connect (OSTI)

    Hahn, H

    1980-01-01T23:59:59.000Z

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  17. Attenuation of Beaming Oscillations Near Neutron Stars

    E-Print Network [OSTI]

    M. Coleman Miller

    2000-07-17T23:59:59.000Z

    Observations with RXTE have revealed kilohertz quasi-periodic brightness oscillations (QPOs) from nearly twenty different neutron-star low-mass X-ray binaries (LMXBs). These frequencies often appear as a pair of kilohertz QPOs in a given power density spectrum. In many models the higher-frequency of these QPOs is a beaming oscillation at the frequency of a nearly circular orbit at some radius near the neutron star. In such models it is expected that there will also be beaming oscillations at the stellar spin frequency and at overtones of the orbital frequency, but no strong QPOs have been detected at these frequencies. We therefore examine the processes that can attenuate beaming oscillations near neutron stars, and in doing so extend the work on this subject that was initiated by the discovery of lower-frequency QPOs from LMXBs. Among our main results are (1)in a spherical scattering cloud, all overtones of rotationally modulated beaming oscillations are attenuated strongly, not just the even harmonics, and (2)it is possible to have a relatively high-amplitude modulation near the star at, e.g., the stellar spin frequency, even if no peak at that frequency is detectable in a power density spectrum taken at infinity. We discuss the application of these results to modeling of kilohertz QPOs.

  18. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30T23:59:59.000Z

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  19. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28T23:59:59.000Z

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  20. Moving core beam energy absorber and converter

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2012-12-18T23:59:59.000Z

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  1. Current status of the LBNE neutrino beam

    E-Print Network [OSTI]

    Moore, Craig Damon; Crowley, Cory Francis; Hurh, Patrick; Hylen, James; Lundberg, Byron; Marchionni, Alberto; McGee, Mike; Mokhov, Nikolai V; Papadimitriou, Vaia; Plunkett, Rob; Reitzner, Sarah Diane; Stefanik, Andrew M; Velev, Gueorgui; Williams, Karlton; Zwaska, Robert Miles

    2015-01-01T23:59:59.000Z

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. The LBNE Neutrino Beam has made significant changes to the initial design through consideration of numerous Value Engineering proposals and the current design is described.

  2. Temperature-dependent ion beam mixing

    SciTech Connect (OSTI)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01T23:59:59.000Z

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to `radiation-enhanced diffusion` (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results.

  3. Note: Vector reflectometry in a beam waveguide

    SciTech Connect (OSTI)

    Eimer, J. R.; Bennett, C. L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Chuss, D. T.; Wollack, E. J. [NASA Goddard Space Flight Center, Code 665, Greenbelt, Maryland 20771 (United States)

    2011-08-15T23:59:59.000Z

    We present a one-port calibration technique for characterization of beam waveguide components with a vector network analyzer. This technique involves using a set of known delays to separate the responses of the instrument and the device under test. We demonstrate this technique by measuring the reflected performance of a millimeter-wave variable-delay polarization modulator.

  4. Studying of hypernuclei with nuclotron beams

    SciTech Connect (OSTI)

    Averyanov, A. V.; Avramenko, S. A.; Aksinenko, V. D.; Anikina, M. Kh.; Bazylev, S. N.; Balandin, V. P.; Batusov, Yu. A.; Belikov, Yu. A.; Borzunov, Yu. T.; Borodina, O. V.; Golokhvastov, A. I.; Golovanov, L. B. [Joint Institute for Nuclear Research (Russian Federation); Granja, C. [Czech Technical University, Institute of Experimental and Applied Physics (Czech Republic); Ivanov, A. B.; Ivanov, Yu. L.; Isupov, A. Yu. [Joint Institute for Nuclear Research (Russian Federation); Kohout, Z. [Czech Technical University (Czech Republic); Korotkova, A. M.; Litvinenko, A. G.; Lukstins, J., E-mail: juris@sunhe.jinr.r [Joint Institute for Nuclear Research (Russian Federation)

    2008-12-15T23:59:59.000Z

    A spectrometer is created to study relativistic hypernuclei produced with beams of accelerated nuclei from the Nuclotron facility (Dubna, JINR). Test runs have been carried out and the conclusion is drawn that the properties of the facility meet the requirements of the task of searching for unknown and studying poorly known neutron-rich hypernuclei.

  5. BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 BROOKHAVEN NATIONAL LABORATORY'S HIGH FLUX BEAM REACTOR Compiled by S. M. Shapiro I. PICTORIAL with fiberglass insulation and a protective aluminum skin. The reactor vessel is shaped somewhat like a very large at the spherical end. It is located at the center of the reactor building and is surrounded by a lead and steel

  6. Trirotron: triode rotating beam radio frequency amplifier

    DOE Patents [OSTI]

    Lebacqz, Jean V. (Stanford, CA)

    1980-01-01T23:59:59.000Z

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  7. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  8. Space-Charge Limits on the Transport of Ion Beams in a Long Alternating Gradient System

    E-Print Network [OSTI]

    Tiefenback, M.G.

    2011-01-01T23:59:59.000Z

    term stability of the transport of cold, high-current beams,beam. The cold-beam ideal case for this transport is called

  9. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    SciTech Connect (OSTI)

    Skender, M.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom)] [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom)

    2014-04-15T23:59:59.000Z

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes.

  10. Chaotic dynamics of flexible Euler-Bernoulli beams

    SciTech Connect (OSTI)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)

    2013-12-15T23:59:59.000Z

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ?{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.

  11. Energy spectrum control for modulated proton beams

    SciTech Connect (OSTI)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N. [Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 and University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); Proton Therapy, Inc., Colton, California 92324 (United States); Indiana University Cyclotron Facility, Bloomington, Indiana 47408 (United States); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 and University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 (United States); University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States) and Westdeutsches Protonentherapiezentrum, Universitaetsklinikum, Hufelandstrasse 55, 45147 Essen (Germany); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 (United States); University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States) and ProCure Treatment Centers, Inc., Bloomington, Indiana 47404 (United States)

    2009-06-15T23:59:59.000Z

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  12. Beam Dynamics Challenges for the ILC

    SciTech Connect (OSTI)

    Kubo, Kiyoshi; /KEK, Tsukuba; Seryi, Andrei; /SLAC; Walker, Nicholas; /DESY; Wolski, Andy; /Cockcroft Inst. Accel. Sci. Tech.

    2008-02-13T23:59:59.000Z

    The International Linear Collider (ILC) is a proposal for 500 GeV center-of-mass electron-positron collider, with a possible upgrade to {approx}1 TeV center-of-mass. At the heart of the ILC are the two {approx}12 km 1.3 GHz superconducting RF (SCRF) linacs which will accelerate the electron and positron beams to an initial maximum energy of 250 GeV each. The Global Design Effort (GDE)--responsible for the world-wide coordination of this uniquely international project--published the ILC Reference Design Report in August of 2007 [1]. The ILC outlined in the RDR design stands on a legacy of over fifteen-years of R&D. The GDE is currently beginning the next step in this ambitious project, namely an Engineering Design phase, which will culminate with the publication of an Engineering Design Report (EDR) in mid-2010. Throughout the history of linear collider development, beam dynamics has played an essential role. In particular, the need for complex computer simulations to predict the performance of the machine has always been crucial, not least because the parameters of the ILC represent in general a large extrapolation from where current machines operate today; many of the critical beam-dynamics features planned for the ILC can ultimately only be truly tested once the ILC has been constructed. It is for this reason that beam dynamics activities will continue to be crucial during the Engineering Design phase, as the available computer power and software techniques allow ever-more complex and realistic models of the machine to be developed. Complementary to the computer simulation efforts are the need for well-designed experiments at beam-test facilities, which--while not necessarily producing a direct demonstration of the ILC-like parameters for the reasons mentioned above--can provide important input and benchmarking for the computer models.

  13. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect (OSTI)

    Lee, S. Y.

    2014-04-07T23:59:59.000Z

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  14. Mechanics of nanoscale beams in liquid electrolytes: beam deflections, pull-in instability, and stiction

    E-Print Network [OSTI]

    Lee, Jae Sang

    2009-05-15T23:59:59.000Z

    -based devices, is studied in a liquid environment, including elastic energy, electrochemical work done, van der Waals work done and surface adhesion energy. We extend the classical energy method of the beam peeling for micro-electro-mechanical systems (MEMS...

  15. Time Off

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis ofwas publishedThree scientistsDepartmentTime Off

  16. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-Ray microplanar beams

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); McDonald, III, John W. (Baltimore, MD)

    2007-12-04T23:59:59.000Z

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  17. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-ray microplanar beams

    DOE Patents [OSTI]

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-01-02T23:59:59.000Z

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  18. CRYOPUMP BEHAVIOR IN THE PRESENCE OF BEAM OR NUCLEAR RADIATION

    E-Print Network [OSTI]

    Law, P.K.

    2011-01-01T23:59:59.000Z

    beam operation and nuclear radiation environment. VariousTHE PRESENCE OF B A E M O NUCLEAR RADIATION R Peter K. LawPRESENCE OF BEAM OR NUCLEAR RADIATION Peter K. Law Contents

  19. Electron beam directed energy device and methods of using same

    DOE Patents [OSTI]

    Retsky, Michael W. (Trumbull, CT)

    2007-10-16T23:59:59.000Z

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  20. axisymmetric electron beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dominated beams F. Filbet 1 , J.-L. Lemaire Filbet, Francis 2 From x-ray telescopes to neutron scattering: using axisymmetric mirrors to focus a neutron beam CERN Preprints...