National Library of Energy BETA

Sample records for beam spectrum thermal

  1. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  2. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Gallis, Michail A.

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  3. Thermal modeling of an indirectly heated E-beam gun

    SciTech Connect (OSTI)

    Jallouk, P.A.

    1994-12-31

    Uranium atomic vapor for the Atomic Vapor Laser Isotope Separation (AVLIS) process is produced by magnetically steering a high-power electron beam to the surface of the uranium melt. The electron beam is produced by a Pierce-type axial E-beam gun with an indirectly heated emitter (IDHE)-the industry standard for high-power melting and vaporization. AVLIS process design requirements for the E-beam gun are stringent, particularly in the areas of modularity, compactness, and lifetime. The gun assembly details are complex, geometric clearances are tight, and operating temperatures and stress levels are at the upper limits of acceptability. Detailed three-dimensional finite-element thermal models of the E-beam gun have been developed to address this challenging thermal packaging issue. These models are used in conjunction with design and testing activities to develop a gun exhibiting a high level of reliability for acceptable operation in a plant environment.

  4. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data andmore » calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.« less

  5. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    SciTech Connect (OSTI)

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.

  6. Thermal effect on prebunched two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S.; Maraghechi, B.

    2013-08-15

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  7. Prediction of Material Thermal Properties and Beam-Particle Interaction at

    Office of Scientific and Technical Information (OSTI)

    Meso-Scale during Electron Beam Additive Manufacturing (Conference) | SciTech Connect Prediction of Material Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Citation Details In-Document Search Title: Prediction of Material Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Authors: Chen, Jian [1] ; Zheng, Lili [1] ; Feng, Zhili [1] ; Zhang, Wei [1] ; Dehoff, Ryan R [1] + Show

  8. Molecular beam-thermal hydrogen desorption from palladium

    SciTech Connect (OSTI)

    Lobo, R. F. M.; Berardo, F. M. V.; Ribeiro, J. H. F.

    2010-04-15

    Among the most efficient techniques for hydrogen desorption monitoring, thermal desorption mass spectrometry is a very sensitive one, but in certain cases can give rise to uptake misleading results due to residual hydrogen partial pressure background variations. In this work one develops a novel thermal desorption variant based on the effusive molecular beam technique that represents a significant improvement in the accurate determination of hydrogen mass absorbed on a solid sample. The enhancement in the signal-to-noise ratio for trace hydrogen is on the order of 20%, and no previous calibration with a chemical standard is required. The kinetic information obtained from the hydrogen desorption mass spectra (at a constant heating rate of 1 deg. C/min) accounts for the consistency of the technique.

  9. Optical Gaussian beam interaction with one-dimensional thermal wave in the Raman-Nath configuration

    SciTech Connect (OSTI)

    Bukowski, Roman J

    2009-03-01

    Optical Gaussian beam interaction with a one-dimensional temperature field in the form of a thermal wave in the Raman-Nath configuration is analyzed. For the description of the Gaussian beam propagation through the nonstationary temperature field the complex geometric optics method was used. The influence of the refractive coefficient modulation by thermal wave on the complex ray phase, path, and amplitude was taken into account. It was assumed that for detection of the modulated Gaussian beam parameters two types of detector can be used: quadrant photodiodes or centroidal photodiodes. The influence of such parameters as the size and position of the Gaussian beam waist, the laser-screen (detector) distance, the thermal wave beam position and width, as well as thermal wave frequency and the distance between the probing optical beam axis and source of thermal waves on the so-called normal signal was taken into account.

  10. Validation of the fast neutron spectrum in the coupled fast-thermal system HERBE

    SciTech Connect (OSTI)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-12-31

    Methods applied in the calculation and interpretation of the measurements of the fast neutron spectrum in the NERBE coupled fast-thermal system are validated in this paper. When advantages and disadvantages of a He-filled semi-conductor-sandwich detector are compared to other neutron detectors, the former is found more appropriate. The neutron detection is based on the reaction {sup 3}He(n,p)T + 0.764 MeV and simultaneous detection of the reaction products in the silicon diodes. The pulses from the diodes are amplified and shaped in separate {open_quotes}energy{close_quotes} channels and summed to produce a single pulse with height proportional to the energy of the incident neutron plus the Q value of the reaction. A well-known measuring system of the He neutron spectrometer is used for the HERBE fast neutron spectrum measurement and calibration in a thermal neutron field.

  11. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect (OSTI)

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  12. Thermal fatigue due to beam interruptions in a Lead-Bismuth cooled ATW blanket

    SciTech Connect (OSTI)

    Dunn, F.

    2000-11-15

    Thermal fatigue consequences of frequent accelerator beam interruptions are quantified for both sodium and lead-bismuth cooled blankets in current designs for accelerator transmutation of waste devices. Temperature response was calculated using the SASSYS-1 systems analysis code for an immediate drop in beam current from full power to zero. Coolant temperatures from SASSYS-1 were fed into a multi-node structure temperature calculation to obtain thermal strains for various structural components. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles that these components could endure, based on these thermal strains. Beam interruption frequency data from a current accelerator were used to estimate design lifetimes for components. Mitigation options for reducing thermal fatigue are discussed.

  13. Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    SciTech Connect (OSTI)

    Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume

    2011-01-10

    A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.

  14. Electron-beam activated thermal sputtering of thermoelectric materials

    SciTech Connect (OSTI)

    Wu Jinsong; Dravid, Vinayak P.; He Jiaqing; Han, Mi-Kyung; Sootsman, Joseph R.; Girard, Steven; Arachchige, Indika U.; Kanatzidis, Mercouri G.

    2011-08-15

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 deg. C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  15. Electron-beam activated thermal sputtering of thermoelectric materials.

    SciTech Connect (OSTI)

    Wu, J.; He, J.; Han, M-K.; Sootsman, J. R.; Girard, S.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P.

    2011-08-01

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  16. Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum

    SciTech Connect (OSTI)

    Ziebell, L. F.; Yoon, P. H.; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 ; Gaelzer, R.; Instituto de Física e Matemática, UFPel, Pelotas, RS ; Pavan, J.

    2014-01-15

    A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

  17. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  18. CONSTRAINTS ON THE SPACETIME GEOMETRY AROUND 10 STELLAR-MASS BLACK HOLE CANDIDATES FROM THE DISK'S THERMAL SPECTRUM

    SciTech Connect (OSTI)

    Kong, Lingyao; Li, Zilong; Bambi, Cosimo

    2014-12-20

    In a previous paper, one of us (C. Bambi) described a code to compute the thermal spectrum of geometrically thin and optically thick accretion disks around generic stationary and axisymmetric black holes, which are not necessarily of the Kerr type. As the structure of the accretion disk and the propagation of electromagnetic radiation from the disk to the distant observer depend on the background metric, the analysis of the thermal spectrum of thin disks can be used to test the actual nature of black hole candidates. In this paper, we consider the 10 stellar-mass black hole candidates for which the spin parameter has already been estimated from the analysis of the disk's thermal spectrum under the assumption of the Kerr background, and we translate the measurements reported in the literature into constraints on the spin parameter-deformation parameter plane. The analysis of the disk's thermal spectrum can be used to estimate only one parameter of the geometry close to the compact object; therefore, it is not possible to get independent measurements of both the spin and the deformation parameters. The constraints obtained here will be used in combination with other measurements in future work with the final goal of breaking the degeneracy between the spin and possible deviations from the Kerr solution and thus test the Kerr black hole hypothesis.

  19. SU-E-T-557: Monte Carlo Modeling of Philips RT-250 Orthovoltage Unit for Beam Spectrum Modulation

    SciTech Connect (OSTI)

    Reynoso, F; Cho, S

    2015-06-15

    Purpose: To develop and validate a Monte Carlo (MC) model of a Phillips RT-250 orthovoltage unit to test various beam spectrum modulation strategies for in vitro/vivo studies. A model of this type would enable the production of unconventional beams from a typical orthovoltage unit for novel therapeutic applications such as gold nanoparticle-aided radiotherapy. Methods: The MCNP5 code system was used to create a MC model of the head of RT-250 and a 30 × 30 × 30 cm{sup 3} water phantom. For the x-ray machine head, the current model includes the vacuum region, beryllium window, collimators, inherent filters and exterior steel housing. For increased computational efficiency, the primary x-ray spectrum from the target was calculated from a well-validated analytical software package. Calculated percentage-depth-dose (PDD) values and photon spectra were validated against experimental data from film and Compton-scatter spectrum measurements. Results: The model was validated for three common settings of the machine namely, 250 kVp (0.25 mm Cu), 125 kVp (2 mm Al), and 75 kVp (2 mm Al). The MC results for the PDD curves were compared with film measurements and showed good agreement for all depths with a maximum difference of 4 % around dmax and under 2.5 % for all other depths. The primary photon spectra were also measured and compared with the MC results showing reasonable agreement between the two, validating the input spectra and the final spectra as predicted by the current MC model. Conclusion: The current MC model accurately predicted the dosimetric and spectral characteristics of each beam from the RT-250 orthovoltage unit, demonstrating its applicability and reliability for beam spectrum modulation tasks. It accomplished this without the need to model the bremsstrahlung xray production from the target, while significantly improved on computational efficiency by at least two orders of magnitude. Supported by DOD/PCRP grant W81XWH-12-1-0198.

  20. Mode-mismatched confocal thermal-lens microscope with collimated probe beam

    SciTech Connect (OSTI)

    Cabrera, Humberto; Korte, Dorota; Franko, Mladen

    2015-05-15

    We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanols absorption coefficient at 532.8 nm. Additionally, the presented technique is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.

  1. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    SciTech Connect (OSTI)

    Asha, S.; Sanjeev, Ganesh; Sangappa; Naik, Prashantha; Chandra, K. Sharat

    2014-04-24

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  2. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect (OSTI)

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  3. Influence of electron beam irradiation on mechanical and thermal properties of polypropylene/polyamide blend

    SciTech Connect (OSTI)

    Nakamura, Shigeya; Tokumitsu, Katsuhisa

    2014-05-15

    The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateau region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.

  4. Stability properties of free-electron laser in Raman regime with thermal electron beam

    SciTech Connect (OSTI)

    Chakhmachi, A.; Maraghechi, B.

    2009-04-15

    In the context of kinetic theory an expression for the growth rate of a free-electron laser, under the weak resonance instability condition, for full dispersion relation has been obtained. The space-charge potential is included in the analysis and the expression for growth rate reduces to that of the Compton regime under the low density condition. With the assumption of a spread in the longitudinal momentum in the form of a Gaussian distribution function, the effect of the thermal electron beam on the growth rate is studied. The results are compared to another linear theory, a computer simulation, and an experiment.

  5. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ∼4 × 10{sup 19} m{sup −2} s{sup −1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  6. Blue-tilted tensor spectrum and thermal history of the Universe

    SciTech Connect (OSTI)

    Kuroyanagi, Sachiko; Takahashi, Tomo; Yokoyama, Shuichiro E-mail: tomot@cc.saga-u.ac.jp

    2015-02-01

    We investigate constraints on the spectral index of primordial gravitational waves (GWs), paying particular attention to a blue-tilted spectrum. Such constraints can be used to test a certain class of models of the early Universe. We investigate observational bounds from LIGO+Virgo, pulsar timing and big bang nucleosynthesis, taking into account the suppression of the amplitude at high frequencies due to reheating after inflation and also late-time entropy production. Constraints on the spectral index are presented by changing values of parameters such as reheating temperatures and the amount of entropy produced at late time. We also consider constraints under the general modeling approach which can approximately describe various scenarios of the early Universe. We show that the constraints on the blue spectral tilt strongly depend on the underlying assumption and, in some cases, a highly blue-tilted spectrum can still be allowed.

  7. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    SciTech Connect (OSTI)

    Agostini, M. Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A.

    2015-12-15

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of n{sub e} and T{sub e} are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  8. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  9. Fractional frequency instability in the 10{sup -14} range with a thermal beam optical frequency reference

    SciTech Connect (OSTI)

    McFerran, John J.; Luiten, Andre N. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley 6009, W.A. (Australia)

    2010-02-15

    We demonstrate a means of increasing the signal-to-noise ratio in a Ramsey-Borde interferometer with spatially separated oscillatory fields on a thermal atomic beam. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator, with an extended cavity diode laser at 423 nm probing the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions with the atoms. Evaluation of the instability of the Ca frequency reference is carried out by comparison with (i) a hydrogen-maser and (ii) a cryogenic sapphire oscillator. In the latter case the Ca reference exhibits a square-root {Lambda} variance of 9.2x10{sup -14} at 1 s and 2.0x10{sup -14} at 64 s. This is an order-of-magnitude improvement for optical beam frequency references, to our knowledge. The shot noise of the readout fluorescence produces a limiting square-root {Lambda} variance of 7x10{sup -14}/{radical}({tau}), highlighting the potential for improvement. This work demonstrates the feasibility of a portable frequency reference in the optical domain with 10{sup -14} range frequency instability.

  10. Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices

    SciTech Connect (OSTI)

    Hramov, Alexander E.; Koronovskii, Alexey A.; Maximenko, Vladimir A.; Moskalenko, Olga I.

    2012-08-15

    The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum of the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.

  11. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    SciTech Connect (OSTI)

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.; BACARIAN,T.; RIGON,L.; BUTTON,T.M.; REN,B.; WU,X.Y.; ZHONG,N.; ATKINS,H.L.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.

  12. Ion Beam Analysis of the Thermal Stability of Hydrogenated Diamond-Like Carbon Thin Films on Si Substrate

    SciTech Connect (OSTI)

    Nandasiri, M. I.; Moore, A.; Garratt, E.; Wickey, K. J.; AlFaify, S.; Gao, X.; Kayani, A.; Ingram, D.

    2009-03-10

    Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in the films deposited on silicon substrates with a 2.5 MeV of H{sup +} beam, which is used to perform Rutherford Backscattering Spectrometry (RBS) and Non-Rutherford Backscattering spectrometry (NRBS) and with 16 MeV of O{sup 5+} beam, used to perform Elastic Recoil Detection Analysis (ERDA). Effect of bias on the thermal stability of trapped hydrogen in the films has been studied. As the films were heated in-situ in vacuum using a non-gassy button heater, hydrogen was found to be decreasing around 400 deg. C.

  13. Thermal-Photon and Residual-Gas Scattering in the NLC Beam Delivery...

    Office of Scientific and Technical Information (OSTI)

    simulation for the Compton scattering on thermal photons, to calculate the fraction of ... Subject: 43 PARTICLE ACCELERATORS; LINEAR COLLIDERS; LEP STORAGE RINGS; COLLIMATORS; ...

  14. Thermal-Photon and Residual-Gas Scattering in the NLC Beam Delivery...

    Office of Scientific and Technical Information (OSTI)

    We used a modified version of the tracking program DIMAD, which includes a Monte Carlo simulation for the Compton scattering on thermal photons, to calculate the fraction of ...

  15. Transport of thermal neutrons in different forms of liquid hydrogen and the production of intense beams of cold neutrons

    SciTech Connect (OSTI)

    Swaminathan, K.; Tewari, S.P.

    1982-10-01

    From their studies the authors find that the thermal neutron inelastic scattering kernel incorporating the chemical binding energy in liquid hydrogen is able to successfully explain various neutron transport studies such as pulsed neutron and steady-state neutron spectra. For an infinite-sized assembly, D/sub 2/ at 4 K yields a very intense flux of cold and ultracold neutrons. For the practicable finite assembly corresponding to B/sup 2/ = 0.0158 cm/sup -2/, it is found that liquid hydrogen at 11 K gives the most intense beam of cold neutrons.

  16. Comment on Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma [Phys. Plasmas 20, 072703 (2013)

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-06-15

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].

  17. A Spectrum of Nerve Injury after Thermal Ablation: A Report of Four Cases and Review of the Literature

    SciTech Connect (OSTI)

    Philip, Asher; Gupta, Sanjay Ahrar, Kamran Tam, Alda L.

    2013-10-15

    Thermal ablation is an accepted alternative for the palliation of pain from bone metastases. Although rare, neurologic complications after thermal ablation have been reported. We present four cases, including two cases of rapid reversal of postcryoablation neurapraxia after the administration of steroid therapy, and review the literature.

  18. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOE Patents [OSTI]

    Page, Ralph H. (San Ramon, CA); Beach, Raymond J. (Livermore, CA)

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  19. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    SciTech Connect (OSTI)

    Bokaei, B.; Niknam, A. R.

    2014-03-15

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  20. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U

    SciTech Connect (OSTI)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-12-15

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for {sup 99}Mo, {sup 95}Zr, {sup 137}Cs, {sup 140}Ba, {sup 141,143}Ce, and {sup 147}Nd. Modest incident-energy dependence exists for the {sup 147}Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by {approx}5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried

  1. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOE Patents [OSTI]

    Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.

    1995-05-16

    A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.

  2. Self aligning electron beam gun having enhanced thermal and mechanical stability

    DOE Patents [OSTI]

    Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.

    1995-01-01

    A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.

  3. Evaluation of thermal helium beam and line-ratio fast diagnostic on the National Spherical Torus Experiment-Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Munoz Burgos, Jorge M.; Agostini, Matteo; Scarin, Paolo; Stotler, Daren P.; Unterberg, Ezekial A.; Loch, Stuart D.; Schmitz, Oliver; Tritz, Kevin; Stutman, Dan

    2015-05-06

    A 1-D kinetic collisional radiative model (CRM) with state-of-the-art atomic data is developed and employed to simulate line emission to evaluate the Thermal Helium Beam (THB) diagnostic on NSTX-U. This diagnostic is currently in operation on RFX-mod, and it is proposed to be installed on NSTX-U. The THB system uses the intensity ratios of neutral helium lines 667.8, 706.5, and 728.1 nm to derive electron temperature (eV ) and density (cm–3) profiles. The purpose of the present analysis is to evaluate the applications of this diagnostic for determining fast (~4 μs) electron temperature and density radial profiles on the scrape-offmore » layer (SOL) and edge regions of NSTX-U that are needed in turbulence studies. The diagnostic is limited by the level of detection of the 728.1 nm line, which is the weakest of the three. In conclusion, this study will also aid in future design of a similar 2-D diagnostic systems on the divertor.« less

  4. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    SciTech Connect (OSTI)

    Huang, Zhangyi; Qi, Jianqi Zhou, Li; Feng, Zhao; Yu, Xiaohe; Gong, Yichao; Yang, Mao; Wei, Nian; Shi, Qiwu; Lu, Tiecheng

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  5. Response to Comment on Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma [Phys. Plasmas 21, 064701 (2014)

    SciTech Connect (OSTI)

    Patil, S. D.; Takale, M. V.

    2014-06-15

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  6. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable,...

  7. Thermomechanical measurements on thermal microactuators. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal ... SANDIA NATIONAL LABORATORIES; SILICON; VALIDATION Microactuators.; Ceramic ...

  8. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable, ...

  9. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  10. Lepton spectrum

    SciTech Connect (OSTI)

    Feldman, G.J.

    1981-10-01

    Selected topics on the lepton spectrum are presented with special emphasis on tau decays and unpublished Mark II results from SPEAR and PEP. 42 references.

  11. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable, newsletter-like format. Featured scientific and facility developments are front-paged, and a roundup of science highlights is provided in easily browsable summaries with Web links. Contents also include brief reports from ALS staff and user groups, articles about ALS people and events, and facility updates. These documents

  12. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable, newsletter-like format. Featured scientific and facility developments are front-paged, and a roundup of science highlights is provided in easily browsable summaries with Web links. Contents also include brief reports from ALS staff and user groups, articles about ALS people and events, and facility updates. These documents

  13. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable, newsletter-like format. Featured scientific and facility developments are front-paged, and a roundup of science highlights is provided in easily browsable summaries with Web links. Contents also include brief reports from ALS staff and user groups, articles about ALS people and events, and facility updates. These documents are

  14. ALS Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrum Print Begun in 2007, ALS Spectrum is a publication that encapsulates the same type of information contained in the ALS Activity Report but in a short, readable, newsletter-like format. Featured scientific and facility developments are front-paged, and a roundup of science highlights is provided in easily browsable summaries with Web links. Contents also include brief reports from ALS staff and user groups, articles about ALS people and events, and facility updates. These documents are

  15. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    SciTech Connect (OSTI)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 , while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  16. Surface contamination detection by means of near-infrared stimulation of thermal luminescence

    SciTech Connect (OSTI)

    Carrieri, Arthur H.; Roese, Erik S

    2006-02-01

    A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.

  17. Particle beam injection system

    DOE Patents [OSTI]

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  18. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  19. A LINGERING NON-THERMAL COMPONENT IN THE GAMMA-RAY BURST PROMPT EMISSION: PREDICTING GeV EMISSION FROM THE MeV SPECTRUM

    SciTech Connect (OSTI)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2013-09-20

    The high-energy GeV emission of gamma-ray bursts (GRBs) detected by Fermi/LAT has a significantly different morphology compared to the lower energy MeV emission detected by Fermi/GBM. Though the late-time GeV emission is believed to be synchrotron radiation produced via an external shock, this emission as early as the prompt phase is puzzling. A meaningful connection between these two emissions can be drawn only by an accurate description of the prompt MeV spectrum. We perform a time-resolved spectroscopy of the Gamma-ray Burst Monitor (GBM) data of long GRBs with significant GeV emission, using a model consisting of two blackbodies and a power law. We examine in detail the evolution of the spectral components and find that GRBs with high GeV emission (GRB 090902B and GRB 090926A) have a delayed onset of the power-law component in the GBM spectrum, which lingers at the later part of the prompt emission. This behavior mimics the flux evolution in the Large Area Telescope (LAT). In contrast, bright GBM GRBs with an order of magnitude lower GeV emission (GRB 100724B and GRB 091003) show a coupled variability of the total and the power-law flux. Further, by analyzing the data for a set of 17 GRBs, we find a strong correlation between the power-law fluence in the MeV and the LAT fluence (Pearson correlation: r = 0.88 and Spearman correlation: ? = 0.81). We demonstrate that this correlation is not influenced by the correlation between the total and the power-law fluences at a confidence level of 2.3?. We speculate the possible radiation mechanisms responsible for the correlation.

  20. Meso-Scale during Electron Beam Additive Manufacturing Chen,...

    Office of Scientific and Technical Information (OSTI)

    Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Chen, Jian ORNL ORNL; Zheng, Lili ORNL ORNL; Feng, Zhili...

  1. Fission Spectrum

    DOE R&D Accomplishments [OSTI]

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  2. Co: clqrt. Beam

    Office of Legacy Management (LM)

    Co: clqrt. Beam*/:

  3. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  4. Thermal response of chalcogenide microsphere resonators

    SciTech Connect (OSTI)

    Ahmad, H; Aryanfar, I; Lim, K S; Chong, W Y; Harun, S W

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts in the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.

  5. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect (OSTI)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  6. How to produce a reactor neutron spectrum using a proton accelerator

    SciTech Connect (OSTI)

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; Schmitt, Bruce E.; Asner, David M.

    2015-01-01

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  7. Cathodoluminescence Spectrum Imaging Software

    Energy Science and Technology Software Center (OSTI)

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  8. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  9. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  10. Laser beam welding of any metal.

    SciTech Connect (OSTI)

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  11. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments [OSTI]

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  12. Apparatus for synthesis of a solar spectrum

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1993-01-01

    A xenon arc lamp and a tungsten filament lamp provide light beams that together contain all the wavelengths required to accurately simulate a solar spectrum. Suitable filter apparatus selectively direct visible and ultraviolet light from the xenon arc lamp into two legs of a trifurcated randomized fiber optic cable. Infrared light selectively filtered from the tungsten filament lamp is directed into the third leg of the fiber optic cable. The individual optic fibers from the three legs are brought together in a random fashion into a single output leg. The output beam emanating from the output leg of the trifurcated randomized fiber optic cable is extremely uniform and contains wavelengths from each of the individual filtered light beams. This uniform output beam passes through suitable collimation apparatus before striking the surface of the solar cell being tested. Adjustable aperture apparatus located between the lamps and the input legs of the trifurcated fiber optic cable can be selectively adjusted to limit the amount of light entering each leg, thereby providing a means of "fine tuning" or precisely adjusting the spectral content of the output beam. Finally, an adjustable aperture apparatus may also be placed in the output beam to adjust the intensity of the output beam without changing the spectral content and distribution of the output beam.

  13. Spectrum Interagency Collaboration Meeting

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Office of Spectrum Management (OSM) will host the 2016 Interagency Spectrum Collaboration Meeting on July 26-27, 2016 at DOE Headquarters in Washington, DC.

  14. Time delay spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  15. Effects of thermal motion on electromagnetically induced absorption

    SciTech Connect (OSTI)

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.

    2011-05-15

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  16. Numerical Study Of Melted Particles Crush Metallic Substrates And The Interaction Between Particles And A Plasma Beam In The Thermal Projection Process

    SciTech Connect (OSTI)

    Kriba, Ilhem; Djebaili, A.

    2008-09-23

    Plasma spray processes have been widely used to produce high performance coatings of a wide range of Materials (metallic, non-metallic, ceramics), offering protection from, eg. wear, extreme temperature, chemical attack and environmental corrosion. To obtain good quality coatings, spray parameters must be carefully selected. Due to the large variety in process parameters, it is difficult to optimize the process for each specific coating and substrate combinations. Furthermore modelling the spray process allows a better understanding of the process sequences during thermal spraying. Good agreement of the virtual spraying process with the real coating formation is achieved by modelling the particular process steps. The simulation of coating formation to estimate the process parameters is an important tool to develop new coating structures with defined properties. In this work, the process of plasma sprayed coating has been analyzed by numerical simulation. Commercial code is used to predict the plasma jet characteristics, plasma--particle interaction, and coating formation. Using this model we can obtain coating microstructure and characteristics which form a foundation for further improvement of an advanced ceramic coating build up model.

  17. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect (OSTI)

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  18. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2 http://www.exelisvis.com/ProductsServices/IDL.aspx

  19. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13

  20. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  1. Beam tuning

    SciTech Connect (OSTI)

    Pardo, R.C.; Zinkann, G.P.

    1995-08-01

    A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.

  2. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  3. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  4. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  5. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  6. Beam Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Test Facility Beam Test Facility Print Tuesday, 20 October 2009 09:36 Coming Soon

  7. Micro acoustic spectrum analyzer

    DOE Patents [OSTI]

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  8. Radio and Spectrum Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radio and Spectrum Management Radio and Spectrum Management DOE Radio and Spectrum Workshop 43.pdf (49.58 KB) More Documents & Publications ICAM Workshop Ad Hoc Meetings Spectrum ...

  9. Broad spectrum solar cell

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  10. Measurement of an inverse Compton scattering source local spectrum using k-edge filters

    SciTech Connect (OSTI)

    Golosio, Bruno; Oliva, Piernicola; Carpinelli, Massimo; Endrizzi, Marco; Delogu, Pasquale; Pogorelsky, Igor; Yakimenko, Vitaly

    2012-04-16

    X-ray sources based on the inverse Compton scattering process are attracting a growing interest among scientists, due to their extremely fast pulse, quasi-monochromatic spectrum, and relatively high intensity. The energy spectrum of the x-ray beam produced by inverse Compton scattering sources in a fixed observation direction is a quasi-monochromatic approximately Gaussian distribution. The mean value of this distribution varies with the scattering polar angle between the electron beam direction and the x-ray beam observation direction. Previous works reported experimental measurements of the mean energy as a function of the polar angle. This work introduces a method for the measurement of the whole local energy spectrum (i.e., the spectrum in a fixed observation direction) of the x-ray beam yielded by inverse Compton scattering sources, based on a k-edge filtering technique.

  11. NREL Spectrum of Innovation

    ScienceCinema (OSTI)

    None

    2013-05-29

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  12. Thermophotovoltaics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermophotovoltaics Solar Thermophotovoltaics (STPVs) are solar driven heat engines which extract electrical power from thermal radiation. The overall goal is to absorb and convert the broadband solar radiation spectrum into a narrowband thermal emission spectrum tuned to the spectral response of a photovoltaic cell (PV) [1]. STPVs are of significant interest as they have the potential to overcome the well-known Shockley-Queisser limit for single junction PV given sufficient spectral control.

  13. CEBAF beam loss accounting

    SciTech Connect (OSTI)

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  14. Advantages of Real-Time Spectrum Analyzers in High-Energy Physics Applications

    SciTech Connect (OSTI)

    Parker, Louis

    2004-11-10

    Typically, particles are injected into the ring at low energy levels and then 'ramped up' to higher levels. During ramping, it is important that the horizontal and vertical tune frequencies do not shift, lest they hit upon a resonant combination that causes beam instability or sudden total loss of ring beam current (beam blow up). Beam instabilities can be caused by a number of factors. Non-linearities and/or different response times of independent controls such as beam position monitor (BPM) cables and circuits, magnets for guidance and focusing of the beam, Klystrons or Tetrodes (which provide power to RF cavities that transmit energy to the beam), and vacuum pumps and monitors can all cause beam instabilities. Vibrations and lack of proper shielding are other factors. The challenge for operators and researchers is to correctly identify the factors causing beam instabilities and blow up so that costly accelerator time is not interrupted and experimental results are not compromised. The instrument often used to identify problems in particle accelerator applications is the spectrum analyzer. This paper will discuss the advantages of real time spectrum analyzers (RSA) versus swept frequency spectrum analyzers in HEP applications. The main focus will be on monitoring beam position and stability, especially during ramp-up. Also covered will be use of RSA for chromaticity measurements, Phase Locked Loop (PLL) diagnostics, and vibration analysis.

  15. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  16. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify

  17. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect (OSTI)

    Gras, S.; Blair, D. G.; Ju, L.

    2010-02-15

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  18. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  19. CW argon-ion laser beams with a central dark region

    SciTech Connect (OSTI)

    Lu Ke Cheng; Sheng Qiu Qin; Liu Zhi Guo; Lu Fu Yun

    1986-08-01

    This paper studies the central dark-region of CW Ar/sup +/ laser beams. The relationship between the dark-region of beam cross section and discharge current has been measured and the spectrum of laser beam has been studied. The cause for the central dark region is discussed.

  20. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. [London, TN; Dress, William B. [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  1. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  2. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  3. Relativistic electron beam generator

    DOE Patents [OSTI]

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  4. BEAMS: Curiosity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAMS: Curiosity BEAMS: Curiosity January 9, 2013 BEAMS, Becoming Excited About Math and Science, is one of our education programs. In particular, it is the only one in which I ...

  5. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  6. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  7. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  8. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  9. Ortho- and para-hydrogen in neutron thermalization

    SciTech Connect (OSTI)

    Daemen, L. L.; Brun, T. O.

    1998-01-01

    The large difference in neutron scattering cross-section at low neutron energies between ortho- and para-hydrogen was recognized early on. In view of this difference (more than an order of magnitude), one might legitimately ask whether the ortho/para ratio has a significant effect on the neutron thermalization properties of a cold hydrogen moderator. Several experiments performed in the 60`s and early 70`s with a variety of source and (liquid hydrogen) moderator configurations attempted to investigate this. The results tend to show that the ortho/para ratio does indeed have an effect on the energy spectrum of the neutron beam produced. Unfortunately, the results are not always consistent with each other and much unknown territory remains to be explored. The problem has been approached from a computational standpoint, but these isolated efforts are far from having examined the ortho/para-hydrogen problem in neutron moderation in all its complexity. Because of space limitations, the authors cannot cover, even briefly, all the aspects of the ortho/para question here. This paper will summarize experiments meant to investigate the effect of the ortho/para ratio on the neutron energy spectrum produced by liquid hydrogen moderators.

  10. Beam halo in mismatched proton beams.

    SciTech Connect (OSTI)

    Wangler, Thomas P.,; Allen, C. K.; Chan, D.; Colestock, P. L. ,; Crandall, K. R.; Qiang, J.; Garnett, R. W.; Lysenko, W. P.; Gilpatrick, J. D.; Schneider, J. D.; Schulze, M. E.; Sheffield, R. L.; Smith, H. V.

    2002-01-01

    Progress was made during the past decade towards a better understanding of halo formation caused by beam mismatch in high-intensity beams. To test these ideas an experiment was carried out at Los Alamos with proton beams in a 52-quadrupole focusing channel. Rms emittances and beam widths were obtained from measured beam profiles for comparison with the maximum emittance growth predictions of a free-energy model and the maximum haloamplitude predictions of a particle-core model. The experimental results are also compared with multiparticle simulations. In this paper we will present the experimental results and discuss the implications with respect to the validity of both the models and the simulations. Keywords: beam halo, emittance growth, beam profiles, simulations, space charge, mismatch

  11. Federal Spectrum Management at the National Telecommunications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Spectrum Management at the National Telecommunications and Information Administration Federal Spectrum Management at the National Telecommunications and Information ...

  12. Non-Vacuum Electron Beam Welding

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2007-01-31

    Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and laser processes. Potential benefits from further R

  13. Toward design of the Collider Beam Collimation System

    SciTech Connect (OSTI)

    Drozhdin, A.; Mokhov, N.; Soundranayagam, R.; Tompkins, J.

    1994-02-01

    A multi-component beam collimation system for the Superconducting Super Collider is described. System choice justification and design requirements are presented. System consists of targets, scrapers, and collimators with appropriate cooling and radiation shielding. Each component has an independent control for positioning and aligning with respect to the beam. Results of beam loss distribution, energy deposition calculations, and thermal analyses, as well as cost estimate, are presented.

  14. Telecommunication using muon beams

    DOE Patents [OSTI]

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  15. Beam shuttering interferometer and method

    DOE Patents [OSTI]

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  16. Beam shuttering interferometer and method

    DOE Patents [OSTI]

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  17. PINS Spectrum Identification Guide

    SciTech Connect (OSTI)

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  18. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted

  19. IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV-ZEL'DOVICH POWER SPECTRUM

    SciTech Connect (OSTI)

    Shaw, Laurie D.; Nagai, Daisuke; Bhattacharya, Suman; Lau, Erwin T.

    2010-12-20

    We use an analytic model to investigate the theoretical uncertainty on the thermal Sunyaev-Zel'dovich (SZ) power spectrum due to astrophysical uncertainties in the thermal structure of the intracluster medium. Our model accounts for star formation and energy feedback (from supernovae and active galactic nuclei) as well as radially dependent non-thermal pressure support due to random gas motions, the latter calibrated by recent hydrodynamical simulations. We compare the model against X-ray observations of low-redshift clusters, finding excellent agreement with observed pressure profiles. Varying the levels of feedback and non-thermal pressure support can significantly change both the amplitude and shape of the thermal SZ power spectrum. Increasing the feedback suppresses power at small angular scales, shifting the peak of the power spectrum to lower l. On the other hand, increasing the non-thermal pressure support has the opposite effect, significantly reducing power at large angular scales. In general, including non-thermal pressure at the level measured in simulations has a large effect on the power spectrum, reducing the amplitude by 50% at angular scales of a few arcminutes compared to a model without a non-thermal component. Our results demonstrate that measurements of the shape of the power spectrum can reveal useful information on important physical processes in groups and clusters, especially at high redshift where there exists little observational data. Comparing with the recent South Pole Telescope measurements of the small-scale cosmic microwave background power spectrum, we find our model reduces the tension between the values of {sigma}{sub 8} measured from the SZ power spectrum and from cluster abundances.

  20. BEAM HALO IN PROTON LINAC BEAMS

    SciTech Connect (OSTI)

    T. WANGLER; K. CRANDALL

    2000-08-01

    In this paper we review the present picture of km halo in proton linacs. Space-charge forces acting in mismatched beams have been identified as a major cause of beam-halo. We present a definition of halo based on a ratio of moments of the distribution of the beam coordinates. We find from our initial studies that for halo detined in this way, a beam can have rms emittance growth without halo growth, but halo growth is always accompanied by rms emittance growth. We describe the beam-halo experiment that is in preparation at Los Alamos, which will address questions about the beam profiles, maximum particle amplitudes, and rms emittance growth associated with the halo.

  1. Design and demonstration of a spectrum-splitting photovoltaic concentrator module

    SciTech Connect (OSTI)

    Borden, P.G.; Gregory, P.E.; Moore, O.E.

    1982-11-01

    A spectrum splitting, concentrating photovoltaic module has been designed and fabricated that uses point focus curved facet Fresnel lenses to concentrate incident sunlight. The concentrated sunlight beam spectrum is split into a high and low energy part by a dichroic filter. The high energy part of the spectrum is transmitted to an AlGaAs solar cell and the low energy part is reflected to a Si cell. Spectrum splitting and using cells that respond best to the two parts of the spectrum splitting and using cells that respond best to the two parts of the spectrum gives a higher efficiency than the use of either cell alone. The experimental module has been tested which consists of 10 AlGaAs and 10 Si cells, and a sunlight to electricity conversion efficiency of 20% has been measured.

  2. Large object investigation by digital holography with effective spectrum multiplexing under single-exposure approach

    SciTech Connect (OSTI)

    Liu, Ning Zhang, Yingying; Xie, Jun

    2014-10-13

    We present a method to investigate large object by digital holography with effective spectrum multiplexing under single-exposure approach. This method splits the original reference beam and redirects one of its branches as a second object beam. Through the modified Mach-Zehnder interferometer, the two object beams can illuminate different parts of the large object and create a spectrum multiplexed hologram onto the focal plane array of the charge-coupled device/complementary metal oxide semiconductor camera. After correct spectrum extraction and image reconstruction, the large object can be fully observed within only one single snap-shot. The flexibility and great performance make our method a very attractive and promising technique for large object investigation under common 632.8 nm illumination.

  3. ION BEAM COLLIMATOR

    DOE Patents [OSTI]

    Langsdorf, A.S. Jr.

    1957-11-26

    A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

  4. Measuring the proton beam polarization from the source to RHIC.

    SciTech Connect (OSTI)

    Makdisi,Y.

    2007-09-10

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  5. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  6. Pyramid beam splitter

    DOE Patents [OSTI]

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  7. Limitations on area compression of beams from pierce guns

    SciTech Connect (OSTI)

    Yakovlev, V.P.; Nezhevenko, O.A. [Omega-P Inc., 202008 Yale Station, New Haven, Connecticut 06520-2008 (United States)

    1999-05-01

    An important limitation for rf sources such as klystrons and magnicons, designed for 10{close_quote}s of MW power outputs at cm-wavelengths, is the transverse electron beam size. Cathode current density limits require high beam area compressions to obtain small transverse beam areas for fixed currents. This paper discusses the limitations to high beam area compression, namely geometrical aberrations and thermal spread in transverse velocities. Compensation can oftentimes be introduced for aberrations, but thermal velocity spread presents a fundamental limitation. Examples where subtle compensation strategies were employed are discussed for three guns with 100 MW beam power, and area compressions greater than 2000:1. Two of these guns have already been built. A clear determination of effective cathode temperature has yet to be found experimentally, but possible means to measure it are discussed. {copyright} {ital 1999 American Institute of Physics.}

  8. Spectrum Policy Seminar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spectrum Policy Seminar Spectrum Policy Seminar Slide show from FCC's Public Safety and Homeland Security Bureau's presenation on spectrum policy. Spectrum Policy Seminar (805.91 KB) More Documents & Publications An Introduction to Spectrum Engineering Communications Requirements of Smart Grid Technologies Comments of Verizon and Verizon Wireless

  9. Neutral Beam Excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the presence of a small fast ion population are one area ... This research is highly relevant to fusion reactors as beam ... 100 A beam of < 200 keV sodium or potassium ions which ...

  10. Controlling the spectrum of x-rays generated in a laser-plasma accelerator by tailoring the laser wavefront

    SciTech Connect (OSTI)

    Mangles, S. P. D.; Kneip, S.; Dover, N. P.; Najmudin, Z.; Schreiber, J.; Genoud, G.; Burza, M.; Kamperidis, C.; Persson, A.; Wahlstroem, C.-G.; Cassou, K.; Cros, B.; Wojda, F.

    2009-11-02

    By tailoring the wavefront of the laser pulse used in a laser-wakefield accelerator, we show that the properties of the x-rays produced due to the electron beam's betatron oscillations in the plasma can be controlled. By creating a wavefront with coma, we find that the critical energy of the synchrotronlike x-ray spectrum can be significantly increased. The coma does not substantially change the energy of the electron beam, but does increase its divergence and produces an energy-dependent exit angle, indicating that changes in the x-ray spectrum are due to an increase in the electron beam's oscillation amplitude within the wakefield.

  11. PARTICLE BEAM TRACKING CIRCUIT

    DOE Patents [OSTI]

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  12. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  13. Apparatus and method for transient thermal infrared spectrometry

    DOE Patents [OSTI]

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  14. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  15. BEAM CONTROL PROBE

    DOE Patents [OSTI]

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  16. A New Solar Irradiance Reference Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Solar Irradiance Reference Spectrum Pilewskie, Peter University of Colorado ... We describe the development of a new solar reference spectrum for radiation and climate ...

  17. Spectrum Energy Inc SEI | Open Energy Information

    Open Energy Info (EERE)

    Spectrum Energy Inc SEI Jump to: navigation, search Name: Spectrum Energy Inc (SEI) Place: Elk Grove, California Zip: 95758 Sector: Efficiency, Services, Solar Product: US-based...

  18. Primordial power spectrum from Planck

    SciTech Connect (OSTI)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  19. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  20. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  1. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect (OSTI)

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  2. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  3. The materials test station: a fast spectrum irradiation facility

    SciTech Connect (OSTI)

    Pitcher, Eric J.

    2007-07-01

    The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the fuel irradiation region exhibits a neutron spectrum similar to that seen in a fast reactor, with a peak neutron flux of 1.6 x 10{sup 15} n.cm{sup -2}.s{sup -1}. Site preparation and construction are estimated to take four years, with a cost range of $60 M to $90 M. (author)

  4. Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement

    SciTech Connect (OSTI)

    Marcano, Aristides; Cabrera, Humberto; Guerra, Mayamaru; Cruz, Renato A.; Jacinto, Carlos; Catunda, Tomaz

    2006-07-15

    We describe a calibrated two-beam mode-mismatched thermal lens experiment aimed at determination of the absorption coefficient and the photothermal parameters of a nearly transparent material. The use of a collimated probe beam in the presence of a focused excitation beam optimizes the thermal lens experiment. The signal becomes independent from the Rayleigh parameters and waist positions of the beams. We apply this method to determine the absolute value of the thermal diffusivity and absorption coefficient of distilled water at 533 nm.

  5. Concept of quasi-periodic undulator - control of radiation spectrum

    SciTech Connect (OSTI)

    Sasaki, Shigemi

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  6. Beam Instrumentation Workshop

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-01-01

    The fifth annual Beam Instrumentation Workshop was hosted by Los Alamos National Laboratory in Santa Fe, New Mexico. These proceedings represent the papers presented at the Workshop. A variety of topics were covered including beam emittance diagnostics, fluorescent screens, control systems for many accelerators and photon sources. Beam monitoring was discussed in great detail. There were thirty seven papers presented at the Workshop and all have been abstracted for the Energy and Science Technology database. (AIP)

  7. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  8. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  9. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  10. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to energies far higher than usually found on earth. ... Implanting them very precisely in metal surfaces means ... of a Facility for Rare Isotope Beams (FRIB), an ...

  11. Beam Stability Complaint Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For New Users For Current Users For Administrators MX Users APS User Portal APS Data Management Practices Find a Beamline Apply for Beam Time ESAF Contacts Calendars User...

  12. Measurements and simulations of focused beam for orthovoltage therapy

    SciTech Connect (OSTI)

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  13. LHC Beam Diffusion Dependence on RF Noise: Models And Measurements

    SciTech Connect (OSTI)

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; ,

    2010-09-14

    Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted using time-domain simulations and models [2]. In this work, initial measurements at the LHC supporting the above theoretical formalism and simulation predictions are presented.

  14. Holographic thermalization with initial long range correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integrated Wightman correlatormore » and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  15. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  16. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  17. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  18. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  19. Picosecond beam monitor

    DOE Patents [OSTI]

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  20. Modelling the TSZ power spectrum

    SciTech Connect (OSTI)

    Bhattacharya, Suman; Shaw, Laurie D; Nagai, Daisuke

    2010-01-01

    The structure formation in university is a hierarchical process. As universe evolves, tiny density fluctuations that existed in the early universe grows under gravitational instability to form massive large scale structures. The galaxy clusters are the massive viralized objects that forms by accreting smaller clumps of mass until they collapse under their self-gravity. As such galaxy clusters are the youngest objects in the universe which makes their abundance as a function of mass and redshift, very sensitive to dark energy. Galaxy clusters can be detected by measuring the richness in optical waveband, by measuring the X-ray flux, and in the microwave sky using Sunyaev-Zel'dovich (SZ) effect. The Sunyaev-Zel'dovich (SZ) effect has long been recognized as a powerful tool for detecting clusters and probing the physics of the intra-cluster medium. Ongoing and future experiments like Atacama Cosmology Telescope, the South Pole Telescope and Planck survey are currently surveying the microwave sky to develop large catalogs of galaxy clusters that are uniformly selected by the SZ flux. However one major systematic uncertainties that cluster abundance is prone to is the connection between the cluster mass and the SZ flux. As shown by several simulation studies, the scatter and bias in the SZ flux-mass relation can be a potential source of systematic error to using clusters as a cosmology probe. In this study they take a semi-analytic approach for modeling the intra-cluster medium in order to predict the tSZ power spectrum. The advantage of this approach is, being analytic, one can vary the parameters describing gas physics and cosmology simultaneously. The model can be calibrated against X-ray observations of massive, low-z clusters, and using the SZ power spectrum which is sourced by high-z lower mass galaxy groups. This approach allows us to include the uncertainty in gas physics, as dictated by the current observational uncertainties, while measuring the cosmological

  1. Beam director design report

    SciTech Connect (OSTI)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  2. Laser beam alignment system

    DOE Patents [OSTI]

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  3. Electron Lens for Beam-Beam Compensation at LHC

    SciTech Connect (OSTI)

    Valishev, A.; Shiltsev, V.; /Fermilab

    2009-05-01

    Head-on beam-beam effect may become a major performance limitation for the LHC in some of the upgrade scenarios. Given the vast experience gained from the operation of Tevatron electron lenses, a similar device provides significant potential for mitigation of beam-beam effects at the LHC. In this report we present the results of simulation studies of beam-beam compensation and analyze potential application of electron lense at LHC and RHIC.

  4. Stabilization of beam-weibel instability by equilibrium density ripples

    SciTech Connect (OSTI)

    Mishra, S. K. Kaw, Predhiman; Das, A.; Sengupta, S.; Ravindra Kumar, G.

    2014-01-15

    In this paper, we present an approach to achieve suppression/complete stabilization of the transverse electromagnetic beam Weibel instability in counter streaming electron beams by modifying the background plasma with an equilibrium density ripple, shorter than the skin depth; this weakening is more pronounced when thermal effects are included. On the basis of a linear two stream fluid model, it is shown that the growth rate of transverse electromagnetic instabilities can be reduced to zero value provided certain threshold values for ripple parameters are exceeded. We point out the relevance of the work to recent experimental investigations on sustained (long length) collimation of fast electron beams and integral beam transport for laser induced fast ignition schemes, where beam divergence is suppressed with the assistance of carbon nano-tubes.

  5. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect (OSTI)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  6. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect (OSTI)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  7. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    SciTech Connect (OSTI)

    Barbisan, M. Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.

  8. STUDY OF ELECTRON -PROTON BEAM-BEAM INTERACTION IN ERHIC

    SciTech Connect (OSTI)

    HAO,Y.; LITVINENKO, V.N.; MONTAG, C.; POZDEYEV, E.; PTITSYN, V.

    2007-06-25

    Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects, which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as a ''kink'' instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth.

  9. High bandwidth beam current monitor

    SciTech Connect (OSTI)

    Baltrusaitis, R.M.; Ekdahl, C.A. ); Cooper, R.G. . Santa Barbara Operations); Peterson, E.; Warn, C.E. . Las Vegas Operations)

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe.

  10. High bandwidth beam current monitor

    SciTech Connect (OSTI)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-06-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe.

  11. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  12. Simulations of beam-beam and beam-wire interactions in RHIC

    SciTech Connect (OSTI)

    Kim, Hyung J.; Sen, Tanaji; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  13. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect (OSTI)

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  14. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  15. Beam! Magic! | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with all the changes, the accelerator can be made to work. Beam Since my first serious introduction to nuclear and particle physics - when I worked for a few weeks one summer at...

  16. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  17. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  18. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the

  19. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  20. Stochastic acceleration in peaked spectrum

    SciTech Connect (OSTI)

    Zasenko, V.; Zagorodny, A.; Weiland, J.

    2005-06-15

    Diffusion in velocity space of test particles undergoing external random electric fields with spectra varying from low intensive and broad to high intensive and narrow (peaked) is considered. It is shown that to achieve consistency between simulation and prediction of the microscopic model, which is reduced to Fokker-Planck-type equation, it is necessary, in the case of peaked spectrum, to account for temporal variation of diffusion coefficient occurring in the early stage. An analytical approximation for the solution of the Fokker-Planck equation with a time and velocity dependent diffusion coefficients is proposed.

  1. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  2. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  3. Beam/seam alignment control for electron beam welding

    DOE Patents [OSTI]

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  4. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect (OSTI)

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  5. Determination of a mutational spectrum

    DOE Patents [OSTI]

    Thilly, William G.; Keohavong, Phouthone

    1991-01-01

    A method of resolving (physically separating) mutant DNA from nonmutant DNA and a method of defining or establishing a mutational spectrum or profile of alterations present in nucleic acid sequences from a sample to be analyzed, such as a tissue or body fluid. The present method is based on the fact that it is possible, through the use of DGGE, to separate nucleic acid sequences which differ by only a single base change and on the ability to detect the separate mutant molecules. The present invention, in another aspect, relates to a method for determining a mutational spectrum in a DNA sequence of interest present in a population of cells. The method of the present invention is useful as a diagnostic or analytical tool in forensic science in assessing environmental and/or occupational exposures to potentially genetically toxic materials (also referred to as potential mutagens); in biotechnology, particularly in the study of the relationship between the amino acid sequence of enzymes and other biologically-active proteins or protein-containing substances and their respective functions; and in determining the effects of drugs, cosmetics and other chemicals for which toxicity data must be obtained.

  6. Injection Locking Techniques for Spectrum Analysis

    SciTech Connect (OSTI)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-19

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  7. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  8. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui; Michelle D. Shinn

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  9. Photodetachment process for beam neutralization

    DOE Patents [OSTI]

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  10. Prediction of Material Thermal Properties and Beam-Particle Interactio...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: MS&T 2013, Montreal, Canada, 20131027, 20131031 Research Org: Oak Ridge National ...

  11. Prediction of Material Thermal Properties and Beam-Particle Interactio...

    Office of Scientific and Technical Information (OSTI)

    Authors: Chen, Jian 1 ; Zheng, Lili 1 ; Feng, Zhili 1 ; Zhang, Wei 1 ; Dehoff, Ryan R 1 + Show Author Affiliations ORNL Publication Date: 2013-01-01 OSTI Identifier: ...

  12. Lithium thermal targets shot on PBFA II

    SciTech Connect (OSTI)

    Sawyer, P.S.; Aubert, J.H.; Baca, P.M.; McNamara, W.F.

    1993-09-01

    Recent lithium ion beam experiments on PBFAII have required intricate targets to measure beam performance and to study target physics issues. Because of the stopping power difference between lithium ions and protons, these targets have presented significantly increased challenges for material preparation and handling compared to previous proton shots. The greatest challenges included complex shaped gold hohlraums, CH foams of densities ranging from 3 to 6 mg/cm3 and vacuum seals covering large areas with a thickness under 1 um. Details regarding assembly and characterization of lithium thermal targets will be described in this poster.

  13. Measurement and fitting of spectrum and pulse shapes of a liquid methane moderator at IPNS

    SciTech Connect (OSTI)

    Carpenter, J.M.; Robinson, R.A.; Taylor, A.D.

    1983-01-01

    We have measured the absolute intensity, and the energy spectrum, and the pulse shapes as function of neutron energy for the IPNS liquid CH/sub 4/ F moderator, at 108 K. We have fitted the spectrum, corrected for attenuation by aluminum in the beam, using a new cutoff function and fitted the pulse shapes to a new function which is the sum of two decaying exponentials, convoluted with a gaussian, and determined the wavelength variation of the parameters. We present here the results of a preliminary analysis.

  14. Beam Trail Tracking at Fermilab

    SciTech Connect (OSTI)

    Nicklaus, Dennis J.; Carmichael, Linden Ralph; Neswold, Richard; Yuan, Zongwei

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  15. Light beam frequency comb generator

    DOE Patents [OSTI]

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  16. Light beam frequency comb generator

    DOE Patents [OSTI]

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  17. Gamma Ray Spectrum Catalogs from Idaho National Laboratory (INL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heath, R. L.

    Gamma-ray spectrometry is widely applied as a tool for the assay of radioactive source material to identify the isotopes present and characterize radiation fields. Beginning with the startup of the world's first high-flux beam reactor, Materials Test Reactor (MTR), INL has pioneered the development of x-ray spectrometry for use in basic nuclear research and a variety of disciplines using radioisotopes and other radiation sources. Beginning in the early 1950s, a program was instituted to make the technique a precise laboratory tool. Standards were established for detectors and nuclear electronics to promote the production of commercial laboratory spectrometers. It was also necessary to produce a comprehensive collection of standard detector response functions for individual radio nuclides to permit the use of gamma-ray spectrometers for identification of radioisotopes present in radiation sources. This led to the publication of standard measurement methodology and a set of Gamma-Ray Spectrum Catalogues. These publications, which established standards for detector systems, experimental methods and reference spectra for both NaI (Tl) scintillation detectors and Ge(Li) - Si( Li) semiconductor devices, became standard reference works, distributed worldwide. Over 40,000 copies have been distributed by the Office of Science and Technical Information (OSTI). Unfortunately, although they are still very much in demand, they are all out of print at this time. The INL is converting this large volume of data to a format which is consistent with current information technology and meets the needs of the scientific community. Three are available online with the longest being more than 800 pages in length. Plotted spectra and decay data have been converted to digital formats and updated, including decay scheme graphics. These online catalogs are: • Ge(Li)-Si(Li) Gamma Spectrum Catalog (Published 3-29-1999) • NaI(Tl) Gamma Spectrum Catalog (Published 4-1-1997) • Gamma

  18. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect (OSTI)

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  19. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  20. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  1. Ion Beam Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmore » beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.« less

  2. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  3. Susceptor heating device for electron beam brazing

    DOE Patents [OSTI]

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  4. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  5. LHC beam-beam compensation studies at RHIC

    SciTech Connect (OSTI)

    Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.

    2009-05-04

    Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.

  6. Quenched hadron spectrum of QCD

    SciTech Connect (OSTI)

    Kim, Seyong

    1992-12-01

    We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32{sup 3} {times} 64 lattice volume at {beta} = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the {triangle} masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.

  7. Quenched hadron spectrum of QCD

    SciTech Connect (OSTI)

    Kim, Seyong.

    1992-12-01

    We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32[sup 3] [times] 64 lattice volume at [beta] = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the [triangle] masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.

  8. SAW correlator spread spectrum receiver

    DOE Patents [OSTI]

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  9. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect (OSTI)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  10. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  11. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  12. Method for separating FEL output beams from long wavelength radiation

    DOE Patents [OSTI]

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  13. Thermoacoustic dosimetry of electron beam in extra field

    SciTech Connect (OSTI)

    Kalinichenko, A.I.; Kresnin, Yu.A.; Popov, G.F.

    1996-12-31

    The theoretical basis is elaborated for thermoacoustic dosimetry of electron beam by one-dimensional (1-D) thin target TT in extra thermal and electromagnetic fields. The basic equation joining the deposited energy distribution to the stress wave amplitude in the case when the generation coefficient is function of temperature and coordinate in material permits realizing nonlinear thermoacoustic dosimetry with regulated sensitivity. Some variants of joint employment of the thermoacoustic dosimeter and electromagnetic scanner/splitter are considered. The first variant consists in beam scanning along 1-D dosimeter body to create the moving thermoacoustic source. This regime may be used for dosimetry of long beams. The second variant consists in spectral decomposition of the beam in electromagnetic field before its directing to the dosimeter. Principle of operation for some termoelastic dosimeters on the base of 1-D TTs is considered.

  14. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOE Patents [OSTI]

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  15. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    SciTech Connect (OSTI)

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.

    2011-10-15

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  16. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-1 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI BEAM LINE 5-2 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI BEAM LINE 5-4 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02,

  17. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-1 Nov. 09, 2015 Nov. 10, 2015 Nov. 11, 2015 Nov. 12, 2015 Nov. 13, 2015 Nov. 14, 2015 Nov. 15, 2015 DOWN DOWN DOWN DOWN DOWN STUP STUP DOWN DOWN DOWN DOWN STUP STUP STUP DOWN DOWN DOWN DOWN STUP STUP STUP BEAM LINE 9-2 Nov. 09, 2015 Nov. 10, 2015 Nov. 11, 2015 Nov. 12, 2015 Nov. 13, 2015 Nov. 14, 2015 Nov. 15, 2015 DOWN DOWN DOWN DOWN DOWN STUP STUP DOWN DOWN DOWN DOWN STUP STUP STUP DOWN DOWN DOWN DOWN STUP STUP STUP BEAM LINE 11-1 Nov. 09, 2015 Nov. 10, 2015 Nov. 11, 2015 Nov. 12, 2015 Nov.

  18. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 09, 2015 Nov. 10, 2015 Nov. 11, 2015 Nov. 12, 2015 Nov. 13, 2015 Nov. 14, 2015 Nov. 15, 2015 DOWN DOWN DOWN DOWN DOWN STUP STUP DOWN DOWN DOWN DOWN STUP STUP STUP DOWN DOWN DOWN DOWN STUP STUP STUP BEAM LINE 8-1 Nov. 09, 2015 Nov. 10, 2015 Nov. 11, 2015 Nov. 12, 2015 Nov. 13, 2015 Nov. 14, 2015 Nov. 15, 2015 DOWN DOWN DOWN DOWN DOWN Unscheduled Unscheduled DOWN DOWN DOWN DOWN Unscheduled Unscheduled Unscheduled DOWN DOWN DOWN DOWN Unscheduled Unscheduled Unscheduled BEAM LINE 8-2 Nov.

  19. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect (OSTI)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Evans, J. A.; Thwaites, D. I.

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  20. Beam position monitor sensitivity for low-{beta} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1993-11-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-{beta} beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic ({beta} = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-{beta}) beams.

  1. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  2. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  3. System and method for delivery of neutron beams for medical therapy

    DOE Patents [OSTI]

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  4. System and method for delivery of neutron beams for medical therapy

    DOE Patents [OSTI]

    Nigg, David W. (Idaho Falls, ID); Wemple, Charles A. (Idaho Falls, ID)

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  5. Tuning the Spectrum for Health and Productivity

    Energy Savers [EERE]

    Berlin Institute of Technology Berlin, Germany November 2015 Moderator, Naomi J Miller, Senior Scientist, PNNL Tuning the Spectrum for Health and Productivity DOE SSL...

  6. Precision control of thermal transport in cryogenic single-crystal silicon devices

    SciTech Connect (OSTI)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-28

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1?K. It is shown that the phonon mean-free-path ? is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ?, even when the surface is fairly smooth, 510?nm rms, and the peak thermal wavelength is 0.6??m. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30?nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ?, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of 8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  7. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  8. Higher harmonics generation in relativistic electron beam with virtual cathode

    SciTech Connect (OSTI)

    Kurkin, S. A. Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  9. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  10. SSRL Beam Lines Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Beam Lines Map Beam Line by Number | Beam Line by Techniques | Photon Source Parameters

  11. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... BEAM LINE 6-2 May 24, 2004 May 25, 2004 May 26, 2004 May 27, 2004 May 28, 2004 May 29, 2004 May 30, 2004 2664 D.STRAWN 2730 A.BELL 2699 R.SHAFER 2699 R.SHAFER 2648 F.BRIDGES 2648 ...

  12. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  13. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... BEAM LINE 8-2 Mar. 18, 2013 Mar. 19, 2013 Mar. 20, 2013 Mar. 21, 2013 Mar. 22, 2013 Mar. 23, 2013 Mar. 24, 2013 8053 D.NORDLUND 3769 S.Dupont 3769 S.Dupont 3769 S.Dupont 3731 ...

  14. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  15. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  16. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  17. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 9-1 Feb. 14, 2005 Feb. 15, 2005 Feb. 16, 2005 Feb. 17, 2005 Feb. 18, 2005 Feb. 19, 2005 Feb. 20, 2005 8803 C.SMITH 8803 C.SMITHDOWN 9B01 A.DEACON 9B01 A.DEACON 1B00 ...

  18. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 7-1 Nov. 06, 2006 Nov. 07, 2006 Nov. 08, 2006 Nov. 09, 2006 Nov. 10, 2006 Nov. 11, 2006 Nov. 12, 2006 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH ...

  19. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 7-1 Nov. 11, 2013 Nov. 12, 2013 Nov. 13, 2013 Nov. 14, 2013 Nov. 15, 2013 Nov. 16, 2013 Nov. 17, 2013 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith ...

  20. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 9-1 Nov. 07, 2011 Nov. 08, 2011 Nov. 09, 2011 Nov. 10, 2011 Nov. 11, 2011 Nov. 12, 2011 Nov. 13, 2011 DOWN DOWN DOWN DOWN 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH DOWN DOWN ...

  1. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  2. Market Potential for Advanced Thermally Activated BCHP in Five National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Account Sectors, May 2003 | Department of Energy Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Potential distributed generation (DG) and combined heat and power (CHP) applications in the United States cover a broad spectrum of market segments, from nursing homes requiring a few hundred kilowatts (kW) of power and an economical hot water source

  3. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  4. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect (OSTI)

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  5. Beam position monitor sensitivity for low-[beta] beams

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-10-10

    Design of a beam position monitor (BPM) which is sensitive to low velo charged particle beams is considered. Quantitative estimates are made for the corrections to the conventional approximations to solutions of the Laplace Equation in two-dimensions when a BPM is used to measure to position of low velocity (low-[beta]) beams. (AIP)

  6. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOE Patents [OSTI]

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  7. Algorithm for Building a Spectrum for NREL's One-Sun Multi-Source Simulator: Preprint

    SciTech Connect (OSTI)

    Moriarty, T.; Emery, K.; Jablonski, J.

    2012-06-01

    Historically, the tools used at NREL to compensate for the difference between a reference spectrum and a simulator spectrum have been well-matched reference cells and the application of a calculated spectral mismatch correction factor, M. This paper describes the algorithm for adjusting the spectrum of a 9-channel fiber-optic-based solar simulator with a uniform beam size of 9 cm square at 1-sun. The combination of this algorithm and the One-Sun Multi-Source Simulator (OSMSS) hardware reduces NREL's current vs. voltage measurement time for a typical three-junction device from man-days to man-minutes. These time savings may be significantly greater for devices with more junctions.

  8. The Beam | Open Energy Information

    Open Energy Info (EERE)

    Name: The Beam Place: Brookline, Massachusetts Zip: 2446 Product: The Beam is a start-up company that looks to establish an online retail portal that would market and sell...

  9. ANL Beams and Applications Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Seminar Sponsers AAI ASD ATLAS HEP PHY ANL Beams and Applications Seminar The ANL Beam and Applications Seminar is...

  10. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  11. Design and Testing of a 10B4C Capsule for Spectral-Tailoring in Mixed-Spectrum Reactors

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Wittman, Richard S.; Metz, Lori A.; Finn, Erin C.; Friese, Judah I.

    2014-04-11

    A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum. A cadmium outer cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

  12. Methods of quantum mechanics applied to partially coherent light beams

    SciTech Connect (OSTI)

    Gase, R.

    1994-07-01

    Whenever the natural modes of the modal expansion of the cross-spectral density have a common waist, the wave equation in the waist plane has the form of a two-dimensional Schroedinger equation. Thus the results of quantum mechanics and quantum statistics, including the quantized Schroedinger field, can be transferred to partially coherent light. Such conceptions as temperature, entropy, and energy are used advantageously. A subclass of radiation, radiation in thermal equilibrium, is introduced, and, as examples, the Gaussian Schell-model beam and the quasi-rectangle model beam are investigated. The M{sup 2} factor is strongly related to the mean value of energy. 29 refs., 3 figs.

  13. CLASHING BEAM PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  14. Laser beam guard clamps

    DOE Patents [OSTI]

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  15. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-1 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled BEAM LINE 5-2 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN Unscheduled Unscheduled Unscheduled

  16. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  17. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  18. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  19. Neutral particle beam intensity controller

    SciTech Connect (OSTI)

    Dagenhart, W.K.

    1988-01-01

    A method is proposed in which an amplitude-modulated, rotating magnetic field is applied to an accelerated ion beam in a gas neutralizer to defocus the resultant neutral and ion beam in a controlled manner to control the intensity of the neutral beam along the beam axis at constant beam energy. Adjustments in the gas pressure determine the fraction of ions that is neutralized. The rotating magnetic field alters the orbits of the ions in the gas neutralizer before they are neutralized. By adjusting the gas pressure and the amplitude of the rotating magnetic field, one can control the fraction of neutral and ion particles transmitted out of the neutralizer along the central beam axis to a fusion device or other application. This method can also be used for applications where no neutralization gas is used and thus most of the beam remains in the ion state. The defocused neutral or ion particles are sprayed onto an actively cooled beam dump, which intercepts the deflected particles. The beam dump has a central opening for passage of the remaining beam along the central axis of the beam line. 4 refs., 4 figs.

  20. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  1. INITIAL OPERATION OF THE LEDA BEAM-INDUCED FLUORESCENCE DIAGNOSTIC

    SciTech Connect (OSTI)

    J. KAMPERSCHROER; ET AL

    2000-06-01

    A diagnostic based on beam-induced fluorescence has been developed and used to examine the expanded beam in the High-Energy Beam Transport (HEBT) section of the Low Energy Demonstration Accelerator (LEDA). The system consists of a camera, a gas injector, a spectrometer, and a control system. Gas is injected to provide a medium for the beam to excite, the camera captures the resulting image of the fluorescing gas, and the spectrometer measures the spectrum of the emitted light. EPICS was used to control the camera and acquire and store images. Data analysis is presently being performed offline. A Kodak DCS420m professional CCD camera is the primary component of the optical system. InterScience, Inc. modified the camera with the addition of a gain of 4000 image intensifier, thereby producing an intensified camera with a sensitivity of {approximately}0.5 milli-lux. Light is gathered with a 1 inch format, 16-160 mm, Computar zoom lens. This lens is attached to the camera via a Century Precision Optics relay lens. Images obtained using only hydrogen from the beam stop exhibited features not yet understood. Images with good signal-to-noise ratio were obtained with the injection of sufficient nitrogen to raise the HEBT pressure to 2-8x10{sup {minus}6} torr. Two strong nitrogen lines, believed to be of the first negative group of N{sub 2}{sup +}, were identified at 391 and 428 nm.

  2. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect (OSTI)

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e-/e+ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  3. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    SciTech Connect (OSTI)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  4. Simulation of energy absorption spectrum in NaI crystal detector for multiple gamma energy using Monte Carlo method

    SciTech Connect (OSTI)

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Handayani, Gunawan

    2015-04-16

    The spectrum of gamma energy absorption in the NaI crystal (scintillation detector) is the interaction result of gamma photon with NaI crystal, and it’s associated with the photon gamma energy incoming to the detector. Through a simulation approach, we can perform an early observation of gamma energy absorption spectrum in a scintillator crystal detector (NaI) before the experiment conducted. In this paper, we present a simulation model result of gamma energy absorption spectrum for energy 100-700 keV (i.e. 297 keV, 400 keV and 662 keV). This simulation developed based on the concept of photon beam point source distribution and photon cross section interaction with the Monte Carlo method. Our computational code has been successfully predicting the multiple energy peaks absorption spectrum, which derived from multiple photon energy sources.

  5. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  6. WTB & Spectrum Access Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WTB & Spectrum Access Overview WTB & Spectrum Access Overview Slides from FCC's Wireless Telecommunications Bureau presentation on spectrum access. WTB & Spectrum Access Overview (1.25 MB) More Documents & Publications An Introduction to Spectrum Engineering NBP RFI: Communications Requirements Reply Comments of Southern Company Services, Inc.

  7. A high power beam-on-target test of liquid lithium target for RIA.

    SciTech Connect (OSTI)

    Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

    2005-08-29

    Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

  8. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect (OSTI)

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  9. RECENT EXPERIENCE WITH ELECTRON LENS BEAM-BEAM COMPENSATION AT...

    Office of Scientific and Technical Information (OSTI)

    with use of bent crystals and pulsed dipole deflectors (orbit correctors). The angular beam deflection by the crystal - see Fig.2 - must be large enough to send the...

  10. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  11. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructure changes exhibitedmore » a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  12. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  13. Method for compensating bellows pressure loads while accommodating thermal deformations

    SciTech Connect (OSTI)

    Woodle, M.H.

    1985-01-01

    Many metal bellows are used on storage ring vacuum chambers. They allow the ring to accommodate deformations associated with alignment, mechanical assembly and thermal expansion. The NSLS has two such electron storage rings, the vuv ring and the x-ray ring. Both rings utilize a number of welded metal bellows within the ring and at every beam port. There are provisions for 16 beam ports on the vuv and 28 ports in the x-ray ring. At each of these locations the bellows are acted on by an external pressure of 1 atmosphere, which causes a 520 lb reaction at the vacuum chamber beam port and at the beamline flange downstream of the bellows. The use of rigid tie rods across the bellows flanges to support this load is troublesome because most storage ring vacuum chambers are baked in situ to achieve high internal vacuum. Significant forces can develop on components if thermal deformation is restrained and damage could occur.

  14. Thermal stability of bimetallic Au/Fe nanoparticles in silica matrix

    SciTech Connect (OSTI)

    Pannu, Compesh Singh, Udai B. Hooda, Sonu Kabiraj, D. Avasthi, D. K.

    2014-04-24

    Thin silica film containing Au and Fe bimetallic nanoparticles were prepared by atom beam cosputtering. The samples were annealed at different temperatures from 400 to 800° C to study the thermal stability of bimetallic nanoparticles using X ray diffraction. It is observed that at 800° C strong structural rearrangement took place leading to thermal decomposition of bimetallic nanoparticles.

  15. LANSCE Beam Current Limiter (XL)

    SciTech Connect (OSTI)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device.

  16. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  17. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  18. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  19. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    SciTech Connect (OSTI)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  20. Beam experiments related to the head-on beam-beam compensation project at RHIC

    SciTech Connect (OSTI)

    Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.

    2011-03-28

    Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.

  1. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  2. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  3. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, Daniel R.; Alford, W. J.; Gruetzner, James K.

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  4. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  5. Compact electron beam focusing column

    SciTech Connect (OSTI)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  6. Embedded Optical Sensors for Thermal Barrier Coatings

    SciTech Connect (OSTI)

    David R. Clarke

    2006-07-31

    The third year of this program on developing embedded optical sensors for thermal barrier coatings has been devoted to two principal topics: (i) continuing the assessment of the long-term, thermal cycle stability of the Eu{sup 3+} doped 8YSZ temperature sensor coatings, and (ii) improving the fiber-optic based luminescence detector system. Following the earlier, preliminary findings, it has been found that not only is the luminescence from the sensors not affected by prolonged thermal cycling, even after 195 hours at 1425 C, but the variation in luminescence lifetime with temperature remains unchanged. As the temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future, our findings indicate that the Eu{sup 3+} doped thermal barrier coating sensors are very robust and have the potential of being stable throughout the life of coatings. Investigation of Eu{sup 3+} doped coatings prepared by plasma-spraying exhibited the same luminescence characteristics as those prepared by electron-beam evaporation. This is of major significance since thermal barrier coatings can be prepared by both process technologies. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  7. The Higgs mass and natural supersymmetric spectrum from the landscape...

    Office of Scientific and Technical Information (OSTI)

    The Higgs mass and natural supersymmetric spectrum from the landscape Title: The Higgs mass and natural supersymmetric spectrum from the landscape Authors: Baer, Howard ; Barger, ...

  8. Spontaneous emission spectrum of a diabatically pulsed silicon...

    Office of Scientific and Technical Information (OSTI)

    Spontaneous emission spectrum of a diabatically pulsed silicon charge qubit. Citation Details In-Document Search Title: Spontaneous emission spectrum of a diabatically pulsed ...

  9. Electron energy spectrum and maximum disruption angle under multi...

    Office of Scientific and Technical Information (OSTI)

    Conference: Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum ...

  10. Electron energy spectrum and maximum disruption angle under multi...

    Office of Scientific and Technical Information (OSTI)

    Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung Citation Details In-Document Search Title: Electron energy spectrum and maximum disruption ...

  11. ARM - Publications: Science Team Meeting Documents: Solar spectrum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar spectrum: Uncertainties between current models and implications for atmospheric ... Detailed knowledge of the solar spectrum is required for precise modeling of atmospheric ...

  12. The NREL Spectrum of Clean Energy Innovation - Continuum Magazine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar cell and cooling technology solve industry problems. Continuum The NREL Spectrum of ... NREL Leads Energy Systems Integration 3 Spectrum of Clean Energy Innovation 2 Deliberate ...

  13. Electromagnetic effects on the light hadron spectrum (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Electromagnetic effects on the light hadron spectrum Citation Details In-Document Search Title: Electromagnetic effects on the light hadron spectrum Authors: Basak, S. ...

  14. Precision Determination Of The Nonlinear Matter Power Spectrum...

    Office of Scientific and Technical Information (OSTI)

    Precision Determination Of The Nonlinear Matter Power Spectrum Citation Details In-Document Search Title: Precision Determination Of The Nonlinear Matter Power Spectrum You are...

  15. General properties of the gravitational wave spectrum from phase...

    Office of Scientific and Technical Information (OSTI)

    General properties of the gravitational wave spectrum from phase transitions Citation Details In-Document Search Title: General properties of the gravitational wave spectrum from ...

  16. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning ...

  17. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED...

    Office of Scientific and Technical Information (OSTI)

    SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II) Citation Details In-Document Search Title: COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND ...

  18. Baryon Spectrum from Superconformal Quantum Mechanics and its...

    Office of Scientific and Technical Information (OSTI)

    Baryon Spectrum from Superconformal Quantum Mechanics and its Light-Front Holographic Embedding Citation Details In-Document Search Title: Baryon Spectrum from Superconformal...

  19. Baryon Spectrum from Superconformal Quantum Mechanics and its...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Baryon Spectrum from Superconformal Quantum Mechanics and its Light-Front Holographic Embedding Citation Details In-Document Search Title: Baryon Spectrum from...

  20. Updated flux information for neutron scattering and irradiation facilities at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.; Sengupta, S.; Greenwood, L.R.; Farrell, K.

    1997-08-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. While most reactors attempt to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9, used for neutron scattering and capture reactions, supporting physics, chemistry and biology experiments. All horizontal beam tubes were built tangential to the direction of the emerging neutrons, except for the H-2 beam tube, which looks directly at the core and has been used for neutron cross section measurements utilizing fast neutrons and for the TRISTAN fission product studies. In recent years, there have been some beam modifications and new instrumentation introduced at the HFBR. A high resolution neutron powder diffractometer instrument is now operating with a resolution of 5 {times} 10{sup {minus}4} at horizontal beam line H-1. To study scattering from liquid surfaces, a neutron reflection spectrometer was introduced on the CNF beam line at H-9. In the past year, a fourth beam line has been added to the CNF line at H-9. The existing beam plug at the H-6 beam line has recently been removed and a new plug, which will feature super mirrored surfaces, is now being installed. Last year, the vertical beam thimble, V-13, a fixed port filled with thirty year old samples used for HFBR material surveillance studies was replaced by a new thimble and charging station at the core edge creating an irradiation facility to substitute for the original V-13. A neutron dosimetry program has begun to measure and calculate the energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  1. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  2. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured

  3. Thermal conductivity of configurable two-dimensional carbon nanotube architecture and strain modulation

    SciTech Connect (OSTI)

    Zhan, H. F.; Bell, J. M.; Gu, Y. T., E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George St., Brisbane, Queensland 4000 (Australia); Zhang, G. [Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632 (Singapore)

    2014-10-13

    We reported the thermal conductivity of the two-dimensional carbon nanotube (CNT)-based architecture, which can be constructed through welding of single-wall CNTs by electron beam. Using large-scale nonequilibrium molecular dynamics simulations, the thermal conductivity is found to vary with different junction types due to their different phonon scatterings at the junction. The strong length and strain dependence of the thermal conductivity suggests an effective avenue to tune the thermal transport properties of the CNT-based architecture, benefiting the design of nanoscale thermal rectifiers or phonon engineering.

  4. Betatron radiation from a beam driven plasma source

    SciTech Connect (OSTI)

    Litos, M.; Corde, S.

    2012-12-21

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 Multiplication-Sign 10{sup 10} electrons, 20 Multiplication-Sign 20{mu}m{sup 2} spot, 20 - 100{mu}m length, 20GeV energy) when sent into a plasma source with a nominal density of {approx} 1 Multiplication-Sign 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 Multiplication-Sign 35cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  5. Experimental study of proton beam halo in mismatched beams

    SciTech Connect (OSTI)

    Allen, C. K.; Chan, K. D.; Colestock, P. L. ,; Garnett, R. W.; Gilpatrick, J. D.; Qiang, J.; Lysenko, W. P.; Smith, H. V.; Schneider, J. D.; Sheffield, R. L.; Wangler, Thomas P.,; Schulze, M. E.; Crandall, K. R.

    2002-01-01

    We report measurements of transverse beam-halo formation in mismatched proton beams in a 52-quadrupole FODO-transport channel following the 6.7 MeV RFQ at the Low-Energy Demonstration Accelerator (LEDA) at Los Alamos. Beam profiles in both transverse planes were measured using a new diagnostic device that consists of a movable carbon filament for measurement of the beam core, and scraper plates for measurement of the outer part of the distributions. The initial results indicate a surprisingly strong growth rate of the rms emittance even for the modest space-charge tune depressions of the experiment. Our results are consistent with the complete transfer of free energy of the mismatched beams into emittance growth within 10 envelope oscillations for both the breathing and the quadrupole modes.

  6. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  7. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-02-20

    Among the new methods being investigated for the post-process reduction of volatile organic compounds (VOCs) in atmospheric-pressure air streams are based on non-thermal plasmas. Electron beam, pulsed corona and dielectric-barrier discharge methods are among the more extensively investigated techniques for producing non-thermal plasmas. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. In this paper the authors present experimental results using a compact electron beam reactor, a pulsed corona and a dielectric-barrier discharge reactor. They have used these reactors to study the removal of a wide variety of VOCs. The effects of background gas composition and gas temperature on the decomposition chemistry have been studied. They present a description of the reactions that control the efficiency of the plasma process. They have found that pulsed corona and other types of electrical discharge reactors are most suitable only for processes requiring O radicals. For VOCs requiring copious amounts of electrons, ions, N atoms or OH radicals, the use of electron beam reactors is generally the best way of minimizing the electrical power consumption. Electron beam processing is remarkably more effective for all of the VOCs tested. For control of VOC emissions from dilute, large volume sources such as paint spray booths, cost analysis shows that the electron beam method is cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  8. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU CHANGE/8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 8821 D.Brehmer 8821 D.Brehmer 8821 D.Brehmer 3064* S.SUN 3075

  9. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN DOWN DOWN DOWN DOWN 3064 S.SUN 3064 S.SUN DOWN DOWN DOWN DOWN VUV CHECKOUT

  10. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU BEAM LINE 8-1 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 Unscheduled Unscheduled Unscheduled Unscheduled

  11. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 Unscheduled Unscheduled Unscheduled 3269 S.SUN 3269 S.SUN 3269 S.SUN 3269

  12. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN 8859 B.JOHNSON 8051* M.TONEY 8051* M.TONEY 8051* M.TONEY 3205 M.BIBEE 3205 M.BIBEE Xray CHECKOUT/8859 CHANGE/8051* M.TON 8051* M.TONEY 8051* M.TONEY Xray CHECKOUT/3205 3205

  13. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  14. Resolution of a High Performance Cavity Beam Positron Monitor System

    SciTech Connect (OSTI)

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; /SLAC /Caltech /KEK, Tsukuba

    2007-07-06

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  15. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  16. NSLS-II RF BEAM POSITION MONITOR

    SciTech Connect (OSTI)

    Vetter, K.; Della Penna, A. J.; DeLong, J.; Kosciuk, B.; Mead, J.; Pinayev, I.; Singh, O.; Tian, Y.; Ha, K.; Portmann, G.; Sebek J.

    2011-03-28

    An internal R&D program has been undertaken at BNL to develop a sub-micron RF Beam Position Monitor (BPM) for the NSLS-II 3rd generation light source that is currently under construction. The BPM R&D program started in August 2009. Successful beam tests were conducted 15 months from the start of the program. The NSLS-II RF BPM has been designed to meet all requirements for the NSLS-II Injection system and Storage Ring. Housing of the RF BPM's in +-0.1 C thermally controlled racks provide sub-micron stabilization without active correction. An active pilot-tone has been incorporated to aid long-term (8hr min) stabilization to 200nm RMS. The development of a sub-micron BPM for the NSLS-II has successfully demonstrated performance and stability. Pilot Tone calibration combiner and RF synthesizer has been implemented and algorithm development is underway. The program is currently on schedule to start production development of 60 Injection BPM's starting in the Fall of 2011. The production of {approx}250 Storage Ring BPM's will overlap the Injection schedule.

  17. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the

  18. Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER

    SciTech Connect (OSTI)

    Zaniol, B.; Pasqualotto, R.; Barbisan, M.

    2012-04-15

    A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, according to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.

  19. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  20. Dark matter beams at LBNF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  1. RF generation in the DARHT Axis-II beam dump

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  2. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect (OSTI)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  3. Blue running of the primordial tensor spectrum

    SciTech Connect (OSTI)

    Gong, Jinn-Ouk

    2014-07-01

    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  4. A laboratory experiment to examine the effect of auroral beams on spacecraft charging in the ionosphere

    SciTech Connect (OSTI)

    Siddiqui, M. U.; Gayetsky, L. E.; Mella, M. R.; Lynch, K. A.; Lessard, M. R.

    2011-09-15

    A 2.54 cm diameter conducting electrically isolated Copper sphere is suspended in a low density (10{sup 4} cm{sup -3}), low temperature (T{sub e} = 0.5 eV) Argon plasma, which mimics a spacecraft in an ionospheric plasma. An electron beam with current density of approximately 10{sup -10} A/cm{sup 2} and beam spot of 10.2 cm diameter, which mimics an auroral electron beam, is fired at the sphere while varying the beam energy from 100 eV to 2 keV. The plasma potential in the sheath around the sphere is measured using an emissive probe as the electron beam energy is varied. To observe the effects of the electron beam, the experimental sheath potential profiles are compared to a model of the plasma potential around a spherically symmetric charge distribution in the absence of electron beams. Comparison between the experimental data and the model shows that the sphere is less negative than the model predicts by up to half a volt for beam energies that produce high secondary electron emission from the surface of the sphere. It is shown that this secondary emission can account for changes in potential of spacecraft in the ionosphere as they pass through auroral beams and thus helps to improve interpretations of ionospheric thermal ion distributions.

  5. Federal Spectrum Management at the National Telecommunications and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Administration | Department of Energy Federal Spectrum Management at the National Telecommunications and Information Administration Federal Spectrum Management at the National Telecommunications and Information Administration Slides from National Telecommunications and Information Administration's presentation on Federal spectrum management. Federal Spectrum Management at the National Telecommunications and Information Administration (551.64 KB) More Documents & Publications

  6. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  7. Beam-halo measurements in high-current proton beams

    SciTech Connect (OSTI)

    Allen, C.K.; Chan, K.C.D.; Colestock, P.L.; Crandall, K.R.; Garnett, R.W.; Gilpatrick, J.D.; Lysenko, W.; Qiang, J.; Schneider, J.D.; Schulze, M.E.; Sheffield, R.L.; Smith, H.V.; Wangler, T.P.

    2002-01-11

    We present results from an experimental study of the beam halo in a high-current 6.7-MeV proton beam propagating through a 52-quadrupole periodic-focusing channel. The gradients of the first four quadrupoles were independently adjusted to match or mismatch the injected beam. Emittances and beamwidths were obtained from measured profiles for comparisons with maximum emittance-growth predictions of a free-energy model and maximum halo-amplitude predictions of a particle-core model. The experimental results support both models and the present theoretical picture of halo formation.

  8. BEAM-BEAM SIMULATIONS FOR THE ERHIC ELECTRON RING.

    SciTech Connect (OSTI)

    MONTAG, C.

    2005-05-16

    To study collisions between polarized electrons and heavy ions or polarized protons at high energy, adding a 10 GeV electron storage ring to the existing RHIC facility is currently under consideration. To achieve high luminosities of several 10{sup 33} cm{sup -2} sec{sup -1} range, a vertical beam-beam tuneshift parameter of {zeta}{sub y} = 0.08 is required for the electron beam. Simulation studies are being performed to study the feasibility of this high tuneshift parameter and explore the potential for even higher tuneshifts. Recent results of these studies are presented.

  9. Clouds on the hot Jupiter HD189733b: Constraints from the reflection spectrum

    SciTech Connect (OSTI)

    Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.; Hackler, T.; Fletcher, L. N.; Lee, J. M.; Gibson, N. P.

    2014-05-10

    The hot Jupiter HD 189733b is probably the best studied of the known extrasolar planets, with published transit and eclipse spectra covering the near UV to mid-IR range. Recent work on the transmission spectrum has shown clear evidence for the presence of clouds in its atmosphere, which significantly increases the model atmosphere parameter space that must be explored in order to fully characterize this planet. In this work, we apply the NEMESIS atmospheric retrieval code to the recently published HST/STIS reflection spectrum, and also to the dayside thermal emission spectrum in light of new Spitzer/IRAC measurements, as well as our own re-analysis of the HST/NICMOS data. We first use the STIS data to place some constraints on the nature of clouds on HD 189733b and explore solution degeneracy between different cloud properties and the abundance of Na in the atmosphere; as already noted in previous work, absorption due to Na plays a significant role in determining the shape of the reflection spectrum. We then perform a new retrieval of the temperature profile and abundances of H{sub 2}O, CO{sub 2}, CO, and CH{sub 4} from the dayside thermal emission spectrum. Finally, we investigate the effect of including cloud in the model on this retrieval process. We find that the current quality of data does not warrant the extra complexity introduced by including cloud in the model; however, future data are likely to be of sufficient resolution and signal-to-noise that a more complete model, including scattering particles, will be required.

  10. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect (OSTI)

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  11. Solid state thermal rectifier

    DOE Patents [OSTI]

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  12. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  13. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  14. Initial study of the optical spectrum of the ISIS H{sup -} ion source plasma

    SciTech Connect (OSTI)

    Lawrie, S. R.; Faircloth, D. C.; Philippe, K.

    2012-02-15

    The front end test stand is being constructed at the Rutherford Appleton Laboratory, with the aim of producing a 60 mA, 2 ms, 50 Hz, perfectly chopped H{sup -} ion beam. To meet the beam requirements, a more detailed understanding of the ion source plasma is required. To this end, an initial study is made of the optical spectrum of the plasma using a digital spectrometer. The atomic and molecular emission lines of hydrogen and caesium are clearly distinguished and a quantitative comparison is made when the ion source is run in different conditions. The electron temperature is 0.6 eV and measured line widths vary by up to 75%.

  15. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  16. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  17. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  18. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  19. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  20. Coherent instabilities of a relativistic bunched beam

    SciTech Connect (OSTI)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  1. Adaptive, full-spectrum solar energy system

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  2. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  3. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  4. CONTINUOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE.

    SciTech Connect (OSTI)

    GLENN,J.W.; TSOUPAS,N.; BROWN,K.A.; BIRYUKOV,V.M.

    2001-06-18

    A method to split off a few percent of the 6 x 10{sup 13} AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given.

  5. Reflected beam illumination microscopy using a microfluidics...

    Office of Scientific and Technical Information (OSTI)

    Reflected beam illumination microscopy using a microfluidics device - progress report 6152014. Citation Details In-Document Search Title: Reflected beam illumination microscopy ...

  6. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

  7. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  8. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  9. Monitoring external beam radiotherapy using real-time beam visualization

    SciTech Connect (OSTI)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  10. Observations and open questions in beam-beam interactions

    SciTech Connect (OSTI)

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  11. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    SciTech Connect (OSTI)

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beams current, while the filaments radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beams initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beams forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beams electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beams distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  12. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  13. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  14. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  15. Neutron spectra from beam-target reactions in dense Z-pinches

    SciTech Connect (OSTI)

    Appelbe, B. Chittenden, J.

    2015-10-15

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  16. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  17. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  18. The Fermilab neutrino beam program

    SciTech Connect (OSTI)

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  19. Repetitively pumped electron beam device

    DOE Patents [OSTI]

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  20. Repetitively pumped electron beam device

    DOE Patents [OSTI]

    Schlitt, Leland G. [Livermore, CA

    1979-07-24

    Apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired.

  1. Quantum fluctuations in beam dynamics.

    SciTech Connect (OSTI)

    Kim, K.-J.

    1998-06-04

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.

  2. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  3. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  4. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect (OSTI)

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  6. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  7. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  8. Single lens laser beam shaper

    DOE Patents [OSTI]

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  9. The near-infrared spectrum of ethynyl radical

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Anh T.; Hall, Gregory E.; Sears, Trevor J.

    2016-08-17

    We used transient diode laser absorption spectroscopy to measure three strong vibronic bands in the near infrared spectrum of the C2H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a 2Σ+ state at 6696 cm-1,more » a second 2Σ+ state at 7088 cm-1, and a 2Π state at 7110 cm-1. By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. Moreover, the observed states contain both X 2Σ+ and A 2Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. Finally, the case of C2H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.« less

  10. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  11. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect (OSTI)

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  12. Water vapor in the spectrum of the extrasolar planet HD 189733b. II. The eclipse

    SciTech Connect (OSTI)

    Crouzet, Nicolas; McCullough, Peter R.; Deming, Drake; Madhusudhan, Nikku

    2014-11-10

    Spectroscopic observations of exoplanets are crucial to infer the composition and properties of their atmospheres. HD 189733b is one of the most extensively studied exoplanets and is a cornerstone for hot Jupiter models. In this paper, we report the dayside emission spectrum of HD 189733b in the wavelength range 1.1-1.7 μm obtained with the Hubble Space Telescope Wide Field Camera 3 (WFC3) in spatial scan mode. The quality of the data is such that even a straightforward analysis yields a high-precision Poisson noise-limited spectrum: the median 1σ uncertainty is 57 ppm per 0.02 μm bin. We also build a white-light curve correcting for systematic effects and derive an absolute eclipse depth of 96 ± 39 ppm. The resulting spectrum shows marginal evidence for water vapor absorption, but can also be well explained by a blackbody spectrum. However, the combination of these WFC3 data with previous Spitzer photometric observations is best explained by a dayside atmosphere of HD 189733b with no thermal inversion and a nearly solar or subsolar H{sub 2}O abundance in a cloud-free atmosphere. Alternatively, this apparent subsolar abundance may be the result of clouds or hazes that future studies need to investigate.

  13. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  14. Plasma shield for in-air beam processes

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2008-05-15

    A novel concept/apparatus, the Plasma Shield, is introduced in this paper. The purpose of the Plasma Shield is designed to shield a target object chemically and thermally by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from an atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and a target object. The arc, which is composed of a pure noble gas, engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. The successful Plasma Shield was experimentally established and very high-quality electron beam welding with partial plasma shielding was performed. The principle of the operation and experimental results are discussed in the paper.

  15. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect (OSTI)

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  16. Means for counteracting charged particle beam divergence

    DOE Patents [OSTI]

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  17. FAST PIXEL SPACE CONVOLUTION FOR COSMIC MICROWAVE BACKGROUND SURVEYS WITH ASYMMETRIC BEAMS AND COMPLEX SCAN STRATEGIES: FEBeCoP

    SciTech Connect (OSTI)

    Mitra, S.; Rocha, G.; Gorski, K. M.; Lawrence, C. R.; Huffenberger, K. M.; Eriksen, H. K.; Ashdown, M. A. J. E-mail: graca@caltech.edu E-mail: Charles.R.Lawrence@jpl.nasa.gov E-mail: h.k.k.eriksen@astro.uio.no

    2011-03-15

    Precise measurement of the angular power spectrum of the cosmic microwave background (CMB) temperature and polarization anisotropy can tightly constrain many cosmological models and parameters. However, accurate measurements can only be realized in practice provided all major systematic effects have been taken into account. Beam asymmetry, coupled with the scan strategy, is a major source of systematic error in scanning CMB experiments such as Planck, the focus of our current interest. We envision Monte Carlo methods to rigorously study and account for the systematic effect of beams in CMB analysis. Toward that goal, we have developed a fast pixel space convolution method that can simulate sky maps observed by a scanning instrument, taking into account real beam shapes and scan strategy. The essence is to pre-compute the 'effective beams' using a computer code, 'Fast Effective Beam Convolution in Pixel space' (FEBeCoP), that we have developed for the Planck mission. The code computes effective beams given the focal plane beam characteristics of the Planck instrument and the full history of actual satellite pointing, and performs very fast convolution of sky signals using the effective beams. In this paper, we describe the algorithm and the computational scheme that has been implemented. We also outline a few applications of the effective beams in the precision analysis of Planck data, for characterizing the CMB anisotropy and for detecting and measuring properties of point sources.

  18. An Inventory Analysis of Thermal-spectrum Thorium-fueled Molten...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  19. Overview of the APT high-energy beam transport and beam expanders

    SciTech Connect (OSTI)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-08-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented.

  20. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    SciTech Connect (OSTI)

    Zdora, Marie-Christine; Thibault, Pierre; Pfeiffer, Franz; Zanette, Irene

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  1. EXPERIMENTAL STUDY OF PROTON-BEAM HALO INDUCED BY BEAM MISMATCH IN LEDA.

    SciTech Connect (OSTI)

    Wangler, Thomas P.,; Allen, C. K.; Colestock, P. L. ,; Chan, K. D.; Crandall, K. R.; Garnett, R. W.; Gilpatrick, J. D.; Lysenko, W. P.; Qiang, J.; Schneider, J. D.; Sheffield, R. L.; Smith, H. V.; Schulze, M. E.

    2001-01-01

    We report measurements of transverse beam halo in mismatched proton beams in a 52-quadrupole FODO transport channel following the 6.7-MeV LEDA RFQ. Beam profiles in both transverse planes are measured using beam-profile diagnostic devices that consist of a movable carbon filament for measurement of the dense beam core, and scraper plates for measurement of the halo. The gradients of the first four quadrupoles can be independently adjusted to mismatch the RFQ output beam into the beam-transport channel. The properties of the measured mismatched beam profiles in the transport channel will be compared with predictions from multiparticle beam-dynamics simulations.

  2. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  3. Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.

    SciTech Connect (OSTI)

    Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

    2008-06-23

    To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

  4. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  5. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    SciTech Connect (OSTI)

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermal conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.

  6. Study of thermal effects in an Nd doped phosphate glass laser rod

    SciTech Connect (OSTI)

    Uppal, J.S.; Monga, J.C.; Bhawalkar, D.D.

    1986-12-01

    Measurement of thermal effects in LHG-8 Nd:glass laser rod during the transient and the cooling phases are presented. The induced thermal lensing is determined by passing a He-Ne probe beam through the rod and measuring the changes in the intensity of the probe beam transmitted through an out-of-focus iris placed near the focal plane of an external lens. Expression for the power of the Gaussian beam transmitted through a stressed laser rod placed between two crossed polarizers is derived. The values of the induced focal length corresponding to the temperature gradient deducted from the measurements of induced birefringence, an independent observable of thermal effects are obtained. These value are found to be in fairly good agreement with the directly measured values.

  7. Comparison of non-thermal plasma techniques for abatement of volatile organic compounds and nitrogen oxides

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-01-11

    Non-thermal plasma processing is an emerging technology for the abatement of dilute concentrations of volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}) and other hazardous air pollutants (HAPs) in atmospheric-pressure gas streams. Either electrical discharge or electron beam methods can produce these plasmas. Recent laboratory-scale experiments show that the electron beam method is remarkably more energy efficient than competing non-thermal plasma techniques based on pulsed corona and other types of electrical discharge plasma. Preliminary cost analysis based on these data also show that the electron beam method may be cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  8. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  9. Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO{sub 2} matrix

    SciTech Connect (OSTI)

    Saxena, Nupur Kumar, Pragati; Gupta, Vinay

    2015-05-15

    Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2} matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO{sub 2} is an important issue to fabricate high efficiency devices based on Si-NCs. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 C. This suggests that by controlling the annealing temperature, the dispersion of Si-NCs can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters.

  10. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  11. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  12. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  13. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  14. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  15. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  16. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  17. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  18. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  19. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  20. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  2. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  3. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  4. Beam driven upper-hybrid-wave instability in quantized semiconductor plasmas

    SciTech Connect (OSTI)

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Moslem, W. M.; Centre for Theoretical Physics, The British University in Egypt , El-Shorouk City, Cairo ; Salimullah, M.

    2014-02-15

    The excitation of Upper-Hybrid waves (UHWs) induced by electron beam in semiconductor plasma is examined using quantum hydrodynamic model. Various quantum effects are taken into account including recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The bandwidth of the UHWs spectrum shows that the system supports purely growing unstable mode. The latter has been studied for diversified parameters of nano-sized GaAs semiconductor.

  5. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  6. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM...

    Office of Scientific and Technical Information (OSTI)

    EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) Citation Details In-Document Search Title: EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II) ...

  7. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  8. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  9. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  10. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  11. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    SciTech Connect (OSTI)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-09-10

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length ({lambda}{sub De}) enabled the measurement of positive potential pulses with half-widths 4 to 25{lambda}{sub De} and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  12. Nonlinear model for thermal effects in free-electron lasers

    SciTech Connect (OSTI)

    Peter, E. Endler, A. Rizzato, F. B.

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12?3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.

  13. An Introduction to Spectrum Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Introduction to Spectrum Engineering An Introduction to Spectrum Engineering Slides from FCC's Office of Engineering and Technology's presentation on spectrum engineering. An Introduction to Spectrum Engineering (4.92 MB) More Documents & Publications NBP RFI: Communications Requirements Comments of the American Petroleum Institute Re: DOE Request for Information - Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal

  14. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOE Patents [OSTI]

    Smith, Stephen F.; Dress, William B.

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  15. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect (OSTI)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  16. Spectroscopic Evidence for Exceptional Thermal Contribution to...

    Office of Scientific and Technical Information (OSTI)

    Subject: 77; CATHODOLUMINESCENCE; ELECTRON BEAMS; FRAGMENTATION; SPECTROSCOPY detailed characterization of static nanomaterials, Pt nanoparticles, electron-beam induced ...

  17. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    SciTech Connect (OSTI)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.

  18. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. Themore » typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  19. Effect of particle size on the thermo-optic properties of gold nanofluids – A thermal lens study

    SciTech Connect (OSTI)

    Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma; George, Sajan D.

    2014-01-28

    Spherical gold nanoparticles having particle size in the range 30 to 50 nm are prepared using citrate reduction of gold chloride trihydrate in water. The influence of particle size on the thermal diffusivity value of gold nanofluid is measured using dual beam thermal lens technique. The present study shows that the particle size influences the effective thermal diffusivity value of the nanofluid substantially and the value decreases with decrease in particle size for the investigated samples.

  20. Decomposing VOCs with an electron-beam plasma reactor

    SciTech Connect (OSTI)

    Vitale, S.A.; Hadidi, K.; Cohn, D.R.; Bromberg, L.; Falkos, P.

    1996-04-01

    Several emerging technologies are being tested for decomposing VOCs. Among these are bioreactors, catalytic oxidation, photoinduced decomposition, thermal plasma processes, and nonequilibrium plasma processes. For a new technology to be successfully offered for commercial use, it must be reliable, economically competitive, and ready for use on an industrial scale. The authors have been working on an electron-beam-generated plasma reactor that now meets these prerequisites. The reactor can decompose halogenated organic compounds in dilute concentrations 1--3,000 ppm in airstreams at atmospheric pressure. The technology is more energy efficient than thermal technologies and thus represents lower electricity costs for the overall process. The reactor can easily be scaled to industrial needs and was tested successfully in Hanford, WA, to treat the offgas from the remediation of soils contaminated with CCl{sub 4}.

  1. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOE Patents [OSTI]

    Hohimer, J.P.

    1994-06-07

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.

  2. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOE Patents [OSTI]

    Hohimer, John P. (Albuquerque, NM)

    1994-01-01

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  3. Time-dependent simulation of prebunched one and two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S.; Maraghechi, B.

    2014-04-15

    A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.

  4. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    SciTech Connect (OSTI)

    Gulliford, Colwyn Bartnik, Adam Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  5. Interactive Beam-Dynamics Program

    Energy Science and Technology Software Center (OSTI)

    2001-01-08

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phasemore » space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.« less

  6. Physics opportunities with meson beams

    SciTech Connect (OSTI)

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  7. Spectrum Sciences Decision and Data Handling Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spectrum Sciences Decision and Data Handling Issues Spectrum Sciences Decision and Data Handling Issues spectrum sciences software_breaches.pdf (96.03 KB) Park _IP_meeting.pdf (1.67 MB) More Documents & Publications DOE M 483.1-1 EXHIBIT A: CRADA, WFO, PUA and NPUA Comparison Table, with suggested changes Subcontractor Rights Under CRADAs and WFO Agreements

  8. Local measurement of thermal conductivity and diffusivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hurley, David H.; Schley, Robert S.; Khafizov, Marat; Wendt, Brycen L.

    2015-12-01

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness formore » extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representative of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agree closely with literature values. Lastly, a distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.« less

  9. Local measurement of thermal conductivity and diffusivity

    SciTech Connect (OSTI)

    Hurley, David H.; Schley, Robert S.; Khafizov, Marat; Wendt, Brycen L.

    2015-12-01

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representative of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agree closely with literature values. Lastly, a distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  10. Local measurement of thermal conductivity and diffusivity

    SciTech Connect (OSTI)

    Hurley, David H.; Schley, Robert S.; Khafizov, Marat; Wendt, Brycen L.

    2015-12-15

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  11. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations...

    Office of Scientific and Technical Information (OSTI)

    In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider. ...

  12. Beam Fields and Energy Dissipation Inside the the BE Beam Pipe...

    Office of Scientific and Technical Information (OSTI)

    Beam Fields and Energy Dissipation Inside the the BE Beam Pipe of the Super-B Detector Citation Details In-Document Search Title: Beam Fields and Energy Dissipation Inside the the ...

  13. Beam instabilities in hadron synchrotrons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Metral, E.; T. Argyropoulos; Bartosik, H.; Biancacci, N.; Buffat, X.; Esteban Muller, J. F.; Herr, W.; Iadarola, G.; Lasheen, A.; Li, K.; et al

    2016-04-01

    Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. Furthermore, the aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations.

  14. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  15. Quantized beam shifts in graphene

    SciTech Connect (OSTI)

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  16. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect (OSTI)

    Schller, Sren; Sawall, Stefan; Stannigel, Kai; Hlsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrie, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  17. Frequency spectrum analyzer with phase-lock

    DOE Patents [OSTI]

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  18. Simulations of Head-On Beam-Beam Compensation at RHIC and LHC

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2010-05-19

    Electron lenses are proposed as a way to mitigate head-on beam-beam effects for RHIC and LHC upgrades. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of numerical beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to machine parameters is discussed.

  19. Radio Frequency Noise Effects on the CERN Large Hadron Collider Beam Diffusion

    SciTech Connect (OSTI)

    Mastoridis, T.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; Rivetta, C.; Fox, J.D.; /SLAC

    2012-04-30

    Radio frequency (rf) accelerating system noise can have a detrimental impact on the Large Hadron Collider (LHC) performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and rf station dynamics with the bunch length growth. Measurements were conducted at LHC to determine the performance limiting rf components and validate the formalism through studies of the beam diffusion dependence on rf noise. As a result, a noise threshold was established for acceptable performance which provides the foundation for beam diffusion estimates for higher energies and intensities. Measurements were also conducted to determine the low level rf noise spectrum and its major contributions, as well as to validate models and simulations of this system.

  20. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    SciTech Connect (OSTI)

    Ivanov, I. A. Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N.; Burdakov, A. V.; Sorokina, N. V.; Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Polosatkin, S. V.

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  1. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect (OSTI)

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0) to side on (90). Particle tracks are registered by SSNTD at 30 to 90, except the one at the end-on 0.

  2. Wind speed power spectrum analysis for Bushland, Texas

    SciTech Connect (OSTI)

    Eggleston, E.D.

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  3. SPEAR3 Beam Line Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Wide Angle X-ray Scattering Open 1-5 MC MAD, Monochromatic Open 2-1 X-ray Powder Diffraction Open 2-2 X-ray Michromachining, Topography, White Beam, LIGA Down 2-3 X-ray XAS,...

  4. High energy laser beam dump

    SciTech Connect (OSTI)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  5. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect (OSTI)

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  6. Beam handling and transport solutions

    SciTech Connect (OSTI)

    Maggiore, M.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.

    2013-07-26

    The main purpose of the present study is to investigate the possibility to characterize the particle beams produced by the laser-target interaction in terms of collection, focusing and energy selection in order to evaluate the feasibility of a laser-driven facility in the field of medical application and, in particular, for hadrontherapy.

  7. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  8. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  9. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  10. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  11. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  12. Thermal Shock Structural Analyses of a Positron Target

    SciTech Connect (OSTI)

    Stein, W; Sunwoo, A; Schultz, D C; Sheppard, J C

    2001-06-07

    In the positron source of the Stanford Linear Collider (SLC), the electron beam collides with a tungsten-rhenium target. As the beam passes into the material, thermal energy is created that heats the material to several hundred degrees centigrade on a time scale of nanoseconds. The heating of the material results in thermal stresses that may be large enough to cause material failure. The analyses calculate the thermal shock pressure and stress pulses as they move throughout the material due to the rapid energy deposition. Failure of the target occurred after three years of operation with an elevated power deposition toward the end of the three years. The calculations were made with the LLNL coupled heat transfer and dynamic solid mechanics analysis codes, TOPAZ3D and DYNA3D, and the thermal energy deposition was calculated with the SLAC Electron Gamma Shower (EGS) code simulating the electron-induced cascade. Material fatigue strength, experimentally measured properties for the non-irradiated and irradiated material, as well as the calculated stress state are evaluated in assessing the cause for the target failure.

  13. Thermal Shock Structural Analyses of a Positron Target

    SciTech Connect (OSTI)

    Bharadwaj, Vinod

    2002-08-20

    In the positron source of the Stanford Linear Collider (SLC), the electron beam collides with a tungsten-rhenium target. As the beam passes into the material, thermal energy is created that heats the material to several hundred degrees centigrade on a time scale of nanoseconds. The heating of the material results in thermal stresses that may be large enough to cause material failure. The analyses calculate the thermal shock pressure and stress pulses as they move throughout the material due to the rapid energy deposition. Failure of the target occurred after three years of operation with an elevated power deposition toward the end of the three years. The calculations were made with the LLNL coupled heat transfer and dynamic solid mechanics analysis codes, TOPAZ3D and DYNA3D, and the thermal energy deposition was calculated with the SLAC Electron Gamma Shower (EGS) code simulating the electron-induced cascade. Material fatigue strength, experimentally measured properties for the non-irradiated and irradiated material, as well as the calculated stress state are evaluated in assessing the cause for the target failure.

  14. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  16. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  17. Radiation dosimetry at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  18. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  19. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  20. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  1. Property:Beam(m) | Open Energy Information

    Open Energy Info (EERE)

    Beam(m) Jump to: navigation, search This is a property of type String. Pages using the property "Beam(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft...

  2. Collimation Studies with Hollow Electron Beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  3. Neutral particle beam sensing and steering

    DOE Patents [OSTI]

    Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  4. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    DOE Patents [OSTI]

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  5. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  6. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  7. Beam instability studies for the SSC

    SciTech Connect (OSTI)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  8. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  9. Cylindrical target Li-beam-driven hohlraum experiments

    SciTech Connect (OSTI)

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 {+-} 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy ({approximately}10 MeV at the gas cell) at the target at a peak power of 2.5 {+-} 0.3 TW/cm{sup 2} and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of {approximately}2 cm/{micro}s is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented.

  10. Cavity Beam Position Monitor System for ATF2

    SciTech Connect (OSTI)

    Boogert, Stewart; Boorman, Gary; Swinson, Christina; Ainsworth, Robert; Molloy, Stephen; Aryshev, Alexander; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; Frisch, Josef; May, Justin; McCormick, Douglas; Nelson, Janice; Smith, Tonee; White, Glen; Woodley, Mark; Heo, Ae-young; Kim, Eun-San; Kim, Hyoung-Suk; Kim, Youngim; /Kyungpook Natl. U. /University Coll. London /Kyungpook Natl. U. /Fermilab /Pohang Accelerator Lab.

    2012-07-09

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (CBPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance. The ATF2 C-band system is performing well, with individual CBPM resolution approaching or at the design resolution of 50 nm. The changes in the CBPM calibration observed over three weeks can probably be attributed to thermal effects on the mixer electronics systems. The CW calibration tone power will be upgraded to monitor changes in the electronics gain and phase. The four S-band CBPMs are still to be investigated, the main problem associated with these cavities is a large cross coupling between the x and y ports. This combined with the large design dispersion in that degion makes the digital signal processing difficult, although various techniques exist to determine the cavity parameters and use these coupled signals for beam position determination.

  11. EMBEDDED OPTICAL SENSORS FOR THERMAL BARRIER COATINGS

    SciTech Connect (OSTI)

    David R. Clarke

    2004-12-16

    In this first year of the program we have focused on the selection of rare-earth dopants for luminescent sensing in thermal barrier coating materials, the effect of dopant concentration on several of the luminescence characteristics and initial fabrication of one type of embedded sensor, the ''red-line'' sensor. We have initially focused on erbium as the lanthanide dopant for luminescence doping of yttria-stabilized zirconia and europium as the lanthanide for luminescence doping of gadolinium zirconate. The latter exhibits a temperature-dependent luminescence lifetime up to at least 1100 C. A buried layer, ''red-line'' sensor in an electron-beam deposited yttria-stabilized zirconia coating with erbium has been demonstrated and exhibits a temperature-dependent luminescence lifetime up to at least 400 C.

  12. Thermal conductance of metallic interface in vacuum

    SciTech Connect (OSTI)

    Mortazavi, P.; Shu, D.

    1985-01-01

    In most heat transfer applications, the deposited heat is transferred by any of the following classical methods: conduction, convection, radiation, or any combinations of these three. Depending on how critical the nature is of the designed equipment, the response time must be short enough in order to safeguard the proper performance of the devices. For instance, currently at the National Synchrotron Light Source (NSLS), various hardware equipment are being designed to intercept or to stop intense radiation beams induced by insertion devices such as wiggler and undulators. Due to the nature of some of these designs, the deposited high flux thermal load must be transferred across unbonded contact surfaces. Since any miscalculation would result in the disintegration of exposed material and therefore cause substantial problems, a true actual conductance measurement of the material in question is highly desirable. In the following three sections, background summary, the method of measurement, and the obtained results are discussed.

  13. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  14. Thermal expansion recovery microscopy: Practical design considerations

    SciTech Connect (OSTI)

    Mingolo, N. Martnez, O. E.

    2014-01-15

    A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

  15. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  16. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  17. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  18. Light modulated electron beam driven radiofrequency emitter

    DOE Patents [OSTI]

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  19. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOE Patents [OSTI]

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  20. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect (OSTI)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  1. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect (OSTI)

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  2. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  3. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  4. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  5. Beam collimation at hadron colliders

    SciTech Connect (OSTI)

    Nikolai V. Mokhov

    2003-08-12

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  6. Ion beam inertial confinement target

    DOE Patents [OSTI]

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  7. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  8. 01ii Beam Line - 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STA N FO R D LIN EA R A C C ELER A TO R C EN TER Fall 2001, Vol. 31, No. 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN A PERIODICAL OF PARTICLE PHYSICS CONTENTS FALL 2001 VOL. 31, NUMBER 3 The Beam

  9. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  10. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  11. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  12. Physics opportunities with meson beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.

    2015-10-20

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less

  13. Fifteen Years of Beam on Target | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fifteen Years of Beam on Target Fifteen Years of Beam on Target First beam enters Hall C First beam enters Hall C. On July 1, 1994, Jefferson Lab's accelerator delivered an ...

  14. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  15. Electron beam generation in Tevatron electron lenses

    SciTech Connect (OSTI)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  16. Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum of

    Office of Scientific and Technical Information (OSTI)

    Three-dimensional Plasmas (Technical Report) | SciTech Connect Technical Report: Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas Citation Details In-Document Search Title: Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular

  17. Power spectrum analysis for defect screening in integrated circuit devices

    DOE Patents [OSTI]

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  18. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect (OSTI)

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  19. Designing spectrum-splitting dichroic filters to optimize current...

    Office of Scientific and Technical Information (OSTI)

    Title: Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics Authors: Miles, Alexander ; Cocilovo, Byron ; Wheelwright, Brian ; Pan, Wei ; Tweet, ...

  20. Structural and Functional Basis for Broad-spectrum Neutralization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural and Functional Basis for Broad-spectrum Neutralization of Avian and Human ... globally that have little or no immunity, represents a grave threat to human health. ...