Sample records for beam curing technology

  1. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect (OSTI)

    Eberle, C.C.

    1999-12-30T23:59:59.000Z

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  2. CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect (OSTI)

    Janke, C.J.

    2005-10-17T23:59:59.000Z

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements i

  3. ENGINEERED INTERFACE CHEMISTRY TO IMPROVE THE MECHANICAL PROPERTIES OF CARBON FIBER COMPOSITES CURED BY ELECTRON BEAM

    SciTech Connect (OSTI)

    Vautard, Frederic [ORNL; Grappe, Hippolyte A. [Oak Ridge Institute for Science and Education (ORISE); Ozcan, Soydan [ORNL

    2014-01-01T23:59:59.000Z

    A reactive sizing was designed to achieve high levels of interfacial adhesion and mechanical properties with a carbon fiber-acrylate system cured by electron beam (EB). The sizing was made of a partially cured epoxy sizing with a high density of pendant functional groups (acrylate functionality) able to generate a covalent bonding with the matrix. The interlaminar shear strength was clearly improved from 61 MPa to 81 MPa (+ 33 %) without any post-processing, reaching a similar value to the one obtained with the same system cured by a thermal treatment. Observation of the fracture profiles clearly highlighted a change in the fracture mechanism from a purely adhesive failure to a cohesive failure. Such improvements of the mechanical properties of carbon fiber composites cured by EB, without any post-cure, have not been reported previously to the best of our knowledge. This constitutes a breakthrough for the industrial development of composites EB curing.

  4. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J. (Powell, TN); Lopata, Vincent J. (Manitoba, CA); Havens, Stephen J. (Knoxville, TN); Dorsey, George F. (Farragut, TN); Moulton, Richard J. (Lafayette, CA)

    1999-01-01T23:59:59.000Z

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  5. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02T23:59:59.000Z

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  6. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01T23:59:59.000Z

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  7. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report,...

  8. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes

    SciTech Connect (OSTI)

    Vautard, Frederic [ORNL] [ORNL; Ozcan, Soydan [ORNL] [ORNL; Poland, Laura E [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing. The thermal history during the cure was also recorded. It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface, leading to a high level of adhesion strength, which was not the case for electron beam curing. The thermal history during the cure appeared to be a determining parameter for the level of performance of composites cured by electron beam.

  9. High-energy electron beam technology

    SciTech Connect (OSTI)

    Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

    1994-09-01T23:59:59.000Z

    A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

  10. Flue-Cured Tobacco Curing Efficiency Research Tour

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Flue-Cured Tobacco Curing Efficiency Research Tour Wednesday, October 23, 2013 Topics to be discussed: Tobacco curing efficiency New barn evaluations New curing barn technology Evaluation of single-barn hot water boiler systems Remedial barn pad insulation Utilization of solar energy

  11. Computer simulation of the processes at electron beam technologies

    SciTech Connect (OSTI)

    Mladenov, G.M.; Vutova, K.; Sabchevsky, S. [Institute of Electronics, Sofia (Bulgaria)

    1994-12-31T23:59:59.000Z

    The computer software packages developed in Bulgaria are among our important research results concerning EB melting and refining. (i) In the field of the gun and the beam improvement optimisation: A new approach, based on beam phase analysis, has been proposed and applied in a computer software package. The computer simulation of beam formation and transport permit to optimize technology electron guns and predict some features of the processes. A investigation of the ion compensation of the electron space charge in the beam at different technology conditions is in progress. (ii) In the electron beam refining technology. The kinetics of the impurities evaporation and refining of the low density contaminants at the drip or cold hearth melting has been investigated. Computer calculation of the component concentration changes during refinement had been developed. Analysis of main processes of the impurity transport can be studied. (iii) In the field of beam heating of the materials: Computer simulation of the heat transport is done. Deep of the melted pool, thermal distribution in the casted ingot as the temperature loading of the equipment parts are possible to be calculated.

  12. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect (OSTI)

    Ji, Lili

    2007-09-01T23:59:59.000Z

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 {micro}m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25 mm) at 25 keV beam voltage. Such an integrated FIB/SEM dual-beam system will not only improve the accuracy and reproducibility when performing ion beam sculpting and direct implantation processes, but will also enable researchers to perform cross-sectioning, imaging, and analysis with the same tool. A major advantage of this approach is the ability to produce a wide variety of ion species tailored to the application.

  13. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    DOE Patents [OSTI]

    Howell, David H. (Knoxville, TN); Eberle, Claude C. (Knoxville, TN); Janke, Christopher J. (Oliver Springs, TN)

    2000-01-01T23:59:59.000Z

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  14. Curing and Smoking Poultry

    E-Print Network [OSTI]

    Denton, James H.

    1999-11-10T23:59:59.000Z

    Cured and smoked poultry is a taste-tempting treat. In addition to having a distinctive aroma and flavor, it also has eye appeal unmatched by any other meat product. Once cured and smoked, the meat is easily and quickly prepared for serving and can... be stored in the home refrigerator for as long as 2 weeks. Meats that are only smoked and not cured can be stored no longer than other cooked meats. The curing and smoking process produces meat that is distinctly different from meat that has only been smoked...

  15. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  16. Vehicle Technologies Office Merit Review 2015: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about utilization of UV or...

  17. Vehicle Technologies Office Merit Review 2014: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the utilization of UV...

  18. Safety Assessment of PowerBeam Flywheel Technology

    SciTech Connect (OSTI)

    Starbuck, J Michael [ORNL; Hansen, James Gerald [ORNL

    2009-11-01T23:59:59.000Z

    The greatest technical challenge facing the developer of vehicular flywheel systems is the issue of safety. The PowerBeam flywheel system concept, developed by HyKinesys Inc., employs a pair of high aspect ratio, counter-rotating flywheels to provide surge power for hybrid vehicle applications. The PowerBeam approach to safety is to design flywheels conservatively so as to avoid full rotor burst failure modes. A conservative point design was sized for use in a mid-size sedan such as a Chevrolet Malibu. The PowerBeam rotor rims were designed with a steel tube covered by a carbon fiber reinforced composite tube. ORNL conducted rotor design analyses using both nested ring and finite element analysis design codes. The safety factor of the composite material was 7, while that of the steel was greater than 3. The design exceeded the PNGV recommendation for a safety factor of at least 4 for composite material to prevent flywheel burst.

  19. Fast Curing of Composite Wood Products

    SciTech Connect (OSTI)

    Dr. Arthur J. Ragauskas

    2006-04-26T23:59:59.000Z

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An alternative approach to accelerated PF curing can be accomplished with the addition amines or amides. The later functionality undergoes base catalyzed hydrolysis yielding the corresponding carboxyl ate and free amine which rapidly reacts with the phenolic methylol groups facilitating polymerization and curing of the PF resin (Pizzi, 1997).

  20. Helical channel design and technology for cooling of muon beams

    SciTech Connect (OSTI)

    Yonehara, K; /Fermilab; Derbenev, Y.S.; /Jefferson Lab; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01T23:59:59.000Z

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  1. Electron beam casting technology in the former Soviet Union

    SciTech Connect (OSTI)

    Ladokhin, S.V. [Inst. of Foundry Problems, Kiev (Ukraine)

    1995-12-31T23:59:59.000Z

    In this report the results of the investigation of metals and alloys melting and casting in the EB skull installations in the former USSR are given. The technological equipment used for these purposes is described. The long term prospects for the technological and engineering developments for multicomponent alloy melting and casting, including those containing volatile elements are shown. The significant technological advantages of the electro-magnetic stirring used in the course of the EB melting are demonstrated. The important advantage of the technology described is the efficient processing of metals and alloys metals.

  2. Electron beam technologies in Poland state of the art and possibilities of development

    SciTech Connect (OSTI)

    Wojcicki, S. [Institute of Vacuum Technology, Warszawa (Poland)

    1994-12-31T23:59:59.000Z

    The recent state of high energy electron beam /EB/ used for metals melting and welding in Poland has been presented. Some typical construction of EB furnaces and EB welding machines designed and constructed in Institute of Vacuum Technology in Warsaw are shown. The examples of their application has also been described.

  3. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublic Safety and ResourceCuring

  5. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartment of EnergyCuring We're

  6. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite MapContactPoliciesCuring We're

  7. Delayed cure bismaleimide resins

    DOE Patents [OSTI]

    Adams, Johnnie E. (Grandview, MO); Jamieson, Donald R. (Merriam, KS)

    1984-08-07T23:59:59.000Z

    Polybismaleimides prepared by delayed curing of bis-imides having the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, Cl or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the --(CH.sub.2).sub.n -- group, optionally, is substituted by 1-3 methyl groups or by fluorine.

  8. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    SciTech Connect (OSTI)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09T23:59:59.000Z

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  9. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  10. Dynamically cured thermoplastic olefin polymers

    SciTech Connect (OSTI)

    Hazelton, D.R.; Puydak, R.C.; Booth, D.A.

    1986-08-19T23:59:59.000Z

    A thermoplastic composition is described comprising a polyolefin resin, a first rubber component selected from the group consisting of polyisobutylene, and ethylene propylene copolymer (EPM) and EPDM and a second rubber component selected from the group consisting of halogenated butyl rubber and polychoroprene, the second rubber component being cured utilizing a curative other than a peroxide, which is a vulcanizing agent for the second rubber but not for the first rubber, the second rubber being cured to a fully vulcanized state by dynamic vulcanization in the presence of the polyolefin resin and first rubber compound.

  11. Synthesis and cure characterization of high temperature polymers for aerospace applications 

    E-Print Network [OSTI]

    Li, Yuntao

    2006-04-12T23:59:59.000Z

    the polymerization of BMI system until the temperature goes up to 100oC. However, a small amount of oligomers may be generated from solid-state cure reaction under low E-beam intensity radiation. Higher intensity E-beam at 40 kGy per pass can give above 75% reaction...

  12. Could You Cure Cancer? Alastair M Thompson

    E-Print Network [OSTI]

    Greenaway, Alan

    Could You Cure Cancer? Alastair M Thompson Professor of Surgical Oncology, University of Dundee a.m.thompson ............................could YOU cure cancer? Some questions on cancer: #12;a.m.thompson @ dundee.ac.uk #12;

  13. CURE: Clean use of reactor energy

    SciTech Connect (OSTI)

    NONE

    1990-05-01T23:59:59.000Z

    This paper presents the results of a joint Westinghouse Hanford Company (Westinghouse Hanford)-Pacific Northwest Laboratory (PNL) study that considered the feasibility of treating radioactive waste before disposal to reduce the inventory of long-lived radionuclides, making the waste more suitable for geologic disposal. The treatment considered here is one in which waste would be chemically separated so that long-lived radionuclides can be treated using specific processes appropriate for the nuclide. The technical feasibility of enhancing repository performance by this type of treatment is considered in this report. A joint Westinghouse Hanford-PNL study group developed a concept called the Clean Use of Reactor Energy (CURE), and evaluated the potential of current technology to reduce the long-lived radionuclide content in waste from the nuclear power industry. The CURE process consists of three components: chemical separation of elements that have significant quantities of long-lived radioisotopes in the waste, exposure in a neutron flux to transmute the radioisotopes to stable nuclides, and packaging of radionuclides that cannot be transmuted easily for storage or geologic disposal. 76 refs., 32 figs., 24 tabs.

  14. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs)

    E-Print Network [OSTI]

    Ashworth, Stephen H.

    Depth of cure and compressive strength of dental composites cured with blue light emitting diodes with either a light emitting diode (LED) based light curing unit (LCU) or a conventional halogen LCU do reserved. Keywords: Blue light emitting diodes; Light curing unit; Composites; Irradiance; Spectrum; Depth

  15. technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth

    E-Print Network [OSTI]

    Szmolyan, Peter

    developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

  16. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    E-Print Network [OSTI]

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01T23:59:59.000Z

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  17. Effect of chloride salts, curing compounds and heating and freezing on Trichinella spiralis in pork products

    E-Print Network [OSTI]

    Kayfus, Timothy Jon

    1981-01-01T23:59:59.000Z

    EFFECT OF CHLORIDE SALTS, CURING COMPOUNDS AND HEATING AND FREEZING ON TRICHINELLA SPIRALIS IN PORK PRODUCTS A Thesis by TIMOTHY JON KAYFUS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1981 Major Subject: Food Science and Technology EFFECT OF CHLORIDE SALTS, CURING COMPOUNDS AND HEATING AND FREEZING ON TRICHINELLA SPIRALIS IN PORK PRODUCTS A Thesis by TIMOTHY JON KAYFUS Approved as to style...

  18. Improved mechanical properties and ozone resistance of radiation-cured SBR. Final report, Dec 88-Jun 91. [Styrene Butadiene Rubber

    SciTech Connect (OSTI)

    Basfar, A.A.; Silverman, J.

    1991-08-01T23:59:59.000Z

    This report is a continuation and extension of the work of the earlier Army contract, where the superiority of the electron beam cured styrene butadiene rubber (SBR) tank pads to the sulfur cured pads was demonstrated. The focus of the present study is the investigation of the extraordinary ozone resistance of our radiation cured SBR, and also on possible alternatives for SBR, butadiene rubber (BR) in particular, as a tank pad compound. Base formulations of a fully sulfur cured system were established with 5% reproducibility, and results were confirmed by mechanical properties measurements on identical formulations from Belvoir Research Development and Engineering Center (BRDEC). Constant mechanical properties as a function of exposure to ozone indicate either competitive cross-linking and scissioning reactions or a 'protective' effect caused by higher terminal vinyl concentrations in the radiation cured formulations.

  19. A Cure For Obesity Professor Terry Young

    E-Print Network [OSTI]

    Young, Terence

    A Cure For Obesity Professor Terry Young Parks and Protected Areas GEO 435 Aaron Gire #12;A Cure for Obesity Introduction: Many cities in Los Angeles County have an ever-growing population affected by obesity (Los Angeles County Department of Public Health, 2011). A person is considered to be obese

  20. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    FEL Collaboration: Photocathode/SCRF Collaboration: Two-BeamUniversity on Photocathode/ SCRF technology, LBNL-BNL on

  1. anhydride cured dgeba: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of dental composites cured with blue light emitting diodes with either a light emitting diode (LED) based light curing unit (LCU) or a conventional halogen LCU do reserved....

  2. Dual cure low-VOC coating process. Final technical report, Phase 3

    SciTech Connect (OSTI)

    Kinzer, K.E.

    1993-12-01T23:59:59.000Z

    US EPA is implementing increasingly stringent environmental regulations on the emissions of volatile organic compounds (VOCs), which amount to about 7 {times} 10{sup 9} lb/year, largely from paints and other coating systems in industry. Objective of this project is to develop Dual Cure Photocatalyst coating technology for aerospace topcoats (urethane/acrylate), aerospace primers (epoxy/acrylate), and solventless tape backings. Some problems (moisture etc.) were encountered in the primer area. Cost, economic, and energy analyses were conducted. The dual cure technology has already been commercialized in 3M`s flexible diamond resin products. Tabs.

  3. Energy curable compositions having improved cure speeds

    DOE Patents [OSTI]

    Halm, Leo W. (Blaine, MN)

    1993-01-01T23:59:59.000Z

    A composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.

  4. Energy curable compositions having improved cure speeds

    DOE Patents [OSTI]

    Halm, L.W.

    1993-05-18T23:59:59.000Z

    The composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.

  5. Viscoelastic Properties of an Epoxy Resin during Cure

    E-Print Network [OSTI]

    Mather, Patrick T.

    Viscoelastic Properties of an Epoxy Resin during Cure DANIEL J. O'BRIEN1 Department of Mechanical: The cure dependent relaxation modulus of an epoxy resin was investigated over the entire range of cure as well as thermal asymmetry can result in uneven curing of the part. Second, epoxy resins can shrink

  6. Effect of UV curing time on physical and electrical properties and reliability of low dielectric constant materials

    SciTech Connect (OSTI)

    Kao, Kai-Chieh; Cheng, Yi-Lung, E-mail: yjcheng@ncnu.edu.tw [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou, Taiwan, 545661 (China); Chang, Wei-Yuan; Chang, Yu-Min; Leu, Jihperng [Department of Materials Science and Engineering, National Chiao-Tung University, Hsin-Chu, 30050, Taiwan (China)

    2014-11-01T23:59:59.000Z

    This study comprehensively investigates the effect of ultraviolet (UV) curing time on the physical, electrical, and reliability characteristics of porous low-k materials. Following UV irradiation for various periods, the depth profiles of the chemical composition in the low-k dielectrics were homogeneous. Initially, the UV curing process preferentially removed porogen-related CH{sub x} groups and then modified Si-CH{sub 3} and cage Si-O bonds to form network Si-O bonds. The lowest dielectric constant (k value) was thus obtained at a UV curing time of 300?s. Additionally, UV irradiation made porogen-based low-k materials hydrophobic and to an extent that increased with UV curing time. With a short curing time (<300?s), porogen was not completely removed and the residues degraded reliability performance. A long curing time (>300?s) was associated with improved mechanical strength, electrical performance, and reliability of the low-k materials, but none of these increased linearly with UV curing time. Therefore, UV curing is necessary, but the process time must be optimized for porous low-k materials on back-end of line integration in 45?nm or below technology nodes.

  7. Curing and post-curing luminescence in an epoxy resin O. Gallot-lavalle 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Curing and post-curing luminescence in an epoxy resin O. Gallot-lavallée 1 *, G. Teyssedre 1 , C of Applied Polymer Science Keywords: Epoxy resin, Luminescence, Thermo-stimulation, Chemiluminescence, Post epoxy resin samples are heated in air. This phenomenon is very sensitive to the nature of the atmosphere

  8. Acceleration of rate of cure in boron trifluoride amine catalyzed cure of epoxy resins

    SciTech Connect (OSTI)

    Goel, A.B.

    1987-11-10T23:59:59.000Z

    This patent describes the process for the acceleration of the cure rate of an epoxy resin comprising forming a mixture of an epoxy resin with a boron trifluoride-amine complex and an isocyanate compound and curing the mixture at a temperature in the range of from about ambient to about 130/sup 0/C.

  9. Infrared curing simulations of liquid composites molding

    SciTech Connect (OSTI)

    Nakouzi, S.; Pancrace, J.; Schmidt, F. M.; Le Maoult, Y.; Berthet, F. [Universite de Toulouse (France); INSA, UPS, Mines Albi, ISAE, ICA - Institut Clement Ader, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Campus Jarlard, F-81013 Albi (France)

    2011-05-04T23:59:59.000Z

    Infrared radiation is an effective energy source to cure thermosetting polymers. Its usage is expected to reduce curing time in comparison with thermal heating and mold thermally regulated. In addition, because of the polymerization mechanism and instant on-off control of this power, an improvement in the final properties of the material is also expected. In this paper, we studied the infrared interaction with carbon (or glass) fibers reinforced epoxy matrix, where Liquid resin infusion (LRI) is used to manufacture the composite. Temperature of the composite is a key parameter that affects its mechanical properties and is controlled by the infrared emitters and the exothermic heat released from the polymerization. Radiative heat flux is computed using the in-lab developed software RAYHEAT. Then, the heat flux (or absorbed energy for glass fibers) is exported to the finite element based program COMSOLMULTIPHYSICS where heat balance equation is solved. This equation is coupled with the exothermic heat released during the curing process in order to predict the composite temperature versus time and degree of cure. Numerical simulations will be performed on planar parts (sheet shape) as well as curvilinear shapes. Experimental validations of the infrared curing carbon (glass)-epoxy composite system are presented in this paper Sheet surface temperature distribution are measured thanks to infrared camera. Kinetic parameters were estimated from differential scanning calorimeter (DSC) experimental data.

  10. Cure-in-place process for seals

    DOE Patents [OSTI]

    Hirasuna, Alan R. (Corona Del Mar, CA)

    1981-01-01T23:59:59.000Z

    A cure-in-place process which allows a rubber seal element to be deformed to its service configuration before it is cross-linked and, hence, is a plastic and does not build up internal stress as a result of the deformation. This provides maximum residual strength to resist the differential pressure. Furthermore, the process allows use of high modulus formulations of the rubber seal element which would otherwise crack if cured and then deformed to its service configuration, resulting in a seal which has better gap bridging capability. Basically, the process involves positioning an uncured seal element in place, deforming it to its service configuration, heating the seal element, curing it in place, and then fully seating the seal.

  11. An analysis of the Cured-in-Place Pipe (CIPP) subproject of the sanitary sewer rehabilitation project

    SciTech Connect (OSTI)

    Morrow, W.; Siemiatkoski, S.

    1994-01-25T23:59:59.000Z

    The comprehensive rehabilitation of the Lawrence Livermore National Laboratory Sanitary Sewer System centers around a Cured-in-Place Pipe project. Driven by regulatory requirements to eliminate the potential for exfiltration, a careful condition assessment of the existing infrastructure was conducted. Under programmatic constraints to maintain continuous operations, the INLINER USA cured-in-place pipe system was selected as the appropriate technology, and the project is currently under contract.

  12. High voltage power supply systems for electron beam and plasma technologies. Its new element base

    SciTech Connect (OSTI)

    Dermengi, P.G.; Kureghan, A.S.; Pokrovsky, S.V.; Tchvanov, V.A.

    1994-12-31T23:59:59.000Z

    Transforming technique and high voltage technique supplementing each other more and more unite in indivisible constructions of modern apparatuses and systems and applicated in modern technologies providing its high efficiency. Specially worked out, ecologically clean, inertial, inflammable perfluororganic liquid is used in elements and electronic apparatuses simultaneously as insulating and cooling media. This liquid is highly fluid, fills tiny cavities in construction elements and in the places of high concentration of losses, where maximum local overheating of active parts or apparatus constructions takes place, it transforms to boiling state with highly intensive taking off of heat energy from cooled surface point. For instance, being cooled by mentioned perfluororganic liquid, copper wire can conduct current to 50 A/mm{sup 2} density, but in ordinary conditions of transformers, reactors and busses, current density can reach only few Amperes. Possibility of considerable increasing of current density, that is reached by means of intensive cooling, provided by worked out liquid, and taking into account its incredibly high insulating features (liquid has electric strength to 50 KV/mm) allows to provide optimum heat regime of active parts of transformers. reactors, condenser, semiconductor devices, resistors, construction elements and electrotechnical apparatus in general. Particularly high effect of decreasing of weight and dimensions characteristics of elements and electrotechnical apparatus in general can be reached under working out of special constructions of each element and apparatus details, adapted to use of mentioned liquid as insulating and cooling media.

  13. Breast Cancer Research Finding Answers. Finding Cures.

    E-Print Network [OSTI]

    Kowalczykowski, Stephen C.

    Breast Cancer Research Finding Answers. Finding Cures. Thanks to improvements in treatment and early detection, more and more women are surviving breast cancer. In fact, the five-year survival rate for women with breast cancer today is 90%, up from only 63% in the 1960s. While progress has clearly been

  14. autoclave curing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 1 UTL CONSOLIDATION AND OUT-OF-AUTOCLAVE CURING OF THICK COMPOSITE STRUCTURES Materials Science Websites Summary: 1 M00-022 UTL CONSOLIDATION AND OUT-OF-AUTOCLAVE CURING OF...

  15. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Broader source: Energy.gov (indexed) [DOE]

    A12 graphite as anode, anodecathode1.1 Electrolyte: Gen 2, 1.2 M LiPF6 in EC:EMC (3:7 by wt.) Separator: Celgard 2325 -Potential window: 3.0-4.2 V Formation cycle @ C...

  16. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Broader source: Energy.gov (indexed) [DOE]

    Coin cell: CR 2032 Lithium metal as counter electrode Electrolyte: 1.2 M LiPF 6 in EC: EMC (3:7 in weight) CV: 0.1 mVs between 1-5 V at room temperature for 3 cycles Instrument:...

  17. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Broader source: Energy.gov (indexed) [DOE]

    A12 graphite as anode, anodecathode1.1 -Electrolyte: Gen 2, 1.2 M LiPF6 in EC:EMC (3:7 by wt.) -Separator: Celgard 2325 -Potential window: 3.0-4.2 V Formation cycle @C...

  18. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect (OSTI)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28T23:59:59.000Z

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  19. Evaluation of Ti-6Al-4V Parts Produced with Rapid Prototyping Technology: Electron Beam Melting Machine

    E-Print Network [OSTI]

    Abdeen, Dana

    2014-09-29T23:59:59.000Z

    The present study measured the corrosion properties of Ti-6Al-4V parts produced with Electron Beam Melting machine (EBM). Potentiodynamic and potentiostatic tests were applied on EBM Ti-6Al-4V in 3.5% mass NaCl solution, to determine the pitting...

  20. Evaluation of Ti-6Al-4V Parts Produced with Rapid Prototyping Technology: Electron Beam Melting Machine 

    E-Print Network [OSTI]

    Abdeen, Dana

    2014-09-29T23:59:59.000Z

    The present study measured the corrosion properties of Ti-6Al-4V parts produced with Electron Beam Melting machine (EBM). Potentiodynamic and potentiostatic tests were applied on EBM Ti-6Al-4V in 3.5% mass NaCl solution, to determine the pitting...

  1. Brane polarization is no cure for tachyons

    E-Print Network [OSTI]

    Bena, Iosif

    2015-01-01T23:59:59.000Z

    Anti-M2 and anti-D3 branes placed in regions with charges dissolved in fluxes have a tachyon in their near-horizon region, which causes these branes to repel each other. If the branes are on the Coulomb branch this tachyon gives rise to a runaway behavior, but when the branes are polarized into five-branes this tachyon only appears to lower the energy of the polarized branes, without affecting its stability. We analyze brane polarization in the presence of a brane-brane-repelling tachyon and show that when the branes are polarized along the direction of the tachyon the polarized shell is unstable. This implies that tachyons cannot be cured by brane polarization and indicates that, at least in a certain regime of parameters, anti-D3 branes polarized into NS5 branes at the bottom of the Klebanov-Strassler solution have an instability.

  2. Analysis of failed and nickel-coated 3093 beam clamp components at the East Tennessee Technology Park (ETTP).

    SciTech Connect (OSTI)

    Singh, D.; Pappacena, K.; Gaviria, J.; Burtsteva, T.; Nuclear Engineering Division

    2010-10-11T23:59:59.000Z

    The U.S. Department of Energy and its contractor, Bechtel Jacobs Company (BJC), are undertaking a major effort to clean up the former gaseous diffusion facility (K-25) located in Oak Ridge, TN. The decontamination and decommissioning activities require systematic removal of contaminated equipment and machinery followed by demolition of the buildings. As part of the cleanup activities, a beam clamp, used for horizontal life lines (HLLs) for fall protection, was discovered to be fractured during routine inspection. The beam clamp (yoke and D-ring) was a component in the HLL system purchased from Reliance Industries LLC. Specifically, the U-shaped stainless steel yoke of the beam clamp failed in a brittle mode at under less than 10% of the rated design capacity of 14,500 lb. The beam clamp had been in service for approximately 16 months. Bechtel Jacobs approached Argonne National Laboratory to assist in identifying the root cause of the failure of the beam clamp. The objectives of this study were to (1) review the prior reports and documents on the subject, (2) understand the possible failure mechanism(s) that resulted in the failed beam clamp components, (3) recommend approaches to mitigate the failure mechanism(s), and (4) evaluate the modified beam clamp assemblies. Energy dispersive x-ray analysis and chemical analysis of the corrosion products on the failed yoke and white residue on an in-service yoke indicated the presence of zinc, sulfur, and calcium. Analysis of rainwater in the complex, as conducted by BJC, indicated the presence of sulfur and calcium. It was concluded that, as a result of galvanic corrosion, zinc from the galvanized components of the beam clamp assembly (D-ring) migrated to the corroded region in the presence of the rainwater. Under mechanical stress, the corrosion process would have accelerated, resulting in the catastrophic failure of the yoke. As suggested by Bechtel Jacobs personnel, hydrogen embrittlement as a consequence of corrosion was also explored as a failure mechanism. Corroded and failed yoke samples had hydrogen concentrations of 20-60 ppm. However, the hydrogen content reduced to 4-11 ppm (similar to baseline as-received yoke samples) when the corrosion products were polished off. The hydrogen content in the scraped off corrosion product powders was >7000 ppm. These results indicate that hydrogen is primarily present in the corrosion products and not in the underlying steel. Rockwell hardness values on the corroded yoke and D-rings were R{sub c} {approx} 41-46. It was recommended to the beam clamp manufacturer that the beam clamp components be annealed to reduce the hardness values so that they are less susceptible to brittle failure. Upon annealing, hardness values of the beam clamp components reduced to R{sub c} {approx} 25. Several strategies were recommended and put in place to mitigate failure of the beam clamp components: (a) maintain hardness levels of both yokes and D-rings at R{sub c} < 35, (b) coat the yoke and D-rings with a dual coating of nickel (with 10% phosphorus) to delay corrosion and aluminum to prevent galvanic corrosion since it is more anodic to zinc, and (c) optimize coating thicknesses for nickel and aluminum while maintaining the physical integrity of the coatings. Evaluation of the Al- and Ni-coated yoke and D-ring specimens indicated they appear to have met the recommendations. Average hardness values of the dual-coated yokes were R{sub c} {approx} 25-35. Hardness values of dual-coated D-ring were R{sub c} {approx} 32. Measured average coating thicknesses for the aluminum and nickel coatings for yoke samples were 22 {micro}m (0.9 mils) and 80 {micro}m (3 mils), respectively. The D-rings also showed similar coating thicknesses. Microscopic examination showed that the aluminum coating was well bonded to the underlying nickel coating. Some observed damage was believed to be an artifact of the cutting-and-polishing steps during sample preparation for microscopy.

  3. Characterizing Curing-Cement Slurries by Permeability, Tensile Strength,

    E-Print Network [OSTI]

    Backe, Knut

    Characterizing Curing-Cement Slurries by Permeability, Tensile Strength, and Shrinkage K.R. Backe oilwell cements. The results show that the curing characteristics are a function of temperature and that there is a correlation between shrinkage and cement content. The paper also introduces a new mechanism for gas migration

  4. Curing and Canning of Fishery Products: A History

    E-Print Network [OSTI]

    that there was little meat during the winter; also, other protein foods were scarce. Canning and freezing had not yet agricultural methods were poor. Live stock were wintered with difficulty, and meat curing methods were so poor curing, as it does not require the equipnlent or capital needed for canning or freezing. An in dividual

  5. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  6. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  7. Curing Schizophrenia by Program Rewriting in Esterel Olivier Tardieu

    E-Print Network [OSTI]

    Curing Schizophrenia by Program Rewriting in Esterel Olivier Tardieu INRIA Sophia Antipolis, France olivier.tardieu@sophia.inria.fr Robert de Simone INRIA Sophia Antipolis, France robert.de simone@sophia

  8. Investigation for determining the curing characteristics of lightweight aggregate concrete

    E-Print Network [OSTI]

    Carlton, Thomas Arlis

    1955-01-01T23:59:59.000Z

    desired gradatiani This burning produces an inert ~ highly porous material that will no longer soften in water gntil after World Mar II ~ the principal use of lightweight aggre- gates was in the manufacture of lightweight aoncrete building bloaks... or not the method of curing is of equal, lesser, or greater inportance for concrete made with lightweight aggregates ~ The prime need for curing concrete is to prevent the loss of water neoessary ta complete the hydratfen process in the os?cent The general...

  9. Effects of Temperature and Humidity on Wilethane 44 Cure

    SciTech Connect (OSTI)

    John C. Weigle

    2006-10-01T23:59:59.000Z

    Wilethane 44 is a polyurethane adhesive developed by the Materials Team within ESA-MEE at Los Alamos National Laboratory as a replacement for Hexcel Corporation Urethane 7200. Urethane 7200 is used in numerous weapon systems, but it was withdrawn from the market in 1989. The weapons complex requires a replacement material for use in the W76-1 LEP and the W88, as well as for assembly of JTAs for other warheads. All polyurethane systems are susceptible to moisture reacting with unreacted isocyanate groups. This side reaction competes with the curing reaction and results in CO{sub 2} formation. Therefore, a polyurethane adhesive can exhibit foaming if appropriate environmental controls are not in place while it cures. A designed experiment has been conducted at TA-16-304 to determine the effects of ambient conditions on the properties of cured Wilethane 44. Temperature was varied from 15 C to 30 C and relative humidity from 15% to 40%. The density, hardness at 24 hours, and butt tensile strength on aluminum substrates were measured and fitted to quadratic equations over the experimental space. Additionally, the loss and storage moduli during cure were monitored as a function of cure temperature. These experiments provide a stronger basis for establishing appropriate environmental conditions and cure times when using Wilethane 44. The current guidelines are a working time of 90 minutes, a cure time of 18 hours, and a relative humidity of less than 25%, regardless of ambient temperature. Viscosity measurements revealed that the working time is a strong function of temperature and can be as long as 130 minutes at 15 C or as short as 90 minutes at 30 C. The experiments also showed that the gel time is much longer than originally thought, as long as 13 hours at 15 C. Consequently, it may be necessary to extend the required cure time at temperatures below 20 C. Allowable humidity varies as a function of temperature from 34% at 15 C to 15% at 30 C.

  10. Raising funds for a cure | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cure Raising funds for a cure

  11. Curing Corruption in Illinois: Anti-Corruption Report Number 1

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ` Curing Corruption in Illinois: Anti-Corruption Report Number 1 February 3, 2009 Authored By would come to local officials for housing and work, thus turning public office into the market for jobs and franchises to enrich themselves. They even awarded the city's gas business to a fictional company they had

  12. Carbon dioxide sequestration in concrete in different curing environments

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

  13. Radical-cured block copolymer-modified thermosets

    SciTech Connect (OSTI)

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S. (UMM)

    2013-01-10T23:59:59.000Z

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  14. ADVANCED NEUTRAL-BEAM TECHNOLOGY

    E-Print Network [OSTI]

    Berkner, K.H.

    2010-01-01T23:59:59.000Z

    bending magnets, electrical power systems capable of fastF. Power Systems The several megawatts of electrical power

  15. Curing Properties of Epoxy Resins for Use to Abandon Wells Destroyed by Hurricanes in the Gulf of Mexico

    E-Print Network [OSTI]

    Gao, Suining

    2012-02-14T23:59:59.000Z

    completely destroyed and toppled. This project tested the curing properties of several epoxy resin systems in different environments. A bisphenol-F/epichlorohydrin (BPF) resin cured by curing agent MBOEA system was successfully tested in the laboratory as a...

  16. A Cure for the Valentine's Blues? Livermore Supercomputer Seeks to Mend Broken Hearts

    Broader source: Energy.gov [DOE]

    Cupid's arrows may help you find love, but an Energy Department supercomputer is working to help cure broken hearts.

  17. Cure Kinetics of Aqueous Phenol-Formaldehyde Resins Used for Oriented Strandboard Manufacturing

    E-Print Network [OSTI]

    Cure Kinetics of Aqueous Phenol-Formaldehyde Resins Used for Oriented Strandboard Manufacturing the onset cure temperature, and caused separation of the addition and condensation reac- tions involved in curing of CR. Compared with neat CR, the addition reaction of CR/wood mixture also followed an nth

  18. Evidence for Kinetic Inhomogeneity in the Curing of Epoxy Using the Near-Infrared Multispectral

    E-Print Network [OSTI]

    Reid, Scott A.

    1881, Milwaukee, Wisconsin 53201 The kinetics of curing of an epoxy resin by amine was studied usingEvidence for Kinetic Inhomogeneity in the Curing of Epoxy Using the Near-Infrared Multispectral. The kinetics of curing of epoxy by amine, determined by this multispectral imaging instrument, show

  19. Electron beam processing of metals. State-of-the-art assessment. Final report

    SciTech Connect (OSTI)

    Lalwaney, N.S.

    1986-04-01T23:59:59.000Z

    Electron beam (EB)-based electrotechnologies use a high-energy electron beam as a processing tool - a stream of electrons moving at rates up to two-thirds the speed of light that can weld, melt, machine, drill, heat-treat, and cure a wide variety of materials. As a result, EB processing, mainly welding, is widely used in many industrial markets. Even though it is one of the newer electrotechnologies, its recent growth has been stable rather than spectacular, mainly due to its high initial capital costs. For many low-power applications (less than 5 to 6 kW), lasers have become a competing technology. The vacuum environment synonymous with EB technology is both a strength and a limitation of the process. The trend to automate the control of process parameters and work manipulation will continue. There will be no spectacular growth in the dollar sales of EB processing equipment, but EB processing will continue to have an important role in the metalworking and associated industries. 18 refs., 17 figs.

  20. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    SciTech Connect (OSTI)

    Bhole, Kiran, E-mail: kirandipali@gmail.com; Gandhi, Prasanna [Suman Mashruwala Advance Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076 (India); Kundu, T. [Department of Physics, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2014-07-28T23:59:59.000Z

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  1. Luminosity and beam-beam

    E-Print Network [OSTI]

    Papotti, G; Trad, G

    We report on observations on luminosity evolution and beam-beam interaction from the 2011 physics run. Extrapolations for 2012 are attempted and a list of desired studies and machine developments is included.

  2. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    SciTech Connect (OSTI)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G. [A.V.Topchiev Institute of Petrochemical Synthesis, 29, Leninskii Prospect, Moscow, 119991 (Russian Federation)

    2010-06-02T23:59:59.000Z

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  3. Dual cure low-VOC coating process. Phase 3, Semi-annual report, April 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Kinzer, K.E.

    1993-10-01T23:59:59.000Z

    The objective of Phase 3 of 3M`s contract with the US Department of Energy is to complete proof-of-principle testing in full-scale systems of the dual cure photocatalyst technology developed in earlier Phases of the program. The Phase 3 commercial applications to be demonstrated are aerospace topcoats, aerospace primers, and solventless manufacture of tape backings. This report details activities of Phase 3 during this reporting period. In the second six months of Phase 3, work has continued in all three applications. Significant progress has been made in improving the performance of the urethane/acrylate formulation being used for the aerospace topcoat application. Key improvements have been made in obtaining increased reverse impact, initial gloss and gloss retention during accelerated weathering. Technical challenges have continued with the aerospace primer formulation. Efforts in this six months have continued to focus on establishing a good baseline epoxy/acrylate formulation with reliable cure conditions. Work on the third demonstration application, development of solventless backing saturants for electrical tape backings, has essentially been completed. Optimal dual cure resin formulations have been identified and utilized in preparing complete tape constructions. These tapes have been evaluated and characterized in terms of benchmark UL and internal 3M specifications for electrical tape performance.

  4. Pathways to Cures- Clinical and Translational Science Day at UCI

    E-Print Network [OSTI]

    Institute for Clinical and Translational Science

    2013-01-01T23:59:59.000Z

    ENDOCKSCOPE™: USING MOBILE TECHNOLOGY TO CREATE GLOBAL POINTENDOCKSCOPE™: USING MOBILE TECHNOLOGY TO CREATE GLOBAL POINTwidespread availability of mobile technology have ushered in

  5. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16T23:59:59.000Z

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  6. UV curing and photoresist outgassing in high energy implantation

    SciTech Connect (OSTI)

    Jones, M.A.; Erokhin, Y.; Horsky, T. [Eaton Corporation, Beverly, MA (United States)] [and others

    1996-12-31T23:59:59.000Z

    Thick photoresists, typically 3 microns or more in thickness, necessary for high energy implantation present some unique problems. The outgassing of thick photoresist In high energy applications varies from that of thinner resist and lower energies. It requires appropriate processing to cure without reticulation of field regions deformity of features, or blistering during subsequent processing. This paper examines different resist treatments and their effects on implanter pressure during processing. Data on outgassing of thick photoresist, outgassing effects on absolute dose and dose uniformity as measured by sheet resistance contour maps, and the variation in gas composition are presented.

  7. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09T23:59:59.000Z

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  8. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  9. Physics perspectives at JLab with a polarized positron beam

    SciTech Connect (OSTI)

    Voutier, Eric J.-M. [UNIV. JOSEPH FOURNIER, GRENOBLE, France

    2014-06-01T23:59:59.000Z

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  10. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    SciTech Connect (OSTI)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01T23:59:59.000Z

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  11. Cure Kinetics of Aqueous PhenolFormaldehyde Resins Used for Oriented Strandboard Manufacturing: Analytical

    E-Print Network [OSTI]

    Cure Kinetics of Aqueous Phenol­Formaldehyde Resins Used for Oriented Strandboard Manufacturing their manufacture.2 Differential scanning calorimetry (DSC) is a well-established technique to study the polymer. To evaluate the effect of lignin addition on the curing of phenolic resin, Barry et al.16 obtained

  12. Beams 92: Proceedings. Volume 2, Ion beams, electron beams, diagnostics

    SciTech Connect (OSTI)

    Mosher, D.; Cooperstein, G. [eds.] [Naval Research Lab., Washington, DC (United States)] [eds.; Naval Research Lab., Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    This report contains papers on the following topics. Ion beam papers; electron beam papers; and these papers have been indexed separately elsewhere.

  13. Biobased Curing Agent for Epoxy Ellen Simonsen, Prof. Jinwen Zhang, Dr. Jianglei Qin, NARA program, Department of Civil and

    E-Print Network [OSTI]

    Collins, Gary S.

    , instead of using petrochemical curing agents, research is being done to look into rosin-based acid., & Zhang, J. (2009). Rosin-based acid anhydrides as alternatives to petrochemical curing agents. The Royal

  14. Endoscopic Electron-Beam Cancer Therapy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Endoscopic Electron-Beam Cancer Therapy Technology available for licensing: A successful and cost-effective means of treating cancer in previously inoperable or radiation-sensitive...

  15. BEAMS Lab at MIT: Status report

    E-Print Network [OSTI]

    Liberman, Rosa G.

    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively ...

  16. Rheological and thermal study of the curing process of a cycloaliphatic epoxy resin: application to the optimization of the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Rheological and thermal study of the curing process of a cycloaliphatic epoxy resin: application-4-67-14-37-80; Fax: 33-4-67-14-40-28 ABSTRACT The curing process of a cycloaliphatic epoxy resin was defined using of structure-properties relationships. Keywords: curing kinetics, epoxy resin, dynamic mechanical properties

  17. ISOPAR L RELEASE FROM SALTSTONE CURED AT 55 C

    SciTech Connect (OSTI)

    Cozzi, A; Cora Berry, C; Michael Bronikowski, M; Russell Eibling, R; Jack Zamecnik, J

    2006-05-16T23:59:59.000Z

    The decontaminated salt solution waste stream from the Modular Caustic Side Solvent Extraction Unit and the Salt Waste Processing Facility is anticipated to contain entrained extraction solvent. The decontaminated salt solution is scheduled to be processed through Tank 50 into the Saltstone Production Facility. This study, among others, has been undertaken because the solvent concentration in the decontaminated salt solution may cause flammability issues within the Saltstone Disposal Facility that may need to be addressed prior to operation. Previous work at the Savannah River National Laboratory determined the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 to 200 {micro}g/g in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the Isopar{reg_sign} L release data can be treated as a percentage of initial concentration in the concentration range studied. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release is larger than at lower temperatures. In this study, saltstone was prepared using a simulated decontaminated salt solution containing Isopar{reg_sign} L concentrations of 50 {micro}L/L (30 {micro}g/g) and 100 {micro}L/L (61 {micro}g/g) and cured at 55 C. The headspace of each sample was purged and the Isopar{reg_sign} L was trapped on a coconut shell carbon tube. The amount of Isopar{reg_sign} L captured was determined using NIOSH Method 1501. The percentage of Isopar{reg_sign} L released after 20 days was 1.4 - 3.7% for saltstone containing 50 {micro}L/L concentration and 2.1 - 4.3% for saltstone containing 100 {micro}L/L concentration. Given the measurement uncertainties in this work there is no clearly discernible relationship between percentage release and initial Isopar{reg_sign} L concentration.

  18. Accelerator beam profile analyzer

    DOE Patents [OSTI]

    Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

    1976-01-01T23:59:59.000Z

    A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

  19. Beam test performance of the SKIROC2 ASIC

    E-Print Network [OSTI]

    Frisson, T et al.

    2015-01-01T23:59:59.000Z

    Beam tests of the first layers of CALICE silicon tungsten ECAL technological prototype were performed in April and July 2012 using 1–6 GeV electron beam at DESY. This paper presents an analysis of the SKIROC2 readout ASIC performance under test beam conditions.

  20. Effects of variations in holding time, curing temperature, and treatment period on selected physical properties of concrete made with type III cement and steam cured at atmospheric pressure

    E-Print Network [OSTI]

    Burleson, Kenneth Stewart

    1958-01-01T23:59:59.000Z

    pigures 7 through 15) and their cenbinad effects on the a~receive strengths of stem cured concrete are presente4 in Table 1. TABLI 1. Cenhinations of HoMag Tines ~ Curing Tenperatures, aad Optima Treatssnt Periods, and Their Conhined gffects.... The optima holding tine for tenperatures of 140, 165 and 165 F to obtain ths aaxiaun nodulus of elasticity for a treatasnt period of 16 hours is indicated in Figures 42 through 45. k treatnent peried of 16 hours was used in plotting these ourves, because...

  1. Modeling the Effect of Curing on Early Age Distress Potential of Concrete Pavement

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2014-04-11T23:59:59.000Z

    , such as the variation of temperature and relative humidity, during the early age after concrete placement. Experimental test results were obtained and mathematical models were developed for this research. Modeling the effect of curing process in response...

  2. Diabetes: Biomarkers to Cures Diabetes Expertise at the UBC Life Sciences institute

    E-Print Network [OSTI]

    Strynadka, Natalie

    : R o b F r a s e r Diabetes: Biomarkers to Cures Diabetes Expertise at the UBC Life Sciences institute The Life Sciences Institute (LSI) Diabetes Research Group, with its unique complement of diabetes research programs, has

  3. Effects of electron beam irradiation on polyamide 12 with fiberglass reinforcement

    SciTech Connect (OSTI)

    Jeun, Joon-Pyo; Shin, Bum-Sik; Kim, Hyun-Bin; Nho, Young-Chang; Kang, Phil-Hyun [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Shinjeong-dong Jeongeup-si Jellabuk-do 580-185 (Korea, Republic of)

    2010-06-02T23:59:59.000Z

    In the present study, the effects of electron beam irradiation of polyamide 12 (PA12) with fiberglass reinforcement on the thermal and wear properties were investigated. Electron beam irradiation of PA 12 was carried out over a range of irradiation doses (100-600 kGy) in air. The gel formation in the presence of a curing agent was dependent on the radiation doses. The thermal properties of irradiated PA 12 were studied in the temperature region 50-250 deg. C to observe the changes in the melting point with radiation dose. The dimensional stability was significantly increased by electron beam irradiation and the related crosslinking of the PA 12.

  4. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An error occurred. TryRing CurrentBeam

  5. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users LiveBattling birdBeam

  6. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users LiveBattlingBeam

  7. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A., E-mail: rpopple@uabmc.edu; Brezovich, Ivan A.; Fiveash, John B. [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)] [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)

    2014-05-15T23:59:59.000Z

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular geometries but using fewer beams. Furthermore, SBA provides the value of the objective function as the number of beams is increased, allowing the planner to select the minimal beam number that achieves the clinical goals. The method is simple to implement and could readily be incorporated into an existing optimization system.

  8. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFactEnergyEnergyVOCs in the

  9. IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE

    SciTech Connect (OSTI)

    Williams, F.; Harbour, J.

    2011-02-14T23:59:59.000Z

    This report focuses on the impact of curing temperature on the performance properties of simulated Saltstone mixes. The key performance property of interest is saturated liquid permeability (measured as hydraulic conductivity), an input to the Performance Assessment (PA) modeling for the Saltstone Disposal Facility (SDF). Therefore, the current study was performed to measure the dependence of saturated hydraulic conductivity on curing temperature of Saltstone mixes, to correlate these results with measurements of Young's moduli on the same samples and to compare the Scanning Electron Microscopy (SEM) images of the microstructure at each curing temperature in an effort to associate this significant changes in permeability with changes in microstructure. This work demonstrated that the saturated liquid permeability of Saltstone mixes depends significantly on the curing temperature. As the curing temperature increases, the hydraulic conductivity can increase over three orders of magnitude from roughly 10{sup -9} cm/sec to 10{sup -6} cm/sec over the temperature range of 20 C to 80 C. Although an increased aluminate concentration (at 0.22 M) in the ARP/MCU waste stream improves (decreases) saturated permeability for samples cured at lower temperatures, the permeabilities for samples cured at 60 C to 80 C are the same as the permeabilities measured for an equivalent mix but with lower aluminate concentration. Furthermore, it was demonstrated that the unsaturated flow apparatus (UFA) system can be used to measure hydraulic conductivity of Saltstone samples. The permeability results obtained using the UFA centrifuge system were equivalent within experimental error to the conventional permeameter results (the falling head method) obtained at MACTEC. In particular the UFA technique is best suited for the range of hydraulic conductivities between 10{sup -10} cm/sec to 10{sup -6} cm/sec. Measurements of dynamic Young's moduli (E) for these mixes revealed a correlation between E and hydraulic conductivity. Therefore, it is possible to use E values to estimate the values of hydraulic conductivity. Measurement of Young's modulus is much easier than the measurement of permeability of Saltstone mixes and facilitates the measurement of the time dependence hydraulic conductivity. The results presented in this report show that changes in permeability as a function of curing temperature appear to be related to microstructural changes in the cured Saltstone mixes. Backscattered electron microscopy images revealed significant differences between the samples cured at different temperatures.

  10. One-step curing method for manufacture of neutron absorbing plates

    SciTech Connect (OSTI)

    Storm, R.S.

    1980-04-15T23:59:59.000Z

    A one-step curinging articles, such as those of long thin plate form for use in storage racks for spent nuclear fuel, includes curing a mixture of boron carbide particles, phenolic resin in liquid state and phenolic resin in particulate solid form at an elevated temperature to produce a neutron absorbing article containing at least 6% of B10 content from the boron carbide thereof, 60% to 80% of boron carbide particles and 40% to 60% of irreversibly cured phenolic polymer, with the proportion of weight of phenolic resin in liquid state to that of phenolic resin in solid state being within the range of about 1:0.5 to 1:4, the temperature of the cure being in the range of about 130 to 200/sup 0/ C and the cure being effected over a period of about two to twenty hours. Because of the use of solid resin, in particulate form, together with the resin in liquid state, the neutron absorbing articles made include better bonds between the polymer and the boron carbide particles than would be obtainable by using the normally solid resin only and the phenolic polymer content of the article is greater than that which would be obtainable by a one-step cure effected when the curable phenolic resin is all in the liquid state and the mixture is not held in article form under compacting or pressing pressure.

  11. Effect of Curing Environment on the Performance Properties of Saltstone - 13335

    SciTech Connect (OSTI)

    Reigel, Marissa M.; Pickenheim, Bradley R.; Daniel, William E. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    At the Savannah River Site (SRS), the low level radioactive waste (LLW) salt solution is immobilized as a cementitious waste form known as Saltstone. Depending on the Saltstone formulation, disposal unit size, environmental conditions and pour schedule, the waste form temperature, due to exothermic hydration reactions, can gradually increase by 30 deg. C to 50 deg. C above the starting temperature. Previous studies at Savannah River National Laboratory (SRNL) have shown that curing temperature has a negative impact on the hydraulic conductivity and other performance properties of Saltstone; specifically, these studies have shown that curing at elevated temperatures results in faster hydraulic conductivities than what is modeled in the Saltstone Performance Assessment (PA). SRNL is currently testing the performance of laboratory prepared Saltstone cured under controlled conditions (i.e. controlling relative humidity). The PA assumes that the Saltstone remains saturated; therefore, some samples are being kept completely saturated while others have a surface exposed to a high humidity environment. The formulation of these samples has been varied to continue studying the impact of processing parameters on the performance properties of Saltstone. The final water to premix (w/p) ratio of the Saltstone formulation does affect the density, porosity, and compressive strength of the cured Saltstone. The Saltstone formulations with 0.59 w/p ratios and lower had higher densities, lower porosities, and higher compressive strength than samples formulated at a higher w/p ratio. There is a general trend that the samples formulated at high w/p ratios (0.67 and higher) have the lowest density, highest porosity and lowest strength. However, for hydraulic conductivity, the curing environment had a greater effect on the results than the formulation. Therefore, the impact of elevated temperature is not as detrimental to the performance of the waste form as originally concluded, provided the curing environment is controlled and the waste form is not dried out. (authors)

  12. Electron Beam--21st Century Food Technology

    E-Print Network [OSTI]

    Vestal, Andy

    2003-03-07T23:59:59.000Z

    and spoil food, sometimes without changing the food's taste, smell, or appearance. Cesium 137, Cobalt 60: Metals that are produced by nuclear reaction and give off ionizing radiation as gamma rays. Chemical Sprout Inhibitors: Certain chemicals being used... flipping is not required and processing can be accomplished in seconds. In the X-Ray Mode, electrons are accelerated to near the speed of light using microwaves into a dense metal which emits X-Rays that pass through the product breaking the DNA chain...

  13. NEUTRAL-BEAM INJECTION

    SciTech Connect (OSTI)

    Kunkel, W.B.

    1980-06-01T23:59:59.000Z

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

  14. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  15. Induction heating of FeCo nanoparticles for rapid rf curing of epoxy K. J. Miller,1,a

    E-Print Network [OSTI]

    McHenry, Michael E.

    , and cracking of the polymer. An alternative curing process involves remote, noncontact rf heating of MNP loadedInduction heating of FeCo nanoparticles for rapid rf curing of epoxy composites K. J. Miller,1,a K epoxy composites through radio-frequency rf heating. The rf response of functionalized FeCo MNPs

  16. Influence of Curing Conditions on Water Loss and Hydration in Cement

    E-Print Network [OSTI]

    Bentz, Dale P.

    Influence of Curing Conditions on Water Loss and Hydration in Cement Pastes with and without Fly Loss and Hydration in Cement Pastes with and without Fly Ash Substitution Dale P. Bentz Building at different rates from portland cement, blended cements may require that special attention be paid

  17. BOOKS & ARTS A complex beautyDR. EULER'S FABULOUS FORMULA: CURES MANY

    E-Print Network [OSTI]

    Loss, Daniel

    BOOKS & ARTS A complex beautyDR. EULER'S FABULOUS FORMULA: CURES MANY MATHEMATICAL ILLS BY PAUL J. NAHIN Princeton Univ. Press: 2006. 404 pp. $29.95. In a poll for the most beautiful mathematical formula of formulae would be likely to bask in universal approval. One of these is the wondrous identity, due

  18. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing

    SciTech Connect (OSTI)

    Bakharev, T. [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia)]. E-mail: tanya.bakharev@eng.monash.edu.au

    2005-06-01T23:59:59.000Z

    This paper reports the results of the study of the influence of elevated temperature curing on phase composition, microstructure and strength development in geopolymer materials prepared using Class F fly ash and sodium silicate and sodium hydroxide solutions. In particular, the effect of storage at room temperature before the application of heat on strength development and phase composition was studied. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SEM were utilised in this study. Long precuring at room temperature before application of heat was beneficial for strength development in all studied materials, as strength comparable to 1 month of curing at elevated temperature can develop in this case only after 24 h of heat curing. The main product of reaction in the geopolymeric materials was amorphous alkali aluminosilicate gel. However, in the case of sodium hydroxide activator in addition to it, traces of chabazite, Linde Type A, Na-P1 (gismondine) zeolites and hydroxysodalite were also present. The type of zeolite present and composition of aluminosilicate gel were dependent on the curing history.

  19. Synthesis and cure characterization of high temperature polymers for aerospace applications

    E-Print Network [OSTI]

    Li, Yuntao

    2006-04-12T23:59:59.000Z

    Page 19 Chemical Structure of Bismaleimide ........................................................... 43 20 Chemical Structure of BMPM/DABPA System.......................................... 45 21 Chemical Structure of BMPM / 4,4?-Diamino... Diphenyl Methane Adduct.......................................................................................................... 47 22 Chemical Structure of BMPM/DABPA Ene Adduct................................... 49 23 Thermal Cure Reactions...

  20. Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements

    E-Print Network [OSTI]

    Sheffield, University of

    Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements J, Seascale, Cumbria, CA20 1PG, UK Abstract The heat of hydration of a number of composite cement systems has microscopy. Results showed that increasing the hydration temperature increased the rate of heat output

  1. Ultrasonic characterization of the curing of powder coating films based on their tan()

    E-Print Network [OSTI]

    either focus on in-process temperature monitoring or on laboratory analysis of powder samples mechanical testing. I. INTRODUCTION Powder coatings are dry polymer based surface coatings that are sprayed using in-process temperature monitoring methods. Various in situ cure monitoring methods have been

  2. Non-Vacuum Electron Beam Welding

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2007-01-31T23:59:59.000Z

    Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and laser processes. Potential benefits from further R&D are that various processes involving electron ion and laser beams that have now restrictions can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates.

  3. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22T23:59:59.000Z

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  4. Electron beam melting state-of-the-art 1984

    SciTech Connect (OSTI)

    Bakish, R.

    1984-06-01T23:59:59.000Z

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada.

  5. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  6. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    E-Print Network [OSTI]

    Garcia, J B

    2011-01-01T23:59:59.000Z

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  7. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    interactions, ultra-high intensity lasers, 3D Laser Imagingconcepts, ultra-high intensity lasers, x-ray generation,interests: Ultra-high vacuum, particle beam and laser beam

  8. augmented laser beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Steve Obenschain 2010-01-01 2 Laser Telecommunication timeLaser beam Physics Websites...

  9. Beam Dynamics for ARIA

    E-Print Network [OSTI]

    Ekdahl, Carl

    2015-01-01T23:59:59.000Z

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  10. Effects of variations in rate of temperature rise, curing temperature and size of specimen on selected physical properties of concrete made with type III cement and steam cured at atmospheric pressure

    E-Print Network [OSTI]

    Aldridge, Weldon Wayne

    1958-01-01T23:59:59.000Z

    made with Type III Portland cement, 2. to determine the interrelationships of the physical pro- perties of the steam cured concrete as exhibited by the variation in size of the test specimens, 3. to compare certain physical properties of steam cured... it was believed that Type III Portland cement would respond favorably, to temperatures 1n the higher ranges. Due to this same reasoning the rate of temperature rise was varied between 40 F, 60o F and 80 F per hour. These oombinations of curing temperature...

  11. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  12. High Brightness Beam Applications: Energy Recovered Linacs

    SciTech Connect (OSTI)

    Geoffrey A. Krafft

    2005-09-01T23:59:59.000Z

    In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

  13. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14T23:59:59.000Z

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  14. Electron beam skull melting and refining of secondary copper

    SciTech Connect (OSTI)

    Bychkov, Y.; Ladokhin, S. [Donetskvtortsvetmet, Donetsk (Ukraine)

    1995-12-31T23:59:59.000Z

    Electron Beam Melting is the most efficient technology for metals and alloys refining. For secondary metals processing the Electron Beam Skull Melting (EBSM) with the electromagnetic stirring (EMS) of melt in the crucible was shown to be the most appropriate. The copper produced by EBSM with EMS possesses higher density and electric conductivity in comparison with other refining methods. The details for high power electrical machines were cast of the copper waste refined by EBSM technology.

  15. Contributions to the mini-workshop on beam-beam compensation in the Tevatron

    SciTech Connect (OSTI)

    Shiltsev, V.

    1998-02-01T23:59:59.000Z

    The purpose of the Workshop was to assay the current understanding of compensation of the beam-beam effects in the Tevatron with use of low-energy high-current electron beam, relevant accelerator technology, along with other novel techniques of the compensation and previous attempts. About 30 scientists representing seven institutions from four countries--FNAL, SLAC, BNL, Novosibirsk, CERN, and Dubna were in attendance. Twenty one talks were presented. The event gave firm ground for wider collaboration on experimental test of the compensation at the Tevatron collider. This report consists of vugraphs of talks given at the meeting.

  16. Effects of variations in rate of temperature rise, curing temperature and size of specimen on selected physical properties of concrete made with type I cement and steam cured at atmospheric pressure

    E-Print Network [OSTI]

    Olivieri-Cintron, Elmer

    1958-01-01T23:59:59.000Z

    Rate of Temperature Rise o Moist Cured a 40 oP/hr 60 F/hr ~ 80 oF/hr 0 oP/hr 1000 0 0 FIG. 2 8 12 16 20 24 TIME ? &ags COMPRESSIVE STRENGTH OP PRISMS CURED kT 185oP 28 800 600 W 500 Its 0 400 o Pl '500 Rate of Temperature Rise... 200 0 12 16 TIME - days 20 24 PIG. 4 FLEXURAL STRENGTH OP PRISMS CURED ET 185oP Q EO O I M u M O A o M O EO Rate of Temperature Rise Roist Cured 40 P/bl' 60 oP ~ 80 oP a 120 oF 2 0 Pig. 5 24 12 8 IS TIME - days SONIC RODULUS...

  17. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Wohlgemuth, J.; Gu, X.; Haldeman, S.; Hidalgo, M.; Malguth, E.; Reid, C.; Shioda, T.; Schulze, S.; Wang, Z.

    2013-11-01T23:59:59.000Z

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  18. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Gu, X.; Haldenman, S.; Hidalgo, M.; Malguth, E.; Reid, C. G.; Shioda, T.; Schulze, S. H.; Wang, Z. Y.; Wohlgemuth, J. H.

    2013-11-01T23:59:59.000Z

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of the standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.

  19. LBNL-46223, CBP Note 350 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS IN THE LHC

    E-Print Network [OSTI]

    Furman, Miguel

    LBNL-46223, CBP Note 350 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS IN THE LHC M. A. Furman, W. C. Turner, Center for Beam Physics, LBNL, Berkeley, CA 94720, USA Abstract We present beam-beam simulation of simulations: (a) to as- sess undesirable effects from LBNL's luminosity monitor- ing scheme for the LHC [2

  20. LBNL-45363, CBP Note 333 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS

    E-Print Network [OSTI]

    Furman, Miguel

    LBNL-45363, CBP Note 333 BEAM-BEAM SIMULATIONS FOR SEPARATED BEAMS Miguel A. Furman, Center for Beam Physics, LBNL, Berkeley, CA 94720 Abstract We present beam-beam simulation results from a strong undesirable effects from LBNL's sweeping lumi- nosity monitoring scheme for the LHC [1], and (b) to assess

  1. Beam Cooling with ionisation losses

    E-Print Network [OSTI]

    C. Rubbia; A. Ferrari; Y. Kadi; V. Vlachoudis

    2006-02-03T23:59:59.000Z

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more favourably exploited with the heavier ion colliding against a gas-jet D2 target. Kinematics is generally very favourable, with emission angles in a narrow angular cone and a relatively concentrated outgoing energy spectrum which allows an efficient collection as a neutral gas in a tiny volume with a technology at high temperatures perfected at ISOLDE. It is however of a much more general applicability. The method appears capable of producing a "table top" storage ring with an accumulation rate in excess of 10**14 Li-8 radioactive ion/s for possible use for radioactive beams for physics studies (for example for beta-beams) or for therapy.

  2. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01T23:59:59.000Z

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  3. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01T23:59:59.000Z

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  4. Courses on Beam Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an incomplete listing of course available for beam physics. United States Particle Accelerator School The US Particle Accelerator School provides educational programs in the...

  5. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10T23:59:59.000Z

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  6. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  7. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  8. The IBA Easy-E-Beam Integrated Processing System

    SciTech Connect (OSTI)

    Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F. [IBA Industrial, Inc., 151 Heartland Blvd., Edgewood, NY 11717 (United States)

    2011-06-01T23:59:59.000Z

    IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.

  9. First Beam to FACET

    SciTech Connect (OSTI)

    Erickson, R.; Clarke, C.; Colocho, W.; Decker, F.-J.; Hogan, M.; Kalsi, S.; Lipkowitz, N.; Nelson, J.; Phinney, N.; Schuh, P.; Sheppard, J.; Smith, H.; Smith, T.; Stanek, M.; Turner, J.; Warren, J.; Weathersby, S.; Wienands, U.; Wittmer, W.; Woodley, M.; Yocky, G.; /SLAC

    2011-12-13T23:59:59.000Z

    The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new Facility for Advanced Accelerator Experimental Tests (FACET) while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). On June 23, 2011, the first electron beam was transported through this new facility. Commissioning of FACET is in progress. On June 23, 2011, an electron beam was successfully transported through the new FACET system to a dump in Sector 20 in the linac tunnel. This was achieved while the last third of the linac, operating from the same control room, but with a separate injector system, was providing an electron beam to the Linac Coherent Light Source (LCLS), demonstrating that concurrent operation of the two facilities is practical. With the initial checkout of the new transport line essentially complete, attention is now turning toward compressing the electron bunches longitudinally and focusing them transversely to support a variety of accelerator science experiments.

  10. On-site rubber lining -- Application of precured and self-curing rubber linings

    SciTech Connect (OSTI)

    Fenner, J. [Keramchemie GmbH, Siershahn (Germany)

    1998-12-31T23:59:59.000Z

    Rubber linings are applied as a corrosion protection system in a wide range of plants and installations of the industrial sector. In addition to the execution of lining works in a workshop, the on-site application of this corrosion protection system on the construction site has gained increasing importance. The various procedures utilized to apply the corrosion protection linings will be briefly presented in the following paper. In particular the precured and self curing rubber linings together with their scope of use and application on construction sites will be described in more detail.

  11. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01T23:59:59.000Z

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  12. STOCHASTIC COOLING OF BUNCHED BEAMS

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    March 11-13, 1981 STOCHASTIC COOLING OF BUNCHED BEAMS J.J.W-7406-BW-48 STOCHASTIC COOLING OF BUNCHED BEAMS* J.J.longitudinal stochastic cooling of bunched particle beams.

  13. Photonic quantum technologies

    E-Print Network [OSTI]

    Jeremy L. O'Brien; Akira Furusawa; Jelena Vu?kovi?

    2010-03-20T23:59:59.000Z

    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics.

  14. Energy and technology review

    SciTech Connect (OSTI)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P. (eds.)

    1982-07-01T23:59:59.000Z

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  15. Simulations of beam-beam and beam-wire interactions in RHIC

    SciTech Connect (OSTI)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01T23:59:59.000Z

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  16. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30T23:59:59.000Z

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  17. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02T23:59:59.000Z

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  18. Commissioning of output factors for uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

    2011-04-15T23:59:59.000Z

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

  19. Coherent beam-beam mode in the LHC

    E-Print Network [OSTI]

    Buffat, X; Giachino, R; Herr, W; Papotti, G; Pieloni, T; White, S

    2014-01-01T23:59:59.000Z

    Observations of single bunch beam-beam coherent modes during dedicated experiments in the LHC are presented. Their role in standard operation for physics is discussed and, in particular, candidates of beam-beam coherent mode driven unstable by the machine impedance are presented.

  20. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31T23:59:59.000Z

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  1. Final focus test beam

    SciTech Connect (OSTI)

    Not Available

    1991-03-01T23:59:59.000Z

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  2. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B. (Lansing, NY)

    1997-01-01T23:59:59.000Z

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  3. LHC beam behaviour

    E-Print Network [OSTI]

    Herr, W

    2010-01-01T23:59:59.000Z

    An attempt is made to extract information on the LHC beam behaviour and dynamics from the observations made during the first runs in 2009. Although no systematic studies have been made, some basic properties can be established and in particular the observations in the presence of two beams and in collision are studied. They are analyzed in view of the foreseen runs at higher energy and possible improvements are proposed.

  4. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect (OSTI)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  5. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07T23:59:59.000Z

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  6. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOE Patents [OSTI]

    Rinde, James A. [Livermore, CA; Newey, Herbert A. [Lafayette, CA

    1981-02-24T23:59:59.000Z

    Primary diamines of the formula ##STR1## wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzo methane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  7. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOE Patents [OSTI]

    Rinde, J.A.; Newey, H.A.

    1981-02-24T23:59:59.000Z

    Primary diamines are disclosed of the formula shown in a diagram wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzomethane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  8. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13T23:59:59.000Z

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  9. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C., E-mail: b-odom@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-08-15T23:59:59.000Z

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  10. Making wastewater environmentally sustainable: Innovative technology offers new possibilities for wastewater treatment

    E-Print Network [OSTI]

    Heinrich, Katie

    2013-01-01T23:59:59.000Z

    Inc., a wastewater screening equipment engineering company in Houston, the NCEBR is a#22;empting to accelerate the move of e-beam technology commercialization from the research laboratory to the marketplace, Pillai said. E-beam processing... in their treatment of wastewater by pursuing new electron beam (e-beam) technology being researched at a Texas A&M AgriLife Research center in College Station. To help these plants in their move to increased sustainability in wastewater treatment, the National...

  11. Formation of nanosize structures on a silicon substrate by method of focused ion beams

    SciTech Connect (OSTI)

    Ageev, O. A.; Kolomiytsev, A. S.; Konoplev, B. G., E-mail: kbg@tsure.ru [Technological Institute of the Southern Federal University (Russian Federation)

    2011-12-15T23:59:59.000Z

    The results of experimental studies of modes in which nanosize structures are formed on a silicon substrate by method of focused ion beams are presented. Dependences of the diameter and depth of the nanosize structures on the ion beam current and time of exposure to the ion beam at a point are obtained. It is demonstrated that the main factor determining the rate of ion-beam milling is the ion beam current. The results of the study can be used in the development of technological processes for the fabrication of components for nanoelectronics and nanosystems engineering.

  12. Electron beam evaporation for titanium metal matrix composites

    SciTech Connect (OSTI)

    Storer, J. [3M, Mendota Heights, MN (United States)

    1994-12-31T23:59:59.000Z

    3M, in partnership with ARPA, is developing electron beam evaporation as a method for producing titanium metal matrix composites (TMC`s). This paper discusses some of the opportunities presented by these strong and lightweight structural materials but also points out the many challenges which must be met. The excellent mechanical properties of titanium matrix composites have been recognized for quite some time; however use of these materials has been limited by the lack of a commercially viable process to produce them. 3M is removing this logjam in processing technology by using high rate electron beam evaporation technology to manufacture these materials on a significantly large scale.

  13. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01T23:59:59.000Z

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  14. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    SciTech Connect (OSTI)

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.; /Fermilab /IIT, Chicago /PDT, Torino

    2012-05-15T23:59:59.000Z

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is {approx} 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  15. Selective compositional mixing in GaAs/AIGaAs superlattice induced by low dose Si focused ion beam implantation

    E-Print Network [OSTI]

    Steckl, Andrew J.

    of the mixing process was observed at 100 keV implantation energy, with a "pinch-off" (more heavily mixed ion beam (FIB) implantation technology has been especially attractive in this application, since/or transfer technology, the lateral profiles of the ion beam (and of the ions implanted in the solid

  16. Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars

    E-Print Network [OSTI]

    Bentz, Dale P.

    paste [5]. If sufficient curing water is not readily available at early ages, the concrete will undergo on the nature of the aggregate, specifically its porosity and water absorption. Lightweight aggre- gates (LWA) with a porous surface layer have been noted to produce a dense ITZ microstructure that is equivalent

  17. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOE Patents [OSTI]

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26T23:59:59.000Z

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  18. Grazing incidence beam expander

    SciTech Connect (OSTI)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01T23:59:59.000Z

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  19. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect (OSTI)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom)] [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom)] [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)] [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15T23:59:59.000Z

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40?cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed less variation with field size, the d{sub max} value was deeper for the matched FFF beam than the FFF beam and deeper than the flattened beam for field sizes greater than 5 cm × 5 cm. The head leakage when using the machine in FFF mode is less than half that for a flattened beam, but comparable for both FFF modes. The radiation protection dose-rate measurements show an increase of instantaneous dose-rates when operating the machines in FFF mode but that increase is less than the ratio of MU/min produced by the machine. Conclusions: The matching of a FFF beam to a flattened beam at a depth of 10 cm in water by increasing the FFF beam energy does not reduce any of the reported benefits of FFF beams. Conversely, there are a number of potential benefits resulting from matching the FFF beam; the depth of maximum dose is deeper, the out of field dose is potentially reduced, and the beam quality and penetration more closely resembles the flattened beams currently used in clinical practice, making dose distributions in water more alike. Highlighted in this work is the fact that some conventional specifications and methods for measurement of beam parameters such as penumbra are not relevant and further work is required to address this situation with respect to “matched” FFF beams and to determine methods of measurement that are not reliant on an associated flattened beam.

  20. Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing

    SciTech Connect (OSTI)

    List III, Frederick Alyious [ORNL; Dehoff, Ryan R [ORNL; Lowe, Larry E [ORNL; Sames, William J [ORNL

    2014-01-01T23:59:59.000Z

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand better these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  1. Observation of Coherent Beam-beam Effects in the LHC

    E-Print Network [OSTI]

    Buffat, X; Giachino, R; Herr, W; Papotti, G; Pieloni, T; Calaga, R; White, S M

    2011-01-01T23:59:59.000Z

    Early collisions in the LHC with a very limited number of bunches with high intensities indicated the presence of coherent beam-beam driven oscillations. Here we discuss the experimental results and compare with the expectations.

  2. Electron beam dynamics for the ISIS bremsstrahlung beam generation system

    E-Print Network [OSTI]

    Block, Robert E. (Robert Edward)

    2011-01-01T23:59:59.000Z

    An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...

  3. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation 

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22T23:59:59.000Z

    hydrocarbons. Second, we studied the energy transfer mechanism of E-Beam upgrading to optimize the process. Third, we conducted a preliminary economic analysis based on energy consumption and compared the economics of E-Beam upgrading with conventional...

  4. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12T23:59:59.000Z

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  5. Colliding beams of light

    E-Print Network [OSTI]

    B. V. Ivanov

    2002-12-28T23:59:59.000Z

    The stationary gravitational field of two identical counter-moving beams of pure radiation is found in full generality. The solution depends on an arbitrary function and a parameter which sets the scale of the energy density. Some of its properties are studied. Previous particular solutions are derived as subcases.

  6. Center for Beam Physics: 1994--95

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Center for Beam Physics is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Lawrence Berkeley Laboratory of the University of California. At the heart of the Center`s mission is a fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Dedicated to exploring the frontiers of particle and photon beam physics, its primary mission is to promote the science and technology of the production, manipulation, storage, and control of systems of charged particles and photons. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s team and gives a brief review of the multifaceted activities during 1994 and 1995.

  7. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    67, 15. Hangst, J "Laser Cooling of a Stored Ion Beam - ATheorem an.d Phase Space Cooling", Proceedings of theWorkshop on Beam Cooling and Related Topics, Montreaux, CERN

  8. Hadron beams session-summary

    SciTech Connect (OSTI)

    Terwilliger, K.M. (University of Michigan, Ann Arbor, MI 48109-1120, USA (US))

    1989-05-05T23:59:59.000Z

    The status of presently operating polarized beams at Fermilab, the AGS, and KEK is discussed. Other schemes such as Siberian Snakes and self-polarization of a beam in situ are briefly analyzed.(AIP)

  9. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09T23:59:59.000Z

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  10. Real-time spatial-phase-locked electron-beam lithography

    E-Print Network [OSTI]

    Zhang, Feng, 1973-

    2005-01-01T23:59:59.000Z

    The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system ...

  11. Recent advances of strong-strong beam-beam simulation

    SciTech Connect (OSTI)

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15T23:59:59.000Z

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  12. Metallic beam development for the Facility for Rare Isotope Beam

    SciTech Connect (OSTI)

    Machicoane, Guillaume, E-mail: machicoa@nscl.msu.edu; Cole, Dallas; Leitner, Daniela; Neben, Derek; Tobos, Larry [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)] [Facility for Rare Isotope Beam, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15T23:59:59.000Z

    The Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) will accelerate a primary ion beam to energies beyond 200 MeV/u using a superconducting RF linac and will reach a maximum beam power of 400 kW on the fragmentation target. The beam intensity needed from the ECR ion source is expected to be between 0.4 and 0.5 emA for most medium mass to heavy mass elements. Adding to the challenge of reaching the required intensity, an expanded list of primary beams of interest has been established based on the production rate and the number of isotope beams that could be produced with FRIB. We report here on the development done for some of the beam in the list including mercury (natural), molybdenum ({sup 98}Mo), and selenium ({sup 82}Ser)

  13. ANALYTICAL RESULTS OF MOX COLEMANITE CONCRETE SAMPLE POURED JULY 25, 2012 - CURED 28 DAYS

    SciTech Connect (OSTI)

    Cozzi, A. D.; Best, D. R.; Reigel, M. M.

    2012-09-18T23:59:59.000Z

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use Colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. Samples 8.1.2, 8.2.2, 8.3.2, and 8.4.2 were received on 8/1/2012 and analyzed after curing for 28 days. The average total density measured by the ASTM method C 642 was 2.09 g/cm{sup 3}, within the lower bound of 1.88 g/cm{sup 3}. The average partial hydrogen density was 7.48E-02 g/cm{sup 3} as measured using method ASTM E 1311 and met the lower bound of 6.04E-02 g/cm{sup 3}. The average measured partial boron density was 1.71E-01 g/cm{sup 3} which met the lower bound of 1.65E-01 g/cm{sup 3} measured by the ASTM C 1301 method.

  14. Results of long-range beam-beam studies - scaling with beam separation and intensity

    E-Print Network [OSTI]

    Assmann, R; Buffat, X; Calaga, R; Giachino, R; Herr, W; Metral, E; Papotti, G; Pieloni, T; Roy, G; Trad, G; Kaltchev, D; CERN. Geneva. ATS Department

    2012-01-01T23:59:59.000Z

    We studied possible limitations due to the long-range beam-beam effects in the LHC. With a large number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long-range beam-beam effects to evaluate their influence on dynamic aperture and losses. Different beta* and intensities have been used in two dedicated experiments and allow the test of the expected scaling laws.

  15. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  16. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  17. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A. [Dipartimento di Fisica e Matematica, Universita del'Insubria, Via Valleggio 11, I-22100 Como (Italy); Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Faccio, D. [Dipartimento di Fisica e Matematica, Universita del'Insubria, Via Valleggio 11, I-22100 Como (Italy); School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Couairon, A. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Papazoglou, D. G. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Materials Science and Technology Department, University of Crete, GR-71003 Heraklion (Greece); Panagiotopoulos, P.; Tzortzakis, S. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Abdollahpour, D. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Physics Department, University of Crete, GR-71003 Heraklion (Greece)

    2011-08-15T23:59:59.000Z

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  18. Axion beams at HERA?

    E-Print Network [OSTI]

    K. Piotrzkowski

    2007-01-09T23:59:59.000Z

    If the recently observed anomaly in the PVLAS experiment is due to the axion, then the powerful beams of synchrotron photons, propagating through high magnetic field of the HERA beamline, become strong axion sources. This gives a unique opportunity of detection of the axion-photon interactions by installing a small detector in the HERA tunnel, and to corroborate the axion hypothesis within a few days of running.

  19. Understanding the Poor Resolution from Test Beam RunUnderstanding the Poor Resolution from Test Beam Run 2004 Straw Test beam results2004 Straw Test beam results

    E-Print Network [OSTI]

    1 Understanding the Poor Resolution from Test Beam RunUnderstanding the Poor Resolution from Test Beam Run aah #12;2 2004 Straw Test beam results2004 Straw Test beam results ! Doc # 3308 v#3 by A. Ledovskoy " Using Data from 2004 Test Beam " Used "triplet" method for beam nominally perpendicular to Straw

  20. Model Independent Analysis of Beam Centroid Dynamics in Accelerators

    SciTech Connect (OSTI)

    Wang, Chun-xi

    2003-04-21T23:59:59.000Z

    Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map measurements and shows that it is possible to measure the Poincare section map (in terms of Taylor series) of a circular accelerator to a surprisingly high order and accuracy based on present BPM technology. MIA can overcome the inherent limit of BPM resolution. Nonlinear map measurements will advance understanding of the beam dynamics of a ring.

  1. Pushing beam currents to the limit

    SciTech Connect (OSTI)

    Stevenson, N.R.; Nortier, F.M.; Gelbart, W.Z.; Bloemhard, R.; Elzen, R. van den; Hunt, C.; Lofvendahl, J.; Orzechowski, J. [TRIUMF, British Columbia (Canada)

    1994-12-31T23:59:59.000Z

    One of the cyclotron systems running at the Nordion Int. radioisotope production facility at TRIUMF is the EBCO TR30. This cyclotron produces up to 250 {mu}A on each of two beamlines simultaneously. Two solid (for the production of {sup 201}Tl, {sup 57}Co, {sup 67}Ga and {sup 111}In) and a gaseous (for producing {sup 123}I) target station are in routine operation on this facility. Since future projections indicate a greater demand for reliable radioisotope production there is a program underway to increase the output of the facility to double the present level. One way that this is being achieved is through a careful thermal analysis of the solid target system to maximize its performance. In conjunction with this, the authors have developed and tested a 500 {mu}A upgrade of the solid target system. Gas targets are being investigated for possible ways of increasing the efficiency of production via rotating/sweeping beams which allow higher beam currents. Finally, the TR30 cyclotron is being upgraded to deliver 50-100% more beam on target. By pushing both the cyclotron and target technology to the limit will produce significantly higher levels of radioisotopes than many other comparable facilities.

  2. Direct-write milling of diamond by a focused oxygen ion beam

    E-Print Network [OSTI]

    Martin, Aiden A; Botman, Aurelien; Toth, Milos; Aharonovich, Igor

    2015-01-01T23:59:59.000Z

    Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhibit device performance. Here we report on direct-write milling of single crystal diamond using a focused beam of oxygen ions. Material quality is assessed by Raman and luminescence analysis, and reveals that the damage layer generated by oxygen ions can be removed by nonintrusive post-processing methods such as localised electron beam induced chemical etching.

  3. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect (OSTI)

    Maggiore, M., E-mail: mario.maggiore@lnl.infn.it; Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S. [INFN-LNL, viale dell’Università 2, 35020 Legnaro (Italy)] [INFN-LNL, viale dell’Università 2, 35020 Legnaro (Italy); Caruso, A.; Longhitano, A. [INFN-LNS, via S. Sofia 54, 95123 Catania (Italy)] [INFN-LNS, via S. Sofia 54, 95123 Catania (Italy); Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M. [INFN Sezione di Milano and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [INFN Sezione di Milano and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2014-02-15T23:59:59.000Z

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  4. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    equipment - in not protected premises. The dimensions of main units of the various ILU machines are shown the beam extraction device, air pipes of ventillation system and technological equipment are placed

  5. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    SciTech Connect (OSTI)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar [Malaysian Nuclear Agency, Bangi, 43000, Kajang Selangor (Malaysia)

    2012-09-26T23:59:59.000Z

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the COD{sub Cr}, BOD{sub 5} indicators.

  6. Department of Engineering Technology Technology Education

    E-Print Network [OSTI]

    Bieber, Michael

    Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

  7. Observations of beam-beam effects at the LHC

    E-Print Network [OSTI]

    Papotti, G; Herr, W; Giachino, R; Pieloni, T

    2014-01-01T23:59:59.000Z

    This paper introduces a list of observations related to the beam-beam interaction that were collected over the first years of LHC proton physics operation (2010-12). Beam-beam related effects not only have been extensively observed and recorded, but have also shaped the operation of the LHC for high-intensity proton running in a number of ways: the construction of the filling scheme, the choice of luminosity levelling techniques, measures to mitigate instabilities, and the choice of settings for improving performance (e.g. to reduce losses), among others.

  8. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect (OSTI)

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01T23:59:59.000Z

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  9. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01T23:59:59.000Z

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  10. Neutral Beam Excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30 NewNetworks,Beam

  11. Long range heliostat target using array of normal incidence pyranometers to evaluate a beam of solar radiation

    DOE Patents [OSTI]

    Ghanbari, Cheryl M; Ho, Clifford K; Kolb, Gregory J

    2014-03-04T23:59:59.000Z

    Various technologies described herein pertain to evaluating a beam reflected by a heliostat. A portable target that has an array of sensors mounted thereupon is configured to capture the beam reflected by the heliostat. The sensors in the array output measured values indicative of a characteristic of the beam reflected by the heliostat. Moreover, a computing device can generate and output data corresponding to the beam reflected by the heliostat based on the measured values indicative of the characteristic of the beam received from the sensors in the array.

  12. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

  13. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  14. High density harp or wire scanner for particle beam diagnostics

    DOE Patents [OSTI]

    Fritsche, Craig T. (Overland Park, KS); Krogh, Michael L. (Lee's Summit, MO)

    1996-05-21T23:59:59.000Z

    A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.

  15. High density harp or wire scanner for particle beam diagnostics

    DOE Patents [OSTI]

    Fritsche, C.T.; Krogh, M.L.

    1996-05-21T23:59:59.000Z

    Disclosed is a diagnostic detector head harp used to detect and characterize high energy particle beams using an array of closely spaced detector wires, typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit formed on a ceramic substrate. A method to fabricate harps to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit disposed on the ceramic substrate connects electrically between the detector wires and diagnostic equipment which analyzes pulses generated in the detector wires by the high energy particle beams. 6 figs.

  16. Tile HCAL Test Beam Analysis: Positron and Hadron Studies

    E-Print Network [OSTI]

    Riccardo Fabbri

    2009-02-09T23:59:59.000Z

    The CALICE collaboration has constructed a hadronic sandwich calorimeter prototype with 7608 scintillating plates, individually read out by multi-pixel silicon photomultipliers (SiPMs). For the first time ever the read out is performed using SiPMs on a large scale. Results of test beam operations with muon, positron and hadron beams at CERN are presented here, validating the feasibility of the novel SiPM technology. Results of the application of the particle flow approach in shower energy reconstruction are presented for the first time ever using real data.

  17. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10T23:59:59.000Z

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  18. Beam emittance measurements at Fermilab

    SciTech Connect (OSTI)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01T23:59:59.000Z

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  19. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-01-31T23:59:59.000Z

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  20. Low energy beta-beams

    E-Print Network [OSTI]

    Cristina Volpe

    2009-11-13T23:59:59.000Z

    The main goal of a beta-beam facility is to determine the possible existence of CP violation in the lepton sector, the value of the third neutrino mixing angle and the mass hierarchy. Here we argue that a much broader physics case can be covered since the beta-beam concept can also be used to establish a low energy beta-beam facility. We discuss that the availability of neutrino beams in the 100 MeV energy range offers a unique opportunity to perform neutrino scattering experiments of interest for nuclear physics, for the study of fundamental interactions and of core-collapse supernova physics.

  1. First LHC Beams in ATLAS

    E-Print Network [OSTI]

    Krieger, P

    2009-01-01T23:59:59.000Z

    This is a talk on the ATLAS single beam running, to be given on February 9th at the Aspen Winter Conference.

  2. ANL Beams and Applications Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization of the laser and electron beams of the Cornell Energy Recovery Linac Heng Li Cornell University June 18 Interbeam Scattering Studies at CesrTA Michael Ehrlichman...

  3. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01T23:59:59.000Z

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  4. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  5. A power beaming based infrastructure for space power

    SciTech Connect (OSTI)

    Bamberger, J.A.

    1991-08-01T23:59:59.000Z

    At present all space mission power requirements are met by integral, on-board, self-contained power systems. To provide needed flexibility for space exploration and colonization, an additional approach to on-board, self-contained power systems is needed. Power beaming, an alternative approach to providing power, has the potential to provide increased mission flexibility while reducing total mass launched into space. Laser-power beaming technology provides a viable power and communication infrastructure that can be developed sequentially as it is applied to power satellite constellations in Earth orbit and to orbital transport vehicles transferring satellites and cargos to geosynchronous orbit and beyond. Coupled with nuclear electric propulsion systems for cargo transport, the technology can be used to provide global power to the Lunar surface and to Mars' surface and moons. The technology can be developed sequentially as advances in power system and propulsion system technology occur. This paper presents stepwise development of an infrastructure based on power beaming that can support the space development and exploration goals of the Space Exploration Initiative. Power scenarios based on commonality of power systems hardware with cargo transport vehicles are described. Advantages of this infrastructure are described. 12 refs., 4 figs., 1 tab.

  6. Plasma ion sources and ion beam technology in microfabrications

    E-Print Network [OSTI]

    Ji, Lili

    2007-01-01T23:59:59.000Z

    in the right chamber (ion chamber) are confined in their ownwatts and that on the ion chamber is 50 watts. A permanent-column and the ion source chamber. The simulation is

  7. Plasma ion sources and ion beam technology in microfabrications

    E-Print Network [OSTI]

    Ji, Lili

    2007-01-01T23:59:59.000Z

    process control and failure analysis. 2-6 In addition, theof TEM samples, failure analysis, mask repair, micro

  8. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01T23:59:59.000Z

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  9. Head-on beam-beam collisions with high intensities and long range beam-beam studies in the LHC

    E-Print Network [OSTI]

    Albert, M; Assmann, R; Buffat, X; Calaga, R; Cornelis, K; Fitterer, M; Giachino, R; Herr, W; Miyamoto, R; Norman, L; Papotti, G; Pieloni, T; Ponce, L; Redaelli, S; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01T23:59:59.000Z

    In two experiments we studied possible limitations due to the beam-beam effects in the LHC. In the first experiment we collided high intensity bunches head-on to explore the region for high luminosity collisions. In the second test we reduced the crossing angle in the presence of long range encounters to increase their effects.

  10. An ounce of prevention, a ton of cure | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicle Parts andat aTechnologies |An

  11. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect (OSTI)

    Lidia, Steven M.

    1999-11-01T23:59:59.000Z

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also described.

  12. The curing of asphalt with rubber and its effect on the physical and chemical properties of asphalt-rubber binders

    E-Print Network [OSTI]

    Chun, Jay Sung

    1995-01-01T23:59:59.000Z

    10% TG-40 and 90% Exxon AC-5. 105 B-1 Molecular Size Distribution of Rubber in Asphalt 5% TG-40 and 95% Fina AC-10. . . 123 B-2 Molecular Size Distribution of Rubber in Asphalt 10% TG-40 and 90% Fina AC-10. . 124 xlv FIGURE B-3 Molecular Size.... 0 Frequency (rad/s) 10. 0 100. 0 Figure III-2: Effect of Frequency on Viscosity Measurements Fina AC-10 Tank Asphalt 2500 2000 0 a 1500 1000 o 0 0 0 0 o o 0 0 0 0 0 0 0 o 0 Fina AC-10 with 5% TG-40 mesh rubber Cured at 375 F and 500...

  13. Toward automated beam optics control

    SciTech Connect (OSTI)

    Silbar, R.R.; Schultz, D.E.

    1987-01-01T23:59:59.000Z

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs.

  14. ALARA{trademark} 1146 strippable coating. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    None

    2000-04-01T23:59:59.000Z

    The application of strippable coatings is an innovative technology for decontamination, which effectively reduces hazard residuals at low cost. The process applies a plastic membrane or polymer on the contaminated surface. The strippable coating is allowed to cure for up to 24 hours, after which it can be easily peeled or stripped off the surface. The coating traps the contaminants in the polymer matrix. Strippable coatings are non-toxic and do not contain volatile compounds or heavy metals. Since the coating constitutes a solid waste, disposal is easier than treating contaminated liquid wastes.

  15. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-Print Network [OSTI]

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  16. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R. (Martinez, CA); Hammond, Robert B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  17. Prairie Technologies User's Manual 1. Preface

    E-Print Network [OSTI]

    Yavuz, Deniz

    . If water gets into a system component, discontinue use of the system, turn off power, and contact Prairie Technologies. Warning Labels Used on the Ultima Multiphoton Microscopy System Warning label on beam cover and light box Warning label on interlocked components Warning label for defeated interlocks (on interlock

  18. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21T23:59:59.000Z

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  19. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  20. Electron beam melting capability at Cabot Performance Materials

    SciTech Connect (OSTI)

    Fisher, J.G. [Cabot Performance Materials, Boyertown, PA (United States)

    1995-12-31T23:59:59.000Z

    Cabot Performance Materials is a manufacturer of selected performance metals from ores to finished powder and mill shapes. CPM has been a world leader for over 40 years in the technology and production of tantalum and niobium for the electronics, aerospace, defense, and chemical processing industries. This paper presents a historical overview of their electron beam furnaces culminating with the successful installation of a second 1200 KW furnace.

  1. Photon trap for neutralization of negative ions beams

    E-Print Network [OSTI]

    Popov, S S; Ivanov, A A; Kotelnikov, I A

    2015-01-01T23:59:59.000Z

    For effectively neutralization of the powerful negative ions beams of hydrogen and deuterium the photon target is considered in long time. The attractiveness of the traditional approach (Fabry-Perot resonators) to their creation is limited to a number of stringent technical requirements and large economic costs. In this paper we propose a new concept of non-resonant photon trap (storage) for creation more technologically simple optical neutralizers.

  2. APT accelerator technology

    SciTech Connect (OSTI)

    Schneider, J.D.

    1996-09-01T23:59:59.000Z

    Proposed accelerator production of tritium (APT) project requires an accelerator providing a cw proton beam of 100 mA at 1300 MeV. Since most of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operaional reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA`s proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7-KeV, 8-m long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. Detailed design and technology experiments are underway on medium-beta superconducting cavities to assess feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities.

  3. MEASUREMENT OF BEAM CHARACTERISTICS FOR PHOTO- ELECTRON BEAM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron beam is expected to be used in a wide field, such as X-ray generation by inverse Compton scattering, pulse radiolysis, etc. The laser driven photo cathode rf gun system is...

  4. Alight a beam and beaming light: A theme with variations

    SciTech Connect (OSTI)

    Chattopadhyay, S. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)] [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)

    1998-05-01T23:59:59.000Z

    The interaction of light (coherent and incoherent) with charged particle beams is explored in various configurations: incoherent scattering of coherent light (laser) from an incoherent particle beam (high temperature), coherent scattering of coherent light (laser) from a {open_quotes}cold{close_quotes} (bunched) beam, femtosecond generation of particle and light beams via {open_quotes}optical slicing{close_quotes} and Thomson/Compton scattering techniques, etc. The domains of ultrashort temporal duration (femtoseconds) as well as ultrashort wavelengths (x rays and shorter), with varying degrees of coherence, are explored. The relevance to a few critical areas of research in the natural sciences, e.g., ultrafast material, chemical and biological processes, protein folding, particle phase space cooling, etc. are touched upon. All the processes discussed involve proper interpretation and understanding of coherent states of matter and radiation, as well as the quality and quantity of information and energy embedded in them. {copyright} {ital 1998 American Institute of Physics.}

  5. Accelerator Science and Technology Centre ASTeC Annual Report

    E-Print Network [OSTI]

    the construction of important accelerator test facilities. The vital role of ASTeC in continuing to contribute a mastery of high brightness electron beam physics and technology, and this has been exploited by ASTeAccelerator Science and Technology Centre ASTeC Annual Report 2004 ­ 2005 CCLRC Rutherford Appleton

  6. Thermal stresses in laminated beams

    E-Print Network [OSTI]

    Marcano, Victor Manuel

    1983-01-01T23:59:59.000Z

    Stresses Acting on a Section of the Laminated Beam -------- 15 5. Loading Geometry and Material Characteristics of the Test Problem 21 6. Simply-Supported Beam with a Sinusoidal Load--------- 30 7. Shear Stress Distribution for a Simply- Supported... 24. Normal Stress Distribution for a Cantilever Laminated Beam, T-Z sinzx/L --------------- 58 m. i 25. Axial Stress Distribution for a Cantilever Laminated Bearq, T-T (2z/8+1) 2 mi 27. Normal Stress Distribution for ("/L) ? ---- 6O 2 a...

  7. Thermal stresses in laminated beams 

    E-Print Network [OSTI]

    Marcano, Victor Manuel

    1983-01-01T23:59:59.000Z

    Stresses Acting on a Section of the Laminated Beam -------- 15 5. Loading Geometry and Material Characteristics of the Test Problem 21 6. Simply-Supported Beam with a Sinusoidal Load--------- 30 7. Shear Stress Distribution for a Simply- Supported... 24. Normal Stress Distribution for a Cantilever Laminated Beam, T-Z sinzx/L --------------- 58 m. i 25. Axial Stress Distribution for a Cantilever Laminated Bearq, T-T (2z/8+1) 2 mi 27. Normal Stress Distribution for ("/L) ? ---- 6O 2 a...

  8. PNNL wins Four Technology Transfer Awards

    SciTech Connect (OSTI)

    Fisher, Julie A.; McMakin, Andrea H.

    2006-06-01T23:59:59.000Z

    PNNL wins 4 Technology Transfer Awards Pacific Northwest National Laboratory has received four 2006 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium - a nationwide network of more than 700 major federal laboratories and centers as well as their parent departments and agencies that provides a forum to develop strategies and opportunities for linking technology with the mission and the marketplace. The FLC presents its Awards for Excellence in Technology Transfer to federal laboratory employees who have done outstanding work in transferring U.S. government-sponsored technologies to the public and private sectors. Since 1984, when the awards program was established, Pacific Northwest has earned 62 of these awards, far more than any other national laboratory. This year, PNNL won all four of the nominations that were submitted--the most that any laboratory can submit. PNNL was recognized for transferring technologies that treat and cure cancer, uniquely analyze massive sets of data, increase surgical implant success rates, and neutralize toxic chemicals from the environment. Through collaboration with PNNL researchers and access to facilities at PNNL, IsoRay Medical, Inc. (http://www.isoray.com), expanded its brachytherapy technology for treating prostate and other cancers. The medical isotope ?seed? products are available at more than 17 implant centers nationwide. More than 40 organizations, including Fortune 500 companies, are using the Starlight information visualization software to mine and interpret massive amounts of data. Bacterin International licensed bioactive thin-film coatings which reduce infection rates associated with surgical implants. Self-Assembled Monolayers on Mesoporous Silica (SAMMS), a process for removing mercury and other toxic chemicals from the environment, was licensed to Steward Advanced Materials for use in coal-fired power plants, municipal incinerators, and other plants.

  9. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    SciTech Connect (OSTI)

    Myrabo, Leik N. [Lightcraft Technologies, Inc., Bennington, VT (United States)

    2008-04-28T23:59:59.000Z

    In the past {approx}7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future.

  10. First beam at DARHT-II

    SciTech Connect (OSTI)

    Ekdahl, C. A. (Carl A.); Abeyta, E. O. (Epifanio Orlando); Caudill, L. D. (Larry D.); Dalmas, D. A. (Dale Allen); Eversole, S. A. (Steven A.); Harrison, J. F. (James F.); Holzscheiter, M. H. (Michael H.); Johnson, J. B. (Jeffrey B.); Jacquez, E. B. (Edward B.); McCuistian, B. T. (Brian T.); Nielson, K. E.; Oro, D. M. (David M.); Schauer, M. M. (Michael M.); Studebaker, J. K. (Jan K.); Sullivan, G. K. (Gregg K.); Temple, R. D. (Rodney Dean)

    2003-01-01T23:59:59.000Z

    The second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility will provide up to four short (<100 ns) radiation pulses for flash radiography of high-explosive driven implosion experiments. To accomplish this the DARHT-I1 linear induction accelerator (LIA) will produce a 2-kA electron beam with 18-MeV kinetic energy, constant to within 2 0.5% for 2-ps. A fast kicker will cleave four short pulses out of the 2-ps flattop, with the bulk of the beam diverted into a dump. The short pulses will then be transported to the final-focus magnet, and focused onto a tantalum target for conversion to bremsstrahlung pulses for radiography. DARHT-II is a collaborative effort between Los Alamos, Livermore, and Berkeley National Laboratories. The first tests of the second axis accelerator, described herein, were performed to demonstrate the technology and to meet the performance requirements for closing out the DARHT-II construction project.

  11. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21T23:59:59.000Z

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  12. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

    1995-01-01T23:59:59.000Z

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  13. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J. (Los Alamos, NM); Blind, Barbara (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  14. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect (OSTI)

    BLASKIEWICZ, M.

    2005-05-16T23:59:59.000Z

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  15. Stability diagram of colliding beams

    E-Print Network [OSTI]

    Buffat, X; Mounet, N; Pieloni, T

    2014-01-01T23:59:59.000Z

    The effect of the beam-beam interactions on the stability of impedance mode is discussed. The detuning is evaluated by the means of single particle tracking in arbitrarily complex collision configurations, including lattice non-linearities, and used to numerically evaluate the dispersion integral. This approach also allows the effect of non-Gaussian distributions to be considered. Distributions modified by the action of external noise are discussed.

  16. Single lens laser beam shaper

    DOE Patents [OSTI]

    Liu, Chuyu (Newport News, VA); Zhang, Shukui (Yorktown, VA)

    2011-10-04T23:59:59.000Z

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  17. Investigations of large area electron beam diodes for excimer lasers. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals as a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.

  18. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25T23:59:59.000Z

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  19. A high power beam-on-target test of liquid lithium target for RIA.

    SciTech Connect (OSTI)

    Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

    2005-08-29T23:59:59.000Z

    Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

  20. Sudden Lifetime Drop Phenomena and their Effective Cures in PF-ring and PF-AR

    SciTech Connect (OSTI)

    Tanimoto, Yasunori; Honda, Tohru; Uchiyama, Takashi; Nogami, Takashi [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-23T23:59:59.000Z

    In PF-ring and PF-AR, sudden drops in the electron beam lifetime, which are attributed to dust trapping, were frequently observed after extensive renewals of the storage rings. The reduced-lifetime state sometimes lasts for a few hours, and the mitigation of this problem was strongly demanded for stable user operations. Since a major source of dust particles was thought to be a distributed ion pump (DIP), we attempted switching the DIPs off during user operations in both the rings. As a result, occurrence of the lifetime drops was almost completely suppressed during single-bunch mode in PF-ring, while the occurrence frequency was reduced by only 38% in PF-AR. We found that the lifetime drops were sometimes accompanied by a transient increase in the vacuum pressure at some discharge-prone devices. Based on the hypothesis that the harmful dust could be generated by an electric discharge in vacuum, we attempted the conditioning of these devices in PF-AR by storing 25% higher current than usual. By combination of the DIP-OFF operation and the high-current conditioning, the occurrence frequency of the lifetime drops in PF-AR was reduced by no less than 67%.

  1. KTeV beam systems design report

    SciTech Connect (OSTI)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01T23:59:59.000Z

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  2. Technology Application Centers: Facilitating Technology Transfer

    E-Print Network [OSTI]

    Kuhel, G. J.

    's approach to technology deployment seeks to blend an industrial customer's priorities with the utility's marketing and customer service objectives. A&C Enercom sees technology deployment as the sum of an equation: technology deployment equals technology...

  3. Head-on beam-beam tune shifts with high brightness beams in the LHC

    E-Print Network [OSTI]

    Alemany, R; Calaga, R; Cornelis, K; Fitterer, M; Giachino, R; Herr, W; McPherson, A; Miyamoto, R; Papotti, G; Pieloni, T; Redaelli, S; Roncarolo, F; Schaumann, M; Suykerbuyk, R; Trad, G; Paret, S

    2011-01-01T23:59:59.000Z

    In this experiment (fills 1765, 1766) we have collided bunches with highest brightness, i.e. small emittances and high intensities, to explore the achievable beam-beam tune shift for head-on collisions. Different parameters and filling schemes have been used for this experiment and tune shifts above 0.015 have been achieved in single collisions and above 0.030 for two collision points.

  4. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04T23:59:59.000Z

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  5. Nufact 2008 The Beta Beam WP Beta beam R&D status

    E-Print Network [OSTI]

    McDonald, Kirk

    Nufact 2008 The Beta Beam WP Nufact 08 1 Beta beam R&D status Elena Wildner, CERN on behalf of the Beta Beam Study Group EURISOL/Euronu #12;Nufact 2008 The Beta Beam WP Nufact08Nufact08 Outline Recall, EURISOL Ion Production Loss Management Improvements New Program, EuroNu 2 #12;Nufact 2008 The Beta Beam WP

  6. FEMP/NTDP Technology Focus New Technology

    E-Print Network [OSTI]

    FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

  7. In vivo dosimetry in external beam radiotherapy

    SciTech Connect (OSTI)

    Mijnheer, Ben [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX (Netherlands); Beddar, Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Izewska, Joanna [Division of Human Health, International Atomic Energy Agency, Vienna 1400 (Austria); Reft, Chester [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois 60637 (United States)

    2013-07-15T23:59:59.000Z

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  8. Generate Uniform Transverse Distributed Electron Beam along a Beam Line

    E-Print Network [OSTI]

    Jiao, Y

    2015-01-01T23:59:59.000Z

    It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping almost uniform transverse distributed (UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A concrete design is presented, and numerical simulations are done to verify the proposed method.

  9. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  10. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  11. Physics Opportunities with Meson Beams

    E-Print Network [OSTI]

    Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S

    2015-01-01T23:59:59.000Z

    Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

  12. Divergence of optical vortex beams

    E-Print Network [OSTI]

    Reddy, Salla Gangi; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-01-01T23:59:59.000Z

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analysed by using the width ($w(z)$) of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane ($z=0$) as defined in \\textit{Optics Letters \\textbf{39,} 4364-4367 (2014)}. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance, and found that it varies with the order in the same way as that of the inner and outer radii at zero propagation distance. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication.

  13. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  14. Finding beam focus errors automatically

    SciTech Connect (OSTI)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.

    1987-01-01T23:59:59.000Z

    An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors. (LEW)

  15. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect (OSTI)

    Scarpine, Victor E.; /Fermilab

    2012-03-01T23:59:59.000Z

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  16. Thermographic calorimetry of the neutral beam injectors heating beams at TJ-II

    SciTech Connect (OSTI)

    Fuentes, C.; Liniers, M.; Guasp, J.; Doncel, J.; Botija, J.; Wolfers, G.; Alonso, J.; Acedo, M.; Sanchez, E.; Marcon, G.; Weber, M.; Carrasco, R.; Sarasola, X.; Zurro, B.; Tera, J. [Laboratorio Nacional de Fusion/Asociacion EURATOM-CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2006-10-15T23:59:59.000Z

    A new beam diagnostic based on infrared thermography has been developed for the neutral beam injectors of the stellarator TJ-II. A highly anisotropic movable target intercepts the beam at its entrance into the stellarator. The thermal print of the beam is captured with a high resolution infrared camera. The infrared images of the target can be translated, with the appropriate analysis, into power density patterns of the beam. The system is calibrated in situ with two thermocouples adiabatically mounted in the target. The two-dimensional beam power density distribution can be accurately characterized allowing beam optimization with respect to the different parameters involved in the beam formation and transport.

  17. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect (OSTI)

    Lipinski, R.J.; Meister, D.C.; Tucker, S. [and others

    1993-12-31T23:59:59.000Z

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kill and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  18. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y. [CH2M Hill (United States)

    2007-02-15T23:59:59.000Z

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  19. Emerging technologies

    SciTech Connect (OSTI)

    Lu, Shin-yee

    1993-03-01T23:59:59.000Z

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  20. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  1. High energy laser beam dump

    DOE Patents [OSTI]

    Halpin, John (Tracy, CA)

    2004-09-14T23:59:59.000Z

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  2. Relativistic atomic beam spectroscopy II

    SciTech Connect (OSTI)

    NONE

    1991-12-31T23:59:59.000Z

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  3. Fuel Cell Technologies Office Science and Technology Policy Fellowship...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

  4. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17T23:59:59.000Z

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  5. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    E-Print Network [OSTI]

    Rubinskiy, I

    2015-01-01T23:59:59.000Z

    Ahigh resolution(?future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 ?m or 10 ?mand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  6. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25T23:59:59.000Z

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  7. antinucleon beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  8. automatic beam alignment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  9. accidental beam loss: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  10. antiparticle beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced...

  11. accelerating beam stability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle beams (beam intercepting devices BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases -...

  12. accelerated oxygen-14 beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle beams (beam intercepting devices BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases -...

  13. accelerator school beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particle beams (beam intercepting devices BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases -...

  14. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect (OSTI)

    David OHara; Dr. Eric Lochmer

    2003-09-12T23:59:59.000Z

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  15. Novel technologies and techniques for low-cost phased arrays and scanning antennas

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2004-11-15T23:59:59.000Z

    This dissertation introduces new technologies and techniques for low-cost phased arrays and scanning antennas. Special emphasis is placed on new approaches for low-cost millimeter-wave beam control. Several topics are covered. A novel...

  16. Transport of elliptic intense charged -particle beams

    E-Print Network [OSTI]

    Zhou, J. (Jing), 1978-

    2006-01-01T23:59:59.000Z

    The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

  17. Neutral particle beam sensing and steering

    DOE Patents [OSTI]

    Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  18. On Gaussian Beams Described by Jacobi's Equation

    E-Print Network [OSTI]

    Smith, Steven T.

    Gaussian beams describe the amplitude and phase of rays and are widely used to model acoustic propagation. This paper describes four new results in the theory of Gaussian beams. (1) A new version of the ?ervený equations ...

  19. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31T23:59:59.000Z

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  20. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, Richard J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Miller, Robert B. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM); Smith, David L. (Albuquerque, NM)

    1986-01-01T23:59:59.000Z

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  1. Effect of electron beam irradiation on quality and shelf-life of Tommy Atkins mango (Mangifera indica l.) and blueberry (Vaccinium corymbsum l.)

    E-Print Network [OSTI]

    Moreno Tinjaca, Maria Alexandra

    2007-04-25T23:59:59.000Z

    The main goal of this research was to determine the feasibility of using electron beam irradiation as an alternative disinfestation technology while preserving the overall quality of mangoes, and to verify its suitability for the preservation shelf...

  2. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01T23:59:59.000Z

    its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged

  3. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  4. Innovation and Transportation's Technologies

    E-Print Network [OSTI]

    Garrison, William L.

    2001-01-01T23:59:59.000Z

    decision making. Innovation and technology lock-in hasStage 1 imagine the innovation and technology developmentof emphasizing innovation and technology development. Pull

  5. Accelerator technology program. Status report, October 1984-March 1985

    SciTech Connect (OSTI)

    Jameson, R.A.; Schriber, S.O. (comps.)

    1986-04-01T23:59:59.000Z

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period.

  6. TECHNOLOGY FORUM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of Energy 51:Cross-Site66 -Topic Groups TECHNOLOGY

  7. Accelerator Technology Division progress report, FY 1993

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31T23:59:59.000Z

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  8. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  9. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  10. High Gradient Two-Beam Electron Accelerator

    SciTech Connect (OSTI)

    Jiang, Y. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Kazakov, S. Yu. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kuzikov, S. V. [Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Institute of Applied Physics, Nizhny Novgorod, 603600 (Russian Federation); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Ave., New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States)

    2010-11-04T23:59:59.000Z

    A high-gradient two-beam electron accelerator structure using detuned cavities is described. A self-consistent theory based on a circuit model is presented to calculate idealized acceleration gradient, transformer ratio, and efficiency for energy transfer from the drive beam to the accelerated beam. Experimental efforts are being carried out to demonstrate this acceleration concept.

  11. Laser Telecommunication timeLaser beam

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Laser Telecommunication Experiment Laser time Laser beam intensity timeLaser beam Laser battery Laser connected to a circuit without a modulator. Bottom graph illustrates what happen when a modulating signal is superimposed to the DC voltage driving the laser Laser beam intensity DC Input voltage DC

  12. Nondestructive Damage Detection in General Beams 

    E-Print Network [OSTI]

    Dincal, Selcuk

    2010-12-08T23:59:59.000Z

    Representation of the First Damage Case on the Finite Element Mesh of the Slender Beam ...................................................... 41 Figure 3.12 Schematic Representation of the Second Damage Case on the Finite Element Mesh... of the Slender Beam ...................................................... 42 Figure 3.13 Schematic Representation of the Third Damage Case on the Finite Element Mesh of the Slender Beam ...................................................... 44...

  13. JET neutral beam power upgrade Introduction

    E-Print Network [OSTI]

    JET neutral beam power upgrade Introduction A tokamak is a complex assembly, a system of systems the challenging requirements that fusion demands. The neutral beam heating system and its upgrade for the JET systems) are the main plasma heating scheme on fusion devices such as JET and ITER. The JET neutral beam

  14. Beam heat load in superconducting wigglers

    E-Print Network [OSTI]

    Casalbuoni, S

    2013-01-01T23:59:59.000Z

    The beam heat load is a fundamental input parameter for the design of superconducting wigglers since it is needed to specify the cooling power. In this presentation I will review the possible beam heat load sources and the measurements of beam heat load performed and planned onto the cold vacuum chambers installed at different synchrotron light sources.

  15. Lateral stability of long precast concrete beams

    E-Print Network [OSTI]

    Burgoyne, Chris

    buckling L length of beam vx lateral de¯ection measured in the minor- axis direction (which rotates with yLateral stability of long precast concrete beams T. J. Stratford, BA, BEng, and C. J. Burgoyne, BA, making them more susceptible to buckling failure. This paper shows that once the beam is positioned

  16. Experience on Fabrication and Assembly of the First CLIC Two-Beam Module Prototype

    E-Print Network [OSTI]

    Gudkov, D; Riddone, G; Rossi, F; Lebet, S

    2013-01-01T23:59:59.000Z

    The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies and methods for manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison o...

  17. Beam Collimation Using an Anisotropic Metamaterial Slab without Any Nanometer-sized Aperture

    E-Print Network [OSTI]

    Zhang, Shou; Cui, Yanxia; Zhang, Feng; He, Sailing; Hao, Yuying; Zhu, Furong

    2015-01-01T23:59:59.000Z

    Plasmonic beam collimation effect has been thoroughly investigated based on the well-known nanometer-scale bull's eye structure formed by complex and high-cost fabrication processes. In this work, we report our effort for attaining beam collimation using an anisotropic metamaterial (AMM) slab that consists of a stack of alternating metal/dielectric layers and an integrated top metal grating. The results show that AMM slab allows creating the beam collimation effect similar to that of the bull's eye structure, an enabling technology for practical application due to its simple architecture and cost benefits. The excitation of surface plasmons at the AMM/air interface is derived. The structure of the AMM slab and its impact on beaming performance were analyzed using the effective medium theory and Finite Element Method.

  18. The Corrosion of Tungsten During Irradiation in an 800 MeV Proton Beam

    E-Print Network [OSTI]

    such technology is Accelerator Production of Tritium (APT). In APT a tungsten target is bombarded by a high energyThe Corrosion of Tungsten During Irradiation in an 800 MeV Proton Beam R. Scott Lillard, Darryl P of solid neutron spallation targets such as tungsten (W), and target cladding or structural materials

  19. Results of long range beam-beam studies and observations during operation in the LHC

    E-Print Network [OSTI]

    Alemany, R; Buffat, X; Calaga, R; Fitterer, M; Giachino, R; Hemelsoet, GH; Herr, W; Papotti, G; Pieloni, T; Poyer, M; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01T23:59:59.000Z

    We studied possible limitations due to the long range beam-beam effects in the LHC. With a larger number of bunches and collisions in all interaction points, we have reduced the crossing angles to enhance long range beam-beam effects to evaluate their influence on dynamic aperture and losses. Experience from operation with reduced separation was analysed and provides additional evidence.

  20. Dezincing Technology

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Service Div.; Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

    1997-08-01T23:59:59.000Z

    Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

  1. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect (OSTI)

    Thomas, D. M.; Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Munoz Burgos, J. M. [Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831-0117 (United States)

    2012-10-15T23:59:59.000Z

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  2. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect (OSTI)

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25T23:59:59.000Z

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  3. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01T23:59:59.000Z

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  4. Summary of session 3 on synchrotron radiation and beam dynamics

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab; Metral, E.; /CERN

    2010-12-01T23:59:59.000Z

    We summarize presentations, discussions and general conclusions of the Workshop session on 'Beam Dynamics Issues'. Major subjects include effects due to synchrotron radiation (SR), cryogenic loads, electron cloud, impedances, intra-beam scattering (IBS) and beam-beam interactions.

  5. General com Technology community

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Campus IT General com m unity Technology community ITsystem owners Campus Council for Information Technology (CCFIT) · ~30 members · Advisory evaluation and review role · Input from faculty, staff, students formal representation on steering team and subcommittees Technology Support Program · Technology support

  6. CSIR TECHNOLOGY AWARDS -2013

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

  7. Northwest Regional Technology Center

    E-Print Network [OSTI]

    Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

  8. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01T23:59:59.000Z

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  9. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO)

    1991-01-01T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  10. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  11. The MICE Muon Beam Line

    SciTech Connect (OSTI)

    Apollonio, Marco [High Energy Physics Group, Department of Physics, Imperial College London SW7 2AZ (United Kingdom)

    2011-10-06T23:59:59.000Z

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  12. Neutron beam testing of triblades

    SciTech Connect (OSTI)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16T23:59:59.000Z

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  13. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01T23:59:59.000Z

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  14. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  15. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01T23:59:59.000Z

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  16. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  17. Electron beam cold hearth refining in Vallejo

    SciTech Connect (OSTI)

    Lowe, J.H.C. [Axel Johnson Metals, Inc., Vallejo, CA (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam Cold Hearth Refining Furnace (EBCHR) in Vallejo, California is alive, well, and girding itself for developing new markets. A brief review of the twelve years experience with EBCHR in Vallejo. Acquisition of the Vallejo facility by Axel Johnson Metals, Inc. paves the way for the development of new products and markets. A discussion of some of the new opportunities for the advancement of EBCHR technology. Discussed are advantages to the EBCHR process which include: extended surface area of molten metal exposed to higher vacuum; liberation of insoluble oxide particles to the surface of the melt; higher temperatures that allowed coarse solid particles like carbides and carbonitrides to be suspended in the fluid metal as fine micro-segregates, and enhanced removal of volatile trace impurities like lead, bismuth and cadmium. Future work for the company includes the continued recycling of alloys and also fabricating stainless steel for the piping of chip assembly plants. This is to prevent `killer defects` that ruin a memory chip.

  18. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01T23:59:59.000Z

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  19. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14T23:59:59.000Z

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  20. Particle beam injector system and method

    DOE Patents [OSTI]

    Guethlein, Gary

    2013-06-18T23:59:59.000Z

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  1. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24T23:59:59.000Z

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  2. Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001)

    E-Print Network [OSTI]

    Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001) Wenzhi Lin, Jeongihm], but not hexagonal (wurtzite) GaN, a fast-developing semiconductor material with important technological applicationsN on wurtzite GaN(0001), by employing e-beam evaporation in an ultra-high vacuum MBE cham- ber. The FeN films

  3. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01T23:59:59.000Z

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  4. Control system for the Holifield Radioactive Ion Beam Facility

    SciTech Connect (OSTI)

    Tatum, B.A.; Juras, R.C.; Meigs, M.J.

    1995-12-31T23:59:59.000Z

    A new accelerator control system is being implemented as part of the development of the Holifield Radioactive Ion Beam Facility (HRIBF), a first generation radioactive ion beam (RIB) facility. The pre- existing accelerator control systems are based on 1970`s technology and addition or alteration of controls is cumbersome and costly. A new, unified control system for the cyclotron and tandem accelerators, the RIB injector, ion sources, and accelerator beam lines is based on a commercial product from Vista Control Systems, Inc. Several other accelerator facilities, as well as numerous industrial sites, are now using this system. The control system is distributed over a number of computers which communicate over Ethernet and is easily extensible. Presently, implementation at the HRIBF is based on VAX/VMS, VAX/ELN, VME, and Allen-Bradley PLC5 programmable logic controller architectures. Expansion to include UNIX platforms and CAMAC hardware support is planned. Operator interface is via X- terminals. The system has proven to be quite powerful, yet is has been easy to implement with a small staff. A Vista users group has resulted in shared software to implement specific controls. This paper details present system features and future implementations at the HRIBF.

  5. Giga-bit optical data transmission module for Beam Instrumentation

    E-Print Network [OSTI]

    Roedne, L T; Cenkeramaddi, L R; Jiao, L

    Particle accelerators require electronic instrumentation for diagnostic, assessment and monitoring during operation of the transferring and circulating beams. A sensor located near the beam provides an electrical signal related to the observable quantity of interest. The front-end electronics provides analog-to-digital conversion of the quantity being observed and the generated data are to be transferred to the external digital back-end for data processing, and to display to the operators and logging. This research project investigates the feasibility of radiation-tolerant giga-bit data transmission over optic fibre for beam instrumentation applications, starting from the assessment of the state of the art technology, identification of challenges and proposal of a system level solution, which should be validated with a PCB design in an experimental setup. Radiation tolerance of 10 kGy (Si) Total Ionizing Dose (TID) over 10 years of operation, Bit Error Rate (BER) 10-6 or better. The findings and results of th...

  6. Beamed Core Antimatter Propulsion: Engine Design and Optimization

    E-Print Network [OSTI]

    Ronan Keane; Wei-Ming Zhang

    2012-05-16T23:59:59.000Z

    A conceptual design for beamed core antimatter propulsion is reported, where electrically charged annihilation products directly generate thrust after being deflected and collimated by a magnetic nozzle. Simulations were carried out using the Geant4 (Geometry and tracking) software toolkit released by the CERN accelerator laboratory for Monte Carlo simulation of the interaction of particles with matter and fields. Geant permits a more sophisticated and comprehensive design and optimization of antimatter engines than the software environment for simulations reported by prior researchers. The main finding is that effective exhaust speeds Ve ~ 0.69c (where c is the speed of light) are feasible for charged pions in beamed core propulsion, a major improvement over the Ve ~ 0.33c estimate based on prior simulations. The improvement resulted from optimization of the geometry and the field configuration of the magnetic nozzle. Moreover, this improved performance is realized using a magnetic field on the order of 10 T at the location of its highest magnitude. Such a field could be produced with today's technology, whereas prior nozzle designs anticipated and required major advances in this area. The paper also briefly reviews prospects for production of the fuel needed for a beamed core engine.

  7. Improvements on the accuracy of beam bugs

    SciTech Connect (OSTI)

    Chen, Y.J.; Fessenden, T.

    1998-08-17T23:59:59.000Z

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughout linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.

  8. CMM Technology

    SciTech Connect (OSTI)

    Ward, Robert C.

    2008-10-20T23:59:59.000Z

    This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

  9. Analytical calculation of the smear for long-range beam-beam interactions

    E-Print Network [OSTI]

    Kaltchev, D I

    2010-01-01T23:59:59.000Z

    The Lie-algebraic method is used to develop generalized Courant-Snyder invariant in the presence of an arbitrary number of beam-beam collisions, head-on or long-range, in a storage ring collider. The invariant is obtained by concatenating nonlinear beam-beam maps in the horizontal plane and to first order in the beam-beam parameter. Tracking evidence is presented to illustrate that with LHC parameters the invariant is indeed preserved and can be used to predict the smear of horizontal emittance observed in tracking simulations. We discuss the limits of applicability of this model for realistic LHC collision schemes.

  10. Synchrotron radiation damping, intrabeam scattering and beam-beam simulations for HE-LHC

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2011-03-01T23:59:59.000Z

    The proposed High-Energy LHC project presents an unusual combination of strong synchrotron radiation damping and intrabeam scattering, which is not seen in present-day hadron colliders. The subject of investigation reported in this paper was the simulation of beam-beam effect for the HE-LHC parameters. Parameters of SR and IBS are calculated, and the luminosity evolution is simulated in the absence of beam-beam interaction. Then, a weak-strong numerical simulation is used to predict the effect of beam-beam interaction on particle losses and emittance evolution.

  11. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  12. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  13. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18T23:59:59.000Z

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  14. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Redlands, CA); Olsen, Howard B. (Colton, CA); Salem, Dana (Riverside, CA)

    2008-07-08T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  15. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (San Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Longmeadow, MA); Olsen, Howard B. (Irvine, CA); Salem, Dana (Riverside, CA)

    2010-09-21T23:59:59.000Z

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  16. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2013-11-07T23:59:59.000Z

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  17. SPEAR3 Beam Line Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e p o rMarch 21,SPEAR3Beam

  18. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01T23:59:59.000Z

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  19. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27T23:59:59.000Z

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  20. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, Larry R. (Farragut, TN); Thomas, Clarence E. (Knoxville, TN); Voelkl, Edgar (Oak Ridge, TN); Moore, James A. (Powell, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  1. Rippled beam free electron laser amplifier

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  2. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01T23:59:59.000Z

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  3. Optimization of ion-atomic beam source for deposition of GaN ultrathin films

    SciTech Connect (OSTI)

    Mach, Jind?ich, E-mail: mach@fme.vutbr.cz; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); CEITEC BUT, Brno University of Technology, Technická 10, 61669 Brno (Czech Republic); Šamo?il, Tomáš [Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2014-08-15T23:59:59.000Z

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20–200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ?15 mm by one order of magnitude (j ? 1000 nA/cm{sup 2}). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300?°C) than in conventional metalorganic chemical vapor deposition technologies (?1000?°C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  4. Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology

    E-Print Network [OSTI]

    Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

  5. Delayed cure bismaleimide resins

    DOE Patents [OSTI]

    Not Available

    1982-08-12T23:59:59.000Z

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  6. Distance to Cure

    E-Print Network [OSTI]

    Capachi, Casey

    2013-01-01T23:59:59.000Z

    need for mental health services on the Navajo reservation incan help, say Indian Health Service psychiatrists, who are

  7. PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program

    E-Print Network [OSTI]

    California at Berkeley, University of

    PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division by the University of California Pavement Research Center. The University of California Pavement Research Center Using innovative research and sound engineering principles to improve pavement structures, materials

  8. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  9. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01T23:59:59.000Z

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  10. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24T23:59:59.000Z

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  11. Effect of Diffusion on Bunched Beam Echo

    SciTech Connect (OSTI)

    Stupakov, G.V.; Chao, A.W.; /SLAC

    2011-09-01T23:59:59.000Z

    When a beam receives a dipole kick, its centroid signal decoheres due to the betatron tune spread in the beam. Long after the signal has decohered, however, a followup quadrupole kick to the beam brings a pronounced echo back to the centroid signal. This echo effect has been analyzed for the case of a bunched beam in Ref. [1]. In this work, the perturbation calculation of Ref. [1] is extended to include a diffusion in betatron amplitude. The effect of diffusion on the magnitude of the echo is then parameterized and studied.

  12. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01T23:59:59.000Z

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  13. Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility

    E-Print Network [OSTI]

    Becchetti, Fred

    Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility of Philosophy (Nuclear Engineering and Radiological Sciences) in The University of Michigan 2010 Doctoral

  14. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect (OSTI)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)] [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15T23:59:59.000Z

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 ?A], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 ?A], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  15. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, Carol J. (Warrenville, IL)

    1998-01-01T23:59:59.000Z

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  16. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, C.J.

    1998-06-02T23:59:59.000Z

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  17. Studies on beam propagation pertaining to beamed microwave power transmission and open resonator quasi-optics

    E-Print Network [OSTI]

    McCleary, James Carlton

    1991-01-01T23:59:59.000Z

    on the space shuttle. A near-field program is used to compare the collection efficiencies obtainable with a parabolic dish and a resonant Gaussian beam antenna. The second application of the computer programs is the analysis of a reference system for beaming... characteristics of the maximum tapers in Table 4. . 81 45 Collection efficiency characteristics of the high efficiency tapers. 84 46 Proposed shuttle beamed power demonstration using an 8 ft. parabolic dish as the transmitter antenna. 89 47 Gaussian beam...

  18. Lattice design for head-on beam-beam compensation at RHIC

    SciTech Connect (OSTI)

    Montag, C.

    2011-03-28T23:59:59.000Z

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  19. Northwestern University Information Technology

    E-Print Network [OSTI]

    Shull, Kenneth R.

    ... Integrated Technology Classrooms Online Lectures Collaborative Course Management Tools ...in any teaching environment Classroom Laptop Mobile Device www.it.northwestern.edu NUITAcademic&ResearchTechnologiesNorthwestern University Information Technology (NUIT) is committed to supporting faculty research

  20. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

  1. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Technologies R&D Annual Progress Report Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and...

  2. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21T23:59:59.000Z

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  3. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOE Patents [OSTI]

    Karl, Jr., Robert R. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  4. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  5. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  6. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

  7. Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

  8. Technology Transfer Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

  9. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  10. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy...

  11. States & Emerging Energy Technologies

    Broader source: Energy.gov (indexed) [DOE]

    operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

  12. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  13. Fuel & Lubricant Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 15, 2012 Kevin Stork, Team Lead VTP Annual Merit Review VTP Fuel & Lubricant Technologies eere.energy.gov 2 | Vehicle Technologies Program Mission Enable advanced combustion...

  14. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J. Warren (Castro Valley, CA); Kaplan, Selig N. (El Cerrito, CA); Pyle, Robert V. (Berkeley, CA); Anderson, L. Wilmer (Madison, WI); Ruby, Lawrence (Berkeley, CA); Schlachter, Alfred S. (Oakland, CA)

    1988-01-01T23:59:59.000Z

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  15. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  16. Technology Deployment List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Technology Deployment Technology Deployment List Technology Deployment List The Federal Energy Management Program's (FEMP) Technology Deployment List features...

  17. Technology transfer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology transfer Technology Development and Commercialization at Argonne Read more about Technology Development and Commercialization at Argonne New Director to lead Technology...

  18. LCDETxxxxxxx Improved TESLA Optics and Beam Induced

    E-Print Network [OSTI]

    LC­DET­xxxx­xxx Improved TESLA Optics and Beam Induced Backgrounds Update Karsten BË?uÃ?er, DESY and Olivier Napoly, CEA/Saclay LCWS 2002, Jeju, Korea Abstract A new tesla optics with l*=5m is under development. An update is given on the simulation of the beam induced backgrounds in the TESLA detector. 1

  19. Fast Beam-Based BPM Calibration

    SciTech Connect (OSTI)

    Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

    2012-10-15T23:59:59.000Z

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  20. Polymer surface treatment with particle beams

    DOE Patents [OSTI]

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04T23:59:59.000Z

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  1. Emittance growth from electron beam modulation

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2009-12-01T23:59:59.000Z

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  2. Policy Issues for Retail Beamed Power Transmission

    E-Print Network [OSTI]

    solar electric power using retail delivery of beamed power. Recent advances in power beaming have made to enable widespread adoption of this clean and sustainable contribution to meeting energy needs. It is seen to micro-renewable energy resource exploitation since wired power transmission is only cost effective over

  3. Stability design of long precast concrete beams

    E-Print Network [OSTI]

    Burgoyne, Chris

    lateral de¯ection measured in the minor- axis direction (which rotates with y) v0 initial lateral imperfection w self-weight of beam per unit length wcr critical self-weight of beam to cause buckling, per unit length y lateral de¯ection measured along a ®xed axis y0 initial lateral imperfection yb distance

  4. GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders

    SciTech Connect (OSTI)

    Roblin, Yves [JLAB; Morozov, Vasiliy [JLAB; Terzic, Balsa [JLAB; Aturban, Mohamed A. [Old Dominion University; Ranjan, D. [Old Dominion University; Zubair, Mohammed [Old Dominion University

    2013-06-01T23:59:59.000Z

    We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

  5. SPALLATION NEUTRON SOURCE BEAM CURRENT MONITOR ELECTRONICS.

    SciTech Connect (OSTI)

    KESSELMAN, M.

    2001-06-18T23:59:59.000Z

    The Spallation Neutron Source (SNS) to be constructed at ORNL is a collaboration of six laboratories. Beam current monitors for SNS will be used to monitor H-minus and H-plus beams ranging from the 15 mA (tune-up in the Front End and Linac) to over 60 A fully accumulated in the Ring. The time structure of the beams to be measured range from 645 nsec ''mini'' bunches, at the 1.05 MHz ring revolution rate, to an overall 1 mS long macro pulse. Beam current monitors (BCMs) for SNS have requirements depending upon their location within the system. The development of a general approach to satisfy requirements of various locations with common components is a major design objective. This paper will describe the development of the beam current monitors and electronics.

  6. Carbon Fiber Damage in Particle Beam

    E-Print Network [OSTI]

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01T23:59:59.000Z

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  7. Demonstration of electron beam focusing by a laser-plasma lens

    E-Print Network [OSTI]

    Thaury, Cédric; Döpp, Andreas; Lehe, Remi; Lifschitz, Agustin; Phuoc, Kim Ta; Gautier, Julien; Goddet, Jean-Philippe; Tafzi, Amar; Flacco, Alessandro; Tissandier, Fabien; Sebban, Stéphane; Rousse, Antoine; Malka, Victor

    2014-01-01T23:59:59.000Z

    Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.

  8. A cure? A way to sustain our environment? Solutions to help preserve the world's freshwater? A groundbreaking

    E-Print Network [OSTI]

    Saskatchewan, University of

    and Bioproducts for a Sustainable Future Energy and Mineral Resources: Technology and Public Policy institutions positioned to help solve global challenges at the intersection of human, animal and environmental's Freshwater Resources give.usask.ca/online #12; In the 1940s and`50s, the U of S was a pioneer in the use

  9. Reinventing the 21st Century University Finding a cure for cancer. Seeking in the tiniest of particles solutions to the

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    that is more affordable, efficient, and effective. Developing advanced technology to make manufacturers more, Purdue created the Cyber Center, the Energy Center, the Center for the Environment, and the Oncological, generating new ideas and direction for future generations. Seven of the 11 centers today have buildings

  10. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect (OSTI)

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01T23:59:59.000Z

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  11. A non-invasive beam profile monitor for charged particle beams

    SciTech Connect (OSTI)

    Tzoganis, Vasilis, E-mail: vasileios.tzoganis@cockcroft.ac.uk [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); RIKEN Nishina Centre, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Welsch, Carsten P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2014-05-19T23:59:59.000Z

    Non-interceptive beam profile monitors are highly desirable in almost all particle accelerators. Such techniques are especially valuable in applications where real time monitoring of the beam properties is required while beam preservation and minimal influence on the vacuum are of the greatest importance. This applies to many kinds of accelerators such as high energy machines where the normal diagnostics cannot withstand the beam's power, medical machines where treatment time is valuable and cannot be allocated to diagnostics and also low energy, low intensity accelerators where the beam's properties are difficult to measure. This paper presents the design of a gas-jet based beam profile monitor which was developed and commissioned at the Cockcroft Institute and can operate in a very large background pressure range from 10{sup ?7} down to below 10{sup ?11} millibars. The functioning principle of the monitor is described and the first experimental results obtained using a 5?keV electron beam are discussed.

  12. Laser Beam Profile Influence on LIBS Analytical Capabilities: Single vs. Multimode Beam

    E-Print Network [OSTI]

    Lednev, Vasily N; Bunkin, Alexey F

    2013-01-01T23:59:59.000Z

    Single vs. multimode laser beams have been compared for laser ablation on steel samples. Laser plasma properties and analytical capabilities (precision, limit of detection) were used as key parameters for comparison. Peak fluence at focal spot has been observed to be higher for Gaussian beam despite ~14-fold lower pulse energy. A comparison of Gaussian and multimode beams with equal energy was carried out in order to estimate influence of beam profile only. Single mode lasing (Gaussian beam) results in better reproducibility of analytical signals compared to multimode lasing while laser energy reproducibility was the same for both cases. Precision improvements were attributed to more stable laser ablation due to better reproducibility of beam profile fluence at laser spot. Plasma temperature and electron density were higher for Gaussian laser beam. Calibration curves were obtained for four elements under study (Cr, Mn, Si, Cu). Two sampling (drilling and scanning procedures) and two optical detection schemes ...

  13. A feasibility study of in vivo applications of single beam acoustic tweezers

    SciTech Connect (OSTI)

    Li, Ying, E-mail: yli582@usc.edu; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk [NIH Transducer Resource Center and Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089-1111 (United States)

    2014-10-27T23:59:59.000Z

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 ?m, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  14. World record neutron beam at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World record neutron beam at LANL World record neutron beam at Los Alamos National Laboratory Scientists have created the largest neutron beam ever made by a short-pulse laser,...

  15. Horizontal Beam Tubes - HFIR Technical Parameters | ORNL Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Tubes The reactor has four horizontal beam tubes that supply the neutrons to the neutron scattering instruments. Details for each beam tube and instrument can be found on...

  16. Intense ion beam propagation in a reactor sized chamber

    E-Print Network [OSTI]

    Vay, J.L.; Deutsch, C.

    2000-01-01T23:59:59.000Z

    beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.

  17. michael smith ornlradioactive beams: equipment & techniques recoil separators

    E-Print Network [OSTI]

    michael smith ornlradioactive beams: equipment & techniques recoil separators approach! · directly Smith, Rolfs, Barnes NIMA306 (1991) 233 #12;michael smith ornlradioactive beams: equipment & techniques;michael smith ornlradioactive beams: equipment & techniques recoil separators proof of concept with 12C

  18. The CERN Beam Interlock System: Principle and Operational Experience

    E-Print Network [OSTI]

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01T23:59:59.000Z

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  19. Vibration suppression, stabilization, motion planning and tracking for flexible beams

    E-Print Network [OSTI]

    Siranosian, Antranik Antonio

    2009-01-01T23:59:59.000Z

    Target System . . . . 3.2.3 Flexible Beams . . . 3.3 MotionPlanning and Tracking for Flexible Beams A Dissertationand De?ection Angle for Flexible Beams,” ASME Journal of

  20. Department of Information Technology

    E-Print Network [OSTI]

    Flener, Pierre

    Department of Information Technology Human-Computer Interaction http://www.it.uu.se/research/hci #12;InformationTechnology-HCI Department of Information Technology | www.it.uu.se Today's menu Who we and collaboration Teaching KoF 2007, effects? Vision and plans Challenges #12;InformationTechnology

  1. The Technology & Innovation Centre

    E-Print Network [OSTI]

    Mottram, Nigel

    The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield ­ including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

  2. Predictive Maintenance Technologies

    Broader source: Energy.gov [DOE]

    Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

  3. Bridging the Technology Innovation

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Bridging the Technology Innovation Gap Dr Ceri Williams Director of Medical Technologies Innovation Technologies #12;Distinctive Approach to Translating ResearchWe support innovation to reach TRL 5 enable real and Knowledge Centre #12;What is the Medical Technologies IKC? · All activities centre on research translation

  4. Soil washing technology evaluation

    SciTech Connect (OSTI)

    Suer, A.

    1995-04-01T23:59:59.000Z

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  5. Electron-beam scull melting with electromagnetic stirring of melt in crucible

    SciTech Connect (OSTI)

    Ladokhin, S.V. [Institute for Casting Problems, Kiev (Ukraine)

    1994-12-31T23:59:59.000Z

    The technologies and equipment have been developed for electron-beam scull melting with electromagnetic stirring of melt for some Ni-based superalloys as well as for multi-component Ti-, Zr-, Nb-, and Mo-based alloys. Two types of scull crucible sets with electromagnetic stirring systems have been constructed, with the metal pouring by the crucible tilting or through the hole in the crucible bottom. In the second case slag does not fall into a mold, and the electron beam may be used for metal heating in the costing head, thus improving the quality of castings. The technologies developed allow to utilize scrap, cost part reverts, chips etc. thus saving virgin alloys. The electromagnetic stirring application permits to product multi-component alloys, to increase the mass of the metal poured, and to reduce the specific energy expenditure and metal loss through evaporation.

  6. Electrostatic wire for stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, Daniel S. (Livermore, CA); Caporaso, George J. (Livermore, CA); Briggs, Richard J. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  7. Technology in water conservation 

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01T23:59:59.000Z

    2 tx H2O Summer 2013 Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a... conservation, however, is just as dependent on technological factors. #27;e technology does not have to be complex to be important #20; consider high e#23;ciency toilets and showerheads. #27;ese everyday appliances largely rely on simple technologies...

  8. Technology in water conservation

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01T23:59:59.000Z

    2 tx H2O Summer 2013 Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a... conservation, however, is just as dependent on technological factors. #27;e technology does not have to be complex to be important #20; consider high e#23;ciency toilets and showerheads. #27;ese everyday appliances largely rely on simple technologies...

  9. Technology Overview Using Case Studies of Alternative Landfill Technologies

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics Prepared by Interstate Technology & Regulatory Council Alternative Landfill Technologies of Alternative Landfill Technologies and Associated Regulatory Topics March 2003 Prepared by Interstate

  10. Building Technologies Office Window and Envelope Technologies...

    Energy Savers [EERE]

    by 2000 (10.7 billion in current dollars) Source: American Energy Innovation Council Case Studies on the Government's Role in Energy Technology Innovation "Low-Emissivity...

  11. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...

  12. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Broader source: Energy.gov (indexed) [DOE]

    Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum...

  13. Vehicle Technologies Office: Electric Drive Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Electronics and Electric Motor R&D North American Power Electronics Supply Chain Analysis Benchmarking EV and HEV Technology View all presentations from the 2014 Merit Review....

  14. Status of gadolinium enrichment technology at LLNL

    SciTech Connect (OSTI)

    Haynam, C.; Comaskey, B.; Conway, J.; Eggert, J.; Glaser, J.; Ng, E.; Paisner, J.; Solarz, R.; Worden, E.

    1993-01-01T23:59:59.000Z

    A method based on,polarization selectivity and three step laser photoionization is presented for separation of the odd isotopes of gadolinium. Measurements of the spectroscopic parameters needed to quantify the excitation pathway are discussed. Model results are presented for the efficiency of photoionization. The vapor properties of electron beam vaporized gadolinium are presented which show dramatic cooling during the expansion of the hot dense vapor into a vacuum. This results in a significant increase in the efficiency of conversion of natural feed into enriched product in the AVLIS process. Production of enriched gadolinium for use in commercial power reactors appears to be economically viable using technology in use at LLNL.

  15. ar ion beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The...

  16. argon ion beam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The...

  17. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    E-Print Network [OSTI]

    Efthimion, P.C.

    2009-01-01T23:59:59.000Z

    neutralizing plasma column the heavy ion beam can focus to aPlasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus

  18. Beam manipulation by self-wakefield at ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee and the ATF Users' Meetings, April 26 - 27, 2012 Outline 1. Enhanced Transformer Ratio demonstration (wakefield mapping with the shaped beam) 2. Tunable beam energy...

  19. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    E-Print Network [OSTI]

    Kawata, Shigeo

    2015-01-01T23:59:59.000Z

    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  20. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); McDonald, Jimmie M. (Albuquerque, NM); Lutz, Thomas J. (Albuquerque, NM); Gallis, Michail A. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  1. Improvement of extraction efficiency from a compact synchrotron for proton beam therapy by applying particle tracking analysis

    SciTech Connect (OSTI)

    Ebina, Futaro; Umezawa, Masumi; Hiramoto, Kazuo [Hitachi Research Laboratory, Hitachi, Ltd. 2-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken, 319-1221 (Japan)

    2013-04-19T23:59:59.000Z

    Various types of synchrotrons are used for particle beam therapy. In particle beam therapy, especially in proton beam therapy, downsizing of the accelerator system is a major concern. A compact synchrotron dedicated for proton beam therapy is presented. The synchrotron is horizontally weakly focusing and consists of 4 H-type zerogradient dipole magnets and 4 quadrupole magnets. The circumference of the ring is a little shorter than 18 m, and the energies are up to 230MeV. Beam extraction from the synchrotron is performed by RF-driven slow extraction technology. Two sextupole magnets set in adjacent straight sections form a horizontal separatrix which is fixed during the beam extraction. Horizontal RF voltage excites betatron oscillation of the circulating beam, and protons exceeding the separatrix are extracted by an electrostatic deflector and a horizontal septum dipole magnet. To achieve adequately high extraction efficiency, the relationship between the extraction efficiency and the horizontal chromaticity of the ring is analyzed by particle tracking simulation. The horizontal chromaticity with maximum extraction efficiency is half of the theoretical value because of the distortion of the horizontal separatrix for the extraction. With this chromaticity, the spiral-step of the extracted particle is independent of the momentum deviation of the particle, and the separatrix across the electrostatic septum electrodes is superpositioned.

  2. Physics with Rare Isotope Beams

    SciTech Connect (OSTI)

    Segel, Ralph E. [Northwestern University] [Northwestern University

    2013-11-08T23:59:59.000Z

    Using stable and radioactive beams provided by ATLAS nuclear reactions of special interest in astrophysics have been studied with emphasis on breakout from the hot CNO cycle to the rp-process. The masses of nuclear fragments provided by a strong fission source have been measured in order to help trace the path of the r process. 8Li ions produced by the d(7Li,8Li)n reaction have been trapped and the electrons and alphas emitted in the ensuing beta-decay measured. The neutrino directions were therefore determined, which leads to a measurement of the electron-neutrino correlation. The energies and kinematics are such that a sensitive search for any tensor admixture could be performed and an upper limit of 0.6% was placed on any such admixture. Earlier work on the electromagnetic form factors of the proton was extended. Graduate students were active participants in all of these eperiments, which formed the basis for six PhD theses.

  3. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  4. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16T23:59:59.000Z

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  5. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

    2012-06-21T23:59:59.000Z

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  6. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17T23:59:59.000Z

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  7. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  8. Automated beam steering using optimal control

    SciTech Connect (OSTI)

    Allen, C. K. (Christopher K.)

    2004-01-01T23:59:59.000Z

    We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.

  9. Fusion Induced by Radioactive Ion Beams

    E-Print Network [OSTI]

    J. F. Liang; C. Signorini

    2005-04-26T23:59:59.000Z

    The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

  10. Real Beamline Optics from a Synthetic Beam

    SciTech Connect (OSTI)

    Ryan Bodenstein,Michael Tiefenback,Yves Roblin

    2010-05-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab can be described as a series of concatenated beamlines. Methods used to measure the Twiss parameters in closed orbit machines are not applicable in such open ended systems. We are using properly selected sets of real orbits in the accelerator, as one would for numerical analysis. The evolution of these trajectories along the beamline models the behavior of a synthetic beam which deterministically supplements beam profile-based Twiss parameter measurements and optimizes the efficiency of beamline tuning. Examples will be presented alongside a description of the process.

  11. Acoustics of finite-aperture vortex beams

    E-Print Network [OSTI]

    Mitri, F G

    2014-01-01T23:59:59.000Z

    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  12. Manufacturing capabilities of high power electron beam furnaces for melting ignots to 40 tons in weight

    SciTech Connect (OSTI)

    Boiko, Ju.P.; Braim, V.P.; Kormitch, A.T.; Zorin, G.V.; Kostenuk, Ju.V.; Nikitin, V.S.; Pokrovsky, S.V.

    1994-12-31T23:59:59.000Z

    A tendency to using special technologies of melting steels and alloys to get large ingots free of macrodefects and shrinking shells used to provide defectless products, ensuring an increase of ingot-to-product yield is well known. The electron beam furnace process improves the economical efficiency of production of large ingots, slabs for rolling mills, where high quality of special purpose steels and alloys is required. Metals, made by means of electron beam melting can be used for power, nuclear and chemical machine-buildings, aircraft and automotive, instrument and bearing productions, injection moulds and moulds for cold rollings, magnetic and titanium alloys, ship shafts, propellers and high speed power turbine parts. Melting technologies, which is one of the most important stages in production of steels and alloys, predetermines a required quality of metals and alloys to get the following characteristics of remelted metals: impact strength; isotropy of properties in central and surface zones of ingots; fatigue strength and resistance under mechanical and heat loads; corrosion resistance to attack by aggressive media; and polishing properties. The furnace is equipped with five electron beam guns, type EH-1200/50 and pumps for pumping out cavities of technological equipments: melting and ingot chambers, charging devices.

  13. Plasma Panel Sensors for Particle and Beam Detection

    E-Print Network [OSTI]

    Peter S. Friedman; Robert Ball; James R. Beene; Yan Benhammou; E. H. Bentefour; J. W. Chapman; Erez Etzion; Claudio Ferretti; Nir Guttman; Daniel S. Levin; Meny Ben-Moshe; Yiftah Silver; Robert L. Varner; Curtis Weaverdyck; Bing Zhou

    2012-11-23T23:59:59.000Z

    The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.

  14. Theoretical Aspects of Science with Radioactive Nuclear Beams

    E-Print Network [OSTI]

    Jacek Dobaczewski; Witold Nazarewicz

    1997-07-28T23:59:59.000Z

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  15. Theoretical Aspects of Science with Radioactive Nuclear Beams

    E-Print Network [OSTI]

    Dobaczewski, J; Dobaczewski, Jacek; Nazarewicz, Witold

    1997-01-01T23:59:59.000Z

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  16. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07T23:59:59.000Z

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  17. Chemical beam epitaxy for high efficiency photovoltaic devices

    SciTech Connect (OSTI)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-09-01T23:59:59.000Z

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes recent results on PV devices and demonstrates the strength of this new technology.

  18. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect (OSTI)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Nocente, M.; Gorini, G. [Dipartimento di Fisica “G. Occhialini”, Università di Milano-Bicocca, Milano 20216 (Italy); Istituto di Fisica del Plasma “P. Caldirola”, Milano 20216 (Italy); Bonomo, F. [Consorzio RFX, Padova 35100 (Italy); Istituto Gas Ionizzati, CNR, Padova 35100 (Italy); Franzen, P.; Fröschle, M. [Max-Planck-Institut für Plasmaphysik, Garching 84518 (Germany); Grosso, G.; Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola”, Milano 20216 (Italy); Grünauer, F. [Physics Consulting, Zorneding 85604 (Germany); Pasqualotto, R. [Consorzio RFX, Padova 35100 (Italy)

    2014-11-15T23:59:59.000Z

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  19. ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders

    E-Print Network [OSTI]

    Papotti, G; BB2013; BB 2013

    2014-01-01T23:59:59.000Z

    This report contains the Proceedings of the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders held at CERN from 18 to 22 March 2013. It was the first of its kind after the successful start of LHC operation where a vast amount of beam-beam observations emerged. It brought together 58 international experts in the field and the purpose of this workshop was to review the present knowledge in the fields of beam-beam theory, simulations and observations. In the summary session the participants acknowledged the enormous progress made in recent years and the introduction of new concepts and tools. The workshop was concluded by a discussion on future research work with emphasis on the LHC operation and future circular colliders.

  20. Electron gun jitter effects on beam bunching

    SciTech Connect (OSTI)

    Liu, M. S. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)] [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan)

    2014-02-15T23:59:59.000Z

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  1. Electron beam related advances at ATF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to cavity loading. Compensation of the dispersion is needed at the level of a few mm. * Plasma Wakefield experiment needs extra small focus (10 micron) of the bunched beam...

  2. Synchronous Characterization of Semiconductor Microcavity Laser Beam

    E-Print Network [OSTI]

    Wang, Tao

    2015-01-01T23:59:59.000Z

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross-section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center and the defects-related spectrum can also be extracted from these high-resolution pictures.

  3. Optical chirped beam amplification and propagation

    DOE Patents [OSTI]

    Barty, Christopher P.

    2004-10-12T23:59:59.000Z

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  4. Shear Behaviour of Concrete Beams Reinforced with

    E-Print Network [OSTI]

    and Construction R&D Facility ofthe University ofManitoba to test a total ofnine beams reinforced with GFRP and encouragement went beyond the academic roles. Many special thanks are extended to Dr. Kenneth. R. Hughes. His

  5. Predicted Bremsstrahlung generation by energetic electron beams

    SciTech Connect (OSTI)

    Faehl, R.J.; Snell, C.M.; Keinigs, R.K.

    1991-01-01T23:59:59.000Z

    The CYLTRAN photon/electron Monte Carlo code has been employed to predict Bremsstrahlung generation by monoenergetic electron beams from 10 to 1000 MeV. The forward-directed Bremsstrahlung intensity is investigated as a function of beam energy converter thickness, and material. At high energies, the forward extraction efficiency is maximized by using converters that are about 0.1-electron ranges thick. The largest intensities are attained with low-Z converter materials such as beryllium. Because the Bremsstrahlung radiation is strongly forward-directed, low divergence of the incident electron beam is crucial. Under deal conditions, a 1000-MeV beam can produce intensities up to 10{sup 8} MeV per steradian, per incident electron. 9 refs., 32 figs., 12 tabs.

  6. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B., E-mail: stepanovib@tpu.ru; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A. [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)

    2014-02-15T23:59:59.000Z

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  7. The Radioactive Beam Program at Argonne

    E-Print Network [OSTI]

    B. B. Back

    2006-06-06T23:59:59.000Z

    In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

  8. Oblique reflections of internal gravity wave beams

    E-Print Network [OSTI]

    Karimi, Hussain H. (Hussain Habibullah)

    2012-01-01T23:59:59.000Z

    We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...

  9. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08T23:59:59.000Z

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  10. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, R.W.

    1997-02-11T23:59:59.000Z

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided. 4 figs.

  11. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

  12. First observation of beam-beam interactions in high intensity collisions at the LHC

    E-Print Network [OSTI]

    Arduini, G; Jowett, J; Laface, E; Meddahi, M; Schmidt, F

    2010-01-01T23:59:59.000Z

    For the rst time bunches were collided in the LHC with close to nominal parameters and so experienced head-on beam-beam eects comparable to those expected with the nominal LHC parameters. Among other things, this provided an opportunity to test the procedure of separating beams at IP2 to reduce the luminosity and pile-up in the ALICE experiment. We report on the observations made during these runs and related tests.

  13. AGS fixed target program with nuclear beams

    SciTech Connect (OSTI)

    Foley, K.J.

    1984-01-01T23:59:59.000Z

    The recent approval of the beam transfer line from the Tandem Van de Graaf to the AGS signals the advent of a new era of Nuclear and Particle Physics at BNL. High Energy nuclear beams are expected to be available for experiments in 1986. I will discuss the direct link between the Tandems and the AGS. Two other proposed projects, the Relativistic Heavy Ion Collider and the Synchrotron Booster, are discussed in another presentation to this conference.

  14. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  15. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  16. Shielded beam delivery apparatus and method

    DOE Patents [OSTI]

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11T23:59:59.000Z

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  17. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    SciTech Connect (OSTI)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28T23:59:59.000Z

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  18. Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

    E-Print Network [OSTI]

    Nebot Del Busto, E; Branger, E; Holzer, E B; Doebert, S; Lillestol, R L; Welsch, C P

    2013-01-01T23:59:59.000Z

    The Test Beam Line (TBL) of the CLIC Test Facility 3 (CTF3) aims to validate the drive beam deceleration concept of CLIC, in which the RF power requested to boost particles to multi-TeV energies is obtained via deceleration of a high current and low energy drive beam (DB). Despite a TBL beam energy (150-80 MeV) significantly lower than the minimum nominal energy of the CLIC DB (250 MeV), the pulse time structure of the TBL provides the opportunity to measure beam losses with CLIC-like DB timing conditions. In this contribution, a simulation study on the detection of beam losses along the TBL for the commissioning of the recently installed beam loss monitoring system is presented. The most likely loss locations during stable beam conditions are studied by considering the beam envelope defined by the FODO lattice as well as the emittance growth due to the deceleration process. Moreover, the optimization of potential detector locations is discussed. Several factors are considered, namely: the distance to the bea...

  19. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWPORT NEWS, VA, May 14, 2014 - The Continuous Electron Beam Accelerator Facility (CEBAF) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has...

  20. A study of beam-beam effects in hadron colliders with a large number of bunches

    E-Print Network [OSTI]

    Pieloni, Tatiana; Bay, Aurelio; Rivkin, Leonid

    2008-01-01T23:59:59.000Z

    A particle beam is a collection of a large number of charges and represents an electromagnetic potential for other charges, therefore exerting forces on itself and other beams. The control of this so called Beam-Beam Interactions (BBIs) in particle colliders is fundamental to preserve beam stability and achieve the collider maximal luminosity. In the case of the Large Hadron Collider (LHC) at CERN, these forces are experienced as localized periodic distortions when the two beams cross each other in the four experimental areas. The forces are most important for high density beams, i.e. high intensity and small beam sizes. Each LHC beam is composed of 2808 bunches, each containing $10^{11}$ protons and with a transverse size of 16~$\\mu $m at the interaction points. These extreme parameters are the key to obtain high ``luminosity'', i. e. the number of collisions per second needed to study rare physics phenomena. The BBI is therefore often the limiting factor for the luminosity of colliders. Within all BB effect...

  1. Observations of Instabilities in the LHC Due to Missing Head-On Beam-Beam Interactions

    E-Print Network [OSTI]

    Arduini, G; Herr, W; Metral, E; Papotti, G; Pieloni, T; Buffat, X; Mounet, N

    2013-01-01T23:59:59.000Z

    We report the observation of coherent instabilities on individual bunches out of the LHC bunch train. These instabilities occurred spontaneously after several hours of stable beam while in the other cases they were related to the application of a small transverse beam separation during a luminosity optimization. Only few bunches were affected, depending on their collision schemes and following various tests we interpret these instabilities as a sudden loss of Landau damping when the tune spread from the beam-beam interaction becomes insufficient.

  2. Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams

    SciTech Connect (OSTI)

    Gras, S.; Blair, D. G.; Ju, L. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2010-02-15T23:59:59.000Z

    To reduce the thermal noise in the future generation of gravitational wave detectors, flat-top beams have been proposed to replace conventional Gaussian beams, so as to obtain better averaging over the Brownian motion of the test masses. Here, we present a detailed investigation of the unwanted opto-acoustic interactions in such interferometers, which can lead to the phenomenon of parametric instability. Our results show that the increased overlap of the Mesa beams with the test masses leads to approximately 3 times as many unstable modes in comparison to a similar interferometer with Gaussian beams.

  3. Electron-beam furnace with magnetic stabilization

    SciTech Connect (OSTI)

    Harker, H.R.; Knecht, J.A. II

    1986-10-07T23:59:59.000Z

    This patent describes an electron-beam comprising: a. An evacuable chamber having a port for coupling the chamber to vacuum pump means; b. a trough-shaped hearth within the chamber for holding material to be melted, the hearth having a spout for issuing a flow of molten material therefrom; c. a crucible positioned within the chamber for receiving molten material flowing from the hearth; d. one or more electron guns each for producing an energetic beam of electrons, each electron gun being positioned a relatively large distance away from the hearth and the crucible; e. magnetic beam deflection means forming an integral part of each electron gun for scanning and shaping the beam produced thereby across the hearth or the crucible; and f. magnetic means adjacent to the hearth and the crucible for producing a relatively weak magnetic field in the vicinity of the hearth and the crucible for preventing erratic deflections of the scanning electron beams without significantly altering the trajectories of such beams.

  4. Fan-beam intensity modulated proton therapy

    SciTech Connect (OSTI)

    Hill, Patrick [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States)] [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Westerly, David [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mackie, Thomas [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)] [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems.Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  5. Utilities Inspection Technologies

    E-Print Network [OSTI]

    Messock, R. K.

    Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been...

  6. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15T23:59:59.000Z

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

  7. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  8. 2014 Annual Merit Review, Vehicle Technologies Office - 08 Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 8. Technology Integration The Technology Integration subprogram accelerates the adoption and use of alternative fuel and advanced technology vehicles to help meet national...

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies Program research...

  10. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the...

  11. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...

  12. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  13. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01T23:59:59.000Z

    including issues of technology and cost un- certainties, areon NO x Control Technologies and Cost Effectiveness forand other factors on technology cost trends (hence, the

  14. SERVICEABILITY LIMIT STATES OF CONCRETE BEAMS PRESTRESSED BY CFRP BARS

    E-Print Network [OSTI]

    reinforcements. The experimental program consisted of testing eight concrete beams prestressed by CFRP bars beams prestressed by Leadline CFRP bars were tested, in addition to two concrete beams prestressedAbstract SERVICEABILITY LIMIT STATES OF CONCRETE BEAMS PRESTRESSED BY CFRP BARS by Amr A

  15. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    Identify chronic vehicle or infrastructure field problems * Incident investigations (technology failures) * Capture lessons learned and develop best practices Technical & Problem...

  16. States & Emerging Energy Technologies

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  17. Deployment of Emerging Technologies

    Broader source: Energy.gov [DOE]

    Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

  18. Photovoltaic Technology Incubator Awards

    SciTech Connect (OSTI)

    Not Available

    2007-06-01T23:59:59.000Z

    This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

  19. Web Technology (elective package)

    E-Print Network [OSTI]

    Franssen, Michael

    Web Technology (elective package) Offered by: Department of Mathematics and Computer Science? Computer Science-based approaches and enabling technologies for the web. Course descriptions Human and efficient. Web Technology The web has become the major source of information retrieval and is playing

  20. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR