National Library of Energy BETA

Sample records for beam calculated flux

  1. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect (OSTI)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  2. Updated flux information for neutron scattering and irradiation facilities at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.; Sengupta, S.; Greenwood, L.R.; Farrell, K.

    1997-08-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. While most reactors attempt to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9, used for neutron scattering and capture reactions, supporting physics, chemistry and biology experiments. All horizontal beam tubes were built tangential to the direction of the emerging neutrons, except for the H-2 beam tube, which looks directly at the core and has been used for neutron cross section measurements utilizing fast neutrons and for the TRISTAN fission product studies. In recent years, there have been some beam modifications and new instrumentation introduced at the HFBR. A high resolution neutron powder diffractometer instrument is now operating with a resolution of 5 {times} 10{sup {minus}4} at horizontal beam line H-1. To study scattering from liquid surfaces, a neutron reflection spectrometer was introduced on the CNF beam line at H-9. In the past year, a fourth beam line has been added to the CNF line at H-9. The existing beam plug at the H-6 beam line has recently been removed and a new plug, which will feature super mirrored surfaces, is now being installed. Last year, the vertical beam thimble, V-13, a fixed port filled with thirty year old samples used for HFBR material surveillance studies was replaced by a new thimble and charging station at the core edge creating an irradiation facility to substitute for the original V-13. A neutron dosimetry program has begun to measure and calculate the energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  3. HFBR handbook, 1992: High flux beam reactor

    SciTech Connect (OSTI)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance.

  4. Radiation dosimetry at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  5. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  6. Measurements and model calculations of radiative fluxes for the Cabauw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Site for Atmospheric Research, the Netherlands Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological Institute KNMI Los, Alexander KNMI Boers, Reinout KNMI Category: Radiation The Cabauw Experimental Site for Atmospheric Research (CESAR), the Netherlands (52.0N, 4.9E), contains an extensive set of instruments for atmospheric research, such as radar, lidar

  7. Errors in response calculations for beams

    SciTech Connect (OSTI)

    Wada, H.; Wurburton, G.B.

    1985-05-01

    When the finite element method is used to idealize a structure, its dynamic response can be determined from the governing matrix equation by the normal mode method or by one of the many approximate direct integration methods. In either method the approximate data of the finite element idealization are used, but further assumptions are introduced by the direct integration scheme. It is the purpose of this paper to study these errors for a simple structure. The transient flexural vibrations of a uniform cantilever beam, which is subjected to a transverse force at the free end, are determined by the Laplace transform method. Comparable responses are obtained for a finite element idealization of the beam, using the normal mode and Newmark average acceleration methods; the errors associated with the approximate methods are studied. If accuracy has priority and the quantity of data is small, the normal mode method is recommended; however, if the quantity of data is large, the Newmark method is useful.

  8. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    SciTech Connect (OSTI)

    Maj, Omar; Poli, Emanuele; Mariani, Alberto; Farina, Daniela

    2013-04-15

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  9. Remarks on calculation of positron flux from galactic dark matter (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Remarks on calculation of positron flux from galactic dark matter Citation Details In-Document Search Title: Remarks on calculation of positron flux from galactic dark matter Energetic positrons produced in annihilation or decay of dark matter particles in the Milky Way can serve as an important indirect signature of dark matter. Computing the positron flux expected in a given dark matter model involves solving transport equations, which account for interaction of

  10. Plasma focus ion beam fluence and fluxFor various gases

    SciTech Connect (OSTI)

    Lee, S. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya (Malaysia); Saw, S. H. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

    2013-06-15

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  11. Ray tracing flux calculation for the small and wide angle x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    diffraction station at the SESAME synchrotron radiation facility (Journal Article) | SciTech Connect Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search Title: Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility The calculation for the optics of the synchrotron radiation small and

  12. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect (OSTI)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  13. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect (OSTI)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  14. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  15. EIS-0291: High Flux Beam Reactor (HFBR) Transition Project at the Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    The EIS evaluates the range of reasonable alternatives and their impacts regarding the future management of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL).

  16. INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-12-15

    5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

  17. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  18. TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-07-09

    5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

  19. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites

    SciTech Connect (OSTI)

    Ogren, John A.; Dutton, Ellsworth G.; McComiskey, Allison C.

    2006-09-30

    The direct radiative forcing (DRF) of aerosols, the change in net radiative flux due to aerosols in non-cloudy conditions, is an essential quantity for understanding the human impact on climate change. Our work has addressed several key issues that determine the accuracy, and identify the uncertainty, with which aerosol DRF can be modeled. These issues include the accuracy of several radiative transfer models when compared to measurements and to each other in a highly controlled closure study using data from the ARM 2003 Aerosol IOP. The primary focus of our work has been to determine an accurate approach to assigning aerosol properties appropriate for modeling over averaged periods of time and space that represent the observed regional variability of these properties. We have also undertaken a comprehensive analysis of the aerosol properties that contribute most to uncertainty in modeling aerosol DRF, and under what conditions they contribute the most uncertainty. Quantification of these issues enables the community to better state accuracies of radiative forcing calculations and to concentrate efforts in areas that will decrease uncertainties in these calculations in the future.

  20. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  1. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-12-15

    5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

  2. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-11-03

    5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

  3. Ion species control in high flux deuterium plasma beams produced by a linear plasma generator

    SciTech Connect (OSTI)

    Luo, G.-N.; Shu, W.M.; Nakamura, H.; O'Hira, S.; Nishi, M.

    2004-11-01

    The ion species ratios in low energy high flux deuterium plasma beams formed in a linear plasma generator were measured by a quadrupole mass spectrometer. And the species control in the plasma generator was evaluated by changing the operational parameters like neutral pressure, arc current, and axial magnetic confinement to the plasma column. The measurements reveal that the lower pressures prefer to form more D{sup +} ions, and the medium magnetic confinement at the higher pressures results in production of more D{sub 2}{sup +}, while the stronger confinement and/or larger arc current are helpful to D{sub 2}{sup +} conversion into D{sub 3}{sup +}. Therefore, the ion species can be controlled by adjusting the operational parameters of the plasma generator. With suitable adjustment, we can achieve plasma beams highly enriched with a single species of D{sup +}, D{sub 2}{sup +}, or D{sub 3}{sup +}, to a ratio over 80%. It has been found that the axial magnetic configuration played a significant role in the formation of D{sub 3}{sup +} within the experimental pressure range.

  4. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams

    SciTech Connect (OSTI)

    Vandervoort, Eric J. Cygler, Joanna E.; The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5; Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 ; Tchistiakova, Ekaterina; Department of Medical Biophysics, University of Toronto, Ontario M5G 2M9; Heart and Stroke Foundation Centre for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Ontario M4N 3M5 ; La Russa, Daniel J.; The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5

    2014-02-15

    Purpose: In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Methods: Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Results: Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 5 cm{sup 2}. Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm ?-criteria) provided that the steep dose gradient in the depth direction is considered. Conclusions: Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  5. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    SciTech Connect (OSTI)

    Muir, B. R.; Rogers, D. W. O.

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  6. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect (OSTI)

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  7. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  8. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect (OSTI)

    Salah, Wa'el; Sanchez del Rio, M.; Hoorani, H.

    2009-09-15

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  9. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  10. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect (OSTI)

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  11. Ion beam measurement of deuterium in palladium and calculation of hydrogen isotope separation factors

    SciTech Connect (OSTI)

    Gullinger, T.R.; Kelly, M.J.; Knapp, J.A.; Walsh, D.S.; Doyle, B.L. )

    1991-08-01

    In this paper, the authors demonstrate a new technique for measuring hydrogen isotope separation factors in hydrogen-absorbing metals. Using external ion beam nuclear reaction analysis of metal electrodes in an operating electrochemical cell, the authors monitor in situ the deuterium content of the electrode. changing the deuterium/hydrogen ratio in the electrolyte changes the observed deuterium content of the metal electrode, and, assuming identical ultimate total metal loading for deuterium, hydrogen, and any mixture of deuterium and hydrogen, a simple calculation yields the separation factor.

  12. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  13. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  15. SU-E-T-209: Independent Dose Calculation in FFF Modulated Fields with Pencil Beam Kernels Obtained by Deconvolution

    SciTech Connect (OSTI)

    Azcona, J; Burguete, J

    2014-06-01

    Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.

  16. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    SciTech Connect (OSTI)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  17. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    SciTech Connect (OSTI)

    Slopsema, R. L. Flampouri, S.; Yeung, D.; Li, Z.; Lin, L.; McDonough, J. E.; Palta, J.

    2014-09-15

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of RM-step thickness is required for accurate parameterization of the effective SAD. The GBD energy spread is given by a linear function of the exponential of the beam energy. Except for a few outliers, the measured parameters match the GBD within the specified tolerances in all of the four rooms investigated. For a SOBP field with a range of 15 g/cm{sup 2} and an air gap of 25 cm, the maximum difference in the 80%20% lateral penumbra between the GBD-commissioned treatment-planning system and measurements in any of the four rooms is 0.5 mm. Conclusions: The beam model parameters of the double-scattering system can be parameterized with a limited set of equations and parameters. This GBD closely matches the measured dosimetric properties in four different rooms.

  18. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Harpeneau, Evan M.

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  19. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    SciTech Connect (OSTI)

    Dooling, J.; Accelerator Systems Division

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker targets, however, the dose-rate no longer depends only on photon attenuation, as photoneutrons (PNs) begin to dominate. The GB radiation-induced photoneutron measurements from four different metals (Fe, Cu, W, and Pb) are compared with MARS predictions. The simulated dose-rates for beamline 6-ID are approximately 3-5 times larger than the measured values, whereas those for beamline 11-ID are much closer. Given the uncertainty in local values of pressure and Z, the degree of agreement between MARS and the PN measurements is good. MARS simulations of GB-induced radiation in and around the FOE show the importance of using actual pressure and gas composition (Z{sub eff}) to obtain accurate PN dose. For a beam current of 300 mA, extrapolating pressure data measured in previously published studies predicts an average background gas pressure of 27 nTorr. An average atomic number of Z{sub eff} = 4.0 is obtained from the same studies. In addition, models of copper masks presently in use at the APS are included. Simulations show that inclusion of exit masks make significant differences in both the radiation spatial distribution within the FOE, as well as the peak intensity. Two studies have been conducted with MARS to assess shielding requirements. First, dose levels in contact with the outside wall of the FOE are examined when GB radiation strikes Pb or W beam stops of varying transverse size within the FOE. Four separate phantom regions are utilized to measure the dose, two at beam elevation and two at the horizontal beam position. The first two phantoms are used for scoring FOE dose along the outside and back walls, horizontally; the second two collect dose on the roof and vertically on the back wall. In all cases, the beam stop depth is maintained at 30 cm. Inclusion of front end (FE) exit masks typically cause a 1-2 order-of-magnitude increase in the dose-rates relative to the case with no masks. Masks place secondary bremsstrahlung sources inside the FOE, and therefore they must be shielded appropriately. The MARS model does not fully account for all shielding present

  20. Calculation of the Beam Field in the LCLS Bunch Length Monitor

    SciTech Connect (OSTI)

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2006-06-07

    Maintaining a stable bunch length and peak current is a critical step for the reliable operation of a SASE based x-ray source. In the LCLS, relative bunch length monitors (BLM) right after both bunch compressors are proposed based on the coherent radiation generated by the short electron bunch. Due to its diagnostic setup, the standard far field synchrotron radiation formula and well-developed numerical codes do not apply for the analysis of the BLM performance. In this paper, we develop a calculation procedure to take into account the near field effect, the effect of a short bending magnet, and the diffraction effect of the radiation transport optics. We find the frequency response of the BLM after the first LCLS bunch compressor and discuss its expected performance.

  1. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    Harpenau, Evan M.

    2012-01-13

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2?2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyzed with onsite gamma spectroscopy equipment. These samples were also included with the FSS s

  2. Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation

    SciTech Connect (OSTI)

    Corre, Y.; Lipa, M.; Agarici, G.; Basiuk, V.; Colas, L.; Courtois, X.; Dumont, R. J.; Ekedahl, A.; Gardarein, J. L.; Klepper, C Christopher; Martin, V.; Moncada, V.; Portafaix, C.; Rigollet, F.; Tawizgant, R.; Travere, J. M.; Valliez, K.

    2011-01-01

    Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

  3. TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-11-30

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  4. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect (OSTI)

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  5. SU-E-T-71: Commissioning and Acceptance Testing of a Commercial Monte Carlo Electron Dose Calculation Model (eMC) for TrueBeam

    SciTech Connect (OSTI)

    Sheu, R; Tseng, T; Powers, A; Lo, Y

    2014-06-01

    Purpose: To provide commissioning and acceptance test data of the Varian Eclipse electron Monte Carlo model (eMC v.11) for TrueBeam linac. We also investigated the uncertainties in beam model parameters and dose calculation results for different geometric configurations. Methods: For beam commissioning, PTW CC13 thimble chamber and IBA Blue Phantom2 were used to collect PDD and dose profiles in air. Cone factors were measured with a parallel plate chamber (PTW N23342) in solid water. GafChromic EBT3 films were used for dose calculation verifications to compare with parallel plate chamber results in the following test geometries: oblique incident, extended distance, small cutouts, elongated cutouts, irregular surface, and heterogeneous layers. Results: Four electron energies (6e, 9e, 12e, and 15e) and five cones (66, 1010, 1515, 2020, and 2525) with standard cutouts were calculated for different grid sizes (1, 1.5,2, and 2.5 mm) and compared with chamber measurements. The results showed calculations performed with a coarse grid size underestimated the absolute dose. The underestimation decreased as energy increased. For 6e, the underestimation (max 3.3 %) was greater than the statistical uncertainty level (3%) and was systematically observed for all cone sizes. By using a 1mm grid size, all the calculation results agreed with measurements within 5% for all test configurations. The calculations took 21s and 46s for 6e and 15e (2.5mm grid size) respectively distributed on 4 calculation servants. Conclusion: In general, commissioning the eMC dose calculation model on TrueBeam is straightforward and thedose calculation is in good agreement with measurements for all test cases. Monte Carlo dose calculation provides more accurate results which improves treatment planning quality. However, the normal acceptable grid size (2.5mm) would cause systematic underestimation in absolute dose calculation for lower energies, such as 6e. Users need to be cautious in this situation.

  6. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect (OSTI)

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  7. DARK MATTER IN THE CLASSICAL DWARF SPHEROIDAL GALAXIES: A ROBUST CONSTRAINT ON THE ASTROPHYSICAL FACTOR FOR {gamma}-RAY FLUX CALCULATIONS

    SciTech Connect (OSTI)

    Walker, M. G.; Combet, C.; Hinton, J. A.; Maurin, D.; Wilkinson, M. I. E-mail: dmaurin@lspc.in2p3.fr

    2011-06-01

    We present a new analysis of the relative detectability of dark matter annihilation in the Milky Way's eight 'classical' dwarf spheroidal (dSph) satellite galaxies. Ours is similar to previous analyses in that we use Markov-Chain Monte Carlo techniques to fit dark matter halo parameters to empirical velocity dispersion profiles via the spherical Jeans equation, but more general in the sense that we do not adopt priors derived from cosmological simulations. We show that even without strong constraints on the shapes of dSph dark matter density profiles (we require only that the inner profile satisfies -liM{sub r {yields} 0} dln {rho}/dln r {<=} 1), we obtain a robust and accurate constraint on the astrophysical component of a prospective dark matter annihilation signal, provided that the integration angle is approximately twice the projected half-light radius of the dSph divided by distance to the observer, {alpha}{sub int} {approx} 2r{sub h} /d. Using this integration angle, which represents a compromise between maximizing prospective flux and minimizing uncertainty in the dSph's dark matter distribution, we calculate the relative detectability of the classical dSphs by ground- and space-based {gamma}-ray observatories.

  8. LCLS Spectral Flux Viewer

    Energy Science and Technology Software Center (OSTI)

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  9. Study the sensitivity of dose calculation in prism treatment planning system using Monte Carlo simulation of 6 MeV electron beam

    SciTech Connect (OSTI)

    Hardiansyah, D.; Haryanto, F.; Male, S.

    2014-09-30

    Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.

  10. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  11. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular geometries but using fewer beams. Furthermore, SBA provides the value of the objective function as the number of beams is increased, allowing the planner to select the minimal beam number that achieves the clinical goals. The method is simple to implement and could readily be incorporated into an existing optimization system.

  12. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  13. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  14. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  15. Beam/seam alignment control for electron beam welding

    DOE Patents [OSTI]

    Burkhardt, Jr., James H. (Knoxville, TN); Henry, J. James (Oak Ridge, TN); Davenport, Clyde M. (Knoxville, TN)

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  16. Computational study of ion beam extraction phenomena through multiple apertures

    SciTech Connect (OSTI)

    Hu, Wanpeng; Sang, Chaofeng; Tang, Tengfei; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Li, Ming; Jin, Dazhi; Tan, Xiaohua [Institute of Electronic Engineering, Mianyang, 621900 (China)] [Institute of Electronic Engineering, Mianyang, 621900 (China)

    2014-03-15

    The process of ion extraction through multiple apertures is investigated using a two-dimensional particle-in-cell code. We consider apertures with a fixed diameter with a hydrogen plasma background, and the trajectories of electrons, H{sup +} and H{sub 2}{sup +} ions in the self-consistently calculated electric field are traced. The focus of this work is the fundamental physics of the ion extraction, and not particular to a specific device. The computed convergence and divergence of the extracted ion beam are analyzed. We find that the extracted ion flux reaching the extraction electrode is non-uniform, and the peak flux positions change according to operational parameters, and do not necessarily match the positions of the apertures in the y-direction. The profile of the ion flux reaching the electrode is mainly affected by the bias voltage and the distance between grid wall and extraction electrode.

  17. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  18. Co: clqrt. Beam

    Office of Legacy Management (LM)

    Co: clqrt. Beam*/:

  19. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  20. Maximizing spectral flux from self-seeding hard x-ray free electron...

    Office of Scientific and Technical Information (OSTI)

    Maximizing spectral flux from self-seeding hard x-ray free electron lasers Citation ... TOPICS - ACCELERATORS AND BEAMS; Journal Volume: 16 Research Org: Brookhaven National ...

  1. 43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE

    Office of Scientific and Technical Information (OSTI)

    SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...

  2. Transverse beam dynamics in plasma-based linacs (Conference)...

    Office of Scientific and Technical Information (OSTI)

    accelerator by a uniform focusing channel. The transverse beam sizes and a basic offset tolerance are calculated, finding that sub-micron beams must be transported with even...

  3. Using E-beam Mapping to Detect Coil Misalignment in NCSX

    SciTech Connect (OSTI)

    Fredrickson, E.; Georgiyevskiy, A.; Rudakov, V.; Zarnstorff, M. C.

    2005-10-18

    Following assembly of the NCSX device, a program of e-beam mapping experiments is planned to validate the accuracy of the construction and assembly of the NCSX coil systems. To aid in the development of requirements for the e-beam mapping hardware and machine requirements, simulations of the e-beam mapping experiments, including various coil misalignments, have been done. The magnetic flux surface configuration was constructed using a numerical code, based on the Biot-Savart law, to calculate the magnetic field components and trace the field line trajectory many times around the torus. Magnetic surfaces are then mapped by recording the field line intersections with toroidal cross-sections of the magnetic system, much as in an actual e-beam mapping experiment.

  4. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  5. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  6. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, Tuncer M. (Naperville, IL); Shu, Deming (Darien, IL)

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  7. SRU Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator SRU Calculator About SRUs You can use this form to estimate your mass storage charges (in SRUs). SRUs are calculated on a daily basis. Enter your estimated daily average number of files and data storage and your yearly estimate of data transferred to and from the HPSS system. Click on Calculate and your SRU charge will appear in the light blue boxes. Enter average daily values for the allocation year Number of files*: Amount of data stored*: GB Enter total HPSS I/O for the allocation

  8. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  9. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, Daniel R. (17 Eric Alan Lane, Tijeras, NM 87059); Alford, W. J. (3455 Tahoe, N.E., Albuquerque, NM 87111); Gruetzner, James K. (9407 Shoehone, N.E., Albuquerque, NM 87111)

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  10. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  11. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  12. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13

  13. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2 http://www.exelisvis.com/ProductsServices/IDL.aspx

  14. HIGS Flux Performance Projection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIGS flux performance table for high-flux, quasi-CW operation, DFELL/TUNL, Nov. 9, 2010 (Version 2.3). HIGS Flux Performance Projection (2010 - 2011) Total Flux [g/s] CW Operation Two-Bunch (*) Collimated Flux (∆E γ /E γ = 5% FWHM) (#), (@) FEL λ [nm] Comment No-loss Mode : < 20 MeV Linear Pol. with OK-4 Circular Pol with OK-5 E γ = 1 - 2 MeV (E e = 237 - 336 MeV) 1 x 10 8 - 4 x 10 8 6 x 10 6 - 2.4 x 10 7 1064 Linear and Circular (a), (b) E γ = 2 - 2.9 MeV (E e = 336 - 405 MeV) 4 x 10

  15. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  16. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J; Rousculp, Christopher L; Reinovsky, Robert E; Reass, William A; Griego, Jeffrey R; Oro, David M; Merrill, Frank E

    2010-06-28

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  17. Remarks on calculation of positron flux from galactic dark matter...

    Office of Scientific and Technical Information (OSTI)

    However, in many models, a substantial fraction of the dark matter halo lies outside the diffusion zone. Positrons produced there can then enter the diffusion zone and get trapped, ...

  18. Development of Aerosol Models for Radiative Flux Calculations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1985-1992. J. Geophys. Res., 99, 25,845-25,855. Quinn, P. K., T. L. Miller, T. S. Bates, J. A. Ogren, E. Andrews, and G. E. Shaw, 2002: A 3-year record of simultaneously...

  19. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  20. ARM - Measurement - Actinic flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsActinic flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Actinic flux The quantity of light in the atmosphere available to molecules at a particular point and which, on absorption, initiates photochemical processes in the atmosphere (spectral spheradiance) actinic flux units: (quanta or photons) / ( m2 nm s ), sometimes specific to a particular reaction, e.g. j(NO2). Categories

  1. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOE Patents [OSTI]

    Karl, Jr., Robert R. (Los Alamos, NM)

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  2. WBGT Calculator

    Energy Science and Technology Software Center (OSTI)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  3. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  4. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  5. Measurements - Ion Beams - Radiation Effects Facility / Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Texas A&M University Ion Beams Available Beams / Beam Change Times / Measurements / Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each detector is made up with a plastic scintillator coupled to photo-multiplier tubes. Four of the detectors are fixed in position and set up to measure beam particle counting rates continuously at four characteristic points 1.64 inches (4.71 mm) away from the beam axis. The fifth scintillator can

  6. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  7. Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds V. E. Zuev, G. A. Titov, T. B. Zhuravleva, and S. Y. Popov Institute of Atmospheric Optics, Siberian Branch Russian Academy of Sciences Tomsk, Russia Introduction Generally, radiation codes for general circulation models (GCMs) include, together with other procedures, calculations of vertical profiles of upward and downward radiation fluxes which are needed to calculate radiant heat influxes. These last radiative characteristics

  8. Simulation study of dynamic aperture with head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated 10{sup 6} turn dynamic apertures with the proposed head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are planning to introduce a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device to provide the electron beam is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we compare the calculated dynamic apertures without and with head-on beam-beam compensation. The effects of adjusted phase advances between IP8 and the center of e-lens and second order chromaticity correction are checked. In the end we will scan the proton and electron beam parameters with head-on beam-beam compensation.

  9. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect (OSTI)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  10. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  11. Asymptotic, multigroup flux reconstruction and consistent discontinuity factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trahan, Travis J.; Larsen, Edward W.

    2015-05-12

    Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less

  12. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  13. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  14. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  15. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  16. High sensitivity charge amplifier for ion beam uniformity monitor

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  17. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  18. Method for finding the beam waist through ABCD matrix element adjustment

    SciTech Connect (OSTI)

    Evans, J.D.

    1988-12-15

    Laser beam parameters includingbeam waist are calculated for laser cavities using an equivalent lens waveguide approach.(AIP)

  19. CEBAF beam loss accounting

    SciTech Connect (OSTI)

    Ursic, R.; Mahoney, K.; Hovater, C.; Hutton, A.; Sinclair, C.

    1995-12-31

    This paper describes the design and implementation of a beam loss accounting system for the CEBAF electron accelerator. This system samples the beam curent throughout the beam path and measures the beam current accurately. Personnel Safety and Machine Protection systems use this system to turn off the beam when hazardous beam losses occur.

  20. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beams effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beams effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the models energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  1. Confined ion beam sputtering device and method

    DOE Patents [OSTI]

    Sharp, Donald J. (Albuquerque, NM)

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  2. Confined ion beam sputtering device and method

    DOE Patents [OSTI]

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  3. Influence of polarization and a source model for dose calculation in MRT

    SciTech Connect (OSTI)

    Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bruer-Krisch, Elke

    2014-04-15

    Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartnez-Rovira et al. [Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy, Med. Phys. 39(1), 119131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside the field center, increased beam width and center to center distance due to the beam propagation from the collimator to the phantom surface and imperfect absorption in the absorber material of the Multislit Collimator. These corrections have an effect of approximately 10% on the valley dose and suffice to describe doses in MRT within the measurement uncertainties of currently available dosimetry techniques. Conclusions: The source for the first clinical pet trials in MRT is characterized with respect to its phase space and the photon polarization. The results suggest the use of a presented simplified phase space model in dose calculations and hence pave the way for alternative and fast dose calculation algorithms. They also show that the polarization is of minor importance for the clinical important peak and valley doses inside the microbeam field.

  4. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  5. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  6. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  7. High flux reactor

    DOE Patents [OSTI]

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  8. Characterization of local heat fluxes around ICRF antennas on JET

    SciTech Connect (OSTI)

    Campergue, A.-L.; Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A.; Milanesio, D.; Colas, L.; Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  9. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect (OSTI)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  10. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOE Patents [OSTI]

    Giedt, Warren H. (San Jose, CA); Campiotti, Richard (Livermore, CA)

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  11. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOE Patents [OSTI]

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  12. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Wetherington, Jr., Grady R. (Harriman, TN)

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  13. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  14. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  15. Development of the beam extraction synchronization system at the Fermilab Booster

    SciTech Connect (OSTI)

    Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.

    2015-07-28

    The new beam extraction synchronization control system called Magnetic Cogging was developed at the Fermilab Booster and it replaces a system called RF Cogging as part of the Proton Improvement Plan (PIP). [1] The flux throughput goal for the PIP is 2.21017 protons per hour, which is double the present flux. Thus, the flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done.

  16. Development of the beam extraction synchronization system at the Fermilab Booster

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.

    2015-07-28

    The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP). [1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. Thus, the flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done.

  17. The New Uppsala Neutron Beam Facility

    SciTech Connect (OSTI)

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  18. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2)more » and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flash blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less

  19. Optimum focusing of Gaussian laser beams: Beam waist shift in spot size minimization

    SciTech Connect (OSTI)

    Li, Y.; Katz, J. )

    1994-04-01

    Optimum focusing of Gaussian laser beams is first discussed by Dickson, who described the change in beam radius under the effect of focusing system parameters. The purpose of this study is to present a formulation for calculating the waist shift under various optimum conditions. Because the variations of beam waist can be measured directly, the waist shift in a focused Gaussian beam is a more practical parameter than the movement of the intensity maximum that is the subject for investigators of the well-known focal shift problem.

  20. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  1. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    record documents the methodology and assumptions used to calculate that threshold cost. ... Calculation Methodology and Results: The consumer's cost per mile for the FCEV is set to ...

  2. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  3. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect (OSTI)

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  4. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  5. ARM - Index of Calculators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculators Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Index of Calculators Heat Index Calculations Relative Humidity Calculations Temperature Conversions Windchill Calculations Apache/2.0.52 (Red Hat) Server at education.arm.gov Port 80

  6. ARM - Measurement - Latent heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  7. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  8. Pyramid beam splitter

    DOE Patents [OSTI]

    McKeown, Mark H. (Golden, CO); Beason, Steven C. (Lakewood, CO); Fairer, George (Boulder, CO)

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  9. Beam position monitor

    DOE Patents [OSTI]

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  10. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  11. W-Band Sheet Beam Klystron Simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R.; /SLAC; Smithe, D.N.; /Mission Res., Newington

    2005-09-12

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat} {approx} {lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focusing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35% beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry.

  12. W-band sheet beam klystron simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R. [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Smithe, D.N. [Mission Research Corporation, 8560 Cinderbed Road, Ste. 700, Newington, Virginia 22122 (United States)

    1999-05-01

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat}{approximately}{lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focussing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35{percent} beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry. {copyright} {ital 1999 American Institute of Physics.}

  13. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  14. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  15. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  16. Improved approximate formulas for flux from cylindrical and rectangular sources

    SciTech Connect (OSTI)

    Wallace, O.J.; Bokharee, S.A.

    1993-03-01

    This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.

  17. Microsoft Word - beam characterization and verification.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Characterization and Verification Detector Components and Arrangement The beam uniformity and flux are determined using an array of five particle detectors. Each detector consists of Bicron BC-400 scintillator, a Bicron BC-634A optical coupling pad, a Hamamatsu R1635 photomultiplier tube, and a Hamamatsu E1761-04 tube base. Four of the detectors are fixed in position as show in Figure 1 and set up to measure beam particle counting rates continuously at four characteristic points, each 1.64

  18. Expansion solution of Laplace`s equation: Technique and application to hollow beam gun design

    SciTech Connect (OSTI)

    Jackson, R.H.; Taccetti, J.M.

    1996-12-31

    This paper presents a flexible algorithm for the general calculation of expansion solutions to Laplace`s equation. The limiting factor in application of the technique is shown to be series truncation error and not errors in calculating numerical derivatives. Application of the algorithm to the accurate computation of arbitrary magnetic fields in cylindrical geometry from on-axis or coil data will be presented. For an ideal current loop, magnetic field accuracies of better than 0.01% of the exact elliptic integral solution can be obtained out to approximately 70--80% of the loop radius. Accuracy improves dramatically for radii closer to the axis. Results also is shown for thin current disks, thin solenoids and thick coils. Other aspects of the technique is illustrated by application to the design of a coil system for a hollow beam electron gun. With some reasonable assumptions about the overlay of the electron trajectories and the magnetic flux contours, it is possible to generate an estimate for the on-axis profile of the gun magnetic field. The expansion technique can then be applied to calculate the off-axis field and its impact on the trajectories without assuming any particular coil system. The initial estimate can then be refined and retested. Finally, an optimization technique is used to develop a coil system which closely reproduces the refined field. The results of carrying out this set of calculations on a 150 kV, 20 A hollow electron gun design for an FEL experiment is reported.

  19. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  20. Transverse beam dynamics in plasma-based linacs (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Transverse beam dynamics in plasma-based linacs Citation Details In-Document Search Title: Transverse beam dynamics in plasma-based linacs The transverse beam dynamics in plasma channels of possible future plasma-based linacs is discussed. The authors represent the transverse focusing of both a beam-driven and a laser-driven plasma wakefield accelerator by a uniform focusing channel. The transverse beam sizes and a basic offset tolerance are calculated, finding that

  1. Numerical calculation of the ion polarization in MEIC

    SciTech Connect (OSTI)

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury

    2015-09-01

    Ion polarization in the Medium-energy Electron-Ion Collider (MEIC) is controlled by means of universal 3D spin rotators designed on the basis of "weak" solenoids. We use numerical calculations to demonstrate that the 3D rotators have negligible effect on the orbital properties of the ring. We present calculations of the polarization dynamics along the collider's orbit for both longitudinal and transverse polarization directions at a beam interaction point. We calculate the degree of depolarization due to the longitudinal and transverse beam emittances in case when the zero-integer spin resonance is compensated.

  2. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  3. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  4. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  5. ARM - Measurement - Sensible heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of

  6. ARM - Measurement - Soil heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  7. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  8. Toward design of the Collider Beam Collimation System

    SciTech Connect (OSTI)

    Drozhdin, A.; Mokhov, N.; Soundranayagam, R.; Tompkins, J.

    1994-02-01

    A multi-component beam collimation system for the Superconducting Super Collider is described. System choice justification and design requirements are presented. System consists of targets, scrapers, and collimators with appropriate cooling and radiation shielding. Each component has an independent control for positioning and aligning with respect to the beam. Results of beam loss distribution, energy deposition calculations, and thermal analyses, as well as cost estimate, are presented.

  9. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H. (Livermore, CA)

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  10. Method for measuring and controlling beam current in ion beam processing

    DOE Patents [OSTI]

    Kearney, Patrick A. (Livermore, CA); Burkhart, Scott C. (Livermore, CA)

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  11. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  12. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  13. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  14. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  15. ARM - Relative Humidity Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsRelative Humidity Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Relative Humidity Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which

  16. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsHeat Index Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which removes heat from

  17. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-12-01

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4{times}10{sup {minus}17}cm{sup 2} at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. {copyright} {ital 1998 American Institute of Physics.}

  18. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1998-05-05

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4 {times} 10{sup {minus}17} cm{sup 2} at 1.5 eV, a 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10-ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  19. Laser diagnostic for high current H{sup -} beams

    SciTech Connect (OSTI)

    Shafer, Robert E.

    1998-12-10

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup -} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4x10{sup -17} cm{sup 2} at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup -} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup -} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup -} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  20. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  1. Calculation note review

    SciTech Connect (OSTI)

    Ramble, A.L.

    1996-09-30

    This document contains a review of the calculation notes which were prepared for the Tank Waste Remediation System Basis for Interim Operation.

  2. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  3. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  4. Stochastic Boundary, Diffusion, Emittance Growth and Lifetime calculation for the RHIC e-lens

    SciTech Connect (OSTI)

    Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.

    2009-01-20

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), a low energy electron beam with proper Gaussian transverse profiles was proposed to collide head-on with the proton beam. In this article, using a modified version of SixTrack [1], we investigate stability of the single particle in the presence of head-on beam-beam compensation. The Lyapunov exponent and action diffusion are calculated and compared between the cases without and with beam-beam compensation for two different working points and various bunch intensities. Using the action diffusion results the emittance growth rate and lifetime of the proton beam is also estimated for the different scenarios.

  5. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    SciTech Connect (OSTI)

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

  6. Transmutation calculations for the accelerator transmutation of waste (ATW) program

    SciTech Connect (OSTI)

    Wilson, W.B.; Arthur, E.D.; Bowman, C.D.; Engel, L.N.; England, T.R.; Hughes, H.G.; Lisowski, P.W.; Perry, R.T.

    1991-01-01

    The disposal of radioactive waste by the transmutation of long-lived radionuclides is being considered; now using neutrons produced with an intense beam of 1.6-GeV protons on a Pb-Bi target. Study teams have been active in the areas of accelerator design, beam transport, radiation transport, transmutation, fluid flow and heat transfer, process chemistry and system analyses. Work is of a preliminary and developmental nature. Here we describe these preliminary efforts in transmutation calculations; the tools developed, status of basic nuclear data, and some early results. These calculations require the description of the intensity and spectrum of neutrons produced by the beam, the distribution of nuclides produced in the medium-energy reactions, the transport of particles produced by the beam, the transmutation of the target materials and transmutation products, and the decay properties of the inventory of radionuclides produced.

  7. Beam Instrumentation Workshop

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-01-01

    The fifth annual Beam Instrumentation Workshop was hosted by Los Alamos National Laboratory in Santa Fe, New Mexico. These proceedings represent the papers presented at the Workshop. A variety of topics were covered including beam emittance diagnostics, fluorescent screens, control systems for many accelerators and photon sources. Beam monitoring was discussed in great detail. There were thirty seven papers presented at the Workshop and all have been abstracted for the Energy and Science Technology database. (AIP)

  8. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  9. A dynamic focusing x-ray monochromator for a wiggler beam line at the SRS of the SERC Daresbury Laboratory

    SciTech Connect (OSTI)

    De Bruijn, D.; Van Zuylen, P. ); Kruizinga, G. , P.O. Box 93138, 2509 AC Den Haag State University of Utrecht, Sorbonnelaan 16, 3508 TB Utrecht )

    1992-01-01

    A Si(220) double-crystal monochromator for the energy range 10--30 keV is presented. It will be used for EXAFS as well as powder diffraction measurements. To determine the requirements for this monochromator we looked, apart from mean considerations, at the requirements dictated by EXAFS in transmission mode. For good data analyses the proper shape, amplitude, and location at the energy axis of each wiggle is required. Moreover it is essential to separate the wiggles from background and noise. For the latter a high flux through the sample is desirable, which can be achieved by horizontal focusing of the beam. For that we have chosen to bend the second crystal sagitally. The sagittal bending radius is adjustable between 50 and 0.8 m, because for different energies different sagittal radii are necessary to focus the beam on the sample. The mean meridional radius of the second crystal is fixed at 130 m, which is an optimization for 20 keV. The meridional radius of the first crystal can be tuned between 100 and 500 m. When this radius is set to 130 m the energy resolution is calculated to be 6, 3, and 35 eV for 10, 20, and 30 keV (for perfectly bent crystals). By changing the meridional radius of the first crystal, future users of this monochromator can make the trade off between resolution and intensity. Movement of the monochromator exit beam, during a scan, will occur due to the monochromator geometry, but is reduced as much as possible by using an asymmetrically cut second crystal, with an asymmetry angle of 2.5{degree}. The average exit beam movement of the monochromator for a 1-keV scan is 20 {mu}m. For 40% of the energy range (10--30 keV) the exit beam position remains within 10 {mu}m. For the second crystal no translation stage is used.

  10. Beam Stability Complaint Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For New Users For Current Users For Administrators MX Users APS User Portal APS Data Management Practices Find a Beamline Apply for Beam Time ESAF Contacts Calendars User...

  11. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  12. Appliance Energy Calculator

    Broader source: Energy.gov [DOE]

    Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...

  13. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

  14. High-flux solar photon processes

    SciTech Connect (OSTI)

    Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  15. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  16. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  17. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  18. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  19. The fluxes of CN neutrinos from the Sun in case of mixing in a spherical layer in the solar core

    SciTech Connect (OSTI)

    Kopylov, Anatoly; Petukhov, Valery E-mail: beril@inr.ru

    2012-03-01

    The results of the calculation are presented for the fluxes of CN neutrinos from the Sun in case of mixing in a spherical layer in the solar core, consistent with the seismic data and with the measured solar neutrino fluxes. It is shown that a substantial increase of the flux of {sup 13}N neutrinos can be gained in this case. The possible implications for experiment are discussed.

  20. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams Citation Details In-Document Search Title: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design

  1. Electron Lens for Beam-Beam Compensation at LHC

    SciTech Connect (OSTI)

    Valishev, A.; Shiltsev, V.; /Fermilab

    2009-05-01

    Head-on beam-beam effect may become a major performance limitation for the LHC in some of the upgrade scenarios. Given the vast experience gained from the operation of Tevatron electron lenses, a similar device provides significant potential for mitigation of beam-beam effects at the LHC. In this report we present the results of simulation studies of beam-beam compensation and analyze potential application of electron lense at LHC and RHIC.

  2. Jobs Calculator | Department of Energy

    Energy Savers [EERE]

    Jobs Calculator Jobs Calculator Office spreadsheet icon owip_jobs_calculator_v11-0.xls More Documents & Publications WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding Progress Report Template Job Counting Guidelines

  3. Measurements and simulations of focused beam for orthovoltage therapy

    SciTech Connect (OSTI)

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  4. STUDY OF ELECTRON -PROTON BEAM-BEAM INTERACTION IN ERHIC

    SciTech Connect (OSTI)

    HAO,Y.; LITVINENKO, V.N.; MONTAG, C.; POZDEYEV, E.; PTITSYN, V.

    2007-06-25

    Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects, which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as a ''kink'' instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth.

  5. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  6. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  8. Category:Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Gas Flux Sampling page? For detailed information on Gas Flux...

  9. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  10. Muon fluxes and showers from dark matter annihilation in the Galactic

    Office of Scientific and Technical Information (OSTI)

    center (Journal Article) | SciTech Connect and showers from dark matter annihilation in the Galactic center Citation Details In-Document Search Title: Muon fluxes and showers from dark matter annihilation in the Galactic center We calculate contained and upward muon flux and contained shower event rates from neutrino interactions, when neutrinos are produced from annihilation of the dark matter in the Galactic center. We consider model-independent direct neutrino production and secondary

  11. Muon fluxes from dark matter annihilation (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect from dark matter annihilation Citation Details In-Document Search Title: Muon fluxes from dark matter annihilation We calculate the muon flux from annihilation of the dark matter in the core of the Sun, in the core of the Earth and from cosmic diffuse neutrinos produced in dark matter annihilation in the halos. We consider model-independent direct neutrino production and secondary neutrino production from the decay of taus produced in the annihilation of dark matter. We illustrate

  12. Plutonium 239 Equivalency Calculations

    SciTech Connect (OSTI)

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  13. BEAMS: Curiosity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAMS: Curiosity January 9, 2013 BEAMS, Becoming Excited About Math and Science, is one of our education programs. In particular, it is the only one in which I participate with more than a ceremonial role. I try my best to pull my full share of BEAMS visits. Today was the first of the year, and it went really well. There were about a dozen middle school kids in my office, plus the teacher. Of course, the lab's education team ensures complete immersion by making themselves scarce for the allotted

  14. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  15. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect (OSTI)

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  16. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  17. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  18. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  19. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug. 17, 2015 Back to Table of Contents WEEK OF Nov. 17, 2014 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 BEAM LINE 5-4 Nov....

  20. Beam! Magic! | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with all the changes, the accelerator can be made to work. Beam Since my first serious introduction to nuclear and particle physics - when I worked for a few weeks one summer at...

  1. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  2. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  3. Study of heat flux gages using sensitivity analysis

    SciTech Connect (OSTI)

    Dowding, K.J.; Blackwell, B.F.; Cochran, R.J.

    1998-08-01

    The response and operation of a heat flux gage is studied using sensitivity analysis. Sensitivity analysis is the process by which one determines the sensitivity of a model output to changes in the model parameters. This process uses sensitivity coefficients that are defined as partial derivatives of field variables--e.g., temperature--with respect to model parameters--e.g., thermal properties and boundary conditions. Computing sensitivity coefficients, in addition to the response of a heat flux gage, aids in identifying model parameters that significantly impact the temperature response. A control volume, finite element-based code is used to implement numerical sensitivity coefficient calculations, allowing general problems to be studied. Sensitivity coefficients are discussed for the well known Gardon gage.

  4. Method of fission heat flux determination from experimental data

    DOE Patents [OSTI]

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  5. Electron flux at the surface of titanium tritide films

    SciTech Connect (OSTI)

    Kherani, N.P.; Shmayda, W.T. . Research Center)

    1992-03-01

    Certain metal tritides have been investigated as reliable and quasi-constant sources of electrons for a number of practical purposes with particular attention to the dependence of the electron emission rate as a function of temperature. The objective of this paper is to carry out simple calculations that illustrate the relative ranking of a numbed of binary metal tritides with respect to the maximum achievable electron flux; examine semi-empirically the energy spectrum of the electrons emanating from the surface of a titanium tritide film; and present experimental measurements of the electron emission rate from the surface of titanium tritide films. THe results suggest that beryllium tritide would yield the greatest electron emission rate of all the metal tritides; the emitted flux has a significant component of secondary electrons; and, the total electron emission rate is quite sensitive to the condition of the emitting surface.

  6. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  7. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect (OSTI)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  8. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  9. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect (OSTI)

    Gent, F. A.; Erdlyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  10. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    SciTech Connect (OSTI)

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  11. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  12. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  13. Fluxing agent for metal cast joining

    DOE Patents [OSTI]

    Gunkel, Ronald W. (Lower Burrell, PA); Podey, Larry L. (Greensburg, PA); Meyer, Thomas N. (Murrysville, PA)

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  14. Nanocrystalline Separation Membrane for Improved Hydrogen Flux...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Improved Hydrogen Flux New processing technique to develop ionic transport membranes with improved ionic and electronic conductivity Savannah River National Laboratory...

  15. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  16. Calculation of Electron Trajectories

    Energy Science and Technology Software Center (OSTI)

    1982-06-01

    EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less

  17. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  18. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi/gal) Normal Daily Use 30.5 Total miles/day City 55 % Hwy 45 % Other Trips 3484 Total miles/year City 20 % Hwy 80 % Fuel Cost Emissions Annual Fuel Cost $ $/gal Annual

  19. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect (OSTI)

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  20. Toroidal midplane neutral beam armor and plasma limiter

    DOE Patents [OSTI]

    Kugel, Henry W. (Somerset, NJ); Hand, Jr, Samuel W. (Hopewell Township, Mercer County, NJ); Ksayian, Haig (Titusville, NJ)

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  1. Ray tracing flux calculation for the small and wide angle x-ray...

    Office of Scientific and Technical Information (OSTI)

    (Jordan) European Synchrotron Radiation Facility, Bp 220, 38043 Grenoble Cedex (France) Publication Date: 2009-09-15 OSTI Identifier: 22051046 Resource Type: Journal Article ...

  2. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  3. Neutrino flux predictions for cross section measurements (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; BEAM LUMINOSITY; BEAM MONITORING; CROSS SECTIONS; NEUTRINO BEAMS; NEUTRINO REACTIONS; ...

  4. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  5. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    SciTech Connect (OSTI)

    Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-Andr

    2014-04-15

    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 201090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (201090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [Diagnostic x-ray shielding design based on an empirical model of photon attenuation, Health Phys. 44, 507517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities, Med. Phys. 34, 13981404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.

  6. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  7. LHC beam-beam compensation studies at RHIC

    SciTech Connect (OSTI)

    Fischer,W.; Abreu, N.; Calaga, R.; Robert-Demolaize, G.; Luo, Y.; Montag, C.

    2009-05-04

    Long-range and head-on beam-beam effects are expected to limit the LHC performance with design parameters. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both the LHC and RHIC. We present the experimental long-range beam-beam program and report on head-on compensations studies at RHIC, which are based on simulations.

  8. Laser beam characterization results for a high power CW Nd:YAG laser

    SciTech Connect (OSTI)

    Keicher, D.M.

    1994-12-31

    In an effort to understand multimode laser beam propagation characteristics for better development of laser material processing applications, beam diagnostic experiments were performed on a 1800 watt CW Nd:YAG laser. Beam diameter data were acquired at approximately 12 positions along the beam optical axis about the minimum waist created by a long focal length single element lens at several power levels. These data were then used to evaluate the laser output beam characteristics using two differing techniques. For the ISO technique, two data points from the beam diameter data were used in determining the output laser beam characteristics. These points were the beam minimum waist diameter and the diameter at a point along the beam optical axis where the beam diameter had increased to approximately 0.7 times that of the beam minimum waist diameter. The second analysis technique involved fitting the entire data set to theoretical equations used to describe the multimode laser beam propagation and points from the fitted curve fit were then used to determine the output beam characteristics from the laser. For all power levels evaluated, calculated results predicting the laser beam minimum waist location were in agreement with measured values and more consistent using the curve-fit technique than the two-point evaluation technique.

  9. Beam Fields and Energy Dissipation Inside the the BE Beam Pipe of the Super-B Detector

    SciTech Connect (OSTI)

    Novokhatski, Alexander; Sullivan, Michael; ,

    2010-09-10

    We study the bunch field diffusion and energy dissipation in the beam pipe of the Super-B detector, which consists of two coaxial Be thin pipes (half a millimeter). Cooling water will run between these two pipes. Gold and nickel will be sputtered (several microns) onto the beryllium pipe at different sides. The Maxwell equations for the beam fields in these thin layers are solved numerically for the case of infinite pipes. We also calculate the amplitude of the electromagnetic fields outside the beam pipe, which may be noticeable as the beam current can reach 4 A in each beam. Results of simulations are used for the design of this central part of the Super-B detector.

  10. The effect of head-on beam-beam compensation on the stochastic boundaries and particle diffusion in RHIC.

    SciTech Connect (OSTI)

    Abreu,N.; Beebe-Wang, J.; FischW; Luo, Y.; Robert-Demolaize, G.

    2008-06-23

    To compensate the effects from the head-on beam-beam interactions in the polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), an electron lens (elens) is proposed to collide head-on with the proton beam. We used an extended version of SixTrack for multiparticle beam-beam simulation in order to study the effect of the e-lens on the stochastic boundary and also on diffusion. The stochastic boundary was analyzed using Lyapunov exponents and the diffusion was characterized as the increase in the rms spread of the action. For both studies the simulations were performed with and without the e-lens and with full and partial compensation. Using the simulated values of the diffusion an attempt to calculate the emittance growth rate is presented.

  11. ARM - VAP Product - lblch1flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productslbllblch1flux Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1095322 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : LBLCH1FLUX AERI: LBLRTM, channel 1

  12. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (OSTI)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  13. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOE Patents [OSTI]

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  14. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 1-5 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19,

  15. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Table of Contents WEEK OF Nov. 17, 2014 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 BEAM LINE 7-1 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 Unscheduled STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP STUP BEAM LINE 11-1 Nov. 17, 2014 Nov. 18, 2014 Nov. 19, 2014 Nov. 20, 2014 Nov. 21, 2014 Nov. 22, 2014 Nov. 23, 2014 Unscheduled STUP

  16. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-2 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar.

  17. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect (OSTI)

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  18. Radiative accelerations for evolutionary model calculations

    SciTech Connect (OSTI)

    Richer, J.; Michaud, G.; Rogers, F.; Iglesias, C.; Turcotte, S.; LeBlanc, F.

    1998-01-01

    Monochromatic opacities from the OPAL database have been used to calculate radiative accelerations for the 21 included chemical species. The 10{sup 4} frequencies used are sufficient to calculate the radiative accelerations of many elements for T{gt}10{sup 5}K, using frequency sampling. This temperature limit is higher for less abundant elements. As the abundances of Fe, He, or O are varied, the radiative acceleration of other elements changes, since abundant elements modify the frequency dependence of the radiative flux and the Rosseland opacity. Accurate radiative accelerations for a given element can only be obtained by allowing the abundances of the species that contribute most to the Rosseland opacity to vary during the evolution and recalculating the radiative accelerations and the Rosseland opacity during the evolution. There are physical phenomena that cannot be included in the calculations if one uses only the OPAL data. For instance, one should correct for the momentum given to the electron in a photoionization. Such effects are evaluated using atomic data from Opacity Project, and correction factors are given. {copyright} {ital 1998} {ital The American Astronomical Society}

  19. Beam position monitor sensitivity for low-{beta} beams

    SciTech Connect (OSTI)

    Shafer, R.E.

    1993-11-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-{beta} beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic ({beta} = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-{beta}) beams.

  20. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOE Patents [OSTI]

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  1. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOE Patents [OSTI]

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  2. DRIFT ORBITS OF ENERGETIC PARTICLES IN AN INTERPLANETARY MAGNETIC FLUX ROPE

    SciTech Connect (OSTI)

    Krittinatham, W.; Ruffolo, D. E-mail: scdjr@mahidol.ac.t

    2009-10-10

    Interplanetary magnetic flux ropes have significant effects on the distribution of energetic particles in space. Flux ropes can confine solar energetic particles (SEPs) for hours, and have relatively low densities of Galactic cosmic rays (GCRs), as seen during second-stage Forbush decreases. As particle diffusion is apparently inhibited across the flux rope boundary, we suggest that guiding center drifts could play a significant role in particle motion into and out of the flux ropes. We develop an analytic model of the magnetic field in an interplanetary magnetic flux rope attached to the Sun at both ends, in quasi-toroidal coordinates, with the realistic features of a flux rope cross section that is small near the Sun, expanding with distance from the Sun, and field lines that are wound less tightly close to the Sun due to stretching by the solar wind. We calculate the particle drift velocity field due to the magnetic field curvature and gradient as a function of position and pitch-angle cosine, and trace particle guiding center orbits numerically, assuming conservation of the first adiabatic invariant. We find that SEPs in the interior of a flux rope can have drift orbits that are trapped for long times, as in a tokamak configuration, with resonant escape features as a function of the winding number. For Forbush decreases of GCRs, the drifts should contribute to a unidirectional anisotropy and net flow from one leg of the loop to the other, in a direction determined by the poloidal field direction.

  3. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  4. SSRL Beam Lines Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Beam Lines Map Beam Line by Number | Beam Line by Techniques | Photon Source Parameters

  5. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC CHECKOUT8044 MC CHECKOUT9A91 MC CHECKOUT8837 AP DOWN DOWN 9A72 M.Deller 8044 I.Mathews 9A91 D.Das 8837 A.Cohen AP DOWN DOWN BEAM LINE 12-2 Dec. 14, 2015 Dec. 15, 2015 Dec....

  6. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 7-1 Nov. 11, 2013 Nov. 12, 2013 Nov. 13, 2013 Nov. 14, 2013 Nov. 15, 2013 Nov. 16, 2013 Nov. 17, 2013 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith ...

  7. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 9-1 Feb. 14, 2005 Feb. 15, 2005 Feb. 16, 2005 Feb. 17, 2005 Feb. 18, 2005 Feb. 19, 2005 Feb. 20, 2005 8803 C.SMITH 8803 C.SMITHDOWN 9B01 A.DEACON 9B01 A.DEACON 1B00 ...

  8. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 7-1 Nov. 06, 2006 Nov. 07, 2006 Nov. 08, 2006 Nov. 09, 2006 Nov. 10, 2006 Nov. 11, 2006 Nov. 12, 2006 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH ...

  9. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAM LINE 9-1 Nov. 07, 2011 Nov. 08, 2011 Nov. 09, 2011 Nov. 10, 2011 Nov. 11, 2011 Nov. 12, 2011 Nov. 13, 2011 DOWN DOWN DOWN DOWN 8803 C.SMITH 8803 C.SMITH 8803 C.SMITH DOWN DOWN ...

  10. Longitudinal Space Charge Effect in Slowly Converging/Diverging Relativistic Beams

    SciTech Connect (OSTI)

    Bane, Karl LF

    2002-07-22

    Beginning with the Green function for a rod beam in a round beam pipe we derive the space charge induced average energy change and rms spread for relativistic beams that are slowly converging or diverging in round beam pipes, a result that tends to be much larger than the 1/{gamma}{sup 2} dependence for parallel beams. Our results allow for beams with longitudinal-transverse correlation, and for slow variations in beam pipe radius. We calculate, in addition, the space charge component of energy change and spread in a chicane compressor. This component indicates source regions of coherent synchrotron radiation (CSR) energy change in systems with compression. We find that this component, at the end of example compressors, approximates the total induced voltage obtained by more detailed CSR calculations. Our results depend on beam pipe radius (although only weakly) whereas CSR calculations do not normally include this parameter, suggesting that results of such calculations, for systems with beam pipes, are not complete.

  11. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  12. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  13. PHOTOSPHERIC FLUX CANCELLATION AND THE BUILD-UP OF SIGMOIDAL FLUX ROPES ON THE SUN

    SciTech Connect (OSTI)

    Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.; Green, L. M.

    2012-11-10

    In this study we explore the scenario of photospheric flux cancellation being the primary formation mechanism of sigmoidal flux ropes in decaying active regions. We analyze magnetogram and X-ray observations together with data-driven non-linear force-free field (NLFFF) models of observed sigmoidal regions to test this idea. We measure the total and canceled fluxes in the regions from MDI magnetograms, as well as the axial and poloidal flux content of the modeled NLFFF flux ropes for three sigmoids-2007 February, 2007 December, and 2010 February. We infer that the sum of the poloidal and axial flux in the flux ropes for most models amounts to about 60%-70% of the canceled flux and 30%-50% of the total flux in the regions. The flux measurements and the analysis of the magnetic field structure show that the sigmoids first develop a strong axial field manifested as a sheared arcade and then, as flux cancellation proceeds, form long S-shaped field lines that contribute to the poloidal flux. In addition, the dips in the S-shaped field lines are located at the sites of flux cancellation that have been identified from the MDI magnetograms. We find that the line-of-sight-integrated free energy is also concentrated at these locations for all three regions, which can be liberated in the process of eruption. Flare-associated brightenings and flare loops coincide with the location of the X-line topology that develops at the site of most vigorous flux cancellation.

  14. Beam position monitor sensitivity for low-[beta] beams

    SciTech Connect (OSTI)

    Shafer, R.E. )

    1994-10-10

    Design of a beam position monitor (BPM) which is sensitive to low velo charged particle beams is considered. Quantitative estimates are made for the corrections to the conventional approximations to solutions of the Laplace Equation in two-dimensions when a BPM is used to measure to position of low velocity (low-[beta]) beams. (AIP)

  15. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  16. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  17. High-Flux Microchannel Solar Receiver

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  18. ARM - PI Product - Radiative Flux Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsRadiative Flux Analysis ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Radiative Flux Analysis The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and

  19. Formation of compressed flat electron beams with high transverse-emittance ratios

    SciTech Connect (OSTI)

    Zhu, J.; Piot, P.; Mihalcea, D.; Prokop, C. R.

    2014-08-01

    Flat beamsbeams with asymmetric transverse emittanceshave important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilabs Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ?37??MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25???m (emittance ratio is ?400), 0.13????m, 15 nm before compression, and 0.41???m, 0.20???m, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2?nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  20. Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy

    SciTech Connect (OSTI)

    Henzen, D. Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Vetterli, D.; Chatelain, C.; Fix, M. K.; Neuenschwander, H.; Stampanoni, M. F. M.

    2014-02-15

    Purpose: Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). Methods: This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. Results: For 15 34, 5 5, and 2 2 cm{sup 2} fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. Conclusions : The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.

  1. The Beam | Open Energy Information

    Open Energy Info (EERE)

    Name: The Beam Place: Brookline, Massachusetts Zip: 2446 Product: The Beam is a start-up company that looks to establish an online retail portal that would market and sell...

  2. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Ralph W. (Livermore, CA); Sawicki, Richard H. (Danville, CA)

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  3. ANL Beams and Applications Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Seminar Sponsers AAI ASD ATLAS HEP PHY ANL Beams and Applications Seminar The ANL Beam and Applications Seminar is...

  4. Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    the true flux of hydrothermal gases may affect the results of geochemical modeling of gas dispersion in the near-surface environment.3 References 1.0 1.1 Measuring...

  5. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  6. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, Scott B. (Bend, OR)

    1989-01-01

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  7. ARM - VAP Product - lblch2flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : LBLCH2FLUX AERI, line by line...

  8. How Are Momentum Savings Calculated?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...

  9. Laser beam guard clamps

    DOE Patents [OSTI]

    Dickson, Richard K. (Stockton, CA)

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  10. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled BEAM LINE 2-1 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN 8859 B.JOHNSON 8859 B.JOHNSON 8859

  11. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  12. Neutral Beam Excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Excitation of Alfv ´ en Continua in the Madison Symmetric Torus Reversed Field Pinch by Jonathan Jay Koliner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the University of Wisconsin - Madison 2013 Defended on 22 October 2013 Dissertation approved by the following members of the Final Oral Committee: Cary Forest * Professor of Physics John Sar↵ * Professor of Physics Jan Egedal * Professor of Physics Paul Terry *

  13. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  14. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  15. RadiaBeam PPT template

    Energy Savers [EERE]

    Pedro Frigola RadiaBeam Systems, LLC Advanced Methods for Manufacturing Workshop Lockheed Martin, September 29, 2015 Development of Nuclear Quality Components using Metal Additive Manufacturing  RadiaBeam overview  AM research at RadiaBeam  Overview of EBM AM technology  Goals and relevance of the Phase I/II project  Phase I/II work 09/29/2015 2015 AMM Workshop - P. Frigola, RadiaBeam Systems, LLC 2 Outline  RadiaBeam has two core missions:  To manufacture high quality,

  16. Sensitivity analysis of coupled criticality calculations

    SciTech Connect (OSTI)

    Perko, Z.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)

  17. TH-E-BRE-06: Challenges in the Dosimetry of Flattening Filter Free Beams

    SciTech Connect (OSTI)

    Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2014-06-15

    Purpose: In current dosimetry protocols [AAPM TG51, IAEA TRS-389] the beam quality correction factor kQ and the water-to-air restricted mass collision stopping-power ratio SPR are related to beam quality specifiers %dd(10){sub x} respectively TPR{sub 20,10} Determining kQ and SPR using these regular beam quality specifiers for conventional accelerators (WFF) and flattening filter free accelerators (FFF) similarly could lead to systemic bias.The influence of the flattening filter on the relationship between various beam quality specifiers and SPR respectively k{sub Q} was studied using Monte Carlo simulations with realistic beam sources. Methods: All Monte Carlo simulations were performed using the BEAMnrc/EGSnrc code system. Radiation transport through nine linear accelerator heads modeled according to technical drawings given by the manufactures and a {sup 60} Co therapy source was simulated with BEAMnrc and then used as a radiation source for further simulations. FFF beam sources were implemented by removing the fattening filter from the WFF model. SPR was calculated applying the user code SPRRZnrc. The mean photon energy below the accelerator head and the mean energies of photons and electrons at the measuring point within the water phantom were calculated using FLURZnrc. Dose calculations within a small water voxel and the thimble ionization chamber PTW-31010 in a water depth of 10 cm were made using the egs-chamber code. Results: SPR and k{sub Q} as a function of fluence spectra based beam quality specifiers as well as conventional beam quality specifiers differ systematically between FFF and WFF beams. According to the results the specifier %dd(10){sub x} revealed the smallest deviation (max. 0.4%) between FFF and WFF beams. Conclusion: The results show that %dd(10){sub x} is an acceptable beam quality specifier for FFF beams. Nevertheless the results confirm the expected bias between FFF and WFF beams which must by further investigated.

  18. Beam-driven acceleration in ultra-dense plasma media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)morefrom 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.less

  19. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect (OSTI)

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  20. Fluorescence-based video profile beam diagnostics: Theory and experience

    SciTech Connect (OSTI)

    Sandoval, D.; Gilpatrick, D.; Shinas, M.; Garcia, R.; Yuan, V.; Zander, M.

    1994-05-01

    Inelastic collisions between accelerated particles and residual gas in the accelerator vessel can cause the residual gas to fluoresce. The gas fluorescence intensity is proportional to the current density of the particle beam. This process provides the foundation for a video diagnostic system to measure the profile and position of accelerated particle beams. This, in fact, has proven to be a useful diagnostic at several installations. This paper describes the light production process resulting from beam -- residual gas interactions and gives formulas for estimating the beam radiance for various conditions. Ground Test Accelerator (GTA) radiance calculations will be used as an example. In addition, measurement experiences with the GTA video diagnostics system will be discussed.

  1. Fluorescence-based video profile beam diagnostics: Theory and experience

    SciTech Connect (OSTI)

    Sandoval, D.P.; Garcia, R.C.; Gilpatrick, J.D.; Shinas, M.A.; Wright, R.; Yuan, V.; Zander, M.E. )

    1994-10-10

    Inelastic collisions between accelerated particles and residual gas in the accelerator vessel can cause the residual gas to fluoresce. The gas fluorescence intensity is proportional to the current density of the particle beam. This process provides the foundation for a video diagnostics system to measure the profile and position of accelerated particle beams. This, in fact, has proven to be a useful diagnostic at several installations. This paper describes the light production process resulting from beam-residual gas interactions and gives formulas for estimating the beam radiance for various conditions. Ground Test Accelerator (GTA) radiance calculations will be used as an example. In addition, measurement experiences with the GTA video diagnostics system will be discussed.

  2. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    between chamber CO2 fluxes and the atmospheric parameters over a comparable time period. Energy balance closure was assessed by statistical regression of EC energy fluxes...

  3. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape034hsu2011p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John...

  4. SciDAC Advances and Applications in Computational Beam Dynamics

    SciTech Connect (OSTI)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  5. Target and orbit feedback simulations of a muSR beam line at BNL

    SciTech Connect (OSTI)

    MacKay, W.; Blaskiewicz, M.; Fischer, W.; Pile, P.

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  6. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, ystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  7. TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION

    SciTech Connect (OSTI)

    Yang, L.

    2011-03-28

    Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

  8. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  9. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect (OSTI)

    Mumford, S. J.; Fedun, V.; Erdlyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above ? = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvn modes (?60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  10. Production of intense beams of singly charged radioactive ions

    SciTech Connect (OSTI)

    Kuznetsov, G.; Batazova, M.; Gubin, K.; Logachev, P.; Martyshkin, P.

    2006-03-15

    An apparatus for the production of intense beams of singly charged radioactive ions operating in on-line regime is proposed. The radioactive atoms are produced in a uranium-graphite (UC) target bombarded with neutrons. The neutron flux is generated by a graphite neutron converter, which is bombarded with protons. The atoms of the produced isotopes are ionized in the electron beam generated with the electron gun and the ions of interest are extracted in a separator. The apparatus consists of the following parts. (1) Rotating converter dissipating a substantial power of proton beam. (2) UC target placed in a graphite container at high temperature. The atoms of radioactive isotopes can be extracted with a flow of noble gas. (3) Triode electron gun with ionization channel is placed inside the solenoid forming a focusing magnetic field. The cathode of the electron gun is a spout of the graphite container. The atoms of radioactive isotopes are carried with gas flow through the spout into the electron beam. (4) Correction coil located near the gun matches the electron beam with the ionization channel. (5) The first anode has a potential of 1-4 kV with respect to the cathode, and the second anode has some lower potential than the first anode and it is the tube of ionization channel. (6) Electron collector dissipates the electron-beam power. (7) Uranium-graphite target, the gun, the ionization channel as well as solenoid are located on an isolated platform with potential of 30-60 kV with respect to ground. The beam of singly charged ions from the ionization channel passes the collector, goes through the extractor, acquires energy of 30-60 keV, and gets transported to the separator where the required species are selected.

  11. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    SciTech Connect (OSTI)

    Lasche, G.P.

    1988-04-05

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy.

  12. Control of post-disruption runaway electron beams in DIII-D

    SciTech Connect (OSTI)

    Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; VanZeeland, M. A.; Wesley, J. C.; Commaux, N.; Jernigan, T. C.; Hollmann, E. M.; Moyer, R. A.; Yu, J. H.

    2012-05-15

    Recent experiments in the DIII-D tokamak have demonstrated real-time control and dissipation of post-disruption runaway electron (RE) beams. In the event that disruption avoidance, control, and mitigation schemes fail to avoid or suppress RE generation, active control of the RE beam may be an important line of defense to prevent the rapid, localized deposition of RE beam energy onto vulnerable vessel sections. During and immediately after the current quench, excessive radial compression of the runaway beams is avoided by a combination of techniques, improving the likelihood of the beams surviving this dynamic period without a fast termination. Once stabilized, the runaway beams are held in a steady state (out to the ohmic flux limit) with the application of active plasma current and position controls. Beam interaction with the vessel wall is minimized by avoiding distinct thresholds for enhanced wall interaction at small and large radii, corresponding to inner wall and outer limiter interaction, respectively. Staying within the 'safe zone' between those radial thresholds allows for the sustainment of long-lived, quiescent runaway beams. The total beam energy and runaway electron population are then dissipated gradually by a controlled ramp-down of the runaway current.

  13. Equilibrium calculations of firework mixtures

    SciTech Connect (OSTI)

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  14. RECENT EXPERIENCE WITH ELECTRON LENS BEAM-BEAM COMPENSATION AT...

    Office of Scientific and Technical Information (OSTI)

    with use of bent crystals and pulsed dipole deflectors (orbit correctors). The angular beam deflection by the crystal - see Fig.2 - must be large enough to send the...

  15. Neutrino Fluxes from NUHM LSP Annihilations in the Sun

    SciTech Connect (OSTI)

    Olive, Keith

    2011-08-12

    We extend our previous studies of the neutrino fluxes expected from neutralino LSP annihilations inside the Sun to include variants of the minimal supersymmetric extension of the Standard Model (MSSM) with squark, slepton and gaugino masses constrained to be universal at the GUT scale, but allowing one or two non-universal supersymmetry-breaking parameters contributing to the Higgs masses (NUHM1,2). As in the constrained MSSM (CMSSM) with universal Higgs masses, there are large regions of the NUHM parameter space where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate, and there are also large regions where the capture rate is not dominated by spin-dependent LSP-proton scattering. The spectra possible in the NUHM are qualitatively similar to those in the CMSSM. We calculate neutrino-induced muon fluxes above a threshold energy of 10 GeV, appropriate for the IceCube/DeepCore detector, for points where the NUHM yields the correct cosmological relic density for representative choices of the NUHM parameters. We find that the IceCube/DeepCore detector can probe regions of the NUHM parameter space in addition to analogues of the focus-point strip and the tip of the coannihilation strip familiar from the CMSSM. These include regions with enhanced Higgsino-gaugino mixing in the LSP composition, that occurs where neutralino mass eigenstates cross over. On the other hand, rapid-annihilation funnel regions in general yield neutrino fluxes that are unobservably small.

  16. Calculating and Communicating Program Results

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Calculating and Communicating Program Results, Call Slides and Summary, February 23, 2012.

  17. Real Time Flux Control in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

  18. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect (OSTI)

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  19. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  20. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  1. Nanostructuring superconductors by ion beams: A path towards materials engineering

    SciTech Connect (OSTI)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-18

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  2. Beam experiments related to the head-on beam-beam compensation project at RHIC

    SciTech Connect (OSTI)

    Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.

    2011-03-28

    Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.

  3. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  4. FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation

    SciTech Connect (OSTI)

    Pierce, B.F.

    1986-07-01

    The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.

  5. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect (OSTI)

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A.; Gutkin, M.; Sleptsov, V.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  6. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  7. Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are two separate equations with second derivatives of v ex and v ix instead of one equation including the second derivative of v. The resulting equations still contain E x ,...

  8. Effect of the electron lenses on the RHIC proton beam closed orbit

    SciTech Connect (OSTI)

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  9. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect (OSTI)

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  10. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  11. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect (OSTI)

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  12. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; David Nigg; George Imel; Jason Harris; Eric Bonebrake

    2010-11-01

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University /Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRCs current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational protocols and in-core instrumentation under the ATR Modeling, Simulation and V&V Upgrade initiative, as well as the work to replace nuclear instrumentation under the ATR Life Extension Project (LEP) and provide support to the ATR NSUF.

  13. Defect-free ultrahigh flux asymmetric membranes

    DOE Patents [OSTI]

    Pinnau, Ingo (Austin, TX); Koros, William J. (Austin, TX)

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  14. EUV mirror based absolute incident flux detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  15. SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX

    SciTech Connect (OSTI)

    Jin, C. L.; Harvey, J. W.; Pietarila, A. E-mail: jharvey@nso.edu

    2013-03-10

    We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.

  16. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect (OSTI)

    Isobe, M. Takeiri, Y.; Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T.; Nakano, Y.; Watanabe, K.; Uritani, A.; Misawa, T.; Nishitani, T.; Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S.; Yamauchi, M.

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ?5 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  17. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  18. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  19. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-5 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ BEAM LINE 7-1 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec.

  20. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 9-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 Unscheduled CHANGE/8837 A.COHE 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN Unscheduled 8837 A.COHEN/DOWN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837

  1. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ MC CHECKOUT/2B87 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA BEAM LINE 9-1 Nov. 15, 2010 Nov. 16,

  2. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN DOWN DOWN DOWN DOWN 3064 S.SUN 3064 S.SUN DOWN DOWN DOWN DOWN VUV CHECKOUT

  3. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU 8820* D.LU BEAM LINE 8-1 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 Unscheduled Unscheduled Unscheduled Unscheduled

  4. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-4 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 Unscheduled Unscheduled Unscheduled 3269 S.SUN 3269 S.SUN 3269 S.SUN 3269

  5. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled Unscheduled 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY Unscheduled CHANGE/8051 M.TONE 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY Unscheduled 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY BEAM LINE 2-1 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 8859

  6. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-4 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 2-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN 8859 B.JOHNSON 8051* M.TONEY 8051* M.TONEY 8051* M.TONEY 3205 M.BIBEE 3205 M.BIBEE Xray CHECKOUT/8859 CHANGE/8051* M.TON 8051* M.TONEY 8051* M.TONEY Xray CHECKOUT/3205 3205

  7. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect (OSTI)

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  8. Calculation of the transverse kicks generated by the bends of a hollow electron lens

    SciTech Connect (OSTI)

    Stancari, Giulio

    2014-03-25

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Test Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.

  9. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  10. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy

    SciTech Connect (OSTI)

    Sorriaux, J; Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J; Bertrand, D; Orban de Xivry, J.; Lee, J; Palmans, H; Vynckier, S; Sterpin, E

    2014-06-01

    Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 101010 cm{sup 3} homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 220.2 cm{sup 3}, the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)

  11. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  12. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  13. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect (OSTI)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  14. The effects of the RHIC E-lenses magnetic structure layout on the proton beam trajectory

    SciTech Connect (OSTI)

    Gu, X.; Pikin, A.; Luo, Y.; Okamura, M.; Fischer, W.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed in RHIC IR10. First, the layout of these two E-lenses is introduced. Then the effects of e-lenses on proton beam are discussed. For example, the transverse fields of the e-lens bending solenoids and the fringe field of the main solenoids will shift the proton beam. For the effects of the e-lens on proton beam trajectory, we calculate the transverse kicks that the proton beam receives in the electron lens via Opera at first. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  15. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect (OSTI)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  16. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams

    SciTech Connect (OSTI)

    Dalaryd, Mrten Kns, Tommy; Ceberg, Crister

    2014-11-01

    Purpose: There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR{sub 20,10} and the SpencerAttix restricted water-to-air mass collision stopping-power ratios, (L{sup -}/?){sub air}{sup water}, may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to study the relationship between TPR{sub 20,10} and (L{sup -}/?){sub air}{sup water} for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining (L{sup -}/?){sub air}{sup water} by adding another beam-quality metric, TPR{sub 10,5}. The relationship between (L{sup -}/?){sub air}{sup water} and %dd(10){sub x} for beams with and without a flattening filter was also included in this study. Methods: A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate (L{sup -}/?){sub air}{sup water}, TPR{sub 20,10}, and TPR{sub 10,5} using the EGSnrc Monte Carlo package. The relationship between (L{sup -}/?){sub air}{sup water} and the dual beam-quality specifier TPR{sub 20,10} and TPR{sub 10,5} was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10){sub x} used in the AAPMs TG-51 dosimetry protocol and (L{sup -}/?){sub air}{sup water} was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. Results: The calculated (L{sup -}/?){sub air}{sup water} for beams without a flattening filter was 0.3% lower, on average, than for beams with a flattening filter and comparable TPR{sub 20,10}. Using the relationship in IAEA, TRS-398 resulted in a root mean square deviation (RMSD) of 0.0028 with a maximum deviation of 0.0043 (0.39%) from Monte Carlo calculated values. For all beams in this study, the RMSD between the proposed model and the Monte Carlo calculated values was 0.0006 with a maximum deviation of 0.0013 (0.1%). Using an earlier proposed relationship [Xiong and Rogers, Med. Phys. 35, 21042109 (2008)] between %dd(10){sub x} and (L{sup -}/?){sub air}{sup water} gave a RMSD of 0.0018 with a maximum deviation of 0.0029 (0.26%) for all beams in this study (compared to RMSD 0.0015 and a maximum deviation of 0.0048 (0.47%) for the relationship used in AAPM TG-51 published by Almond et al. [Med. Phys. 26, 18471870 (1999)]). Conclusions: Using TPR{sub 20,10} as a beam-quality specifier, for the flattening filter free beams used in this study, gave a maximum difference of 0.39% between (L{sup -}/?){sub air}{sup water} predicted using IAEA TRS-398 and Monte Carlo calculations. An additional parameter for determining (L{sup -}/?){sub air}{sup water} has been presented. This parameter is easy to measure; it requires only an additional dose measurement at 5 cm depth with SSD 95 cm, and provides information for accurate determination of the (L{sup -}/?){sub air}{sup water} ratio for beams both with and without a flattening filter at the investigated energies.

  17. Home Energy Score Calculation Methodology

    Broader source: Energy.gov [DOE]

    A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home...

  18. Depolarization due to beam-beam interaction in electron-positron linear

    Office of Scientific and Technical Information (OSTI)

    colliders (Conference) | SciTech Connect Conference: Depolarization due to beam-beam interaction in electron-positron linear colliders Citation Details In-Document Search Title: Depolarization due to beam-beam interaction in electron-positron linear colliders We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the

  19. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    SciTech Connect (OSTI)

    Melchior, M; Salinas Aranda, F; Sciutto, S; Dodat, D; Larragueta, N

    2014-06-01

    Purpose: To automatically validate megavoltage beams modeled in XiO 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanning system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.

  20. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  1. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect (OSTI)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also described.

  2. Properties of Inconel 625 Mesh Structures Grown by Electron Beam...

    Office of Scientific and Technical Information (OSTI)

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) ... Simple models have been used to understand better these relationships. Structural ...

  3. BEAM-BEAM SIMULATIONS FOR THE ERHIC ELECTRON RING.

    SciTech Connect (OSTI)

    MONTAG, C.

    2005-05-16

    To study collisions between polarized electrons and heavy ions or polarized protons at high energy, adding a 10 GeV electron storage ring to the existing RHIC facility is currently under consideration. To achieve high luminosities of several 10{sup 33} cm{sup -2} sec{sup -1} range, a vertical beam-beam tuneshift parameter of {zeta}{sub y} = 0.08 is required for the electron beam. Simulation studies are being performed to study the feasibility of this high tuneshift parameter and explore the potential for even higher tuneshifts. Recent results of these studies are presented.

  4. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  5. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  6. Benchmark of numerical tools simulating beam propagation and secondary particles in ITER NBI

    SciTech Connect (OSTI)

    Sartori, E. Veltri, P.; Serianni, G.; Dlougach, E.; Hemsworth, R.; Singh, M.

    2015-04-08

    Injection of high energy beams of neutral particles is a method for plasma heating in fusion devices. The ITER injector, and its prototype MITICA (Megavolt ITER Injector and Concept Advancement), are large extrapolations from existing devices: therefore numerical modeling is needed to set thermo-mechanical requirements for all beam-facing components. As the power and charge deposition originates from several sources (primary beam, co-accelerated electrons, and secondary production by beam-gas, beam-surface, and electron-surface interaction), the beam propagation along the beam line is simulated by comprehensive 3D models. This paper presents a comparative study between two codes: BTR has been used for several years in the design of the ITER HNB/DNB components; SAMANTHA code was independently developed and includes additional phenomena, such as secondary particles generated by collision of beam particles with the background gas. The code comparison is valuable in the perspective of the upcoming experimental operations, in order to prepare a reliable numerical support to the interpretation of experimental measurements in the beam test facilities. The power density map calculated on the Electrostatic Residual Ion Dump (ERID) is the chosen benchmark, as it depends on the electric and magnetic fields as well as on the evolution of the beam species via interaction with the gas. Finally the paper shows additional results provided by SAMANTHA, like the secondary electrons produced by volume processes accelerated by the ERID fringe-field towards the Cryopumps.

  7. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites

    SciTech Connect (OSTI)

    Yang, Ya-Mei; Small, Mitchell J.; Junker, Brian; Bromhal, Grant S.; Strazisar, Brian; Wells, Arthur

    2011-10-01

    Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO{sub 2} flux for preliminary leak detection inference. The method is illustrated using surface CO{sub 2} flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO{sub 2} flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO{sub 2} flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO{sub 2} leak detection monitoring at sequestration sites.

  8. Energy flux density in a thermoacoustic couple

    SciTech Connect (OSTI)

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  9. Coherent instabilities of a relativistic bunched beam

    SciTech Connect (OSTI)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  10. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  11. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect (OSTI)

    Singleton, L.; Yao, C.Y.

    1993-12-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  12. CONTINUOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE.

    SciTech Connect (OSTI)

    GLENN,J.W.; TSOUPAS,N.; BROWN,K.A.; BIRYUKOV,V.M.

    2001-06-18

    A method to split off a few percent of the 6 x 10{sup 13} AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given.

  13. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  14. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  15. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

  16. Ion Beams - Radiation Effects Facility / Cyclotron Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Graphs Various ion beams have been developed specifically for the Radiation Effects Facility. These beams provide for a wide scope of LET with high energies for...

  17. Monitoring external beam radiotherapy using real-time beam visualization

    SciTech Connect (OSTI)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  18. Observations and open questions in beam-beam interactions

    SciTech Connect (OSTI)

    Sen, Tanaji; /Fermilab

    2010-08-01

    The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.

  19. Multigroup Reactor Lattice Cell Calculation

    Energy Science and Technology Software Center (OSTI)

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  20. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  1. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  2. ARM - Evaluation Product - Quality Controlled Eddy Correlation Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (QCECOR) ProductsQuality Controlled Eddy Correlation Flux (QCECOR) Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Quality Controlled Eddy Correlation Flux (QCECOR) Eddy correlation flux measurement systems (ECOR) are used by ARM to provide surface turbulence flux measurements. With the help of the Recovery Act, ARM has

  3. Quantum fluctuations in beam dynamics.

    SciTech Connect (OSTI)

    Kim, K.-J.

    1998-06-04

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.

  4. The Fermilab neutrino beam program

    SciTech Connect (OSTI)

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  5. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  6. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    SciTech Connect (OSTI)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  7. Toroidal midplane neutral beam armor and plasma limiter

    DOE Patents [OSTI]

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  8. Spheromak reactor with poloidal flux-amplifying transformer

    DOE Patents [OSTI]

    Furth, Harold P. (Princeton, NJ); Janos, Alan C. (East Windsor, NJ); Uyama, Tadao (Osaka, JP); Yamada, Masaaki (Lawrenceville, NJ)

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  9. Petrophysical corner - calculating water cut

    SciTech Connect (OSTI)

    Elphick, R.Y. )

    1990-02-01

    The problem of determining the amount of water cut that can be expected from a well is discussed in conjunction with a program for making this calculation. The program was written for Amiga, Apple Macintosh, and MS DOS personal computers and source code for the program is provided.

  10. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  11. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect (OSTI)

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  12. AmeriFlux Network Data from the ORNL AmeriFlux Website

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.

  13. Semiconducting glasses with flux pinning inclusions

    DOE Patents [OSTI]

    Johnson, William L. (Pasadena, CA); Poon, Siu-Joe (Palo Alto, CA); Duwez, Pol E. (Pasadena, CA)

    1981-01-01

    A series of amorphous superconducting glassy alloys containing 1% to 10% by volume of flux pinning crystalline inclusions have been found to have potentially useful properties as high field superconducting magnet materials. The alloys are prepared by splat cooling by the piston and anvil technique. The alloys have the composition (TM).sub.90-70 (M).sub.10-30 where TM is a transition metal selected from at least one metal of Groups IVB, VB, VIB, VIIB or VIIIB of the Periodic Table such as Nb, Mo, Ru, Zr, Ta, W or Re and M is at least one metalloid such as B, P, C, N, Si, Ge or Al.

  14. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  15. High Flux Isotope Reactor | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Flux Isotope Reactor High Flux Isotope Reactor Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than

  16. An equivalent circuit model and power calculations for the APS SPX crab cavities.

    SciTech Connect (OSTI)

    Berenc, T. )

    2012-03-21

    An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

  17. Overview of the APT high-energy beam transport and beam expanders

    SciTech Connect (OSTI)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-08-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented.

  18. Analysis of Hydraulic Conductivity Calculations

    SciTech Connect (OSTI)

    Green, R.E.

    2003-01-06

    Equations by Marshall and by Millington and Quirk for calculating hydraulic conductivity from pore-size distribution data are dependent on an arbitrary choice of the exponent on the porosity term and a correct estimate of residual water. This study showed that a revised equation, based on the pore-interaction model of Marshall, accurately predicts hydraulic conductivity for glass beads and a loam soil from the pressure-water content relationships of these porous materials.

  19. NAPL Calculator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NAPL Calculator Software application that will determine if non-aqueous phase liquid (NAPL) contaminants are present in soil, groundwater, or soil vapor samples Savannah River National Laboratory Contact SRNL About This Technology Technology Marketing Summary An environmental engineer at the Savannah River Site has developed a software application that will determine if non-aqueous phase liquid (NAPL) contaminants are present in soil, groundwater, or soil vapor samples. The software will

  20. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  1. Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.

    SciTech Connect (OSTI)

    Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

    2008-06-23

    To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

  2. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect (OSTI)

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  3. Measuring of plasma properties induced by non-vacuum electron beam welding

    SciTech Connect (OSTI)

    Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University ISF-Welding and Joining Institute, 52062 Aachen (Germany); Gumenyuk, A. [BAM Federal Institute for Materials Research and Testing, 12205 Berlin (Germany)

    2012-01-15

    Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

  4. Determination of surface recombination velocity at a grain boundary using electron-beam-induced current

    SciTech Connect (OSTI)

    Burk, D.E.; Kanner, S.; Muyshondt, J.E.; Shaulis, D.S.; Russell, P.E.

    1983-01-01

    In order to determine the surface recombination velocity at a grain boundary surface, computer-aided calculations of the theoretical electron-beam-induced-current response to a point source excitation are fitted to data taken as a function of distance from the grain boundary. It is demonstrated that the data is in good agreement with this theoretical response for distances greater than two maximum penetration depths of the incident electron beam.

  5. Limiting electron beam current for cyclic induction acceleration in a constant guide field

    SciTech Connect (OSTI)

    Kanunnikov, V.N.

    1982-09-01

    Theoretical relations are derived for the limiting beam current in a cyclic induction accelerator (CIA) with a constant guide field. The calculations are in agreement with the available experimental data. It is shown that the limiting average beam current in a CIA is of the order of 100 microamperes, i.e., the level attained in microtrons and linear accelerators. The CIA may find industrial applications.

  6. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  7. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Betzler, Benjamin R; Ade, Brian J; Chandler, David; Ilas, Germina; Sunny, Eva E

    2015-01-01

    Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.

  8. Compensation of Beam Line Polarizing Effects at UE112 of BESSY II

    SciTech Connect (OSTI)

    Bahrdt, J.; Follath, R.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2010-06-23

    Reflections in synchrotron radiation beam lines tend to change the state of polarization of the radiation. This effect is more pronounced for steep angle of incidence, i.e. at low photon energy (say below 100 eV) beam lines. The APPLE II undulator UE112 at BESSY has all four magnetic rows shiftable and thus generates any state of polarization. To provide any intended polarization state at the sample we perform polarization measurements based on simple and fast linear polarization analysis that together with calculations of the undulator radiation predicts undulator settings that cancel beam line polarization effects.

  9. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  10. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  11. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  12. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  13. ELECTRON HEAT FLUX IN THE SOLAR WIND: ARE WE OBSERVING THE COLLISIONAL LIMIT IN THE 1 AU DATA?

    SciTech Connect (OSTI)

    Landi, S.; Matteini, L.; Pantellini, F.

    2014-07-20

    Using statistically significant data at 1AU, it has recently been shown (Bale et al.) that in the solar wind, when the Knudsen number K {sub T} (the ratio between the electron mean free path and the electron temperature scale height) drops below about 0.3, the electron heat flux q intensity rapidly approaches the classical collisional Spitzer-Hrm limit. Using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we observe that the heat flux strength does indeed approach the collisional value for Knudsen numbers smaller than about 0.3 in very good agreement with the observations. However, closer inspection of the heat flux properties, such as its variation with the heliocentric distance and its dependence on the plasma parameters, shows that for Knudsen numbers between 0.02 and 0.3 the heat flux is not conveniently described by the Spitzer-Hrm formula. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity approaches the collisional limit when the Knudsen drops below ?0.3, the collisional limit is not a generally valid closure for a Knudsen larger than 0.01. Moreover, the good agreement between the heat flux from our model and the heat flux from solar wind measurements in the high-Knudsen number regime seems to indicate that the heat flux at 1AU is not constrained by electromagnetic instabilities as both wave-particle and wave-wave interactions are neglected in our calculations.

  14. Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler

    SciTech Connect (OSTI)

    Shahin, U. Yi, S.M.; Paode, R.D.; Holsen, T.M.

    2000-05-15

    Long-term measurements of mass and elemental dry deposition (MG, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, and Pb) were made with an automated dry deposition sampler (Eagle II) containing knife-edge surrogate surfaces during the Lake Michigan Mass Balance/Mass Budget Study. Measurements were made over a roughly 700-day period in Chicago, IL; in South Haven and Sleeping Bear Dunes, MI; and over Lake Michigan on the 68th Street drinking water intake cribs from December 1993 to October 1995. Average mass fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 65, 10, 3.6, and 12 mg m{sup {minus}2} day{sup {minus}1}, respectively. Primarily crustal elemental fluxes were significantly smaller than the mass fluxes but higher than primarily anthropogenic elemental fluxes. For example, the average elemental flux of Al in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 1.0, 0.34, 0.074, and 0.34 mg m{sup {minus}2}day{sup {minus}1}, respectively. The average Pb fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 0.038, 0.023, 0.035, and 0.032 mg m{sup {minus}2}day{sup {minus}1}, respectively. The measured fluxes at the various sites were used to calculate the dry deposition loadings to the lake. These estimated fluxes were highest for Mg and lowest for Cd.

  15. The solar internetwork. I. Contribution to the network magnetic flux

    SciTech Connect (OSTI)

    Goi?, M.; Rubio, L. R. Bellot; Del Toro Iniesta, J. C.; Orozco Surez, D.; Katsukawa, Y.

    2014-12-10

    The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 10{sup 24} Mx day{sup 1} over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE.

  16. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect (OSTI)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  17. Quantized beam shifts in graphene

    SciTech Connect (OSTI)

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant ?, while the Goos-Hanchen ones in multiples of ?2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  18. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  19. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  20. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    SciTech Connect (OSTI)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  1. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  2. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  3. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  4. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  5. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  6. Campus Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Campus Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Campus Carbon Calculator AgencyCompany Organization: Clean Air-Cool Planet Phase: Create a...

  7. NERSC Calculations Provide Independent Confirmation of Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9,...

  8. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  9. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...

  10. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  11. USAID Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Application ComplexityEase of Use: Not Available Website: www.afolucarbon.org Cost: Free Language: English USAID Carbon Calculator Screenshot Logo: USAID Carbon Calculator This...

  12. Simulations of Head-On Beam-Beam Compensation at RHIC and LHC

    SciTech Connect (OSTI)

    Valishev, A.; /Fermilab

    2010-05-19

    Electron lenses are proposed as a way to mitigate head-on beam-beam effects for RHIC and LHC upgrades. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of numerical beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to machine parameters is discussed.

  13. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams

    SciTech Connect (OSTI)

    Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S.; Grebing, Jochen; Erbe, Artur; Mounier, Denis; Gusev, Vitalyi

    2013-12-02

    We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30?GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

  14. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  15. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    SciTech Connect (OSTI)

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab; Srivastava, Abhishek K.; Dwivedi, B. N.; Filippov, Boris; Chandra, Ramesh; Choudhary, Debi Prasad E-mail: njoshi98@gmail.com

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ?2 hr after eruption. From the Global Oscillation Network Group H? observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ?105 km s{sup 1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 images, we observe an activation of right-handed helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ?215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ?60 km s{sup 1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.

  16. Measurement of the curvature of a surface using parallel light beams

    DOE Patents [OSTI]

    Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.

    1999-06-15

    Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.

  17. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect (OSTI)

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  18. SPEAR3 Beam Line Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Wide Angle X-ray Scattering Open 1-5 MC MAD, Monochromatic Open 2-1 X-ray Powder Diffraction Open 2-2 X-ray Michromachining, Topography, White Beam, LIGA Down 2-3 X-ray XAS,...

  19. The effect of anterior proton beams in the setting of a prostate-rectum spacer

    SciTech Connect (OSTI)

    Christodouleas, John P.; Tang, Shikui; Susil, Robert C.; McNutt, Todd R.; Song, Danny Y.; Bekelman, Justin; Deville, Curtiland; Vapiwala, Neha; DeWeese, Theodore L.; Lu, Hsiao-Ming; Both, Stefan

    2013-10-01

    Studies suggest that anterior beams with in vivo range verification would improve rectal dosimetry in proton therapy for prostate cancer. We investigated whether prostate-rectum spacers would enhance or diminish the benefits of anterior proton beams in these treatments. Twenty milliliters of hydrogel was injected between the prostate and rectum of a cadaver using a transperineal approach. Computed tomography (CT) and magnetic resonance (MR) images were used to generate 7 uniform scanning (US) and 7 single-field uniform dose pencil-beam scanning (PBS) plans with different beam arrangements. Pearson correlations were calculated between rectal, bladder, and femoral head dosimetric outcomes and beam arrangement anterior scores, which characterize the degree to which dose is delivered anteriorly. The overall quality of each plan was compared using a virtual dose-escalation study. For US plans, rectal mean dose was inversely correlated with anterior score, but for PBS plans there was no association between rectal mean dose and anterior score. For both US and PBS plans, full bladder and empty bladder mean doses were correlated with anterior scores. For both US and PBS plans, femoral head mean doses were inversely correlated with anterior score. For US plans and a full bladder, 4 beam arrangements that included an anterior beam tied for the highest maximum prescription dose (MPD). For US plans and an empty bladder, the arrangement with 1 anterior and 2 anterior oblique beams achieved the highest MPD in the virtual dose-escalation study. The dose-escalation study did not differentiate beam arrangements for PBS. All arrangements in the dose-escalation study were limited by bladder constraints except for the arrangement with 2 posterior oblique beams. The benefits of anterior proton beams in the setting of prostate-rectum spacers appear to be proton modality dependent and may not extend to PBS.

  20. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape034_hsu_2011_p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles

  1. High Heat Flux Thermoelectric Module Using Standard Bulk Material |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions PDF icon crane.pdf More Documents & Publications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Development of a 100-Watt

  2. Novel Flux Coupling Machine without Permanent Magnets - U Machine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Magnets - U Machine Novel Flux Coupling Machine without Permanent Magnets - U Machine 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon apep_07_hsu.pdf More Documents & Publications Novel Flux Coupling Machine without Permanent Magnets Novel Flux Coupling Machine without Permanent Magnets Vehicle Technologies Office Merit Review 2014: Alternative High-Performance

  3. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  4. Beam-driven acceleration in ultra-dense plasma media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more » from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  5. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect (OSTI)

    Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.

    2014-11-15

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  6. Calculate and Plot Complex Potential

    Energy Science and Technology Software Center (OSTI)

    1998-05-05

    SOLUPLOT is a program designed to calculate and plot complex potential, pH diagrams and log oxygen activity, pH diagrams for aqueous chemical syatems, considering speciation of ligands, from free energy and thermodynamic activity data. These diagrams, commonly referred to as Eh-pH and ao2-pH diagrams, respectively, define areas of predominance in Eh-pH diagrams or ao2-pH space for chemical species of a chemical system at equilibrium. Over an area of predominance, one predominant species is at greatermore » activity than the other species of the system considered. The diagram axes, pH (a measure of hydrogen ion activity) and either Eh or log ao2 (measures of a tendency toward either oxidation or reduction) , are paremeters commonly applied in describing the chemistry of aqueous systems.« less

  7. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  8. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Primm, Trent

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  9. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these fields include cloud altitude, cloud amount, liquid and ice content, particle size spectra, and radiative fluxes at the surface and the TOA. Comparisons with Atmospheric...

  10. Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details...

  11. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  12. Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  13. Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005...

    Open Energy Info (EERE)

    2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity...

  14. Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  15. Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity...

  16. Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location...

  17. Technical Sessions Measurements of Surface Heat Flux Over Contrasting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of surface heat flux were made using point measurements of the correlation of vertical velocity (w) and temperature (T) (sonic anemometer-fine wire thermocouple),...

  18. Novel Flux Coupling Machine without Permanent Magnets - U Machine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnets Novel Flux Coupling Machine without Permanent Magnets Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials...

  19. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  20. Flexible flux plane simulations of parasitic absorption in nanoplasmon...

    Office of Scientific and Technical Information (OSTI)

    thin-film silicon solar cells Prev Next Title: Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells Authors: Chung, H. ...

  1. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  2. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  3. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics S. F. Iacobellis and R. C. J. Somerville Scripps Institution of Oceanography University of California, San...

  4. Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area...

  5. Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Desert Peak Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And...

  6. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect (OSTI)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  7. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  8. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  9. Collimation Studies with Hollow Electron Beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  10. Property:Beam(m) | Open Energy Information

    Open Energy Info (EERE)

    Beam(m) Jump to: navigation, search This is a property of type String. Pages using the property "Beam(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft...

  11. Neutral particle beam sensing and steering

    DOE Patents [OSTI]

    Maier, II, William B. (Los Alamos, NM); Cobb, Donald D. (Los Alamos, NM); Robiscoe, Richard T. (Los Alamos, NM)

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  12. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, Richard J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Miller, Robert B. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM); Smith, David L. (Albuquerque, NM)

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  13. Autogenerator of beams of charged particles

    DOE Patents [OSTI]

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  14. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  15. Draft PEI Calculator | Department of Energy

    Office of Environmental Management (EM)

    Draft PEI Calculator Draft PEI Calculator This Excel spreadsheet is designed to perform the calculations necessary to determine PEI -- a pump's energy index -- as proposed in DOE's Notices of Proposed Rulemaking (Dockets EERE-2011-BT-STD-0031 and EERE-2013-BT-TP-0055). DOE is providing this calculator as a convenience at the request of interested parties. File Draft PEI Calculator More Documents & Publications Energy Conservation Program: Test Procedure for Pumps, Notice of Proposed

  16. Beam instability studies for the SSC

    SciTech Connect (OSTI)

    Chou, W.

    1994-09-01

    Beam instability studies of the Superconducting Super Collider (SSC) during the period 1989--1993 are briefly reviewed in this paper. Various topics are covered: single bunch and multi-bunch, single beam and beam-beam, parasitic heating and active feedback, etc. Although the SSC will not be built, many of the results obtained from these studies remain as useful references to the accelerator community.

  17. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  18. Bounding Radionuclide Inventory and Accident Consequence Calculation for the 1L Target

    SciTech Connect (OSTI)

    Kelsey, Charles T. IV

    2011-01-01

    A bounding radionuclide inventory for the tungsten of the Los Alamos Neutron Science Center (LANSCE) IL Target is calculated. Based on the bounding inventory, the dose resulting from the maximum credible incident (MCI) is calculated for the maximally exposed offsite individual (MEOl). The design basis accident involves tungsten target oxidation following a loss of cooling accident. Also calculated for the bounding radionuclide inventory is the ratio to the LANSCE inventory threshold for purposes of inventory control as described in the target inventory control policy. A bounding radionuclide inventory calculation for the lL Target was completed using the MCNPX and CINDER'90 codes. Continuous beam delivery at 200 {micro}A to 2500 mA{center_dot}h was assumed. The total calculated activity following this irradiation period is 205,000 Ci. The dose to the MEOI from the MCI is 213 mrem for the bounding inventory. The LANSCE inventory control threshold ratio is 132.

  19. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2014-03-31

    Over the past two years, Department of Energys Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  20. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2015-07-01

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  1. Flux-induced Isometry Gauging in Heterotic Strings

    SciTech Connect (OSTI)

    Chuang, Wu-yen; Gao, Peng

    2007-01-05

    We study the effect of flux-induced isometry gauging of the scalar manifold in N = 2 heterotic string compactification with gauge fluxes. We show that a vanishing theorem by Witten provides the protection mechanism. The other ungauged isometries in hyper moduli space could also be protected, depending on the gauge bundle structure. We also discuss the related issue in IIB setting.

  2. Beam shuttering interferometer and method

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID)

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  3. Beam shuttering interferometer and method

    DOE Patents [OSTI]

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  4. Beam collimation at hadron colliders

    SciTech Connect (OSTI)

    Nikolai V. Mokhov

    2003-08-12

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  5. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  6. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  7. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  8. Ion beam inertial confinement target

    DOE Patents [OSTI]

    Bangerter, Roger O. (Danville, CA); Meeker, Donald J. (Livermore, CA)

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  9. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  10. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  11. SU-E-T-585: Commissioning of Electron Monte Carlo in Eclipse Treatment Planning System for TrueBeam

    SciTech Connect (OSTI)

    Yang, X; Lasio, G; Zhou, J; Lin, M; Yi, B; Guerrero, M

    2014-06-01

    Purpose: To commission electron Monte Carlo (eMC) algorithm in Eclipse Treatment Planning System (TPS) for TrueBeam Linacs, including the evaluation of dose calculation accuracy for small fields and oblique beams and comparison with the existing eMC model for Clinacs. Methods: Electron beam percent-depth-dose (PDDs) and profiles with and without applicators, as well as output factors, were measured from two Varian TrueBeam machines. Measured data were compared against the Varian TrueBeam Representative Beam Data (VTBRBD). The selected data set was transferred into Eclipse for beam configuration. Dose calculation accuracy from eMC was evaluated for open fields, small cut-out fields, and oblique beams at different incident angles. The TrueBeam data was compared to the existing Clinac data and eMC model to evaluate the differences among Linac types. Results: Our measured data indicated that electron beam PDDs from our TrueBeam machines are well matched to those from our Varian Clinac machines, but in-air profiles, cone factors and open-filed output factors are significantly different. The data from our two TrueBeam machines were well represented by the VTBRBD. Variations of TrueBeam PDDs and profiles were within the 2% /2mm criteria for all energies, and the output factors for fields with and without applicators all agree within 2%. Obliquity factor for two clinically relevant applicator sizes (1010 and 1515 cm{sup 2}) and three oblique angles (15, 30, and 45 degree) were measured for nominal R100, R90, and R80 of each electron beam energy. Comparisons of calculations using eMC of obliquity factors and cut-out factors versus measurements will be presented. Conclusion: eMC algorithm in Eclipse TPS can be configured using the VTBRBD. Significant differences between TrueBeam and Clinacs were found in in-air profiles and open field output factors. The accuracy of the eMC algorithm was evaluated for a wide range of cut-out factors and oblique incidence.

  12. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  13. Electron beam generation in Tevatron electron lenses

    SciTech Connect (OSTI)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  14. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect (OSTI)

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  15. One-point fitting of the flux density produced by a heliostat

    SciTech Connect (OSTI)

    Collado, Francisco J.

    2010-04-15

    Accurate and simple models for the flux density reflected by an isolated heliostat should be one of the basic tools for the design and optimization of solar power tower systems. In this work, the ability and the accuracy of the Universidad de Zaragoza (UNIZAR) and the DLR (HFCAL) flux density models to fit actual energetic spots are checked against heliostat energetic images measured at Plataforma Solar de Almeria (PSA). Both the fully analytic models are able to acceptably fit the spot with only one-point fitting, i.e., the measured maximum flux. As a practical validation of this one-point fitting, the intercept percentage of the measured images, i.e., the percentage of the energetic spot sent by the heliostat that gets the receiver surface, is compared with the intercept calculated through the UNIZAR and HFCAL models. As main conclusions, the UNIZAR and the HFCAL models could be quite appropriate tools for the design and optimization, provided the energetic images from the heliostats to be used in the collector field were previously analyzed. Also note that the HFCAL model is much simpler and slightly more accurate than the UNIZAR model. (author)

  16. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect (OSTI)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-03-10

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  17. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; et al

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of the rich information content of micrometeorological flux measurements.« less

  18. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    SciTech Connect (OSTI)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hrtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the landatmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of the rich information content of micrometeorological flux measurements.

  19. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  20. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  1. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    SciTech Connect (OSTI)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  2. Low emittance growth funneling line: preliminary design and beam dynamics study

    SciTech Connect (OSTI)

    Guy, F.W.

    1985-01-01

    A theoretical design study has resulted in a conceptual funneling-line design that has a transverse emittance growth limited to only 15% based on beam-dynamics calculations. Two 2-MeV, 100-mA proton beams are funneled from a two-channel, 212.5-MHz radio-frequency quadrupole (RFQ) to a single beam suitable for injection into a 425-MHz linac. The design uses permanent-magnet quadrupoles, dipoles, and combined-function elements. The low emittance growth is obtained by arranging the focusing strength, the periodic structure, and the bending elements so as to minimize abrupt changes in the beam environmental with consequent charge redistribution and space-charge-caused emittance growth.

  3. Particle beam injector system and method

    DOE Patents [OSTI]

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  4. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    SciTech Connect (OSTI)

    Acheli, A. Serhane, R.

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  5. Thermal fatigue due to beam interruptions in a Lead-Bismuth cooled ATW blanket

    SciTech Connect (OSTI)

    Dunn, F.

    2000-11-15

    Thermal fatigue consequences of frequent accelerator beam interruptions are quantified for both sodium and lead-bismuth cooled blankets in current designs for accelerator transmutation of waste devices. Temperature response was calculated using the SASSYS-1 systems analysis code for an immediate drop in beam current from full power to zero. Coolant temperatures from SASSYS-1 were fed into a multi-node structure temperature calculation to obtain thermal strains for various structural components. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles that these components could endure, based on these thermal strains. Beam interruption frequency data from a current accelerator were used to estimate design lifetimes for components. Mitigation options for reducing thermal fatigue are discussed.

  6. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    SciTech Connect (OSTI)

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance, envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while maintaining the spatial and intensity characteristics of the heavy ion beamlets. The MCP used in this manner is a sensitive, accurate, and long-lasting detector, resistant against signal degradation experienced by previous methods of intense heavy ion beam detection and imaging. The performance of the GBI was benchmarked against existing mechanical emittance diagnostics and the results of sophisticated beam transport numerical simulation codes to demonstrate its usefulness as a diagnostic tool. A method of beam correction to remove the effects of quadrupole focusing element rotational misalignments is proposed using data obtainable from a GBI. An optimizing code was written to determine the parameters of the correction system elements based on input from the GBI. The results of this code for the Small Recirculator beam are reported on.

  7. THE EFFECT OF NONLINEAR LANDAU DAMPING ON ULTRARELATIVISTIC BEAM PLASMA INSTABILITIES

    SciTech Connect (OSTI)

    Chang, Philip; Lamberts, Astrid; Broderick, Avery E.; Shalaby, Mohamad; Pfrommer, Christoph; Puchwein, Ewald

    2014-12-20

    Very high energy gamma-rays from extragalactic sources produce pairs from the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the ''oblique'' instability, which can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here we show with numerical calculations that the effective damping rate is 8 10{sup 4} the growth rate of the linear instability, which is sufficient for the ''oblique'' instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wave numbers and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to approximate equipartition with the beam by increasingly depositing energy into long-wavelength modes. As we have not included the effect of nonlinear wave-wave interactions on these long-wavelength modes, this scenario represents the ''worst case'' scenario for the oblique instability. As it continues to drain energy from the beam at a faster rate than other processes, we conclude that the ''oblique'' instability is sufficiently strong to make it the physically dominant cooling mechanism for high-energy pair beams in the intergalactic medium.

  8. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    179D DOE Calculator EERE Building Technologies Office 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the...

  9. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  10. ac response of thin superconductors in the flux-creep regime

    SciTech Connect (OSTI)

    Gurevich, A. [Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706 (United States); Brandt, E.H. [Max Planck Institute fuer Metallforschung, D-70506 Stuttgart (Germany)] [Max Planck Institute fuer Metallforschung, D-70506 Stuttgart (Germany)

    1997-05-01

    We calculate both analytically and numerically the ac susceptibility {chi}({omega}) and the nonlinear electromagnetic response of thin superconductor strips and disks of constant thickness in a perpendicular time-dependent magnetic field B{sub a}(t)=B{sub 0}cos{omega}t, taking account of the strong nonlinearity of the voltage-current characteristics below the irreversibility line. We consider integral equations of nonlinear nonlocal flux diffusion for a wide class of thermally activated creep models. It is shown that thin superconductors, despite being fully in the critical state, exhibit a universal Meissner-like electromagnetic response in the dissipative flux-creep regime. The expression for the linear ac susceptibility during flux creep appears to be similar to the susceptibility of Ohmic conductors, but with the relaxation time constant replaced by the time t elapsed after flux creep has started. This result is independent of any material parameter or temperature or dc field. For {omega}t{gt}1, we obtain {chi}({omega}){approx}{minus}1+pln(qi{omega}t)/(i{omega}t), where p and q are constants. Above a critical ac amplitude B{sub 0}=B{sub l}, the local response of the electric field becomes nonlinear, and there are two distinctive nonlinear regimes at B{sub 0}{gt}B{sub l}, where B{sub l}{approximately}s(d/a){sup 1/2}B{sub p}, B{sub p} is a characteristic field of full flux penetration, s(T,B)={vert_bar}dlnj/dlnt{vert_bar} is the dimensionless flux-creep rate and d and a are the sample thickness and width, respectively. For B{sub l}{lt}B{sub 0}{lt}B{sub h}({omega}) the response of the electric field is strongly nonlinear but nonhysteretic, since the ac field B{sub a}(t) does not cause a periodic inversion of the critical state. As a result, the magnetic moment exhibits a Meissner-like {ital nondissipative} response, in stark contrast to the Bean model. (Abstract Truncated)

  11. Webtrends Archives by Fiscal Year — Calculators

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archive for the Calculators site for fiscal year 2011.

  12. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    SciTech Connect (OSTI)

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio; Suematsu, Yoshinori [National Astronomical Observatory, Mitaka, Tokyo, 181-8588 (Japan); Lites, Bruce W.; Kubo, Masahito [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Yokoyama, Takaaki [Department of Earth and Planetary Science, School of Science, University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Berger, Thomas E.; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M. [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover St., Palo Alto, CA 94304 (United States); Ichimoto, Kiyoshi; Nagata, Shin'ichi; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan); Shimizu, Toshifumi [ISAS/JAXA, Sagamihara, Kanagawa, 229-8510 (Japan)], E-mail: joten.okamoto@nao.ac.jp

    2009-05-20

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.

  13. Materials Compatibility and Aging for Flux and Cleaner Combinations.

    SciTech Connect (OSTI)

    Archuleta, Kim; Piatt, Rochelle

    2015-01-01

    A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

  14. Beam splitter and method for generating equal optical path length beams

    DOE Patents [OSTI]

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  15. Direct control of air gap flux in permanent magnet machines

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  16. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy

    SciTech Connect (OSTI)

    Smith, David W.; Christophides, Damianos; Dean, Christopher; Naisbit, Mitchell; Mason, Joshua; Morgan, Andrew

    2010-07-15

    Purpose: This study characterizes the dosimetric properties of the iBEAM evo carbon fiber couch manufactured by Medical Intelligence and examines the accuracy of the CMS XiO and Nucletron Oncentra Masterplan (OMP) treatment planning systems for calculating beam attenuation due to the presence of the couch. Methods: To assess the homogeneity of the couch, it was CT scanned at isocentric height and a number of signal intensity profiles were generated and analyzed. To simplify experimental procedures, surface dose and central axis depth dose measurements were performed in a solid water slab phantom using Gafchromic film for 6 and 10 MV photon beams at gantry angles of 0 deg. (normal incidence), 30 deg., and 60 deg. with an inverted iBEAM couch placed on top of the phantom. Attenuation measurements were performed in a cylindrical solid water phantom with an ionization chamber positioned at the isocenter. Measurements were taken for gantry angles from 0 deg. to 90 deg. in 10 deg. increments for both 6 and 10 MV photon beams. This setup was replicated in the XiO and OMP treatment planning systems. Dose was calculated using the pencil beam, collapsed cone, convolution, and superposition algorithms. Results: The CT scan of the couch showed that it was uniformly constructed. Surface dose increased by (510{+-}30)% for a 6 MV beam and (600{+-}20)% for a 10 MV beam passing through the couch at normal incidence. Obliquely incident beams resulted in a higher surface dose compared to normally incident beams for both open fields and fields with the couch present. Depth dose curves showed that the presence of the couch resulted in an increase in dose in the build up region. For 6 and 10 MV beams incident at 60 deg., nearly all skin sparing was lost. Attenuation measurements derived using the ionization chamber varied from 2.7% (0 deg.) to a maximum of 4.6% (50 deg.) for a 6 MV beam and from 1.9% (0 deg.) to a maximum of 4.0% (50 deg.) for a 10 MV beam. The pencil beam and convolution algorithms failed to accurately calculate couch attenuation. The collapsed cone and superposition algorithms calculated attenuation within an absolute error of {+-}1.2% for 6 MV and {+-}0.8% for 10 MV for gantry angles from 0 deg. to 40 deg. Some differences in attenuation were observed dependent on how the couch was contoured. Conclusions: These results demonstrate that the presence of the iBEAM evo carbon fiber couch increases the surface dose and dose in the build up region. The inclusion of the couch in the planning scan is limited by the field of view employed and the couch height at the time of CT scanning.

  17. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect (OSTI)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernndez, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ?E/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  18. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  19. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  20. Proton beam therapy control system

    DOE Patents [OSTI]

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.