Powered by Deep Web Technologies
Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

2

Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator  

SciTech Connect (OSTI)

The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

2012-02-15T23:59:59.000Z

3

Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities  

SciTech Connect (OSTI)

The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

Macek, R.J.

1994-07-01T23:59:59.000Z

4

Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC  

ScienceCinema (OSTI)

Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators. FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.

Andrei Seryi

2010-01-08T23:59:59.000Z

5

A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea  

SciTech Connect (OSTI)

This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)] [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)

2014-04-15T23:59:59.000Z

6

Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.  

SciTech Connect (OSTI)

A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV el

Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

2008-10-30T23:59:59.000Z

7

Proton beam therapy facility  

SciTech Connect (OSTI)

It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

Not Available

1984-10-09T23:59:59.000Z

8

E-Print Network 3.0 - accelerated beam experiments Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... -ray facilities, and the injector linear accelerator where a...

9

E-Print Network 3.0 - accelerator facility jefferson Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

10

E-Print Network 3.0 - accelerator electron beam Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... high-brightness x-ray beams in synchrotron radiation facilities and...

11

ORELA accelerator facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

12

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect (OSTI)

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

13

Challenges in Accelerator Beam Instrumentation  

SciTech Connect (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M.

2009-12-01T23:59:59.000Z

14

E-Print Network 3.0 - accelerated oxygen-14 beam Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... and Northern Illinois University (NIU), where advanced accelerator...

15

Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line  

SciTech Connect (OSTI)

The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.

Vainas, B.; Eliyahu, I.; Weissman, L.; Berkovits, D. [SARAF, Soreq Nuclear Research Center, Yavne 81800 (Israel)

2012-02-15T23:59:59.000Z

16

Non-Paraxial Accelerating Beams  

E-Print Network [OSTI]

We present the spatially accelerating solutions of the Maxwell equations. Such non-paraxial beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams. For both TE and TM polarizations, the beams exhibit shape-preserving bending with sub-wavelength features, and the Poynting vector of the main lobe displays a turn of more than 90 degrees. We show that these accelerating beams are self-healing, analyze their properties, and compare to the paraxial Airy beams. Finally, we present the new family of periodic accelerating beams which can be constructed from our solutions.

Ido Kaminer; Rivka Bekenstein; Jonathan Nemirovsky; Mordechai Segev

2012-02-03T23:59:59.000Z

17

Mikhail Avilov Facility for Rare Isotope Beams  

E-Print Network [OSTI]

Challenges Chemical Challenges Radiation Challenges Summary #12; World-leading heavy ion accelerator facility for rare isotope science · Nuclear Structure · Nuclear Astrophysics · Fundamental Interactions Target vacuum vessel M. Avilov, May 2014 5th HP Targetry Workshop, FNAL, Slide 4 Target Beam dump Beam

McDonald, Kirk

18

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

19

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director ATF, Accelerator External program committee W. Leemans, Chair M. Woodle Engineer Mechanical M. Montemagno Engineer Electrical I. Pogorelsky, Physicist, Laser P. Jacob...

20

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

22

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

23

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

24

Laser acceleration of ion beams  

E-Print Network [OSTI]

We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

2007-02-01T23:59:59.000Z

25

E-Print Network 3.0 - accelerator facility complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large... of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... Focus Research Areas 1. Fundamental Accelerator...

26

E-Print Network 3.0 - accelerator facilities Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

27

E-Print Network 3.0 - accelerator facility project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

28

Ion Beams - Radiation Effects Facility / Cyclotron Institute...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beams Available Beams Beam Change Times Measurements Useful Graphs Various ion beams have been developed specifically for the Radiation Effects Facility. These beams...

29

Development of high current Bi and Au beams for the synchrotron operation at the GSI accelerator facility  

SciTech Connect (OSTI)

In this work, the latest results of developing high current ion beams of Au and Bi at GSI facility are described. The difficulties in the production of required charge state in vacuum arc discharge ion sources using the pure materials in the cathodes are discussed. As a possible solution, admix of a small amount of more refractory metal to the cathode material is considered. As a significant result, a dramatic improvement in the production of high charge state Bi ions using the mixed Bi-Cu cathodes (with 8%-15% of Cu admixed) compared to pure Bi cathodes is presented. The preliminary results of investigation of the material structure of Bi-Cu cathodes are discussed. As a next step, it is planned to test the composition of Au with Pd, Zr, and Fe as cathode materials.

Adonin, A.; Hollinger, R. [LINAC Group, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

2012-02-15T23:59:59.000Z

30

E-Print Network 3.0 - accelerator beam instrumentation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... and Northern Illinois University (NIU), where advanced ... Source:...

31

Radiological Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

32

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

33

Accelerator and Beam Science, ABS, Accelerator Operations and Technology,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Concepts Accelerator Concepts Injectors Operations Physics CONTACTS Group Leader Robert Garnett Deputy Group Leader Kenneth Johnson Office Administrator Monica Sanchez Phone: (505) 667-2846 Put a short description of the graphic or its primary message here Accelerator and Beam Science The Accelerator and Beam Science (AOT-ABS) Group at Los Alamos addresses physics aspects of the driver accelerator for the LANSCE spallation neutron source and related topics. These activities are wide ranging and include generating negative and positive ions in plasma ion sources, creating ion beams from these particles, accelerating the ion beams in linear accelerator structures up to an energy of 800 MeV, compressing the negative hydrogen beam to packets of sub-microsecond duration and accumulating beam current in the Proton Storage Ring, and

34

Thomas Jefferson National Accelerator Facility Technology Marketing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas...

35

Radiological Safety Training for Accelerator Facilities  

Office of Environmental Management (EM)

HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

36

Nonparaxial Mathieu and Weber accelerating beams  

E-Print Network [OSTI]

We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

Peng Zhang; Yi Hu; Tongcang Li; Drake Cannan; Xiaobo Yin; Roberto Morandotti; Zhigang Chen; Xiang Zhang

2012-10-23T23:59:59.000Z

37

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

38

RESOLVING BEAM TRANSPORT PROBLEMS IN ELECTROSTATIC ACCELERATORS  

E-Print Network [OSTI]

RESOLVING BEAM TRANSPORT PROBLEMS IN ELECTROSTATIC ACCELERATORS J. D. LARSON (*) Oak Ridge National are frequently encounte- red during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam

Boyer, Edmond

39

Beam Dynamics for Induction Accelerators  

E-Print Network [OSTI]

Dynamics for Induction Accelerators Edward P. Lee Lawrencea natural candidate accelerator for a heavy ion fusion (HIF)words: Fusion, Induction, Accelerators, Dynamics This work

Lee, E.P.

2014-01-01T23:59:59.000Z

40

Multiple beam induction accelerators for heavy ion fusion  

Science Journals Connector (OSTI)

Abstract Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (?10kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

Peter A. Seidl; John J. Barnard; Andris Faltens; Alex Friedman; William L. Waldron

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BARC TIFR Heavy Ion Accelerator Facility  

E-Print Network [OSTI]

of nuclear structure studies at high temperature and angular momentum, elastic and transfer reactions as well are initially accelerated to low energies (150-250 keV) in a short horizontal section. These low energy negative enterprise using accelerated heavy ion beams is to unravel the complexities of the nuclear world in all

Shyamasundar, R.K.

42

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect (OSTI)

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

43

Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

44

Accelerated Radioactive Nuclear Beams (Low Energy)  

Science Journals Connector (OSTI)

The possibility of producing and accelerating intense beams of short-lived radioactive heavy ions, both for studies of nuclides themselves and for use as projectiles in reactions of considerable interest to the f...

John M. DAuria

1990-01-01T23:59:59.000Z

45

Beam Physics of Integrable Optics Test Accelerator at Fermilab  

SciTech Connect (OSTI)

Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

2012-05-01T23:59:59.000Z

46

Staging laser plasma accelerators for increased beam energy  

E-Print Network [OSTI]

Staging Laser Plasma Accelerators for Increased Beam EnergyStaging laser plasma accelerators is an efficient way ofcompact laser-plasma accelerators to generate particle

Panasenko, Dmitriy

2010-01-01T23:59:59.000Z

47

Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators  

E-Print Network [OSTI]

for Laser Plasma Accelerators," in this proceedings, 2010.Based Laser Wakefield Accelerator Electron Beam EnergyMotion in a Laser-Plasma Accelerator," in this proceedings,

Matlis, N. H.

2011-01-01T23:59:59.000Z

48

Beam Coupling to Optical Scale Accelerating Structures  

SciTech Connect (OSTI)

Current research efforts into structure based laser acceleration of electrons utilize beams from standard RF linacs. These beams must be coupled into very small structures with transverse dimensions comparable to the laser wavelength. To obtain decent transmission, a permanent magnet quadrupole (PMQ) triplet with a focusing gradient of 560 T/m is used to focus into the structure. Also of interest is the induced wakefield from the structure, useful for diagnosing potential accelerator structures or as novel radiation sources.

Sears, C.M.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; Lincoln, M.R.; Siemann, R.H.; Spencer, J.E.; /SLAC; Plettner, T.; /Stanford U., Phys. Dept.

2007-03-27T23:59:59.000Z

49

Beam Coupling to Optical Scale Accelerating Structures  

SciTech Connect (OSTI)

Current research efforts into structure based laser acceleration of electrons utilize beams from standard RF linacs. These beams must be coupled into very small structures with transverse dimensions comparable to the laser wavelength. To obtain decent transmission, a permanent magnet quadrupole (PMQ) triplet with a focusing gradient of 560 T/m is used to focus into the structure. Also of interest is the induced wakefield from the structure, useful for diagnosing potential accelerator structures or as novel radiation sources.

Sears, Christopher M. S.; Colby, Eric R.; Cowan, Benjamin M.; Ischebeck, Rasmus; Lincoln, Melissa R.; Siemann, Robert H.; Spencer, James E. [Stanford Linear Accelerator Center, Menlo Park, CA 94025 (United States); Byer, Robert L.; Plettner, Tomas [Stanford University, Stanford, CA 94305 (United States)

2006-11-27T23:59:59.000Z

50

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

51

The target laboratory of the Pelletron Accelerator's facilities  

SciTech Connect (OSTI)

A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

Ueta, Nobuko; Pereira Engel, Wanda Gabriel [Nuclear Physics Department - University of Sao Paulo (Brazil)

2013-05-06T23:59:59.000Z

52

Microwave accelerator E-beam pumped laser  

DOE Patents [OSTI]

A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

Brau, Charles A. (Los Alamos, NM); Stein, William E. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

53

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

54

Carbon Fiber Damage in Accelerator Beam  

E-Print Network [OSTI]

Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

Sapinski, M; Guerrero, A; Koopman, J; Mtral, E

2009-01-01T23:59:59.000Z

55

THE POSSIBILITY OF GENERATION OF HIGH-ENERGY ELECTRON BEAM AT THE SNS FACILITY  

SciTech Connect (OSTI)

The linac of the SNS accelerator facility can be used to produce an electron beam with 300-400 MeV energy and relatively high current. At present, a few predesigned experiments with electron beam can be alternatively carried out at the SNS. However, the SNS linac is designed and optimized for acceleration of the H- beam, which creates problems when direct acceleration of electrons is considered. An alternative machine setup for electron acceleration and transport is discussed. Here, we present a study of the optimal electron beam parameters that can be achieved without any significant hardware changes in the SNS accelerator.

Gorlov, Timofey V [ORNL] [ORNL; Aleksandrov, Alexander V [ORNL] [ORNL; Danilov, Viatcheslav V [ORNL] [ORNL

2013-01-01T23:59:59.000Z

56

Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...  

Office of Science (SC) Website

science as well as accelerator driven systems for nuclear waste transmutation or power generation, high-current accelerator-based isotope production facilities, and...

57

ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Revised: March 1, 2010 i ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF CONTENTS 1. INTRODUCTION AND DESCRIPTION OF THE FACILITY ......

58

Beam Dynamics Challenges in High Energy Physics Accelerators!  

E-Print Network [OSTI]

Beam Dynamics Challenges in High Energy Physics Accelerators! Alexander Valishev! University/1/2014!A. Valishev | Beam Dynamics Challenges in HEP Accelerators!2! #12;The Olympic Motto for Accelerators! 12/1/2014!A. Valishev | Beam Dynamics Challenges in HEP Accelerators!3! ENERGY INTENSITY BRIGHTNESS

59

Radiological Safety Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

60

E-Print Network 3.0 - accelerator facilities coefficients Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 32 Accelerator Test Facility www.bnl.govatf Summary: Accelerator Test Facility www.bnl.govatf Accelerator Test Facility Contact Information Phone:(631......

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility  

SciTech Connect (OSTI)

The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. (Brookhaven National Lab., Upton, NY (United States)); Bhowmik, A. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.)

1991-01-01T23:59:59.000Z

62

High-powered pulsed-ion-beam acceleration and transport  

SciTech Connect (OSTI)

The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

Humphries, S. Jr.; Lockner, T.R.

1981-11-01T23:59:59.000Z

63

SATIF-2 shielding aspects of accelerators, targets and irradiation facilities  

SciTech Connect (OSTI)

Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

NONE

1995-12-31T23:59:59.000Z

64

Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

2005-07-01T23:59:59.000Z

65

Acceleration of polarized protons in AHF (Advanced Hadron Facility)  

SciTech Connect (OSTI)

In this paper an analysis of the depolarization expected during acceleration from 0.8 to 45.0 GeV kinetic energy in the Advanced Hadron Facility (AHF) accelerators is performed.

Colton, E.P.

1987-03-20T23:59:59.000Z

66

Characterisation of electron beams from laser-driven particle accelerators  

SciTech Connect (OSTI)

The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-12-21T23:59:59.000Z

67

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

68

Concerning the Facility for Rare Isotope Beams  

ScienceCinema (OSTI)

James Symons, Nuclear Science Division Director at Lawrence Berkeley Lab, and Daniela Leitner, head of operations at Berkeley Lab's 88-Inch Cyclotron, discuss major contributions to the new Facility for Rare Isotope Beams (FRIB) at Michigan State University, including ion source, which will based on the VENUS source built for the 88-Inch Cyclotron, and the GRETA gamma-ray detector now under construction there.

Symons, James

2013-05-29T23:59:59.000Z

69

The Cornell University cold neutron beam facility  

SciTech Connect (OSTI)

The final version of a cold neutron beam facility under development at the Cornell 500-kW TRIGA reactor is nearing completion. The facility will provide an ultra-low background subthermal neutron beam, primarily for nuclear reaction experiments such as (n,gamma) and (n,ce) studies and applications such as prompt gamma neutron activation analysis. Its uses will also include exploration of new cold neutron methods and training of graduate students in cold neutron techniques. The facility employs a 13-m long Curved (500-m radius) Ni-on-glass neutron guide (2 cm x 5 cm) to filter out fast neutrons and gamma rays, location of the guide exit in a room isolated from other beams, cold neutrons to increase transmission through the guide, a mesitylene moderator at ca. 30K that avoids hazards of liquid hydrogen or solid methane, and cooling by Cu cold fingers attached to a cryorefrigerator outside the reactor bulk shield. The mesitylene chamber and the first 3 meters of guide are installed in a standard beamplug shell so that no modifications of the reactor structure were required. Design features of the cold source proper have been published in an article that also describes earlier stages of the project, and more recent design details and extensive subsystem tests are reported elsewhere. Final assembly and testing of the beamplug assembly is Currently underway (June 1994); completion is expected in Fall 1994. The project has involved more than seven graduate and undergraduate students.

Clark, D.D. [Cornell Univ., Ithaca, NY (United States)

1994-12-31T23:59:59.000Z

70

New Accelerator Facility for Carbon-Ion Cancer-Therapy  

Science Journals Connector (OSTI)

......rent effect in the vacuum chamber inside the...of the proposed accelerator complex are summarized...displacement 1 mm Vacuum system Ave. pressure...within 1 min. New Accelerator Facility for Carbon...for medical use. Nuclear Physics A 538...European Particle Accelerator Conference, Edinburgh......

Koji Noda; Takuji Furukawa; Takashi Fujisawa; Yoshiyuki Iwata; Tatsuaki Kanai; Mitsutaka Kanazawa; Atsushi Kitagawa; Masataka Komori; Shinichi Minohara; Takeshi Murakami; Masayuki Muramatsu; Shinji Sato; Yuka Takei; Mutsumi Tashiro; Masami Torikoshi; Satoru Yamada; Ken Yusa

2007-03-01T23:59:59.000Z

71

"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments  

SciTech Connect (OSTI)

The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

2009-05-28T23:59:59.000Z

72

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Broader source: Energy.gov (indexed) [DOE]

Facility Saves $20 Million, Accelerates Waste Processing Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that will accelerate the completion of remote-handled transuranic (TRU) waste processing at the site by two years and save taxpayers more than $20 million. The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). TWPC processes, repackages, and

73

Accelerator shield design of KIPT neutron source facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)

Zhong, Z.; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

74

Measurements - Ion Beams - Radiation Effects Facility / Cyclotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beams Available Beams Beam Change Times Measurements Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each...

75

Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab  

SciTech Connect (OSTI)

A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

2012-05-10T23:59:59.000Z

76

E-Print Network 3.0 - accelerator physics experiments Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities for biology and material sciences. Beam physics--study of beams in accelerators... -ray facilities, and the injector linear accelerator where a pioneering...

77

Future physics with a proposed radioactive beam facility in the United States  

SciTech Connect (OSTI)

A brief overview of the physics at a proposed radioactive beam facility or ISOSPIN LABORATORY is presented. Its impact on future directions in nuclear structure, nuclei far from stability, reaction physics, nuclear astrophysics, and several applied fields is pointed out. Of particular interest are neutron rich beams. Radioactive beams with energies on the order of {approximately}10 MeV/nucleon or less are emphasized rather than the more energetic beams obtainable through projectile fragmentation. A concept of a high-intensity radioactive beam facility based on the post-acceleration of radioactive ions from an isotope-separator linked to a high-current, high-energy, light ion accelerator is discussed. 21 refs., 1 figs.

Nitschke, J.M.

1990-06-01T23:59:59.000Z

78

RESEARCH ON HIGH BEAM-CURRENT ACCELERATORS  

E-Print Network [OSTI]

and M. Wilson, Particle Accelerators 10, 223 13. A. I.Proc. 1976 Proton Linear Accelerator Conf. , Chalk River,and D. Keefe, Particle Accelerators~' 23. S. Humphries, J.

Keefe, Denis

2014-01-01T23:59:59.000Z

79

Staging Laser Plasma Accelerators for Increased Beam Energy  

E-Print Network [OSTI]

Staging Laser Plasma Accelerators for Increased Beam Energy D. Panasenko, A. J. Shu, C. B., Berkeley, California 94720, USA Abstract. Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies

Geddes, Cameron Guy Robinson

80

ONE GEV BEAM ACCELERATION IN A ONE METER LONG  

E-Print Network [OSTI]

ONE GEV BEAM ACCELERATION IN A ONE METER LONG PLASMA CELL A Proposal to the Stanford Linear. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - accelerator test facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facility Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator test facility Page: << < 1 2 3 4 5 > >> 1 SLAC National Accelerator...

82

Recirculating Linac Accelerators For Future Muon Facilities  

SciTech Connect (OSTI)

Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of shortlived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We discuss the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both m+ and m- species. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

Yves Roblin, Alex Bogacz, Vasiliy Morozov, Kevin Beard

2012-04-01T23:59:59.000Z

83

Application to Particle Accelerator Beam Stabilization Glenn Decker  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the Measurement of Noise with Application to Particle Accelerator Beam Stabilization Glenn Decker Advanced Photon Source Accelerator Systems Division December 1998 LS-273 1 1.0 Introduction One of the most important figures of merit for a synchrotron radiation source, once speci- fied beam intensity and energy have been achieved, is charged particle beam stability. While a sig- nificant effort has been expended at the Advanced Photon Source (APS) to reduce or eliminate undesirable sources of beam motion, it will be necessary to employ active feedback to stabilize the user photon beams to the very stringent levels required. This becomes especially important when one considers that transverse beam stability is generally quoted as a fraction of beam dimensions. Since source brightness tends to be inversely proportional to these transverse dimen-

84

Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex  

SciTech Connect (OSTI)

After a 14 month shutdown accelerator modifications and upgrades are in place to allow us doubling of the Main Injector beam power. We will discuss the past MI high power operation and the current progress towards doubling the power.

Kourbanis, ioanis

2014-06-01T23:59:59.000Z

85

Studies of pear-shaped nuclei using accelerated radioactive beams  

Science Journals Connector (OSTI)

... octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions ...

L. P. Gaffney; P. A. Butler; M. Scheck; A. B. Hayes; F. Wenander; M. Albers; B. Bastin; C. Bauer; A. Blazhev; S. Bnig; N. Bree; J. Cederkll; T. Chupp; D. Cline; T. E. Cocolios; T. Davinson; H. De Witte; J. Diriken; T. Grahn; A. Herzan; M. Huyse; D. G. Jenkins; D. T. Joss; N. Kesteloot; J. Konki; M. Kowalczyk; Th. Krll; E. Kwan; R. Lutter; K. Moschner; P. Napiorkowski; J. Pakarinen; M. Pfeiffer; D. Radeck; P. Reiter; K. Reynders; S. V. Rigby; L. M. Robledo; M. Rudigier; S. Sambi; M. Seidlitz; B. Siebeck; T. Stora; P. Thoele; P. Van Duppen; M. J. Vermeulen; M. von Schmid; D. Voulot; N. Warr; K. Wimmer; K. Wrzosek-Lipska; C. Y. Wu; M. Zielinska

2013-05-08T23:59:59.000Z

86

Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab  

SciTech Connect (OSTI)

Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.

Warner, A.; Carmichael, L.; Church, M.; Neswold, R.; /Fermilab

2011-09-01T23:59:59.000Z

87

E-Print Network 3.0 - accelerated electron beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated electron beams Page: << < 1 2 3 4 5 > >> 1 KJKDec. 52002 Opportunities for Beam...

88

Laser-Accelerated Protons with Energy-Dependent Beam Direction  

Science Journals Connector (OSTI)

The spatial distribution of protons, accelerated by intense femtosecond laser pulses interacting with thin target foils under oblique irradiation are investigated. Under certain conditions, the proton beams are directed away from the target normal. This deviation is towards the laser forward direction, with an angle that increases with the level and duration of the amplified spontaneous emission pedestal before the main laser pulse. In addition, for a given laser pulse, this beam deviation increases with proton energy. The observations are discussed in terms of different electron acceleration mechanisms and target normal sheath acceleration, in combination with a laser-controllable shock wave locally deforming the target rear surface.

F. Lindau; O. Lundh; A. Persson; P. McKenna; K. Osvay; D. Batani; C.-G. Wahlstrm

2005-10-19T23:59:59.000Z

89

The HVEM-Tandem Accelerator Facility at Argonne National Laboratory  

Science Journals Connector (OSTI)

The HVEM-Tandem National User Facility consists of a modified Kratos/AE1 EM7 HVEM with a maximum accelerating voltage of 1.2 MeV, interfaced to both a 2MV National Electrostatics tandem ion accelerator and a 300 kV Texas Nuclear ion accelerator. The latter is being replaced with a 650 kV National Electrostatics accelerator which should be fully operational in FY 1987. These accelerators provide a wide range of ion species with energies from 25 keV to 8 MeV. The combination of HVEM and ion accelerators provides a truly unique capability for ion irradiation/implantation experimentation along with simultaneous microscopy. The HVEM-Tandem Facility currently is employed for a wide range of materials research, including basic in situ studies of mechanical properties, oxidation and hydrogen effects in metals, radiation effects including ion and electron irradiation-induced phase changes and general defect analysis. More than half of these studies are conducted by non-ANL scientists from universities and other national laboratories. Access to the National User Facility is by means of research proposals which are reviewed by a Steering Committee composed of both Argonne and non-Argonne scientists representing the user community.

A. Taylor; C.W. Allen; E.A. Ryan

1987-01-01T23:59:59.000Z

90

Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development  

SciTech Connect (OSTI)

The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

2012-05-15T23:59:59.000Z

91

E-Print Network 3.0 - accelerator electron radiotherapy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

92

Fact Sheet: Facility For Rare Isotope Beams (FRIB) Applicant Selection |  

Broader source: Energy.gov (indexed) [DOE]

Facility For Rare Isotope Beams (FRIB) Applicant Facility For Rare Isotope Beams (FRIB) Applicant Selection Fact Sheet: Facility For Rare Isotope Beams (FRIB) Applicant Selection December 11, 2008 - 8:51am Addthis Based on the analyses and recommendations over the last decade, the U.S. Department of Energy (DOE) Office of Science determined that the establishment of a Facility for Rare Isotope Beams (FRIB) is a high priority for the future of U.S. nuclear science research. This determination and supporting rationale are reflected in the DOE/ National Science Foundation Nuclear Science Advisory Committee's 2007 Long Range Plan and the 2003 DOE report, "Facilities for the Future of Science: A Twenty-Year Outlook." A Funding Opportunity Announcement (FOA) was used to solicit applications for the conceptual design and establishment of FRIB in order

93

Opportunistic Mass Measurements at the Holifield Radioactive Ion Beam Facility  

SciTech Connect (OSTI)

A technique for measuring mass differences has been developed at the Holifield Radioactive Ion Beam Facility (HRIBF) that requires no specialized equipment. Mass differences are measured as position differences between known and unknown-mass isobars, dispersed at the image of the energy-analyzing magnet following the 25MV tandem post-accelerator, and identified by an energy-loss measurement. The technique has been demonstrated on neutron-rich 77 79Cu and 83 86Ge isotopes produced using the isotope separator online (ISOL) method with the 238U(p,fission) reaction, where a mass accuracy of 500 keV was achieved. These nuclides are well suited to the measurement technique, as they readily migrate out of the production target and to the ion source and comprise the most neutron-rich elements of the isobarically mixed beam. Because modest precision mass values can be obtained with only a few tens of counts of the nuclide of interest among orders of magnitude more of the isobaric neighbors closer to stability, the sensitivity of this technique makes it appropriate for initial mass measurements far from stability.

Hausladen, Paul [ORNL; Beene, James R [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Larochelle, Y [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Mueller, Paul Edward [ORNL; Shapira, Dan [ORNL; Stracener, Daniel W [ORNL; Thomas, J. S. [Rutgers University; Varner Jr, Robert L [ORNL; Wollnik, Hermann [ORNL

2006-01-01T23:59:59.000Z

94

E-Print Network 3.0 - accelerator-based bnct facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

95

A Staged Muon Accelerator Facility For Neutrino and Collider Physics  

E-Print Network [OSTI]

Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

2015-01-01T23:59:59.000Z

96

COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and Technical Challenges Dr. Georg Bollen Michigan State...

97

Beam-Dynamics Studies and Advanced Accelerator Research at CTF-3 Compact Final Focus, Laser Compton Scattering, Plasmas, etc.  

E-Print Network [OSTI]

Preliminary investigations are summarized on the possible use of the CTF3 facility for extended beam-dynamics studies and advanced accelerator R&D, which would exploit its unique properties and beam availability. The key element of these considerations is the possible addition of a test beam-delivery system comprising a compact final focus and advanced collimation concepts, scaled from 3 TeV down to low energy and having a short total length. Operational experience, verification of critical questions (octupole tail folding, beam halo transport, etc.), diagnostics (e.g., rf BPMs) and stabilization could all be explored in such a facility, which would benefit not only the CLIC study, but all linear collider projects. Another interesting application would be the study of plasma-beam interaction, which may include plasma focusing, plasma acceleration, ion-channel radiation, and plasma wigglers.

Assmann, R W; Burkhardt, H; Corsini, R; Faus-Golfe, A; Gronberg, J; Redaelli, S; Schulte, Daniel; Velasco, M; Zimmermann, Frank

2002-01-01T23:59:59.000Z

98

Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators  

SciTech Connect (OSTI)

We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

Lee, S. Y.

2014-04-07T23:59:59.000Z

99

The proton injector for the accelerator facility of antiproton and ion research (FAIR)  

SciTech Connect (OSTI)

The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 ?s. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3? mm?mrad (norm., rms)

Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut fr Angewandte Physik, Goethe-Universitt Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)] [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat lEnergie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)] [Commissariat lEnergie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

2014-02-15T23:59:59.000Z

100

A microsecond-pulsewidth, intense, light-ion beam accelerator  

SciTech Connect (OSTI)

A relatively long-pulsewidth (0.1-1 {mu}s) intense ion beam accelerator has been built for materials processing applications. An applied-B{sub r}, magnetically-insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2-MV, 300-kJ Marx generator. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse-shaping.

Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Greenly, J.B.; Waganaar, W.J.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Iron beam acceleration using direct plasma injection scheme  

SciTech Connect (OSTI)

A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

Okamura, M., E-mail: okamura@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Upton, New York 11973 (United States); Kanesue, T. [Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamamoto, T. [Waseda University, Shinjuku, Tokyo 169-8555 (Japan)] [Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Fuwa, Y. [Kyoto University, Uji, Kyoto 611-0011 (Japan) [Kyoto University, Uji, Kyoto 611-0011 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan)

2014-02-15T23:59:59.000Z

102

Beam Characterization at the Neutron Radiography Facility  

SciTech Connect (OSTI)

The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beams effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beams effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the models energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

Sarah Morgan; Jeffrey King

2013-01-01T23:59:59.000Z

103

H-Mode Accelerating Structures with PMQ Beam Focusing  

E-Print Network [OSTI]

We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic computations, multi-particle beam-dynamics simulations with high currents, and thermal-stress analysis - for an IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or ...

Kurennoy, Sergey S; O'Hara, James F; Olivas, Eric R; Wangler, Thomas P

2011-01-01T23:59:59.000Z

104

Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration  

SciTech Connect (OSTI)

Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

2009-04-24T23:59:59.000Z

105

BEAM INTENSITY AND ENERGY CONTROL FOR THE SPIRAL2 FACILITY  

E-Print Network [OSTI]

BEAM INTENSITY AND ENERGY CONTROL FOR THE SPIRAL2 FACILITY C. Jamet, T. Andre, B. Ducoudret, C to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current will range in intensity from a few 10 A to 1mA for ions, up to 5 mA for deuterons, and in energy from 0.75 up

Paris-Sud XI, Université de

106

Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude  

DOE Patents [OSTI]

A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

1995-08-08T23:59:59.000Z

107

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

108

Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators  

SciTech Connect (OSTI)

In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2008-01-28T23:59:59.000Z

109

E-Print Network 3.0 - accelerating beam stability Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(ARD) has the mission to develop accelerator Summary: between rf systems and particle beams, applications of control techniques to asses system stability... Wakefield Accelerator...

110

Ground Broken for New Job-Creating Accelerator Research Facility at DOEs Fermi National Accelerator Laboratory in Illinois  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. Today, ground was broken for a new accelerator research facility being built at the Department of Energys (DOEs) Fermi National Accelerator Laboratory (Fermilab) in Batavia,...

111

Artificial intelligence research in particle accelerator control systems for beam line tuning  

SciTech Connect (OSTI)

Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

Pieck, Martin [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

112

E-Print Network 3.0 - accelerator photon beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photon beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator photon beams Page: << < 1 2 3 4 5 > >> 1 KJKDec. 52002 Opportunities for...

113

E-Print Network 3.0 - accelerating polarized beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

polarized beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerating polarized beams Page: << < 1 2 3 4 5 > >> 1 Linear Collider...

114

E-Print Network 3.0 - accelerated radioactive beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated radioactive beams Page: << < 1 2 3 4 5 > >> 1 Physics Division ESH Bulletin...

115

E-Print Network 3.0 - accelerator neutrino beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator neutrino beams Page: << < 1 2 3 4 5 > >> 1 A Neutrino Superbeam Physics Program...

116

E-Print Network 3.0 - accelerator structural materials Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... accelerators are among the most powerful scientific instruments...

117

Vibrational Stability of SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

McGee, M.W.; Volk, J.T.; /Fermilab

2009-05-01T23:59:59.000Z

118

Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility  

Broader source: Energy.gov [DOE]

After many years of planning, ground was officially broken on the Facility for Rare Isotope Beams (FRIB) in a ceremony held at the construction site on Michigan State Universitys campus.

119

INTRA BEAM SCATTERING IN LINEAR ACCELERATORS, ESPECIALLY ERLS  

E-Print Network [OSTI]

radiation protection system. INTRODUCTION Single event intra-beam scattering (IBS) that leads to momentum complete propagation of scattered particle. For the example of the ERL x-ray facility that Cornell plans the current of lost particles can pose a radiation hazard. In this paper we describe tracking simulations

120

E-Print Network 3.0 - accelerator-based neutron beams Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator-based neutron beams Page: << < 1 2 3 4 5 > >> 1 Accelerator based neutron source...

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)  

SciTech Connect (OSTI)

In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

Burlon, Alejandro A.; Valda, Alejandro A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); Girola, Santiago [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); Vidt Centro Medico, Vidt 1924 (1425), Buenos Aires (Argentina); Minsky, Daniel M.; Kreiner, Andres J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina)

2010-08-04T23:59:59.000Z

122

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

123

Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators  

SciTech Connect (OSTI)

The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.

Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

2011-03-01T23:59:59.000Z

124

UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC  

SciTech Connect (OSTI)

to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

2009-05-04T23:59:59.000Z

125

Fact Sheet: Facility for Rare Isotope Beams (FRIB) Applicant Selection |  

Office of Science (SC) Website

Fact Sheet: Fact Sheet: Facility for Rare Isotope Beams (FRIB) Applicant Selection News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.11.08 Fact Sheet: Facility for Rare Isotope Beams (FRIB) Applicant Selection Print Text Size: A A A Subscribe FeedbackShare Page Based on the analyses and recommendations over the last decade, the U.S. Department of Energy (DOE) Office of Science determined that the establishment of a Facility for Rare Isotope Beams (FRIB) is a high priority for the future of U.S. nuclear science research. This determination and supporting rationale are reflected in the DOE/ National

126

Ground Broken for New Job-Creating Accelerator Research Facility at DOE's  

Broader source: Energy.gov (indexed) [DOE]

Ground Broken for New Job-Creating Accelerator Research Facility at Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. Supported jointly by the state of Illinois and DOE, the construction of the Illinois Accelerator Research Center (IARC) will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology, and create about 200 high-tech jobs. DOE's Office

127

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

E-Print Network [OSTI]

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams C. B. Schroeder, E of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration

Geddes, Cameron Guy Robinson

128

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network [OSTI]

Lancaster, R.B. Yourd, Pre~,Accelerator A wideroe~,Basedcarbon beam medical accelerator facility. N "' . ,;j "' ::lEat the MARIA Workshop III: Accelerator Systems for Relat ic

Gough, R.A.

2013-01-01T23:59:59.000Z

129

A molecular beam epitaxy facility for in situ neutron scattering  

SciTech Connect (OSTI)

A molecular beam epitaxy (MBE) facility has been built to enable in situ neutron scattering measurements during growth of epitaxial layers. While retaining the full capabilities of a research MBE chamber, this facility has been optimized for polarized neutron reflectometry measurements. Optimization includes a compact lightweight portable design, a neutron window, controllable magnetic field, deposition across a large 76 mm diameter sample with exceptional flux uniformity, and sample temperatures continuously controllable from 38 to 1375 K. A load lock chamber allows for sample insertion, storage of up to 4 samples, and docking with other facilities. The design and performance of this chamber are described here.

Dura, J. A.; LaRock, J. [NIST Center for Neutron Research, 100 Bureau Dr. MS 6102, Gaithersburg, Maryland 20899 6102 (United States)

2009-07-15T23:59:59.000Z

130

Resolving EMI Issues To Optimize Accelerator Beam Diagnostic Performance  

SciTech Connect (OSTI)

If you have struggled to get the last bit of performance from a beam diagnostic only to find your dynamic range limited by external sources of electromagnetic interference (EMI) once the system is installed, then you will find this tutorial on electromagnetic compatibility and grounding useful. The tutorial will provide some simple, direct methods to analyze, understand and mitigate the impact of EMI on beam diagnostic systems. Several common and unique accelerator EMI sources will be characterized. The dependencies of source frequency and distance to the source on the optimal choice of grounding and shielding methods will be illustrated. The emphasis is on a stepwise process that leads to understanding and cost-effective resolution of EMI impacts on beam diagnostic systems.

Thuot, Michael [Los Alamos National Laboratory, LANSCE Division, Los Alamos, New Mexico (United States)

2004-11-10T23:59:59.000Z

131

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

essential understanding of accelerator physics to advanceof high- gradient, laser plasma particle accelerators.to conventional particle accelerators, plasmas can sustain

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

132

High brightness photocathode injector for BNL Accelerator Test Facility  

SciTech Connect (OSTI)

An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

Parsa, Z.; Young, L.

1990-01-01T23:59:59.000Z

133

Implementation of Accelerated Beam-Specific Matched-Filter-Based Optical Alignment  

SciTech Connect (OSTI)

Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real-time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process the image as fast as possible. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro FPGA hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.0 GHz AMD Opteron core.

Awwal, A S; Rice, K L; Taha, T M

2009-01-29T23:59:59.000Z

134

E-Print Network 3.0 - accelerator target facilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

135

E-Print Network 3.0 - accelerator facility target Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

136

Neutron measurements from beam-target reactions at the ELISE neutral beam test facility  

SciTech Connect (OSTI)

Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Nocente, M.; Gorini, G. [Dipartimento di Fisica G. Occhialini, Universit di Milano-Bicocca, Milano 20216 (Italy); Istituto di Fisica del Plasma P. Caldirola, Milano 20216 (Italy); Bonomo, F. [Consorzio RFX, Padova 35100 (Italy); Istituto Gas Ionizzati, CNR, Padova 35100 (Italy); Franzen, P.; Frschle, M. [Max-Planck-Institut fr Plasmaphysik, Garching 84518 (Germany); Grosso, G.; Tardocchi, M. [Istituto di Fisica del Plasma P. Caldirola, Milano 20216 (Italy); Grnauer, F. [Physics Consulting, Zorneding 85604 (Germany); Pasqualotto, R. [Consorzio RFX, Padova 35100 (Italy)

2014-11-15T23:59:59.000Z

137

Beam dynamics in accelerators for medical applications: from calculations to machine performance  

E-Print Network [OSTI]

Beam dynamics in accelerators for medical applications: from calculations to machine performance S, z', W, RF-phase) at each time-moment for each particle in the accelerating bunch use cylindrical, Novosibirsk, Russian Federation #12;Main results of calculations 6 ...transverse beam size during acceleration

138

Reaching New Heights in Accelerator Technology | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility (CEBAF) is a dedicated nuclear physics accelerator, Jefferson Lab staff members possess extensive knowledge and experience in...

139

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

SciTech Connect (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

140

Sending femtosecond pulses in circles: highly non-paraxial accelerating beams  

E-Print Network [OSTI]

Sending femtosecond pulses in circles: highly non-paraxial accelerating beams F. Courvoisier,* A Month X, XXXX; posted Month X, XXXX (Doc. ID XXXXX); published Month X, XXXX We use caustic beam shaping on 100 fs pulses to experimentally generate non-paraxial accelerating beams along a 60 degree circular

Boyer, Edmond

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams  

E-Print Network [OSTI]

Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams (Received 24 March 2010; published 14 October 2010) We investigate the use of energetic electron beams beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through

Umstadter, Donald

142

Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source  

SciTech Connect (OSTI)

High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

C.L. Ellison and J. Fuchs

2010-09-23T23:59:59.000Z

143

On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures  

SciTech Connect (OSTI)

This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

Ostrovsky, A.O. [Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)

1993-09-01T23:59:59.000Z

144

HiRadMat at CERN/SPS - A dedicated facility providing high intensity beam pulses to material samples  

E-Print Network [OSTI]

HiRadMat (High Radiation to Materials), constructed in 2011, is a facility at CERN designed to provide high?intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, high power beam targets, collimators) can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of up to 7.2 us, and with a maximum pulse energy of 3.4 MJ (3xE13 proton/pulse). In addition to protons, ion beams with energy of 440 GeV/charge and total pulse energy of 21 kJ can be provided. The beam parameters can be tuned to match the needs of each experiment. HiRadMat is not an irradiation facility where large doses on equipment can be accumulated. It is rather a test area designed to perform single pulse experiments to evaluate the effect of high?intensity pulsed beams on materials or accelerator component assemblies in a controlled environment. The fa? cility is designed for a maximum of 1E16 protons per year, dist...

Charitonidis, N; Efthymiopoulos, I

2014-01-01T23:59:59.000Z

145

Cryosorption Pumps for a Neutral Beam Injector Test Facility  

SciTech Connect (OSTI)

We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

Dremel, M.; Mack, A.; Day, C.; Jensen, H. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany)

2006-04-27T23:59:59.000Z

146

A MATLAB-based interface for the beam-transport system of an AMS facility  

Science Journals Connector (OSTI)

Abstract In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation.

J.M. Gmez-Guzmn; I. Gmez-Morilla; S.M. Enamorado-Bez; A.I. Moreno-Surez; A.R. Pinto-Gmez

2013-01-01T23:59:59.000Z

147

Positron acceleration by plasma wake fields driven by a hollow electron beam  

E-Print Network [OSTI]

A scheme of wake field generation for positron acceleration using hollow or donut shaped electron driver beams is studied. An annular shaped, electron free region forms around a hollow driver beam creating a favorable region (longitudinal field is accelerating and transverse field is focusing and radially linear) for positron acceleration. Accelerating gradients of the order of 10 GV/m are produced by a hollow electron beam driver with FACET like parameters. The peak accelerating field increases linearly with the total charge in the beam driver while the axial size of the favorable region ($\\sim$ one plasma wavelength) remains approximately fixed. The radial size drops with the total charge but remains large enough for the placement of a witness positron beam. We simulate an efficient acceleration of a 23 GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4\\% and very small emittance over a plasma length of 140 cm.

Jain, Neeraj; Palastro, J P

2014-01-01T23:59:59.000Z

148

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......produced in nuclear power plants and in accelerators is that there...high-energy accelerator is of solid...of magnets, vacuum pipes and components...of particle accelerators are: iron...content. Several nuclear processes contribute......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

149

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

150

Electron Beam Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

the 1989 Particle Accelerator Conference (IEEE, Piscataway,the 1993 Particle Accelerator Conference (IEEE, Piscataway,Diagnostics for Laser Plasma Accelerators K. Nakamura, 1 A.

Nakamura, Kei

2012-01-01T23:59:59.000Z

151

A review of high beam current RFQ accelerators and funnels  

SciTech Connect (OSTI)

The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H{sup {minus}} injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H{sup {minus}} ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers.

Schneider, J.D.

1998-12-01T23:59:59.000Z

152

E-Print Network 3.0 - accelerator beam transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

line to match... -power electromagnetic radiation and high- brightness electron beams, including laser acceleration of electrons and Free... transport lines to match the...

153

Creating a Well-focused Laser-accelerated Proton Beam as a Driver...  

Office of Science (SC) Website

Proton Beam as a Driver for Proton Fast Ignition Focusing of laser accelerated proton beams advances with a novel cone target design. Print Text Size: A A A Subscribe...

154

E-Print Network 3.0 - accelerated ion beams Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated ion beams Page: << < 1 2 3 4 5 > >> 1 Siberian Branch of Russian Academy of...

155

Biological shield design and analysis of KIPT accelerator-driven subcritical facility.  

SciTech Connect (OSTI)

Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

2009-12-01T23:59:59.000Z

156

Proceedings of the international workshop on hadron facility technology  

SciTech Connect (OSTI)

The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

Thiessen, H.A. (comp.)

1987-12-01T23:59:59.000Z

157

H-mode accelerating structures with PMQ focusing for low-beta ion beams  

SciTech Connect (OSTI)

We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis - are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

Kurennoy, Sergey S [Los Alamos National Laboratory; O' Hara, James F [Los Alamos National Laboratory; Olivas, Eric R [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

158

Useful Graphs and Charts - Ion Beams - Radiation Effects Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beams Available Beams Beam Change Times Measurements Useful Graphs Useful Graphs and Charts LET vs. Range in Si Graphs: 15 MeVu Beams 24.8 MeVu Beams 40 MeVu Beams...

159

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

160

Means and method for the focusing and acceleration of parallel beams of charged particles  

DOE Patents [OSTI]

A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

Maschke, Alfred W. (East Moriches, NY)

1983-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beam dynamics simulations and measurements at the Project X Test Facility  

SciTech Connect (OSTI)

Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

2011-03-01T23:59:59.000Z

162

Feasibility study of channeling acceleration experiment at the Fermilab ASTA facility  

E-Print Network [OSTI]

Crystal channeling technology has offered various opportunities in accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider in Energy Frontier. The major challenge of the channeling acceleration is that ultimate acceleration gradients might require high power driver at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon- based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper present beam-driven channeling acceleration concept with CNTs and discu...

Shin, Young-Min; Still, Dean A; Shiltsev, Vladimir

2015-01-01T23:59:59.000Z

163

Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility  

SciTech Connect (OSTI)

This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Tigelhoefer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department Of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

2012-02-15T23:59:59.000Z

164

A monolithic relativistic electron beam source based on a dielectric laser accelerator structure  

SciTech Connect (OSTI)

Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)

2012-12-21T23:59:59.000Z

165

A theory of two-beam acceleration of charged particles in a plasma waveguide  

SciTech Connect (OSTI)

The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

Ostrovsky, A.O. [Kharkov Inst. of Physics and Technology (Ukraine)

1993-11-01T23:59:59.000Z

166

Ground Broken for New Job-Creating Accelerator Research Facility...  

Office of Environmental Management (EM)

our nation in the areas of sustainable energy, a cleaner environment, economic security, health care and national defense. The accelerators of tomorrow have the potential to make...

167

Direct particle acceleration by two identical crossed radially polarized laser beams  

SciTech Connect (OSTI)

Electrons and {alpha} particles injected midway between two ultrahigh intensity crossed laser beams of radial polarization are shown to be accelerated in vacuum to several gigaelectron volts and to have average energy gradients in excess of 150 GeV/m. A unique model of the crossing beams is suggested, which maximizes the particle energy gain and minimizes the particle-beam diffraction.

Salamin, Yousef I. [Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah (United Arab Emirates)

2010-07-15T23:59:59.000Z

168

MEASUREMENT AND CONTROL OF THE BEAM ENERGY FOR THE SPIRAL2 ACCELERATOR  

E-Print Network [OSTI]

MEASUREMENT AND CONTROL OF THE BEAM ENERGY FOR THE SPIRAL2 ACCELERATOR W. Le Coz# , C, the system has to measure but also to control the beam energy. The control consists in ensuring that the beam energy is under a limit by taking account of the measurement uncertainty. The energy is measured

Boyer, Edmond

169

E-Print Network 3.0 - advanced accelerator concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... to the advance of the accelerator physics...

170

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

171

High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility  

Science Journals Connector (OSTI)

The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

Marija Cauchi; O. Aberle; R.?W. Assmann; A. Bertarelli; F. Carra; K. Cornelis; A. Dallocchio; D. Deboy; L. Lari; S. Redaelli; A. Rossi; B. Salvachua; P. Mollicone; N. Sammut

2014-02-24T23:59:59.000Z

172

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

173

Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES | Department  

Broader source: Energy.gov (indexed) [DOE]

420.2B, SAFETY OF ACCELERATOR FACILITIES 420.2B, SAFETY OF ACCELERATOR FACILITIES Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES This module will discuss the objectives and requirements associated with the Order and the contractor requirements document. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the Order at DOE Directives, Regulations, and Standards Portal Home Page or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - DOE O 420.1B Facility Safety More Documents & Publications Order Module--DOE O 420.1B, FACILITY SAFETY

174

Holifield Radioactive Ion Beam Facility A leading international facility with unique capabilities for research in nuclear structure  

E-Print Network [OSTI]

questions that drive the field of low-energy nuclear physics: · How do protons and neutrons make stable Directions Nuclear structure and reaction research at HRIBF provides insight into the nature of the force species are available as low-energy (~50 keV) beams. More than 60 post-accelerated beams, including 132 Sn

175

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2014 Report Cards FY 2013 Report Cards FY 2012 Report Cards Report Card Archives Laboratory...

176

OSCAR API v2.1 with Flexible Accelerator Control Facilities  

E-Print Network [OSTI]

OSCAR API v2.1 with Flexible Accelerator Control Facilities Keiji Kimura, Waseda University 13. The execution timing of them can be notified by FlagVariables Overview of OSCAR API v2.0 (before 2 ! Accelerators ! Based on the subset of OpenMP ! Very popular parallel processing API ! Shared memory programming

Kasahara, Hironori

177

PHYSICAL REVIEW SPECIAL TOPICS -ACCELERATORS AND BEAMS, VOLUME 2, 114001 (1999) Higher-order effects in polarized proton dynamics  

E-Print Network [OSTI]

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 2, 114001 (1999) Higher accelerated to energies higher than 25 GeV. During the acceleration process, the beam polarization is quite undisturbed, when the accelerator is well adjusted, except at first-order depolarizing spin orbit resonances

Hoffstaetter, Georg

178

Programmable Beam Spatial Shaping System for the National Ignition Facility  

SciTech Connect (OSTI)

A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

2011-01-21T23:59:59.000Z

179

Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU  

SciTech Connect (OSTI)

The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam H{sub {alpha}} Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration - both for the wavelength and the emission - is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the H{sub {alpha}} MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, PO Box 1533, 85740 Garching (Germany)

2011-09-26T23:59:59.000Z

180

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

(Quality and Productivity of R&D) A Construction and Operation of Research Facilities A S&T ProjectProgram Management A- Contractor LeadershipStewardship A- Environment Safety...

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship A- Environment Safety...

182

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment, Safety...

183

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment, Safety...

184

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B Contractor LeadershipStewardship B+ Environment, Safety...

185

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment Safety...

186

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......the removed radioactive waste shall be treated and processed for either long-term storage or disposal. delayed...facility itself becomes a long-term storage that shall be...dismantling resources, waste storage space or development......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

187

E-Print Network 3.0 - accelerator beam test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator beam test Page: << < 1 2 3 4 5 > >> 1 RFQ 19 Ring Test The final RFQ electrodes...

188

E-Print Network 3.0 - accelerator beam dumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RECOVERY LINACS G.H. Hoffstaetter Summary: (ERLs) accelerate high-current particle beams to high energy in a linac. These are then used in x... of particles. Only with such...

189

Acquisition of fast neutron spectra upon possible disruptions of the accelerator beam  

Science Journals Connector (OSTI)

The technique for time-of-flight measurements of fast neutron spectra upon possible disruptions of the accelerator beam is presented. The measurement procedure is corrected, the algorithm of functioning of the...

V. G. Demenkov; A. A. Lychagin; P. V. Demenkov

2009-03-01T23:59:59.000Z

190

Accelerator Facility Safety Implementation Guide for DOE Order (0) 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The revision will address implementation of roles and responsibilities, improve operational efficiency using operating experience, and clarify the use of program requirements such as the Unreviewed Safety Issue and Accelerator Readiness Review.

2013-07-17T23:59:59.000Z

191

Simulation prediction and experiment setup of vacuum laser acceleration at Brookhaven National Lab-Accelerator Test Facility  

Science Journals Connector (OSTI)

This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.

L. Shao; D. Cline; X. Ding; Y.K. Ho; Q. Kong; J.J. Xu; I. Pogorelsky; V. Yakimenko; K. Kusche

2013-01-01T23:59:59.000Z

192

Efficient laser acceleration of proton beams for intense sources of low energy neutrinos  

SciTech Connect (OSTI)

The existence of highly efficient ion acceleration regimes in collective laser-plasma interactions opens up the possibility to develop high-energy-physics (HEP) facilities in conjunction with projects for inertial confined nuclear fusion (ICF) and neutron spallation sources.

Pegoraro, F. [Department of Physics, University of Pisa, Pisa (Italy); CNISM, Pisa (Italy); Bulanov, S. V.; Esirkepov, T. Zh.; Tajima, T. [Advanced Photon Research Centre, JAEA, Kizu, Kyoto (Japan); Migliozzi, P. [INFN, Sez. di Napoli, Naples (Italy); Terranova, F. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy)

2006-04-07T23:59:59.000Z

193

Noninterceptive method to measure longitudinal Twiss parameters of a beam in a hadron linear accelerator using beam position monitors  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A new method of measuring of the rms longitudinal Twiss parameters of a beam in linear accelerators is presented. It is based on using sum signals from beam position monitors sensitive to the longitudinal charge distribution in the bunch. The applicability of the method is demonstrated on the superconducting section of the Oak Ridge Spallation Neutron Source linear accelerator. The results are compared to a direct measurement of the bunch longitudinal profiles using an interceptive bunch shape monitor in the linac warm section of the same accelerator. Limitations of the method are discussed. The method is fast and simple, and can be used to obtain the initial parameters for the longitudinal matching in linear accelerators where interceptive diagnostics are not desirable.

Shishlo, A.; Aleksandrov, A.

2013-06-01T23:59:59.000Z

194

Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion  

SciTech Connect (OSTI)

Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru [Department of Electrical Engineering, Nagaoka University of Technology, 1603 Kamitomioka, Nagaoka 940-2188 (Japan); Kashine, Kenji [Department of Electrical and Electronic Engineering, Kagoshima National College of Technology, 1460-1 Shinko, Hayato-cho, Aira-gun, Kagoshima 899-5193 (Japan); Jiang Weihua; Yatsui, Kiyoshi [Extreme Energy Density Research Institute, Nagaoka University of Technology, 1603 Kamitomioka, Nagaoka 940-2188 (Japan)

2004-02-04T23:59:59.000Z

195

Testing General Relativity With Laser Accelerated Electron Beams  

E-Print Network [OSTI]

Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

L. . Gergely; T. Harko

2012-07-16T23:59:59.000Z

196

Testing general relativity with laser accelerated electron beams  

SciTech Connect (OSTI)

Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

Gergely, L. A.; Harko, T. [Department of Theoretical Physics, University of Szeged, Szeged 6720, Tisza L. krt. 84, Hungary and Department of Experimental Physics, University of Szeged, 6720 Szeged, Dom ter 9 (Hungary); Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong)

2012-07-09T23:59:59.000Z

197

Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility  

SciTech Connect (OSTI)

We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

Parsa, Z. [Brookhaven National Lab., Upton, NY (United States); Ko, S.K. [Ulsan Univ. (Korea, Republic of)

1995-10-01T23:59:59.000Z

198

Supra-bubble regime for laser acceleration of cold electron beams in tenuous plasma  

E-Print Network [OSTI]

Supra-bubble regime for laser acceleration of cold electron beams in tenuous plasma V. I. Geyko,1 I 2010 Relativistic electrons can be accelerated by an ultraintense laser pulse in the "supra-bubble" regime, that is, in the blow-out regime ahead of the plasma bubble as opposed to the conventional method

199

Hohlraum Symmetry Experiments with Multiple Beam Cones on the Omega Laser Facility  

SciTech Connect (OSTI)

Symmetry experiments have been performed on the Omega laser facility using cylindrical hohlraum targets with as many as 40thinspthinspbeams arranged into multiple beam cones. These experiments constitute a first step in the development of {open_quotes}beam phasing{close_quotes} in which beams are arranged into multiple beam cones, forming multiple rings of beam spots on the inner surface of a cylindrical hohlraum, and demonstrate the ability to model hohlraums incorporating multiple beam cones and to tune the time-integrated capsule flux asymmetry by adjustment of the beam pointing. {copyright} {ital 1998} {ital The American Physical Society}

Murphy, T.J.; Wallace, J.M.; Delamater, N.D.; Barnes, C.W.; Gobby, P.; Hauer, A.A.; Lindman, E.; Magelssen, G.; Moore, J.B.; Oertel, J.A.; Watt, R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Landen, O.L.; Amendt, P.; Cable, M.; Decker, C.; Hammel, B.A.; Koch, J.A.; Suter, L.J.; Turner, R.E.; Wallace, R.J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Marshall, F.J.; Bradley, D.; Craxton, R.S.; Keck, R.; Knauer, J.P.; Kremens, R.; Schnittman, J.D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627 (United States)

1998-07-01T23:59:59.000Z

200

Use of the LEDA Facility as an ADS High-Power Accelerator Test Bed  

SciTech Connect (OSTI)

The Low-Energy Demonstration Accelerator (LEDA) was built to generate high-current proton beams. Its successful full-power operation and testing in 1999-2001 confirmed the feasibility of a high-power linear accelerator (linac) front end, the most technically challenging portion of such a machine. The 6.7-MeV accelerator operates reliably at 95-mA CW beam current with few interruptions orjaults, and qualiJes as one of the most powerful accelerators in the world. LEDA is now available to address the needs of other programs. LEDA can be upgraded in a staged fashion to allow for full-power accelerator demonstrations. The proposed post-h!FQ accelerator structures are 350-MHz superconducting spoke cavities developed for the AAA /APT program. The superconducting portion of the accelerator is designed for a IOO-mA proton beam current. Superconducting cavities were chosen because of the signijkant thermal issues with room-temperature structures, the larger superconducting cavity apertures, and the lower operating costs ('because of improved electrical efficiency) of a superconducting accelerator. Since high reliability is a major issue for an ADS system, the superconducting design architecture alIows operation through faults due to the failure of single magnets or superconducting cavities. The presently installed power capacity of 13 MVA of input ACpower is capable of supporting a 40-MeVproton beam at 100 mA. (The input power is easily expandable to 25 MVA, allowing up to 100-MeV operation). Operation at 40-MeV would provide a complete demonstration of all of the critical accelerator sub-systems ofa full-power ADS system.

Garnett, R. W. (Robert W.); Sheffield, R. L. (Richard L.)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Monte Carlo simulations for the shielding of the future high-intensity accelerator facility fair at GSI  

Science Journals Connector (OSTI)

......the universal linear accelerator, UNILAC, the heavy-ion...expands on the present accelerator system at the GSI...beams are produced in nuclear reactions induced by...PROTON AND HEAVY-ION ACCELERATOR During the acceleration...certain flight path in the vacuum. The wall thickness......

T. Radon; F. Gutermuth; G. Fehrenbacher

2005-12-20T23:59:59.000Z

202

The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13  

Broader source: Energy.gov (indexed) [DOE]

12 GeV CEBAF Upgrade 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13 September 2011 Department of Energy Washington, DC 20585 September 30, 2011 MEMORANDUM FOR THE DEPUTY DIRECTOR FOR SCIENCE PROGRAMS, OFFICE OF SCIENCE DIRECTOR, OFFICE OF RISK MANAGEMENT AND FINANCIAL POLICY, OFFICE OF THE CHIEF FINANCIAL OFFICER FROM: David Sedillo, Director NNSA & Science Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility" Audit Report Number: OAS-RA-L-11-13 BACKGROUND In September 2008, the Department of Energy's (Department) Office of Science approved a construction project to double the electron beam energy of the Continuous Electron Beam

203

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

204

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network [OSTI]

as simultaneous measuring of conductor tension, sag, and environmental conditions (e.g., wind, solar, ambient environmental conditions. The tests provide both the manufacturer and utilities with conductor performance data under accelerated field-like operating conditions. These tests short-circuit the need for utilities

205

THE CRYOPLANT FOR THE ITER NEUTRAL BEAM TEST FACILITY TO BE BUILT AT RFX IN PADOVA, ITALY  

SciTech Connect (OSTI)

The Neutral Beam Test Facility (NBTF), planned to be constructed in Padua (Italy), will constitute the prototype of the two Neutral Beam Injectors (NBI), which will be installed in the ITER plant (Cadarache-France). The NBTF is composed of a 1 MV accelerator that can produce a 40 A deuteron pulsed neutral beam particles. The necessary vacuum needed in the accelerator is achieved by two large cryopumps, designed by FZK-Karlsruhe, with radiation shields cooled between 65 K and 90 K and with cryopanels cooled by 4 bar supercritical helium (ScHe) between 4.5 K and 6.5 K. A new cryoplant facility will be installed with two large helium refrigerators: a Shield Refrigerator (SR), whose cooling capacity is up to 30 kW between 65 K and 90 K, and a helium Main Refrigerator (MR), whose equivalent cooling capacity is up to 800 W at 4.5 K. The cooling of the cryopanels is obtained with two (ScHe) 30 g/s pumps (one redundant), working in a closed cycle around 4 bar producing a pressure head of 100 mbar. Two heat exchangers are immersed in a buffer dewar connected to the MR. The MR and SR different operation modes are described in the paper, as well as the new cryoplant installation.

Pengo, R. [INFN-LNL, Viale dell'Universita 2, I-35020 Legnaro, Padova (Italy); Fellin, F. [Consorzio RFX, 35127 Camin, Padova (Italy); Sonato, P. [Consorzio RFX, 35127 Camin, Padova (Italy); Dipartimento d'Ingegneria Elettrica dell'Universita' di Padova, 35100 Padova (Italy)

2010-04-09T23:59:59.000Z

206

Finding of No Significant Impact Improvements at the Thomas Jefferson National Accelerator Facility Newsport News, Virginia  

Broader source: Energy.gov (indexed) [DOE]

IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY NEWPORT NEWS, VIRGINIA AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1384) for proposed Improvements at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Newport News, Virginia. Based on the results of the impacts analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No

207

Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University  

E-Print Network [OSTI]

At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

2014-01-01T23:59:59.000Z

208

H-mode accelerating structures with permanent-magnet quadrupole beam focusing  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We have developed high-efficiency normal-conducting rf accelerating structures by combining H -mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H -mode (IH-PMQ) structures is 1020 times higher than that of a conventional drift-tube linac, while the transverse size is 45 times smaller. Results of the combined 3D modelingelectromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysisfor an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H -mode structures with PMQ focusing for higher beam velocities are also presented. H -PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.

Kurennoy, S. S.; Rybarcyk, L. J.; OHara, J. F.; Olivas, E. R.; Wangler, T. P.

2012-09-01T23:59:59.000Z

209

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

210

Progress on shock accelerated ion beam production on ATF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at hole boring velocity v(2Ic) 12 * Stationary ions in advance of the shock get accelerated by the same space charge field effectively bouncing off the shock front.* *...

211

Construction and Beam Commissioning of J-PARC Hadron Experimental Facility  

SciTech Connect (OSTI)

J-PARC Hadron Experimental Facility is designed as a multi-purpose experimental facility for particle and nuclear physics experiments using high-intensity secondary particles (Kaons, pions, and so on) produced by 50 GeV-15 muA (750 kW) primary proton beams. Currently, three secondary beam lines (K 1.8 BR, K 1.8, and KL) have been constructed. The first beam extraction from 50 GeV proton synchrotron was on January 27{sup th}, 2009, and the beam commissioning of the primary and secondary beam lines are on going. The present article reports construction status and beam commissioning of Hadron Experimental Facility in detail.

Sato, Yoshinori; Agari, Keizo; Hirose, Erina; Ieiri, Masaharu; Katoh, Yohji; Kiyomichi, Akio; Minakawa, Michifumi; Muto, Ryotaro; Naruki, Megumi; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Takasaki, Minoru; Tanaka, Kazuhiro; Toyoda, Akihisa; Yamanoi, Yutaka; Watanabe, Hiroaki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Noumi, Hiroyuki [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan)

2010-05-12T23:59:59.000Z

212

The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies  

SciTech Connect (OSTI)

The NASA Lunar Institute's Colorado Center for Lunar Dust and Atmospheric Studies has recently completed the construction of a new experimental facility to study hypervelocity dust impacts. The installation includes a 3 MV Pelletron, accelerating small particles in the size range of 0.1 to few microns to velocities in the range of 1 to 100 km/s. Here we report the capabilities of our facility, and the results of our first experiments.

Horanyi, M.; Colette, A.; Drake, K.; Gruen, E.; Kempf, S.; Munsat, T.; Robertson, S.; Shu, A.; Sternovsky, Z.; Wang, X. [NASA Lunar Science Institute Colorado Center for Lunar Dust and Atmospheric Studies University of Colorado, Boulder, CO, 80309 (United States)

2011-11-29T23:59:59.000Z

213

Beam dynamics study of a 30?MeV electron linear accelerator to drive a neutron source  

SciTech Connect (OSTI)

An experimental neutron facility based on 32?MeV/18.47?kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E?=?30?MeV, P?=?18?kW, dE/E?accelerating columns. A disk-loaded, on-axis-coupled, 2?/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32?MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5??10{sup 11}?n/cm{sup 2}/s/mA. Future development will be the real design of a 30?MeV electron linac based on S band traveling wave.

Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik, E-mail: hskang@postech.ac.kr [Pohang Accelerator Laboratory, San31, Hyoja-dong, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

2014-02-14T23:59:59.000Z

214

A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities  

SciTech Connect (OSTI)

Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

Barnett, Amanda [University of Tennessee, Knoxville (UTK); Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Hayward, J P [University of Tennessee, Knoxville (UTK); Hayward, Jason P [ORNL; Menhard, Kocsis [European Synchrotron Radiation Facility (ESRF); Sedov, Vladislav N [ORNL; Funk, Loren L [ORNL

2013-01-01T23:59:59.000Z

215

Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators  

E-Print Network [OSTI]

In the beam pipe of high-energy proton or positron accelerators an electron cloud can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential magnetron effect has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric wake field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

2009-01-01T23:59:59.000Z

216

CEBAF accelerator achievements  

SciTech Connect (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

217

Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia  

Broader source: Energy.gov (indexed) [DOE]

84 84 Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia June 2002 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1384 i TABLE OF CONTENTS Executive Summary.....................................................................................................................1 1. INTRODUCTION..................................................................................................................... 6 1.1 PREVIOUS ACTIONS ............................................................................................................................................. 6 1.2 SCOPE OF THIS PROPOSED ACTION..............................................................................................................

218

DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*  

E-Print Network [OSTI]

954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

McDonald, Kirk

219

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

220

Accelerator Update | Archive | 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Accelerator Update Archive 2 Accelerator Update Archive April 27, 2012 - April 30, 2012 NuMI reported receiving 7.67E18 protons on target for the period from 4/23/12 to 4/30/12. The Booster developed an aperture restriction that required lower beam intensity Main Injector personnel completed their last study The shutdown begins Linac, MTA, and Booster will continue using beam for one or two more weeks Linac will supply the Neutron Therapy Facility beam for most of the shutdown April 25, 2012 - April 27, 2012 Booster beam stop problem repaired Beam to all experiments will shut off at midnight on Monday morning, 4/30/12. Main Injector will continue to take beam until 6 AM on Monday morning. Linac, the Neutron Therapy Facility, MTA, and Booster will continue using beam for one or two more weeks. The Fermi Accelerator Complex will be in shutdown for approximately one year

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications Final Report  

SciTech Connect (OSTI)

Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

R. Lawrence Ives; Michael Read; Patrick Ferguson; David Marsden

2011-11-28T23:59:59.000Z

222

Novel Muon Beam Facilities for Project X at Fermilab  

SciTech Connect (OSTI)

Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

2012-05-01T23:59:59.000Z

223

Progress towards a 200 MW electron beam accelerator for the RDHWT/Mariah II Program.  

SciTech Connect (OSTI)

The Radiatively Driven Hypersonic Wind Tunnel (RDHWT) program requires an unprecedented 2-3 MeV electron beam energy source at an average beam power of approximately 200MW. This system injects energy downstream of a conventional supersonic air nozzle to minimize plenum temperature requirements for duplicating flight conditions above Mach 8 for long run-times. Direct-current electron accelerator technology is being developed to meet the objectives of a radiatively driven Mach 12 wind tunnel with a free stream dynamic pressure q=2000 psf. Due to the nature of research and industrial applications, there has never been a requirement for a single accelerator module with an output power exceeding approximately 500 kW. Although a 200MW module is a two-order of magnitude extrapolation from demonstrated power levels, the scaling of accelerator components to this level appears feasible. Accelerator system concepts are rapidly maturing and a clear technology development path has been established. Additionally, energy addition experiments have been conducted up to 800 kW into a supersonic airflow. This paper will discuss progress in the development of electron beam accelerator technology as an energy addition source for the RDHWT program and results of electron beam energy addition experiments conducted at Sandia National Laboratories.

Lockner, Thomas Ramsbeck; Reed, Kim Warren; Pena, Gary Edward; Schneider, Larry X.; Lipinski, Ronald J.; Glover, Steven Frank

2004-06-01T23:59:59.000Z

224

Active manipulation of the spatial energy distribution of laser-accelerated proton beams  

Science Journals Connector (OSTI)

The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>1019W?cm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<1013W?cm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile can be actively manipulated. In particular, results obtained with an annular intensity distribution at the focus of the low intensity beam are presented, showing smooth proton beams with a sharp circular boundary at all energies, which represents a significant improvement in the beam quality compared to irradiation with the picosecond beam alone.

D. C. Carroll; P. McKenna; O. Lundh; F. Lindau; C.-G. Wahlstrm; S. Bandyopadhyay; D. Pepler; D. Neely; S. Kar; P. T. Simpson; K. Markey; M. Zepf; C. Bellei; R. G. Evans; R. Redaelli; D. Batani; M. H. Xu; Y. T. Li

2007-12-12T23:59:59.000Z

225

2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe  

SciTech Connect (OSTI)

A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

Chen, Y. H.; Yang, X. Y.; Lin, C., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn [State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China)

2014-11-15T23:59:59.000Z

226

Status and plans for a SRF accelerator test faciliy at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. Expansion plans of the facility are underway that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. In addition to testing accelerator components, this facility will be used to test RF power equipment, instrumentation, LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J; Carlson, K; Chase, B; Church, M; Harms, E; Klebaner, A; Kucera, M; Lackey, S; Martinez, A; Nagaitsev, S; Nobrega, L; Piot, P; Reid, J; Wendt, M; Wesseln, S

2012-01-01T23:59:59.000Z

227

Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators  

SciTech Connect (OSTI)

The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor.

Nitschke, J.M. (ed.)

1984-04-01T23:59:59.000Z

228

Neutron Radiography Facilities Using Neutron Beams from Nuclear Reactors  

Science Journals Connector (OSTI)

The paper represents diagrams, descriptions and main technical characteristics of a number of Soviet neutron radiography facilities. The said facilieties for the ... inspection of the objects to be studied utiliz...

E. R. Kartashev

1983-01-01T23:59:59.000Z

229

Target Material Irradiation Studies for High-Intensity Accelerator Beams , H. Ludewig1  

E-Print Network [OSTI]

, an intensive search has been under way for both "smart" target designs and target materials that exhibit and "smart" materials have recently become available to serve the needs of special industries and someTarget Material Irradiation Studies for High-Intensity Accelerator Beams N. Simos1* , H. Kirk1 , H

McDonald, Kirk

230

Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center  

SciTech Connect (OSTI)

A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

2012-07-01T23:59:59.000Z

231

Beam quality simulation of the Boeing photoinjector accelerator for the MCTD project  

Science Journals Connector (OSTI)

We present a performance study of the photoinjector accelerator installed at Boeing Corp., Seattle, for the Modular Component Technology Development (MCTD) program. This 5 MeV injector operates at 433 \\{MHz\\} and is designed to produce a normalized emittance less than 100? mm mrad. This study was performed using the PARMELA simulation code. We study parametrically the dependence of the beam emittance on the magnetic fields produced by beam-guiding coils and by the gap coil located immediately after the first injector cavity. We also study the effect of phasing between cavities and the bunched electron beam. In addition to considering the parameters that determine the electron beam environment, we consider the space-charge effect on the bunched beam at higher charge.

Harunori Takeda; Keith Davis; Lance Delo

1991-01-01T23:59:59.000Z

232

Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration  

SciTech Connect (OSTI)

We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90 Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu; Yu, Lu-Le [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sheng, Zheng-Ming, E-mail: zmsheng@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, Jie [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2014-01-06T23:59:59.000Z

233

Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

2009-06-09T23:59:59.000Z

234

Radioactive nuclear beam facilities based on projectile fragmentation  

Science Journals Connector (OSTI)

...products at low energies (Kolata et al...range of kinetic energies. A new generation...beams has, or is planning to implement, a...Coulomb barrier energies have been used to...elements acting on the distribution of ions. Almost...achromatic devices. Electric fields, although...

1998-01-01T23:59:59.000Z

235

Summary of recent experiments on focusing of target-normal-sheath-accelerated proton beam with a stack of conducting foils  

SciTech Connect (OSTI)

We present a summary of recent experiments on focusing of laser target-normal-sheath-accelerated (TNSA) proton beam with a stack of thin conducting foils. The experiments were performed using the Phelix laser (GSI-Darmstadt) and the Titan laser, Lawrence Livermore National Laboratory. The phenomena consistent with self-collimation (or weak self-focusing) of TNSA protons were experimentally observed for the first time at the Phelix laser user facility, in a specially engineered structure ('lens') consisting of a stack of 300 thin aluminum foils separated by 50??m vacuum gaps. Follow up experiments using the Titan laser obtained results consistent with the collimation/focusing observed in the initial experiments using the Phelix. The Titan experiments employed improved, 25??m- and 50??m-gap targets and the new fine mesh diagnostic. All the experiments were carried out in a passive environment, i.e., no external fields were applied, and no neutralization plasma or injection of secondary charged particles was imposed. A plausible interpretation of the observed phenomena is that the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the conducting foils inhibits radial expansion of the beam.

Ni, P. A. [Luxim Corporation, Sunnyvale, California 94024 (United States) [Luxim Corporation, Sunnyvale, California 94024 (United States); Lawrence Berkeley National Laboratory, California 94720 (United States); Alexander, N. [General Atomics, San Diego, California 92121 (United States)] [General Atomics, San Diego, California 92121 (United States); Barnard, J. J.; Lund, S. M. [Lawrence Livermore National Laboratory, California 94550 (United States)] [Lawrence Livermore National Laboratory, California 94550 (United States)

2014-05-15T23:59:59.000Z

236

Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF)  

Broader source: Energy.gov [DOE]

Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) By: Integrated NPH Team: David Luke, Lead, TJSO Rusty Sprouse, JSA Michael A. Epps, TJSO Richard Korynta, TJSO

237

Implementation of DOE NPH Requirements at the Thomas Jefferson National Accelerator Facility (TJNAF), a Non-Nuclear DOE Lab  

Broader source: Energy.gov [DOE]

Implementation of DOE NPH Requirements at the Thomas Jefferson National Accelerator Facility (TJNAF), a Non-Nuclear DOE Lab David Luke, DOE, Thomas Jefferson Site Office Stephen McDuffie, DOE, Office of the Chief of Nuclear Safety

238

Characterization of Dosimetry of the BMRR Horizontal Thimble Tubes and Broad Beam Facility.  

SciTech Connect (OSTI)

The Brookhaven Medical Research Reactor was a 5 mega-watt, light-water cooled and heavy-graphite moderated research facility. It has two shutter-equipped treatment rooms, three horizontally extended thimble tubes, and an ex-core broad beam facility. The three experimental thimbles, or activation ports, external to the reactor tank were designed for several uses, including the investigations on diagnostic and therapeutic methods using radioactive isotopes of very short half-life, the analysis of radiation exposure on tissue-equivalent materials using a collimated neutron beam, and the evaluation of dose effects on biological cells to improve medical treatment. At the broad beam facility where the distribution of thermal neutrons was essential uniform, a wide variety of mammalian whole-body exposures were studied using animals such as burros or mice. Also studied at the broad beam were whole-body phantom experiments, involving the use of a neutron or photon beam streaming through a screen to obtain the flux spectrum suitable for dose analysis on the sugar-urea-water mixture, a tissue-equivalent material. Calculations of the flux and the dose at beam ports based on Monte Carlo particle-transport code were performed, and measurements conducted at the same tally locations were made using bare or cadmium-covered gold foils. Analytical results, which show good agreement with measurement data, are presented in the paper.

Hu,J.P.; Reciniello, R.N.; Holden, N.E.

2008-05-05T23:59:59.000Z

239

Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility  

SciTech Connect (OSTI)

In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M{ampersand}O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project.

Buckner, M.; Cappiello, M. [Westinghouse Savannah River Co., Aiken, SC (United States); Pitcher, E. [Los Alamos National Laboratory, Los Alamos, NM (United States); O`Brien, H. [O`Brien and Associates, Los Alamos, NM (United States)

1998-08-01T23:59:59.000Z

240

Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility  

E-Print Network [OSTI]

In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...

Leitgab, M

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism  

SciTech Connect (OSTI)

An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.

Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2013-01-28T23:59:59.000Z

242

INNOVATIVE ACCELERATOR BASED NEUTRON SOURCE B. F. Bayanov1  

E-Print Network [OSTI]

accelerator-based facility had just started its operation at Budker Institute of Nuclear Physics, Novosibirsk, Russia. This facility is based on compact vacuum insulation tandem accelerator with proton current up.5 MeV proton beam is formed by electrostatic vacuum insulation tandem accelerator (VITA). Creation

Taskaev, Sergey Yur'evich

243

Design and construction of an optimized neutron beam shaping assembly for Boron Neutron Capture Therapy at the Tandar accelerator  

SciTech Connect (OSTI)

In this work we present an optimized neutron beam shaping assembly for epithermal Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) and discuss the simulations leading to its design.

Burlon, A. [Universidad de Gral San Martin (Argentina); Comision Nacional de Energia Atomica, (Argentina); Fundacion Sauberan (Argentina); Kreiner, A. J. [Universidad de Gral San Martin (Argentina); Comision Nacional de Energia Atomica (Argentina); CONICET (Argentina); Valda, A. A.; Somacal, H. [Universidad de Gral San Martin (Argentina); Minsky, D. M. [Comision Nacional de Energia Atomica (Argentina); Universidad de Gral San Martin (Argentina)

2007-02-12T23:59:59.000Z

244

Accelerator development for heavy ion fusion  

SciTech Connect (OSTI)

Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition.

Talbert, W.L. Jr.; Sawyer, G.A.

1980-01-01T23:59:59.000Z

245

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect (OSTI)

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

246

Recent Advances in Plasma Acceleration  

SciTech Connect (OSTI)

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

Hogan, Mark

2007-03-19T23:59:59.000Z

247

THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT  

SciTech Connect (OSTI)

After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must be upgraded to 0.2 s to reach the required repetition rate of 2.5 Hz. The required upgrade of the AGS power supply, the rf system, and other rate dependent accelerator issues is discussed. The design of the target/horn configuration is shown. The material selected for the proton target is a Carbon-Carbon composite. It is a 3-dimensional woven material that exhibits extremely low thermal expansion for temperatures up to 1000 C; for higher temperatures it responds like graphite. This property is important for greatly reducing the thermo-elastic stresses induced by the beam, thereby extending the life of the target. The target consists of a 80 cm long cylindrical rod of 12 mm diameter. The target intercepts a 2 mm rms proton beam of 10{sup 14} protons/pulse. The total energy deposited as heat in the target is 7.3 kJ with peak temperature rise of about 280 C. Heat will be removed from the target through forced convection of helium gas across its outside surface. The extracted proton beam uses an existing beamline at the AGS, but is then directed to a target station atop a constructed earthen hill. The target is followed by a downward slopping pion decay channel. This vertical arrangement keeps the target and decay pipe well above the water table in this area. The 11.3 degrees slope aims the neutrino beam at a water Cerenkov neutrino detector to be located in the Homestake mine at Lead, South Dakota. A 3-dimensional view of the beam transport line, target station, and decay tunnel is provided.

WENG,W.T.; DIWAN,M.; RAPARIA,D.

2004-10-08T23:59:59.000Z

248

A multi-beam, multi-terawatt Ti:sapphire laser system for laser wake-field acceleration studies  

E-Print Network [OSTI]

­plasma interaction studies, such as development of laser wake-field accelerators [1-4], X-ray lasers, and laserA multi-beam, multi-terawatt Ti:sapphire laser system for laser wake-field acceleration studies 71R0259, 1 Cyclotron Rd., Berkeley, CA 94720, USA, e-mail: ctoth@lbl.gov Abstract. The Lasers

Geddes, Cameron Guy Robinson

249

ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS  

SciTech Connect (OSTI)

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

2010-05-12T23:59:59.000Z

250

Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams  

SciTech Connect (OSTI)

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, Roark; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

251

European Particle Accelerator Conference -Rome, Italy -June 7-12, 1988 DEVELOPMENT OFA HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT  

E-Print Network [OSTI]

BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY* K. Batchelor, HDonald Princeton University At innBNL--41767 DE89 002179 Abstract An electron gun utilizing aradio frequency on the design of (he electron gun which will provide r.f. bunches of upto 101 electrons synchronized

McDonald, Kirk

252

Neutron source in the MCNPX shielding calculating for electron accelerator driven facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

Zhong, Z.; Gohar, Y. [Nuclear Engineering Div., Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

253

Development of Advanced Beam Halo Diagnostics at the Jefferson Lab Free-Electron-Laser Facility  

SciTech Connect (OSTI)

High average current and high brightness electron beams are needed for many applications. At the Jefferson Lab FEL facility, the search for dark matter with the FEL laser beam has produced some interesting results, and a second very promising experiment called ?DarkLight?, using the JLab Energy-recovery-linac (ERL) machine has been put forward. Although the required beam current has been achieved on this machine, one key challenge is the management of beam halo. At the University of Md. (UMD) we have demonstrated a high dynamic range halo measurement method using a digital micro-mirror array device (DMD). A similar system has been established at the JLab FEL facility as a joint effort by UMD and JLab to measure the beam halo on the high current ERL machine. Preliminary experiments to characterize the halo were performed on the new UV FEL. In this paper, the limitations of the present system will be analyzed and a discussion of other approaches (such as an optimized coronagraph) for further extending the dynamic range will be presented. We will also discuss the possibility of performing both longitudinal and transverse (3D) halo measurements together on a single system.

Shukui Zhang, Stephen Benson, Dave Douglas, Frederick Wilson, Hao Zhang, Anatoly Shkvarunets, Ralph Fiorito

2011-03-01T23:59:59.000Z

254

Radiobiologic Significance of Response of Intratumor Quiescent Cells In Vivo to Accelerated Carbon Ion Beams Compared With {gamma}-Rays and Reactor Neutron Beams  

SciTech Connect (OSTI)

Purpose: To clarify the radiosensitivity of intratumor quiescent cells in vivo to accelerated carbon ion beams and reactor neutron beams. Methods and Materials: Squamous cell carcinoma VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine to label all intratumor proliferating cells. Next, they received accelerated carbon ion or {gamma}-ray high-dose-rate (HDR) or reduced-dose-rate (RDR) irradiation. Other tumor-bearing mice received reactor thermal or epithermal neutrons with RDR irradiation. Immediately after HDR and RDR irradiation or 12 h after HDR irradiation, the response of quiescent cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for 5-bromo-2'-deoxyuridine. The response of the total (proliferating plus quiescent) tumor cells was determined from the 5-bromo-2'-deoxyuridine nontreated tumors. Results: The difference in radiosensitivity between the total and quiescent cell populations after {gamma}-ray irradiation was markedly reduced with reactor neutron beams or accelerated carbon ion beams, especially with a greater linear energy transfer (LET) value. Clearer repair in quiescent cells than in total cells through delayed assay or a decrease in the dose rate with {gamma}-ray irradiation was efficiently inhibited with carbon ion beams, especially with a greater LET. With RDR irradiation, the radiosensitivity to accelerated carbon ion beams with a greater LET was almost similar to that to reactor thermal and epithermal neutron beams. Conclusion: In terms of tumor cell-killing effect as a whole, including quiescent cells, accelerated carbon ion beams, especially with greater LET values, are very useful for suppressing the dependency on the heterogeneity within solid tumors, as well as depositing the radiation dose precisely.

Masunaga, Shin-ichiro [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori, Osaka (Japan)], E-mail: smasuna@rri.kyoto-u.ac.jp; Ando, Koichi; Uzawa, Akiko; Hirayama, Ryoichi; Furusawa, Yoshiya; Koike, Sachiko [Heavy-Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Sakurai, Yoshinori [Department of Physics, Faculty of Medicine, Sapporo Medical University, Sapporo (Japan); Nagata, Kenji; Suzuki, Minoru; Kashino, Genro [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori, Osaka (Japan); Kinashi, Yuko [Department of Radiation Safety and Control, Research Reactor Institute, Kyoto University, Kumatori, Osaka (Japan); Tanaka, Hiroki; Maruhashi, Akira [Department of Radiation Medical Physics, Research Reactor Institute, Kyoto University, Kumatori, Osaka (Japan); Ono, Koji [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori, Osaka (Japan)

2008-01-01T23:59:59.000Z

255

Proposal of physics with exotic beams at Oak Ridge  

SciTech Connect (OSTI)

A facility to produce proton-rich radioactive beams for nuclear structure and astrophysics experiments is proposed. This Oak Ridge Exotic Beam (OREB) facility is based on two existing accelerators. Beams of mass up to 80 can be accelerated to energies of about 5 MeV/nucleon. It will provide opportunities to study new areas in nuclear physics and astrophysics that are not available with the use of stable beams. 3 figs.

Lee, I-Yang.

1991-01-01T23:59:59.000Z

256

Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study  

SciTech Connect (OSTI)

Purpose: Latest generation linear accelerators (linacs), i.e., TrueBeam (Varian Medical Systems, Palo Alto, CA) and its stereotactic counterpart, TrueBeam STx, have several unique features, including high-dose-rate flattening-filter-free (FFF) photon modes, reengineered electron modes with new scattering foil geometries, updated imaging hardware/software, and a novel control system. An evaluation of five TrueBeam linacs at three different institutions has been performed and this work reports on the commissioning experience. Methods: Acceptance and commissioning data were analyzed for five TrueBeam linacs equipped with 120 leaf (5 mm width) MLCs at three different institutions. Dosimetric data and mechanical parameters were compared. These included measurements of photon beam profiles (6X, 6XFFF, 10X, 10XFFF, 15X), photon and electron percent depth dose (PDD) curves (6, 9, 12 MeV), relative photon output factors (Scp), electron cone factors, mechanical isocenter accuracy, MLC transmission, and dosimetric leaf gap (DLG). End-to-end testing and IMRT commissioning were also conducted. Results: Gantry/collimator isocentricity measurements were similar (0.27-0.28 mm), with overall couch/gantry/collimator values of 0.46-0.68 mm across the three institutions. Dosimetric data showed good agreement between machines. The average MLC DLGs for 6, 10, and 15 MV photons were 1.33 {+-} 0.23, 1.57 {+-} 0.24, and 1.61 {+-} 0.26 mm, respectively. 6XFFF and 10XFFF modes had average DLGs of 1.16 {+-} 0.22 and 1.44 {+-} 0.30 mm, respectively. MLC transmission showed minimal variation across the three institutions, with the standard deviation <0.2% for all linacs. Photon and electron PDDs were comparable for all energies. 6, 10, and 15 MV photon beam quality, %dd(10){sub x} varied less than 0.3% for all linacs. Output factors (Scp) and electron cone factors agreed within 0.27%, on average; largest variations were observed for small field sizes (1.2% coefficient of variation, 10 MV, 2 Multiplication-Sign 2 cm{sup 2}) and small cone sizes (<1% coefficient of variation, 6 Multiplication-Sign 6 cm{sup 2} cone), respectively. Conclusions: Overall, excellent agreement was observed in TrueBeam commissioning data. This set of multi-institutional data can provide comparison data to others embarking on TrueBeam commissioning, ultimately improving the safety and quality of beam commissioning.

Glide-Hurst, C.; Bellon, M.; Wen, N.; Zhao, B.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan 48202 (United States); Foster, R.; Speiser, M.; Solberg, T. [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 (United States); Altunbas, C.; Westerly, D.; Miften, M. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Altman, M. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

2013-03-15T23:59:59.000Z

257

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

258

Title of Document: LONGITUDINAL CONTROL OF INTENSE CHARGED PARTICLE BEAMS  

E-Print Network [OSTI]

ABSTRACT Title of Document: LONGITUDINAL CONTROL OF INTENSE CHARGED PARTICLE BEAMS Brian Louis, accelerator facilities are demanding beams with higher quality. Applications such as Free Electron Lasers energy spread throughout the accelerator. Fluctuations in beam energy or density at the low-energy side

Anlage, Steven

259

Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration  

SciTech Connect (OSTI)

To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)] [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)] [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)] [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

2013-01-14T23:59:59.000Z

260

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

E-Print Network [OSTI]

collider," in Advanced Accelerator Concepts, edited by C .Considerations for Plasma Accelerators Driven by Lasers orUSA Abstract. Plasma accelerators may be driven by the

Schroeder, C. B.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics  

E-Print Network [OSTI]

of 2006 European Particle Accelerator Conf. , Edinburgh,Proc. 1992 European Particle Accelerator Conference, Berlin,in Proc. 2007 Particle Accelerator Conf. , Albuquerque, June

Zisman, Michael S.

2008-01-01T23:59:59.000Z

262

Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams  

SciTech Connect (OSTI)

An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

263

Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab  

SciTech Connect (OSTI)

We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

Piekarz, Henryk; Hays, Steven; /Fermilab

2007-03-01T23:59:59.000Z

264

Review of ion accelerators  

SciTech Connect (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

265

Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility  

SciTech Connect (OSTI)

The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

Awwal, A; Manuel, A; Datte, P; Burkhart, S

2011-02-28T23:59:59.000Z

266

Einzel lens chopper and behavior of the chopped beam in the KEK digital accelerator  

Science Journals Connector (OSTI)

The KEK digital accelerator (KEK-DA), which is a small-scale rapid-cycle induction synchrotron (IS), has commenced operation. A permanent magnet x-band electron cyclotron resonance ion source serves as the KEK-DA ion source and delivers various ions. A new Einzel lens beam chopper has been developed to provide the necessary pulse width of a few microseconds. The chopper is implemented by applying a rectangular pulse voltage generated by a solid-state Marx generator to the middle electrode of the Einzel lens. Momentum modulation at the bunch head and tail resulting from chopping in longitudinal direction has been observed. This intrinsic property of the chopped pulse has been clearly observed in a long drift (a free run in the circular ring) in KEK-DA.

K. W. Leo; T. Adachi; T. Arai; K. Takayama

2013-04-17T23:59:59.000Z

267

E-beam dynamics calculations and comparison with measurements of a high duty accelerator at Boeing  

SciTech Connect (OSTI)

The electron dynamics in the photoinjector cavities and through the beamline for a high duty factor electron accelerator are computed. The particle in a cell code ARGUS, is first used in the low energy (< 2 MeV) region of the photoinjector, then the ARGUS-generated phase space at the photoinjector exit is used as input in the standard particle pusher code PARMELA, and the electron beam properties at the end of the beamline computed. Comparisons between the calculated and measured electron bea mradial profiles and emittances are presented for different values of the electron pulse charge. A discussion of the methodology used and on the accuracy of PARMELA in the low energy region of the photoinjector is given.

Parazzoli, C.G.; Dowell, D.H. [Boeing Defense & Space Group, Seattle, WA (United States)

1995-12-31T23:59:59.000Z

268

Mode trap for absorbing transverse modes of an accelerated electron beam  

DOE Patents [OSTI]

A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

Chojnacki, Eric P. (Woodridge, IL)

1994-01-01T23:59:59.000Z

269

Mode trap for absorbing transverse modes of an accelerated electron beam  

DOE Patents [OSTI]

A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

Chojnacki, E.P.

1994-05-31T23:59:59.000Z

270

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network [OSTI]

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

Labaune, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

2013-01-01T23:59:59.000Z

271

RHIC & AGS Userscenter;User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Facilities User Facilities Experimenters work at one of five user facilities. The largest of these facilities is the Relativistic Heavy Ion Collider (RHIC), others include the Alternating Gradient Synchrotron facility (AGS), the Tandem Van de Graaff, the Accelerator Test Facility (ATF), and the NASA Space Radiation Laboratory (NSRL). See also: National User Facility Organization (NUFO). Accelerator Test Facility (ATF) Brookhaven's newest user facility, the ATF is a proposal driven Program Committee reviewed Users' Facility dedicated for long-term R&D in Physics of Beams. Alternating Gradient Synchrotron (AGS) Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there.

272

Electron-Beam Microcharacterization Centers | U.S. DOE Office of Science  

Office of Science (SC) Website

Electron-Beam Microcharacterization Centers Electron-Beam Microcharacterization Centers Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Electron-Beam Microcharacterization Centers Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports three electron-beam microcharacterization centers, which operate as user facilities, work to develop next-generation electron-beam instrumentation, and conduct corresponding research. Operating funds are provided to enable expert scientific interaction and

273

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

E-Print Network [OSTI]

al. , Phys. Rev. ST Accel. Beams, submitted, (2010). 15. A.D . Kimura, Phys. Rev. ST Accel. Beams 13, 24. C . Jing, A .Driven by Lasers or Particle Beams C . B . Schroeder, E .

Schroeder, C. B.

2011-01-01T23:59:59.000Z

274

EXTRACTION COMPRESSION AND ACCELERATION OF HIGH LINE CHARGE DENSITY ION BEAMS  

E-Print Network [OSTI]

on compression of heavy ion beams for creating high energyet al, Highly Compressed Ion Beams for High Energy DensityPulsed Solenoid for Intense Ion Beam Transport, these Proc:

Henestroza, E.

2008-01-01T23:59:59.000Z

275

Quasi-monoenergetic Electron Beams from Laser-plasma Acceleration by Ionization-induced Injection in Low- density Pure Nitrogen  

E-Print Network [OSTI]

We report a laser wakefield acceleration of electron beams up to 130 MeV from laser-driven 4-mm long nitrogen gas jet. By using a moderate laser intensity (3.5*10^18 W.cm^(-2) ) and relatively low plasma densities (0.8*10^18 cm^(-3) to 2.7*10^18 cm^(-3)) we have achieved a stable regime for laser propagation and consequently a stable generation of electron beams. We experimentally studied the dependence of the drive laser energy on the laser-plasma channel and electron beam parameters. The quality of the generated electron beams is discussed within the framework of the ionization-induced injection mechanism.

Tao, Mengze; Li, Song; Mirzaie, Mohammad; Chen, Liming; He, Fei; Cheng, Ya; Zhang, Jie

2014-01-01T23:59:59.000Z

276

Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability  

SciTech Connect (OSTI)

When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

Bulanov, S. V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); Pegoraro, F. [Physical Department, University of Pisa, Pisa 56127 (Italy); Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States)

2012-10-15T23:59:59.000Z

277

Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator  

SciTech Connect (OSTI)

An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)] [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Tanaka, M. [Department of Engineering, Chubu University, Aichi 487-8501 (Japan)] [Department of Engineering, Chubu University, Aichi 487-8501 (Japan)

2013-04-22T23:59:59.000Z

278

Application of Microwave Methods for Characterization of NEG Coatings and Obstacle Detection in Accelerator Beam-pipes  

E-Print Network [OSTI]

In many particle accelerators, including the LHC at the European Organization for Nuclear Research CERN, NEG coatings are used to improve vacuum performance. In other particle accelerators there have been hints that those coatings could have a relevant impact on the beam coupling impedance, however the data available is contradictory. To clarify the possible impact of NEG coatings the electromagnetic properties have been measured. The measurements have been carried out by means of cavity perturbation method. The second part of this thesis deals with the microwave waveguide reflectometer developed at CERN several years ago, which is used as part of the quality assurance test program for the LHC assembly. To ensure optimum operation and to avoid an expensive removal of any foreign object from inside the LHC beam-screen after its completion, microwave reflectometry is performed. Until now several objects have been found by means of reflectometry, but so far neither precise data about the reflections of different...

Seebacher, David

2009-01-01T23:59:59.000Z

279

Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly  

SciTech Connect (OSTI)

A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

Chen, S. N., E-mail: sophia.chen@polytechnique.edu; Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-cole Polytechnique-Universit Paris VI, Palaiseau (France); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Antici, P. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-cole Polytechnique-Universit Paris VI, Palaiseau (France) [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-cole Polytechnique-Universit Paris VI, Palaiseau (France); Dipartimento SBAI, Universit di Roma La Sapienza , Via Scarpa 14-16, 00165 Roma (Italy); INRS-nergie et Matriaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Qubec (Canada); D'Humires, E. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States) [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Centre de Physique Thorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); University of BordeauxCNRSCEA, CELIA, UMR5107, 33405 Talence (France); Gaillard, S. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Grismayer, T.; Mora, P. [Centre de Physique Thorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France)] [Centre de Physique Thorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Ppin, H. [INRS-nergie et Matriaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Qubec (Canada)] [INRS-nergie et Matriaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Qubec (Canada)

2014-02-15T23:59:59.000Z

280

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National...

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SOLVING BY PARALLEL COMPUTATION THE POISSON PROBLEM FOR HIGH INTENSITY BEAMS IN CIRCULAR ACCELERATORS.  

SciTech Connect (OSTI)

Simulation of high intensity accelerators leads to the solution of the Poisson Equation, to calculate space charge forces in the presence of acceleration chamber walls. We reduced the problem to ''two-and-a-half'' dimensions for long particle bunches, characteristic of large circular accelerators, and applied the results to the tracking code Orbit.

LUCCIO,A.U.; DIMPERIO,N.L.; SAMULYAK,R.; BEEB-WANG,J.

2001-06-18T23:59:59.000Z

282

Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

283

Collider-Accelerator Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

284

Operating instructions for ORELA (Oak Ridge Electron Linear Accelerator) positron beam line  

SciTech Connect (OSTI)

This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented.

Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

1990-11-01T23:59:59.000Z

285

A Phenomenological Cost Model for High Energy Particle Accelerators  

E-Print Network [OSTI]

Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

Vladimir Shiltsev

2014-04-15T23:59:59.000Z

286

E-Print Network 3.0 - accelerator-based radiobiology facilities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA 12:00 PM Important Concepts in Radiobiology Dosimetry Will Hanson... for solicited research Service - NIH-based facility (RPC-like) or fee for service or private non-profit...

287

E-Print Network 3.0 - accelerator facilities doe Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JUSTIFICATION MEMO ON REVISION OF DOE O Summary: ON REVISION OF DOE O 5480.19, CONDUCT OF OPERATIONS REQUIREMENTS FOR DOE FACILITIES Executive Summary... will be applicable to DOE...

288

EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

289

Technical design of hadron therapy facilities  

SciTech Connect (OSTI)

Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Loma Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

Alonso, J.R.

1993-08-01T23:59:59.000Z

290

Technical Design of Hadron Therapy Facilities  

SciTech Connect (OSTI)

Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Lorna Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

Alonso, J.R.

1993-08-01T23:59:59.000Z

291

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

292

Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since...

293

Low-intensity beam diagnostics with particle detectors  

SciTech Connect (OSTI)

The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. {copyright} {ital 1997 American Institute of Physics.}

Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G. [INFN-LNS, Via S. Sofia 44/A Catania, 95125 (Italy); De Martinis, C.; Giove, D. [INFN-LASA, Via F.lli Cervi 201 Segrate (Midway Islands), 20090 (Italy)

1997-01-01T23:59:59.000Z

294

Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics  

E-Print Network [OSTI]

particles, all of the muon beam energy is available forfootprint. Indeed, an energy frontier Muon Collider couldaccelerating muons to even higher energies of several TeV,

Zisman, Michael S.

2008-01-01T23:59:59.000Z

295

Laser acceleration of quasi-monoenergetic MeV ion beams  

Science Journals Connector (OSTI)

... S. et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 5, 20762082 (2000)

B. M. Hegelich; B. J. Albright; J. Cobble; K. Flippo; S. Letzring; M. Paffett; H. Ruhl; J. Schreiber; R. K. Schulze; J. C. Fernndez

2006-01-26T23:59:59.000Z

296

Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators  

E-Print Network [OSTI]

magnets from the electron source through our THUNDERa PMQ doublet from the electron source through an undulator.1 mrad rms from the electron source. ELECTRON BEAM TRANSPORT

Osterhoff, Jens

2012-01-01T23:59:59.000Z

297

Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It produces the world's most powerful, high-energy neutrino beam and provides proton beams for various experiments and R&D programs. Fermilab's accelerator complex delivers...

298

The Big Accelerator: Competition for AEC Facility Is Stirring Up Communities throughout Country  

Science Journals Connector (OSTI)

...cultural life, and public services. The quest...facilities for some 2000 scientific and technical...Club at a luncheon meeting held at the Elks Club. Follow-ing the meeting, the Portsmouth...necessary to make Hanford the best spot for...or ten" sites as meeting the criteria, according...

D. S. Greenberg

1965-08-13T23:59:59.000Z

299

Interfacing to accelerator instrumentation  

SciTech Connect (OSTI)

As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

Shea, T.J.

1995-12-31T23:59:59.000Z

300

Commissioning of Photon Beams of a Flattening Filter-Free Linear Accelerator and the Accuracy of Beam Modeling Using an Anisotropic Analytical Algorithm;TrueBeam; Flattening filter free; Commissioning; Anisotropic analytical algorithm  

SciTech Connect (OSTI)

Purpose: To investigate dosimetric characteristics of a new linear accelerator designed to deliver flattened, as well as flattening filter-free (FFF), beams. To evaluate the accuracy of beam modeling under physical conditions using an anisotropic analytical algorithm. Methods and Materials: Dosimetric data including depth dose curves, profiles, surface dose, penumbra, out-of-field dose, output, total and scatter factors were examined for four beams (X6, X6FFF, X10, and X10FFF) of Varian's TrueBeam machine. Beams modeled by anisotropic analytical algorithm were compared with measured dataset. Results: FFF beams have lower mean energy (tissue-phantom ratio at the depths of 20 and 10 cm (TPR 20/10): X6, 0.667; X6FFF, 0.631; X10, 0.738; X10FFF, 0.692); maximum dose is located closer to the surface; and surface dose increases by 10%. FFF profiles have sharper but faster diverging penumbra. For small fields and shallow depths, dose outside a field is lower for FFF beams; however, the advantage fades with increasing phantom scatter. Output increases 2.26 times for X6FFF and 4.03 times for X10FFF and is less variable with field size; collimator exchange effect is reduced. A good agreement between modeled and measured data is observed. Criteria of 2% depth-dose and 2-mm distance-to-agreement are always met. Conclusion: Reference dosimetric characteristics of TrueBeam photon bundles were obtained, and successful modeling of the beams was achieved.

Hrbacek, Jan, E-mail: jan.hrbacek@usz.ch [Department of Radiation Oncology, University Hospital Zuerich, Zuerich (Switzerland); Lang, Stephanie; Kloeck, Stephan [Department of Radiation Oncology, University Hospital Zuerich, Zuerich (Switzerland)

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Target Material Irradiation Studies for High-Intensity Accelerator Beams , H. Ludewig1  

E-Print Network [OSTI]

the auspices of the US DOE 1. BACKGROUND With increasing demand for high-power accelerators in support) Material Handbook study and the Spallation Neutron Source studies in the US, Europe and Japan. While

McDonald, Kirk

302

Design and optimization of a multi-particle accelerator beam transport and delivery system for material irradiation in nuclear and fusion science  

E-Print Network [OSTI]

A beam delivery and transport system were designed for the use in MIT Materials Test Facility (M2TF). The purpose of this beam delivery system was to design a 36 MeV Proton Cyclotron for DPA accumulation and a 100 MeV ...

Sordelet, Tyler Christopher

2012-01-01T23:59:59.000Z

303

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quarterly Meetings Quarterly Meetings November 29, 2011 Held at the Advanced Photon Source, Argonne, IL DOE Accelerator R&D Task Force - M. White February 17, 2010 Held at the Advanced Photon Source, Argonne, IL June 16, 2009 General Updates - R. Gerig Accelerator Developments in Physics Division - R. Janssens Proposal for Argonne SRF Facility - M. Kelly Accelerator Developments in HEP Division - W. Gai Beam Activities of the DOD Project Office-Focus on the Navy FEL - S. Biedron AAI Historical Collection - T. Fields November 24, 2008 Strategic Theme Forum Meeting - This meeting was held to gather information on the Accelerator Science and Technology Theme to establish the Argonne's Strategic Plan January 9, 2008 Opening Remarks - R. Gerig ILC Planning - J. Carwardine Argonne Participation in Project X - P. Ostroumov

304

Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators  

E-Print Network [OSTI]

beam position monitor (BPM) will be presented. Knowledge ofdiscussed. The deployed BPM [16, 17] consists of a microwaveimportant to note that such a BPM by itself cannot be used

Osterhoff, Jens

2012-01-01T23:59:59.000Z

305

High-power electron beam tests of a liquid-lithium target and characterization study of 7Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy  

Science Journals Connector (OSTI)

Abstract A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm2 and volumetric power density around 2MW/cm3 at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (?=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.912.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) 7Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

S. Halfon; M. Paul; A. Arenshtam; D. Berkovits; D. Cohen; I. Eliyahu; D. Kijel; I. Mardor; I. Silverman

2014-01-01T23:59:59.000Z

306

Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities  

Science Journals Connector (OSTI)

A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 105 (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320?s. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

Wolfgang R. Pla; Timo Dickel; Ulrich Czok; Hans Geissel; Martin Petrick; Katrin Reinheimer; Christoph Scheidenberger; Mikhail I.Yavor

2008-01-01T23:59:59.000Z

307

Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility  

SciTech Connect (OSTI)

Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20{degree} bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20{degree} bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached.

Wang, X.J.; Kehne, D.

1997-07-01T23:59:59.000Z

308

Relativistic Electron Beam Acceleration by Compton Scattering of Lower-Hybrid Waves  

E-Print Network [OSTI]

and cyclotron damping of the lower-hybrid waves. 1. INTRODUCTION Acceleration and heating of a relativistic and cyclotron damping)4,5 , ( ) cek k v m - - - =k k , (1) where , is the parallel velocity ) is the relativistic electron cyclotron frequency, and ism an integer. The relativistic transport equations using

Boyer, Edmond

309

LANL: Ion Beam Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

310

CHALLENGES OF RADIOACTIVE BEAM FACILITIES COMPARING SOLUTIONS AT SPIRAL2 AND FAIR  

E-Print Network [OSTI]

with antiproton beams (PANDA) and the structure of nuclei; physics of nuclear reactions and nuclear astrophysics with RIBs (Nuclear Structure, Astrophysics and Reactions : NuSTAR) which is of most interest here. SPIRAL2 rates [5]. The extracted exotic beams will be either used in a new low energy experimental area called

Paris-Sud XI, Université de

311

Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets  

SciTech Connect (OSTI)

High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2014-04-28T23:59:59.000Z

312

A Test Facility for the International Linear Collider at SLAC End Station A, for Prototypes of Beam Delivery and IR Components  

SciTech Connect (OSTI)

The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.

Woods, M.; Erickson, R.; Frisch, J.; Hast, C.; Jobe, R.K.; Keller, L.; Markiewicz, T.; Maruyama, T.; McCormick, D.; Nelson, J.; Nelson, T.; Phinney, N.; Raubenheimer, T.; Ross, M.; Seryi, A.; Smith, S.; Szalata, Z.; Tenenbaum, P.; Woodley, M.; /SLAC; Angal-Kalinin, D.; Beard, C.; /Daresbury /CERN /DESY /KEK, Tsukuba /LLNL, Livermore /Lancaster U.

2005-05-23T23:59:59.000Z

313

Spallation reactions for nuclear waste transmutation and production of radioactive nuclear beams  

Science Journals Connector (OSTI)

Spallation reactions are considered an optimum neutron source for nuclear waste transmutation in accelerator-driven systems (ADS). ... They are also used to produce intense radioactive nuclear beams in ISOL facil...

J. Benlliure

2005-09-01T23:59:59.000Z

314

Spallation reactions for nuclear waste transmutation and production of radioactive nuclear beams  

Science Journals Connector (OSTI)

Spallation reactions are considered an optimum neutron source for nuclear waste transmutation in accelerator-driven systems (ADS). ... They are also used to produce intense radioactive nuclear beams in ISOL facil...

J. Benlliurea

2005-01-01T23:59:59.000Z

315

Non-Invasive Beam Detection in a High-Average Power Electron Accelerator  

SciTech Connect (OSTI)

For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

Williams, J. [Colorado State U.; Biedron, S. [Colorado State U.; Harris, J. [Colorado State U.; Martinez, J. [Colorado State U.; Milton, S. V. [Colorado State U.; Van Keuren, J. [Colorado State U.; Benson, Steve V. [JLAB; Evtushenko, Pavel [JLAB; Neil, George R. [JLAB; Zhang, Shukui [JLAB

2013-12-01T23:59:59.000Z

316

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CWDD - Continuous Wave Deuterium Demonstrator CWDD - Continuous Wave Deuterium Demonstrator The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the lauching of a beam with characteristics suitable for a space-based neutral particle-beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. References - Document Access Guide Continuous Wave Deuterium Demonstrator Final Design Review, Grumman Space Systems, Grumman-Culham Laboratory, Los Alamos (1989). (Located in the Argonne Research Library) Recommissioning and first operation of the CWDD injector at Argonne

317

SCREAMm - modified code SCREAM to sumulate the acceleration of a pulsed beam through the superconducting linac  

SciTech Connect (OSTI)

The code SCREAM - SuperConducting RElativistic particle Accelerator siMulation - was significantly modified and improved. Some misprints in the formulae used have been fixed and a more realistic expression for the vector-sum introduced. The realistic model of Lorentz-force detuning (LFD) is developed and will be implemented to the code. A friendly GUI allows various parameters of the simulated problem to be changed easily and quickly. Effective control of various output data is provided. A change of various parameters during the simulation process is controlled by plotting the corresponding graphs 'on the fly'. A large collection of various graphs can be used to illustrate the results.

Eidelman, Yu.; Nagaitsev, S.; Solyak, N.; /Fermilab

2011-07-01T23:59:59.000Z

318

Science Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Lab Ion Beam Materials Lab Matter-Radiation Interactions in Extremes (MaRIE) Proton Radiography Trident Laser Facility LOOK INTO LANL - highlights...

319

Comparison of Planned Versus Actual Dose Delivered for External Beam Accelerated Partial Breast Irradiation Using Cone-Beam CT and Deformable Registration  

SciTech Connect (OSTI)

Purpose: To assess the adequacy of dose delivery to the clinical target volume (CTV) using external beam (EB) accelerated partial breast irradiation (APBI). Methods and Materials: Sixteen patients treated with EB APBI underwent cone beam CT (CBCT) before each fraction and daily helical CT (HCT) scans to determine setup errors and calculate the dose per fraction. For 12 patients, an in-house image-intensity-based deformable registration program was used to register the HCTs to the planning CT and generate the cumulative dose. Treatment was 38.5 Gy in 10 fractions. EB APBI constraints from the National Surgical Adjuvant Breast and Bowel Project B39/Radiation Therapy Oncology Group 0413 Phase III protocol were used. Results: The mean setup error per CBCT registration was 9 {+-} 5 mm. Dose-volume histogram analysis showed only one patient (8%) with a decrease in the CTV V90 (8% underdosage). All other patients demonstrated adequate target coverage. PTV{sub E}VAL V90 was on average 3% (range, 0%-16%) less than planned. For the ipsilateral breast, four patients had an increase in V50 ({<=}1% increase) and three patients had an increase in V100 ({<=}9% increase). Only one patient showed an increase >5%. Four patients had an increase in ipsilateral lung V30 (maximum 3%), and one had an increase in heart V5 (1%). Four patients had an increase in MaxDose (maximum 89 cGy). Conclusions: The current CTV-to-PTV margin of 10 mm appears sufficient for {approx}92% of patients treated with EB APBI. Although expansion of the population PTV margin to 14 mm would provide {approx}97% confidence level for CTV coverage, online image guidance should be considered.

Hasan, Yasmin; Kim, Leonard; Wloch, Jennifer; Chi, Y.; Liang, J.; Martinez, Alvaro; Yan Di [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Vicini, Frank, E-mail: fvicini@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

2011-08-01T23:59:59.000Z

320

E-157: A 1.4-m-long plasma wake field acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator  

E-Print Network [OSTI]

-long bunch is propagated through a 1.4-m-long lithium plasma of density up to 2 1014 e /cm3 . The initial- modulated wake field accelerator7 have accelerated electrons with impressive gradients, much in excess of 1 acceleration with gradients in excess of 100 MeV/m over a distance greater than 1 m. The experiment called E

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Primary proton beam line at the J-PARC hadron experimental facility  

Science Journals Connector (OSTI)

......water passage, the insulation reliability and...improved as ceramic insulation pipes are not required...the results of a thermal and mechanical...radiation-hard specifications. In the SY, almost...included. The main specifications of the optics are...reduce beam loss and thermal stress. Aluminum......

Keizo Agari; Erina Hirose; Masaharu Ieiri; Masami Iio; Yoji Katoh; Akio Kiyomichi; Michifumi Minakawa; Ryotaro Muto; Megumi Naruki; Hiroyuki Noumi; Yoshinori Sato; Shin?ya Sawada; Yoshihisa Shirakabe; Yoshihiro Suzuki; Hitoshi Takahashi; Minoru Takasaki; Kazuhiro H. Tanaka; Akihisa Toyoda; Hiroaki Watanabe; Yutaka Yamanoi

2012-01-01T23:59:59.000Z

322

Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition  

SciTech Connect (OSTI)

Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

Huang, Chenkun [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

323

Muon Acceleration R and D  

SciTech Connect (OSTI)

An intense muon source can be built in stages to support a uniquely broad program in high energy physics. Starting with a low-energy cooled muon beam, extraordinarily precise lepton flavor violation experiments are possible. Upgrading the facility with acceleration and a muon storage ring, one can build a Neutrino Factory that would allow a neutrino mixing physics program with unprecedented precision. Adding further acceleration and a collider ring, an energy-frontier muon collider can explore electroweak symmetry breaking and open a window to new physics.

Torun, Yagmur [Illinois Institute of Technology, Chicago (United States)

2009-12-17T23:59:59.000Z

324

ACCELERATOR TEST FACILITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the electron gun and linac sections. Each modulator has a high voltage (208VAC) safety lockout switch, and two security interlock boxes, one for each security system interlock...

325

Enforcement Letter - Evaluation of Deficiencies Operational Emergency at Building 6000, Holifield Radioactive Ion Beam Facility, Oak Ridge National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3,2009 3,2009 Dr. Thom Mason President and CEO UT-Battelle Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6255 Dear Dr. Mason: The Department of Energy's Office of Enforcement within the Office of Health, Safety and Security has conducted an evaluation of the deficiencies described in Noncompliance Tracking System (NTS) report NTS-ORO--0RNL-XlOPHYSICS-2008-0001, Operational Emergency at Building 6000, Holzfield Radioactive Ion Beam Facility. Our evaluation included a review of the Oak Ridge National Laboratory (ORNL) Management Investigation Team Report dated November 19,2008, the associated corrective action plan, and discussions with site personnel. The subject NTS report described a series of deficiencies at the Holifield Radioactive Ion

326

Secondary nuclear fragment beams for investigations of relativistic fragmentation of light radioactive nuclei using nuclear photoemulsion at Nuclotron  

E-Print Network [OSTI]

Slowly extracted relativistic beams of light nuclei and a beam transportation line net system constitute a good base for secondary nuclear beams forming at the LHE accelerator facility. A recent years activity in the field at the Laboratory is connected with a project on study light nuclei structure by means the emulsion technique [1,2]. The paper shortly summarizes results of the work.

P. A. Rukoyatkin; L. N. Komolov; R. I. Kukushkina; V. N. Ramzhin; P. I. Zarubin

2012-10-04T23:59:59.000Z

327

Proceedings of the fifth PTCOG meeting and international workshop on biomedical accelerators  

SciTech Connect (OSTI)

This volume contains the proceeding and individual papers presented at the Fifth PTCOG meeting and International Workshop on Biomedical Accelerators. The meeting was divided into sessions on the biomedical aspects of therapy delivery, new biomedical accelerators, facilities, and beam localization and status report. Individual papers have been abstracted and indexed for the Energy Data Base.

Not Available

1987-04-01T23:59:59.000Z

328

A versatile facility for the calibration of X-ray polarimeters with polarized and unpolarized controlled beams  

E-Print Network [OSTI]

We devised and built a versatile facility for the calibration of the next generation X-ray polarimeters with unpolarized and polarized radiation. The former is produced at 5.9 keV by means of a Fe55 radioactive source or by X-ray tubes, while the latter is obtained by Bragg diffraction at nearly 45 degrees. Crystals tuned with the emission lines of X-ray tubes with molybdenum, rhodium, calcium and titanium anodes are employed for the efficient production of highly polarized photons at 2.29, 2.69, 3.69 and 4.51 keV respectively. Moreover the continuum emission is exploited for the production of polarized photons at 1.65 keV and 2.04 keV and at energies corresponding to the higher orders of diffraction. The photons are collimated by means of interchangeable capillary plates and diaphragms, allowing a trade-off between collimation and high fluxes. The direction of the beam is accurately arranged by means of high precision motorized stages, controlled via computer so that long and automatic measurements can be done. Selecting the direction of polarization and the incidence point we can map the response of imaging devices to both polarized and unpolarized radiation. Changing the inclination of the beam we can study the systematic effects due to the focusing of grazing incidence optics and the feasibility of instruments with large field of view.

Fabio Muleri; Paolo Soffitta; Ronaldo Bellazzini; Alessandro Brez; Enrico Costa; Massimo Frutti; Marcello Mastropietro; Ennio Morelli; Michele Pinchera; Alda Rubini; Gloria Spandre

2008-10-15T23:59:59.000Z

329

Further Analysis of Real Beam Line Optics From A Synthetic Beam  

SciTech Connect (OSTI)

Standard closed-orbit techniques for Twiss parameter measurement are not applicable to the open-ended Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. The evolution of selected sets of real orbits in the accelerator models the behavior of a 'synthetic' beam. This process will be validated against beam profile-based Twiss parameter measurements and should provide the distributed optical information needed to optimize beamline tuning for an open-ended system. This work will discuss the current and future states of this technique, as well as an example of its use in the CEBAF machine.

Ryan Bodenstein, Michael Tiefenback, Yves Roblin

2012-07-01T23:59:59.000Z

330

Fermilab | Science | Particle Accelerators | Advanced Superconducting...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Test Accelerator is America's only test bed for cutting-edge particle beams and for accelerator research aimed at Intensity Frontier proton accelerators. ASTA...

331

Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt  

Science Journals Connector (OSTI)

The subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft fr Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions. Construction of a much more powerful synchrotron, SIS100, at the future international facility for antiprotons and ion research (FAIR) at Darmstadt will lead to an increase in beam intensity by 3 orders of magnitude compared to what is currently available. The purpose of this Letter is to investigate with the help of two-dimensional numerical simulations, the potential of the FAIR to carry out research in the field of HED states in matter.

N. A. Tahir, C. Deutsch, V. E. Fortov, V. Gryaznov, D. H. H. Hoffmann, M. Kulish, I. V. Lomonosov, V. Mintsev, P. Ni, D. Nikolaev, A. R. Piriz, N. Shilkin, P. Spiller, A. Shutov, M. Temporal, V. Ternovoi, S. Udrea, and D. Varentsov

2005-07-11T23:59:59.000Z

332

A new method of measuring the poloidal magnetic and radial electric fields in a tokamak using a laser-accelerated ion-beam trace probe  

SciTech Connect (OSTI)

Both the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both B{sub p} and E{sub r} at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both B{sub p} and E{sub r}. In this paper, we present the basic principle and some preliminary theoretical results.

Yang, X. Y.; Chen, Y. H.; Lin, C.; Wang, X. G.; Xiao, C. J., E-mail: cjxiao@pku.edu.cn [State Key Labaratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

2014-11-15T23:59:59.000Z

333

A NEW TRAPPING FACILITY FOR PRECISION EXPERIMENTS ON LOW ENERGY BEAM G. Ban, G. Darius, P. Delahaye, D. Durand, X. Flechard, M. Herbane, M. Labalme, E. Lienard,  

E-Print Network [OSTI]

Frequency Quadrupole Cooler Buncher[1] (RFQCB) was designed to handle beams with high emittance ions will be stored nearly at rest in a thin volume defined by the electric field of the transparent been performed with an off-line thermo-ionic source and an ECR source on the LIMBE facility at CIRIL

Paris-Sud XI, Université de

334

AWA Facility Expansion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Upgrade Facility Upgrade Wei Gai High Energy Physics Division June 16, 2009 Background * AWA Group has been receiving very positive DOE Review evaluations in the last several years. * DOE funding has been constant or increasing, even in years with general budget cuts. * Outstanding scientific results have been achieved in recent years using the unique AWA electron beam capabilities (100 MV/m accelerating gradient). * General infrastructure in building 366 has improved in recent years (air-conditioner, better lighting, new laboratory space), creating a much better environment for conducting the AWA research program. * Additional RF power station (a second klystron) is being commissioned and it will improve the capabilities of the facility. Recent Budget Increase * Very positive DOE review (Dec. 2008) and

335

Fermilab | Science | Particle Accelerators | Leading Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab scientists and engineers develop particle accelerators to produce beams to take particle physics to the next level, collaborating with scientists and...

336

Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor  

SciTech Connect (OSTI)

This paper describes the physics design of a 100 keV, 60 A H{sup -} accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

Singh, M. J. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); De Esch, H. P. L. [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France)

2010-01-15T23:59:59.000Z

337

Generation of quasi-monochromatic beams of accelerated electrons during interaction of weak-contrast intense femtosecond laser radiation with a metal-foil edge  

SciTech Connect (OSTI)

The formation of monoenergetic beams of accelerated electrons by focusing femtosecond laser radiation with an intensity of 2 Multiplication-Sign 10{sup 17} W cm{sup -2} onto an edge of aluminium foil has been experimentally demonstrated. The electrons had energy distributions peaking in the range from 0.2 to 0.8 MeV and an energy spread less than 20 %. The acceleration mechanism related to the generation of a plasma wave as a result of self-modulation instability of the laser pulse in the subcritical plasma formed the prepulse of the laser system (arriving 10 ns before the main pulse) is considered. Onedimensional PIC simulation of the interaction between the laser radiation and plasma with a concentration of 5 Multiplication-Sign 10{sup 19} cm{sup -3} showed that effective excitation of a plasma wave, as well as the trapping and acceleration of the electron beam with an energy on the order of 1 MeV, may occur in the presence of inhomogeneities in the density at the plasma boundary and in the temporal shape of the beam. (extreme light fields and their applications)

Malkov, Yu A; Stepanov, A N; Yashunin, D A; Pugachev, L P; Levashov, P R; Andreev, N E; Andreev, Aleksandr A

2013-03-31T23:59:59.000Z

338

Secretary of Energy Announces Approval and Funding for Facilities Upgrade  

Broader source: Energy.gov (indexed) [DOE]

Announces Approval and Funding for Facilities Announces Approval and Funding for Facilities Upgrade at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs Secretary of Energy Announces Approval and Funding for Facilities Upgrade at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs February 22, 2006 - 12:09pm Addthis NEWPORT NEWS , VA - Secretary of Energy Samuel W. Bodman today announced that President Bush's Fiscal Year 2007 budget request includes $7 million for the upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility. The secretary also visited with students and teachers from the Newport News area who participate in the lab's highly successful Becoming Enthusiastic about Math and Science (BEAMS) educational

339

FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators  

SciTech Connect (OSTI)

During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

Cary, John R [U. Colorado

2014-09-08T23:59:59.000Z

340

Accelerators (4/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Accelerators (3/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

342

The Muon Accelerator Program  

SciTech Connect (OSTI)

Multi-TeV Muon Colliders and high intensity Neutrino Factories have captured the imagination of the particle physics community. These new types of facility both require an advanced muon source capable of producing O(10{sup 21}) muons per year. The muons must be captured within bunches, and their phase space manipulated so that they fit within the acceptance of an accelerator. In a Neutrino Factory (NF), muons from this 'front end' are accelerated to a few GeV or a few tens of GeV, and then injected into a storage ring with long straight sections. Muon decays in the straight sections produce an intense neutrino beam. In a Muon Collider (MC) the muons must be cooled by a factor O(10{sup 6}) to produce beams that are sufficiently bright to give high luminosity in the collider. Bunches of positive and negative muons are then accelerated to high energy, and injected in opposite directions into a collider ring in which they collide at one or more interaction points. Over the last decade our understanding of the concepts and technologies needed for Muon Colliders and Neutrino Factories has advanced, and it is now believed that, within a few years, with a well focused R&D effort (i) a Neutrino Factory could be proposed, and (ii) enough could be known about the technologies needed for a Muon Collider to assess the feasibility and cost of this new type of facility, and to make a detailed plan for the remaining R&D. Although these next NF and MC steps are achievable, they are also ambitious, and will require an efficient and dedicated organization to accomplish the desired goals with limited resources. The Muon Accelerator Program (MAP) has recently been created to propose and execute this R&D program.

Geer, Steve; /Fermilab; Zisman, Mike; /LBL, Berkeley

2011-08-01T23:59:59.000Z

343

BINP accelerator based epithermal neutron source V. Aleynik a  

E-Print Network [OSTI]

: Boron neutron capture therapy Epithermal neutron source Accelerator a b s t r a c t Innovative facility in order to prevent the propagation of 7 Be radioactive isotope, (ii) the controlled eva- poration, which is the most power- ful and determines the further beam transport. To exclude the effect of non

Taskaev, Sergey Yur'evich

344

Beam interaction measurements with a Retarding Field Analyzer in a high-current high-vacuum positively charged particle accelerator  

Science Journals Connector (OSTI)

A Retarding Field Analyzer (RFA) was inserted in a drift region of the magnetic transport section of the High-Current Experiment (HCX), that is at high-vacuum, to measure ions and electrons resulting from beam interaction with background gas and walls. The ions are expelled during the beam pulse by the spacecharge potential and the electrons are expelled mainly at the end of the beam, when the beam potential decays. The ion energy distribution shows the beam potential of ? 2100 V and the beambackground gas total cross-section of 3.1 10 - 19 m 2 . The electron energy distribution reveals that the expelled electrons are mainly desorbed from the walls and gain ? 22 eV from the beam potential decaying with time before entering the RFA. Details of the RFA design and of the measured energy distributions are presented and discussed.

M. Kireeff Covo; A.W. Molvik; A. Friedman; J.J. Barnard; P.A. Seidl; B.G. Logan; D. Baca; J.L. Vujic

2007-01-01T23:59:59.000Z

345

Accelerator Preparations for Muon Physics Experiments at Fermilab  

SciTech Connect (OSTI)

The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

Syphers, M.J.; /Fermilab

2009-10-01T23:59:59.000Z

346

Status of BINP proton tandem accelerator  

Science Journals Connector (OSTI)

The status of a unique 2.0MeV, 10mA proton tandem accelerator with vacuum insulation is presented. The accelerator is intended to be used in facilities generating resonant gamma rays for explosives detection and epithermal neutrons for boron neutron-capture therapy of brain tumors. A magnetically coupled DC voltage multiplier derived from an industrial ELV-type electron accelerator is used as a high voltage source for the accelerator. A dc high current negative ion source has been developed for injection into the tandem. In the tandem accelerator there is set of nested potential electrodes with openings which form a channel for accelerating the negative hydrogen ion beam and subsequently accelerating the proton beam after stripping in the gas target. The electrodes are connected to a high voltage feedthrough insulator to which required potentials are applied from the high voltage power supply by means of a resistor voltage divider. In the paper the first experimental results obtained with the vacuum insulated tandem accelerator are also given.

A. Burdakov; V. Davydenko; V. Dolgushin; A. Dranichnikov; A. Ivanov; J.P. Farrell; A. Khilchenko; V. Kobets; S. Konstantinov; A. Krivenko; A. Kudryavtsev; M. Tiunov; V. Savkin; V. Shirokov; I. Sorokin

2007-01-01T23:59:59.000Z

347

Polarized electrons at the Bates Linear Accelerator Center  

SciTech Connect (OSTI)

A beam of polarized electrons have successfully been injected into the MIT Bates Linear Accelerator and accelerated it to 250 MeV. The intense beam was produced by photoemission from a GaAs crystal. The electron polarization at full energy, as measured by a brief test based on Moller scattering from a magnetized foil, was in excess of 30%. The peak intensity for the 15 ..mu..sec long pulses during the first test was about 2mA, representing about a third of the design value. The pulse rate of the accelerator was reduced to 60 Hz to minimize the total beam on the iron target. In a subsequent test, in which the beam hit a thick carbon target, the facility operated successfully at the full rate of 600 Hz. Under this condition, the average current on target was about 10 ..mu..A.

Souder, P.A.; Kim, D.H.; Kumar, K.; Schulze, M.; Lubell, M.; Patch, J.S.; Wilson, R.; Dodson, G.W.; Dow, K.A.; Flanz, J.

1986-01-01T23:59:59.000Z

348

I. ACCELERATION A. Introduction  

E-Print Network [OSTI]

I. ACCELERATION A. Introduction Following cooling and initial bunch compression, the beams must be rapidly accelerated. The acceleration needed for a Higgs collider is probably the most conventional part undertaken. A sequence of linacs would work, but would be expensive. Some form of circulating acceleration

McDonald, Kirk

349

RHIC | Accelerator Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Accelerators RHIC Accelerators The Relativistic Heavy Ion Collider complex is actually composed of a long "chain" of particle accelerators Heavy ions begin their travels in the Electron Beam Ion Source accelerator (1). The ions then travel to the small, circular Booster (3) where, with each pass, they are accelerated to higher energy. From the Booster, ions travel to the Alternating Gradient Synchrotron (4), which then injects the beams via a beamline (5) into the two rings of RHIC (6). In RHIC, the beams get a final accelerator "kick up" in energy from radio waves. Once accelerated, the ions can "orbit" inside the rings for hours. RHIC can also conduct colliding-beam experiments with polarized protons. These are first accelerated in the Linac (2), and further in the Booster (3), AGS (4), and

350

Fermilab | Tevatron | Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle accelerator in the world before it shut down on Sept. 29, 2011. It accelerated beams of protons and antiprotons to 99.999954 percent of the speed of light around a...

351

Muon Collider Progress: Accelerators  

SciTech Connect (OSTI)

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

352

Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider  

SciTech Connect (OSTI)

A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

1995-02-22T23:59:59.000Z

353

Recent results obtained by use of accelerators on plasma-edge properties in controlled-fusion devices and on properties of high-power neutral beams  

SciTech Connect (OSTI)

The study of plasma-wall interactions is of primary importance in present fusion devices. Measurements of incident fuel and impurity fluxes, retention and release of fuel atoms, and erosion of internal components are of particular interest. Accelerators in the megaelectronvolt range are being used both to measure the depth profile of fuel atoms implanted in samples placed in the plasma edge by use of nuclear reactions and to measure impurities and film thicknesses by use of elastic scattering reactions. Secondary ion mass spectrometry (SIMS) is used to determine flux and energy distributions of fuel atoms and to measure species composition and impurities in the beams of high power neutral beam injectors. Recent results obtained with these techniques are presented and areas of future study are discussed.

Langley, R.A.

1982-01-01T23:59:59.000Z

354

Photo of the Week: What Does a Particle Accelerator Have in Common with  

Broader source: Energy.gov (indexed) [DOE]

What Does a Particle Accelerator Have in Common What Does a Particle Accelerator Have in Common with Your Thanksgiving Turkey? Photo of the Week: What Does a Particle Accelerator Have in Common with Your Thanksgiving Turkey? November 16, 2012 - 4:02pm Addthis At the SLAC National Accelerator Laboratory, scientists are using the Facility for Advanced Accelerator Experimental Tests, also known as FACET, to research accelerator science and high-energy density physics. SLAC's particle accelerator may be two miles long, but researchers at FACET are working to develop more compact versions that could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep your Thanksgiving turkey fresh. In this photo, Stanford graduate student Spencer Gessner assembles a camera that will monitor an X-ray spectrometer designed to measure FACET's beam energy. Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory.

355

Charge steering of laser plasma accelerated fast ions in a liquid spray creation of MeV negative ion and neutral atom beams  

SciTech Connect (OSTI)

The scenario of electron capture and loss has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

Schnrer, M.; Abicht, F.; Priebe, G.; Braenzel, J. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin (Germany)] [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin (Germany); Prasad, R. [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany)] [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom) [School of Mathematics and Physics, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); ELIBeamlines, Institute of Physics, Czech Academy of Science, 18221 Prague (Czech Republic); Andreev, A. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin (Germany) [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin (Germany); Vavilov State Optical Institute, 119034 St. Petersburg (Russian Federation); Nickles, P. V. [WCU Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)] [WCU Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Jequier, S.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, University of Bordeaux, CEA, CNRS, 33405 Talence (France)] [Centre Lasers Intenses et Applications, University of Bordeaux, CEA, CNRS, 33405 Talence (France); Ter-Avetisyan, S. [ELIBeamlines, Institute of Physics, Czech Academy of Science, 18221 Prague (Czech Republic)] [ELIBeamlines, Institute of Physics, Czech Academy of Science, 18221 Prague (Czech Republic)

2013-11-15T23:59:59.000Z

356

Development of bellows and gate valves with a comb-type rf shield for high-current accelerators: Four-year beam test at KEK B-Factory  

SciTech Connect (OSTI)

Since a comb-type rf shield was proposed in 2003 as a rf shield for future high-intensity accelerators, various types of bellow chambers and gate valves with this rf shield have been installed in the KEK B-Factory rings in series and tested with beams. Through beam tests to check the performance, a structural simplification has been tried in parallel. The temperatures of the bellow corrugations decreased by a factor of 3-6 compared to those with a conventional finger-type rf shield in most cases. The temperatures of the body of the gate valves also decreased by a factor of 2-5. These results demonstrated the availability of the comb-type rf shield. Although a discharge was observed in one simplified model, the latest model has shown no problem up to a stored beam current of 1.8 A (1.3 mA/bunch, 6 mm bunch length). Experiences with the comb-type rf shield in these four-year beam tests are reviewed here.

Suetsugu, Yusuke; Kanazawa, Ken-ichi; Shibata, Kyo; Shirai, Mitsuru; Bondar, Aleksander E.; Kuzminykh, Victor S.; Gorbovsky, Aleksander I.; Sonderegger, Kurt; Morii, Minoru; Kawada, Kakuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); VAT Vakuumventile AG, Haag CH-9469 (Switzerland); VAT SKK Vacuum Ltd., Yokohama, Kanagawa 240-0023 (Japan)

2007-04-15T23:59:59.000Z

357

Poster Thur Eve 02: Regulatory oversight of the robotic radiosurgery facilities  

Science Journals Connector (OSTI)

Following a recent review of the Class II Nuclear Facilities and Prescribed Equipment Regulations and regulatory oversight of particle accelerators the Canadian Nuclear Safety Commission (CNSC) has changed its policy concerning the regulation of particle accelerators. In November 2011 the CNSC began to exercise its regulatory authority with respect to all particle accelerators operating at a beam energy of 1 (one) MeV or greater. The CNSC already licences and inspects particle accelerators capable of operating at or above 10 MeV. The decision to now include low energy particle accelerators (i.e. those operating at or above 1 MeV) ensures adequate uniform and consistent regulatory oversight for all Class II accelerators. The CNSC expects these facilities to comply with CNSC requirements by December 2013. Besides conventional linear accelerators of lower energy (6 MeV or below) typically found in cancer clinics two types of equipment now fall under the CNSC's regulatory oversight as a result of the above change: roboticradiosurgery and tomotherapy equipment and facilities. A number of clinics in Canada already operates these types of equipment and facilities. The safety aspects of radiosurgery equipment differ slightly from those for conventional linear accelerators. This poster aims to present an approach taken by the CNSC to regulate roboticradiosurgery equipment and facilities. The presentation will explain how to meet regulatory requirements of the Class II Nuclear Facilities and Prescribed Equipment Regulations by licensees operating or planning to acquire these types of equipment and facilities.

K Broda

2012-01-01T23:59:59.000Z

358

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect (OSTI)

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

359

User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

User User Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page BES User Facilities Brochure .pdf file (7.4MB)Brochure .pdf file (7.4MB) The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well

360

THE MECHANICAL DESIGN AND FABRICATION OF A CONVECTIVELY COOLED ION ACCELERATOR FOR CONTINUOUSLY OPERATING NEUTRAL BEAM SYSTEMS  

E-Print Network [OSTI]

100 kV 1. 5 sec Table 1. Grid heat loads as %beam power. Towith a central separation. Grid heat loading is the dominantsystem. To investigate grid heat loads on our grid designs

Paterson, J.A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

?-function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion source during molecular-beam epitaxy  

Science Journals Connector (OSTI)

Two-dimensional (2D) buried ?-function-shaped Sb-doping profiles have been obtained in Si using a low-energy accelerated Sb-ion source during molecular-beam epitaxy. A combination of secondary-ion mass spectrometry (SIMS), capacitance-voltage (C-V) measurements, and cross-sectional transmission electron microscopy (XTEM) was used to investigate dopant distributions and to determine profile widths. The 2D-sheet Sb-doping concentration NSb, obtained by integrating SIMS ?-doping profiles in samples grown with substrate temperature Ts=620 C and Sb-ion acceleration potentials VSb=200 and 300 V, was found to vary linearly with the product of the Sb-ion flux and the exposure time (i.e., the ion dose) over the NSb range from 51012 to 21014 cm-2. The full width at half maximum (FWHM) concentration of ?-doping profiles in Si(001) films was less than the depth resolution of both SIMS and C-V measurements (?10 and 3 nm, respectively). High-resolution XTEM lattice images show that the FWHM was ?2 nm. This is consistent with dopant incorporation simulations, based upon a multisite transition-state dopant incorporation model, which show that accelerated-beam dopant species are trapped in near-surface substitutional sites with atomic mobilities between those of surface and bulk atoms. Dopant surface segregation during growth is strongly suppressed, and the dopant distribution is determined primarily by the straggle in ion trapping distributions. The present results are compared with profile broadening observed in ?-doped layers obtained by solid-phase epitaxy of amorphous Si containing a buried Sb layer.

W.-X. Ni; G. V. Hansson; J.-E. Sundgren; L. Hultman; L. R. Wallenberg; J.-Y. Yao; L. C. Markert; J. E. Greene

1992-09-15T23:59:59.000Z

362

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING  

E-Print Network [OSTI]

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING LASER WAKEFIELD ACCELERATION Ya. V. Getmanov, O. A acceleration #12;Storage ring with laser injection CYCLIC ACCELERATOR RF Electron injection The LWFA beam ­ accelerating light, 5 ­ accelerated electrons, 6 ­fast kicker - + accelerating laser pulse evaporatinglaser

363

PHYSICAL REVIEW SPECIAL TOPICS -ACCELERATORS AND BEAMS, VOLUME 5, 011001 (2002) Energy doubler for a linear collider  

E-Print Network [OSTI]

, California 90089 W. B. Mori, C. Joshi, R. Hemker, E. S. Dodd, C. E. Clayton, K. A. Marsh, B. Blue, and S. Wang University of California, Los Angeles, Los Angeles, California 90095 R. Assmann, F. J. Decker, M. Hogan, R. Iverson, and D. Walz Stanford Linear Accelerator Center, Stanford University, Stanford

364

Effect of Accelerated Drying on the Reduction of Salmonella on Almonds by Thermal and Electron Beam Irradiation Pasteurization Treatments  

E-Print Network [OSTI]

study of almonds was performed at Texas A&M University to determine whether there was a need for Aw restoration. In this study, the effect of accelerated drying on the reduction of Salmonella on almonds was investigated, Salmonella Entritidis PT 30...

Mohammed, Zahra Hassan

2013-08-08T23:59:59.000Z

365

Shielding of proton accelerators  

Science Journals Connector (OSTI)

......capabilities of an accelerator control system...meant to undergo a nuclear interaction within...the axis of the vacuum chamber. The beam...of high-energy accelerators. Nucl. Instrum...Series, Group I: Nuclear and Particle Physics-Schopper...100-250 MeV proton accelerators: double differential......

Stefano Agosteo; Matteo Magistris; Marco Silari

2011-07-01T23:59:59.000Z

366

Sandia National Laboratories: Scaled Wind Farm Technology Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyScaled Wind Farm Technology Facility Baselining Project Accelerates Work Scaled Wind Farm Technology Facility Baselining Project Accelerates Work Increasing the...

367

Dielectric Wakefield Accelerator to drive the future FEL Light Source.  

SciTech Connect (OSTI)

X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

2011-04-20T23:59:59.000Z

368

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Broader source: Energy.gov (indexed) [DOE]

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

369

Accelerator Challenges and Opportunities for Future Neutrino Experiments  

SciTech Connect (OSTI)

There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

Zisman, Michael S. [Center for Beam Physics, Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2011-10-06T23:59:59.000Z

370

Beam physics in future electron hadron colliders  

E-Print Network [OSTI]

High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL, MEIC at TJNAF in the US, and LHeC at CERN in Europe. This paper will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

Valloni, A; Klein, M; Schulte, D; Zimmermann, F

2013-01-01T23:59:59.000Z

371

Primary beam steering due to field leakage from superconducting SHMS magnets  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

Moore, M.H.; Waidyawansa, B.P.; Covrig, S.; Carlini, R.; Benesch, J.

2014-11-01T23:59:59.000Z

372

Primary Beam Steering Due to Field Leakage from Superconducting SHMS Magnets  

E-Print Network [OSTI]

Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

Michael H. Moore; Buddhini P. Waidyawansa; Silviu Covrig; Roger Carlini; Jay Benesch

2014-06-30T23:59:59.000Z

373

Proposal for the 252Cf source upgrade to the ATLAS facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the 252 Cf source upgrade to the ATLAS facility Physics Division, Argonne National Laboratory Contact persons: Guy Savard, Richard Pardo February 22, 2005 Abstract Beams of accelerated exotic neutron-rich nuclei allow access to little known regions of the nuclear landscape that are important both structurally and for r-process nucleosynthesis. We propose to increase the radioactive beam capabilities of the ATLAS accelerator facility by the installation of a new source of ions to provide beams of short- lived neutron-rich isotopes. These isotopes will be obtained from a 1 Ci 252 Cf fission source located in a large gas catcher from which the radioactive ions will be extracted and transferred to an ECR ion source for charge breeding before acceleration in the

374

Emittance Measurements of the SSRL Gun Test Facility  

SciTech Connect (OSTI)

A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; /SLAC; Meyerhofer, David; Reis, David; /Rochester U.

2011-09-01T23:59:59.000Z

375

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

376

Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line  

SciTech Connect (OSTI)

At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Bai, Sha; /Beijing, Inst. High Energy Phys.; Bambade, Philip; /KEK, Tsukuba; White, Glen; /SLAC

2012-07-02T23:59:59.000Z

377

FACET User Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

378

NEPA CX Determination SS-SC-10-01 for End Station Test Beam (ESTB)  

Broader source: Energy.gov (indexed) [DOE]

0-01 for End Station Test Beam (ESTB) 0-01 for End Station Test Beam (ESTB) National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-10-01 B. Brief Description of Proposed Action: The End Station Test Beam (ESTB) is a new experimental facility that will use 5Hz of the 120 hz 13.6 GeV electron beam from the existing Linac Coherent Light Source (LCLS) to restore test beam capabilities in End Station A (ESA), an existing building at SLAC. In Stage I of this proposal, four new kicker magnets will be added to the Beam Switchyard (BSY) to divert a small fraction of the existing LCLS beam pulses to the A-line for beam instrumentation and accelerator physics studies at full electron beam intensity. The Personnel Protection System in ESA will be

379

Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of  

Office of Science (SC) Website

SUF Home SUF Home Scientific User Facilities (SUF) Division SUF Home About User Facilities Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation of scientific user facilities for the development of novel nano-materials and for materials characterization through x-ray, neutron, and electron beam scattering; the former is accomplished through five Nanoscale Science Research Centers and the latter is accomplished through the world's largest suite of synchrotron radiation light source facilities, neutron scattering facilities, and electron-beam

380

Sequentially pulsed traveling wave accelerator  

DOE Patents [OSTI]

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Courses on Beam Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Physics Beam Physics The following is an incomplete listing of course available for beam physics. United States Particle Accelerator School The US Particle Accelerator School provides educational programs in the field of beams and their associated accelerator technologies not otherwise available to the community of science and technology. Joint Universities Accelerator School Each year JUAS provides a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school is to better our relations by working together on an advanced topical course every two years, alternating between the U.S., western Europe, Japan and Russia. The last set of courses focused on the frontiers of accelerator technology in

382

Commissioning the polarized beam in the AGS  

SciTech Connect (OSTI)

After the successful operation of a high energy polarized proton beam at the Argonne Laboratory Zero Gradient Synchrotron (ZGS) was terminated, plans were made to commission such a beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). On February 23, 1984, 2 ..mu..A of polarized H/sup -/ was accelerated through the Linac to 200 MeV with a polarization of about 65%. 1 ..mu..A was injected into the AGS and acceleration attempts began. Several relatively short runs were then made during the next three months. Dedicated commissioning began in early June, and on June 26 the AGS polarized beam reached 13.8 GeV/c to exceed the previous ZGS peak momentum of 12.75 GeV/c. Commissioning continued to the point where 10/sup 10/ polarized protons were accelerated to 16.5 GeV/c with 40% polarization. Then, two experiments had a short polarized proton run. We plan to continue commissioning efforts in the fall of this year to reach higher energy, higher intensity, and higher polarization levels. We present a brief description of the facility and of the methods used for preserving the polarization of the accelerating beam.

Ratner, L.G.; Brown, H.; Chiang, I.H.; Courant, E.; Gardner, C.; Lazarus, D.; Lee, Y.Y.; Makdisi, Y.; Sidhu, S.; Skelly, J.

1985-01-01T23:59:59.000Z

383

Scoping Inventory Calculations for the Rare Isotope Accelerator  

SciTech Connect (OSTI)

This document is a report on our activities in FY03 exploring nuclear safety and hazard analysis issues relevant to the Rare Isotope Accelerator (RIA). It is not clear whether DOE will classify the RIA as an accelerator facility subject to the accelerator-specific safety requirements of DOE Order 420.2A or as a nonreactor nuclear facility subject to the requirements of 10 CFR 830. The final outcome of this issue will have significant impact on the construction and operation of the facility and the quality assurance requirements for items or services that may affect nuclear safety. The resolution of this issue will be an important earlier decision for the RIA project team and will require early consultation with the appropriate DOE authorities. For nuclear facilities, facility hazard classification depends on the inventory of releasable radionuclides; therefore, some simplistic, scoping inventory calculations for some assumed targets and beams are done to estimate the hazard category of RIA if it is declared a nuclear facility. These calculations show that for the scenarios analyzed, RIA would produce sufficient quantities of radionuclides to be classified as a Category 3 nuclear facility. Over the lifetime of RIA operations, it may be possible to build up Category 2 quantities of {sup 227}Ac and {sup 228}Th. A storage building, separate from the driver, target, and experimental buildings, used to store and isolate accumulated targets and other hardware, can mitigate the potential impact on RIA. The more onerous requirements of Category 2 facilities would only be imposed on the storage facility and not on the rest of the RIA facilities. Some of the differences in a category 2 and category 3 facility are discussed in Appendix 1.

Ahle, L E; Boles, J L

2003-07-25T23:59:59.000Z

384

External Beam Accelerated Partial-Breast Irradiation Using 32 Gy in 8 Twice-Daily Fractions: 5-Year Results of a Prospective Study  

SciTech Connect (OSTI)

Purpose: External beam accelerated partial breast irradiation (APBI) is an increasingly popular technique for treatment of patients with early stage breast cancer following breast-conserving surgery. Here we present 5-year results of a prospective trial. Methods and Materials: From October 2003 through November 2005, 98 evaluable patients with stage I breast cancer were enrolled in the first dose step (32 Gy delivered in 8 twice-daily fractions) of a prospective, multi-institutional, dose escalation clinical trial of 3-dimensional conformal external beam APBI (3D-APBI). Median age was 61 years; median tumor size was 0.8 cm; 89% of tumors were estrogen receptor positive; 10% had a triple-negative phenotype; and 1% had a HER-2-positive subtype. Median follow-up was 71 months (range, 2-88 months; interquartile range, 64-75 months). Results: Five patients developed ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial IBTR rate of 5% (95% confidence interval [CI], 1%-10%). Three of these cases occurred in patients with triple-negative disease and 2 in non-triple-negative patients, for 5-year actuarial IBTR rates of 33% (95% CI, 0%-57%) and 2% (95% CI, 0%-6%; P<.0001), respectively. On multivariable analysis, triple-negative phenotype was the only predictor of IBTR, with borderline statistical significance after adjusting for tumor grade (P=.0537). Conclusions: Overall outcomes were excellent, particularly for patients with estrogen receptor-positive disease. Patients in this study with triple-negative breast cancer had a significantly higher IBTR rate than patients with other receptor phenotypes when treated with 3D-APBI. Larger, prospective 3D-APBI clinical trials should continue to evaluate the effect of hormone receptor phenotype on IBTR rates.

Pashtan, Itai M. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States)] [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Brachtel, Elena [Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts (United States); Abi-Raad, Rita F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); D'Alessandro, Helen A. [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Levy, Antonin; Wo, Jennifer Y. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Kachnic, Lisa A. [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Goldberg, Saveli [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michelle; Smith, Barbara L. [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

2012-11-01T23:59:59.000Z

385

Neutron Scattering Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Neutron Scattering Facilities Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports the operation of three DOE neutron scattering facilities, which are unique and effective tools for probing the structure of matter. Neutron scattering is particularly well-suited for determining the atomic positions of both light and heavy atoms in a solid and thermal fluctuations in these positions. In addition the neutron

386

Undergraduate Research at Jefferson Lab - Determining Electron Beam Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pretzelosity Distribution Pretzelosity Distribution Previous Project (Pretzelosity Distribution) Undergraduate Research Main Index Next Project (Buffered Chemical Polishing) Buffered Chemical Polishing Determining Electron Beam Energy through Spin Precession Methods Student: Gina Mayonado School: McDaniel College Mentored By: Douglas Higinbotham Nuclear physics experiments at Jefferson Lab require that the beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator be known to 0.01%. The g-2 spin precession of the electrons as they circulate in the machine can be used to determine the beam energy without relying on the absolute calibration of magnets and devices required for other methods. The precision of this approach needed to be fully investigated. Spin precession methods were investigated by writing an Apple application to

387

C-AD Accelerator Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

388

The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study  

SciTech Connect (OSTI)

An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

Liu, Ming; Moxom, Jeremy; Hawari, Ayman I. [Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695 (United States); Gidley, David W. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor MI 48109 (United States)

2013-04-19T23:59:59.000Z

389

Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators  

SciTech Connect (OSTI)

A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.

Cheng Xinbing; Liu Jinliang; Qian Baoliang; Zhang Yu; Zhang Hongbo [College of Photoelectrical Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

2009-11-15T23:59:59.000Z

390

Mechanical Design Engineering, MDE, Accelerator Operations and Technology,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Design & Engineering, MDE Mechanical Design & Engineering, MDE About Us AOT Home Teams Design Diagnostics ETL Shops Vacuum CONTACTS Group Leader Michael Borden Deputy Group Leader Jim O'Hara Office Administrator Molly Herrera Phone: (505) 667-6971 Put a short description of the graphic or its primary message here Mechanical Design Engineering AOT's Mechanical Design Engineering (AOT-MDE) Group supports operations for the Los Alamos Neutron Science Center (LANSCE) beam-delivery complex, which includes the accelerator, Proton Storage Ring (PSR), and associated beam-transfer lines. (These lines provide the proton beam to the Manuel Lujan, Jr., Neutron Scattering Center, Weapons Neutron Research Facility, Isotope Production Facility, and several experimental areas.) AOT-MDE's primary responsibilities include

391

High current electron linacs (advanced test accelerator/experimental test accelerator)  

SciTech Connect (OSTI)

The high current induction accelerator development at the Lawrence Livermore National Laboratory is described. The ATA facility is designed for 10 kA peak currents, 50 nsec pulse lengths and 50 MeV energies. At this time, half of the design current has been accelerated through the entire machine to particle energies of about 45 MeV. Current problem areas and operational experience to date will be discussed. Several key technical areas required development for the ATA machine; this report will survey these developments. The control of transverse beam instabilities required an accelerating cavity design with very low Q. Electron sources capable of 10 kA operation at high rep rates were developed using a plasma sparkboard approach. The pulse power systems on ATA, using the same type of spark gap switches as ETA, have exhibited excellent operational reliability.

Briggs, R.J.

1984-04-30T23:59:59.000Z

392

E-Print Network 3.0 - accelerator controls system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility (ATF) Summary: ., Vista Control Systems, Omega-P Inc., STI Optronics, TR Research Inc. Universities: Catholic U., U... FACTS Accelerator Test Facility...

393

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

394

Accelerators and the Accelerator Community  

E-Print Network [OSTI]

of electrostatic accelerators, while Ernest O. Lawrence (CBP 820 LBNL TBA ACCELERATORS ANDTHE ACCELERATOR COMMUNITY 1 ANDREW SESSLER Lawrence Berkeley

Malamud, Ernest

2009-01-01T23:59:59.000Z

395

A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region  

SciTech Connect (OSTI)

A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

Schmitz, David W.; /Columbia U.

2008-01-01T23:59:59.000Z

396

Ion Beam Materials Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

397

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

398

Accelerators, Electrodynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Capabilities Accelerators, Electrodynamics science-innovationassetsimagesicon-science.jpg Accelerators, Electrodynamics National security depends...

399

E-Print Network 3.0 - accelerator mass spectrometry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerator mass... ATLAS Argonne Tandem Linear Accelerator System The prime national facility for nuclear structure... , accelerated in the world's first superconducting linear...

400

Plasma Wakefield Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University  

SciTech Connect (OSTI)

Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy at ~5MeV. Simulation shows that in the 3+1/2 DC- C injector, there is a region the beam could be over focused by RF electromagnetic field and the transverse emittance in the transport line up to linac will increase instantly due to over focusing. In order to eliminate this effect on beam emittance, several solutions are investigated to avoid over focusing. This result is very important for beam loading experiment for low bunch charge operation. Meanwhile, different merger structures are compared in terms of error sensitivity and emittance increase with space charge effect. In recirculation beam line, a new symmetric 180{degree} arc structure is designed. It fulfills the achromatic condition and adjustable bunch compression. These two parameters are controlled by different Quads knob. With this novel structure, the recirculation lattice can achieve path length adjustment, bunch compression and decompression in a large range. With beamline error, the beam central orbit will deviate from the designed trajectory. An orbit correction system is optimized, which balances between cost and performance of orbit after correction at design level. Different methods are used to estimate its robustness. The BBU instability, especially multi-pass BBU imposed a potentially severe limitation to the average current that can be accelerated in an ERL. Simulation gives the harmful HOMs and predicts that the threshold average current in this machine is much higher than the possible operation current. This work is based on the existing facility in PKU, so it provides guidelines for the facility operation and upgrade in the future. The theoretical analysis of ERL requirement and FEL requirement on beam transport line and beam property paves the way for future ERL research.

Guimei Wang

2011-12-31T23:59:59.000Z

402

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect (OSTI)

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

403

Status of the CLIC/CTF Beam Instrumentation R&D  

E-Print Network [OSTI]

The Compact Linear Collider (CLIC) is an e+/e- collider based on the two-beam acceleration principle, proposed to support precision high-energy physics experiments in the energy range 0.5-3 TeV [1]. To achieve a high luminosity of up to 6x1034cm-2s-1, the transport and preservation of a low emittance beam is mandatory. A large number and great variety of beam diagnostics instruments is foreseen to verify and guarantee the required beam quality. We discuss the status of the beam diagnostics developments and experimental results accomplished at the CLIC Test Facility (CTF) and at the Cornell University CesrTA ring accelerator.

Benot-Morell, A; Bobb, L; Bravin, E; Lefevre, T; Locci, F; Magnoni, S; Mazzoni, S; Nebot del Busto, E; Pan, R; Towler, J; Wendt, M; Gillespie, W A; Walsh, D A; Jamison, S P; Aumeyr, T; Boogert, S; Karataev, P; Lyapin, A; Snuverink, J; Nappa, J M; Vilalte, S

2014-01-01T23:59:59.000Z

404

ATA beam director experiment  

SciTech Connect (OSTI)

This report describes beam director elements for an experiment at the Advanced Test Accelerator. The elements described include a vernier magnet for beam aiming, an achromat magnet, and an isolation system for the beam interface. These components are built at small scale for concept testing. (JDH)

Lee, E.P.; Younger, F.C.; Cruz, G.E.; Nolting, E.

1986-06-23T23:59:59.000Z

405

P-23 Highlights 6/10/12: Cygnus Dual Beam Radiographic Facility Refurbishment completed at U1A tunnel in Nevada NNSS meeting Level 2 milestone  

SciTech Connect (OSTI)

A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This tool consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items were delayed due to programmatic requirements. It is anticipated that Cygnus will be in service at U1a for another 5 years. With this assumption, it was realized that significant resources and effort should be allotted to bring the hardware back to its original condition, or even to improve elements when appropriate. The Cygnus Refurbishment and Enhancement Project started in April, 2011 with the intent to encompass a major overhaul of Cygnus.

Deyoung, Anemarie [Los Alamos National Laboratory; Smith, John R. [Los Alamos National Laboratory

2012-05-03T23:59:59.000Z

406

LANSCE beam current limiter  

SciTech Connect (OSTI)

The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

Gallegos, F.R.

1996-06-01T23:59:59.000Z

407

Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel  

SciTech Connect (OSTI)

The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B. [UCLA Physics Dept., Los Angeles, CA 90066 (United States); Ruelas, M. [RadiaBeam Technologies, Marina Del Ray, CA 90292 (United States)

2009-01-22T23:59:59.000Z

408

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

409

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

410

E-Print Network 3.0 - accelerated radioactive ion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Ion Beam Facility A leading international facility with unique... light-ion beams from the Oak Ridge Isochronous Cyclotron and ... Source: Controlled Fusion Atomic Data...

411

Polarization measurement of laser-accelerated protons  

SciTech Connect (OSTI)

We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf [Institut fr Kernphysik and Jlich Center for Hadron Physics, Forschungszentrum Jlich, 52425 Jlich (Germany)] [Institut fr Kernphysik and Jlich Center for Hadron Physics, Forschungszentrum Jlich, 52425 Jlich (Germany); Bscher, Markus, E-mail: m.buescher@fz-juelich.de [Institut fr Kernphysik and Jlich Center for Hadron Physics, Forschungszentrum Jlich, 52425 Jlich (Germany) [Institut fr Kernphysik and Jlich Center for Hadron Physics, Forschungszentrum Jlich, 52425 Jlich (Germany); Peter Grnberg Institut (PGI-6), Forschungszentrum Jlich, 52425 Jlich (Germany); Institute for Laser- and Plasma Physics, Heinrich-Heine Universitt Dsseldorf, Universittsstr. 1, 40225 Dsseldorf (Germany); Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald [Institute for Laser- and Plasma Physics, Heinrich-Heine Universitt Dsseldorf, Universittsstr. 1, 40225 Dsseldorf (Germany)] [Institute for Laser- and Plasma Physics, Heinrich-Heine Universitt Dsseldorf, Universittsstr. 1, 40225 Dsseldorf (Germany); Gibbon, Paul; Karmakar, Anupam [Institute for Advanced Simulation, Jlich Supercomputing Centre, Forschungszentrum Jlich, 52425 Jlich (Germany)] [Institute for Advanced Simulation, Jlich Supercomputing Centre, Forschungszentrum Jlich, 52425 Jlich (Germany)

2014-02-15T23:59:59.000Z

412

Shockwave and detonation studies at ITEP-TWAC proton radiography facility  

Science Journals Connector (OSTI)

In recent years studies of shock and detonation wave phenomena at extreme dynamic conditions were performed at proton radiography facility developed at the 800 MeV proton beam line of ITEP Terawatt Accelerator (ITEP-TWAC). The facility provides a multi-frame imaging capability at 50 ?m spatial and 70 ns temporal resolution. The results of latest studies conducted there are presented including explosion and detonation of pressed and emulsion high explosives shock-induced dense non-ideal plasma of argon and xenon and shock loading of non-uniform metal surfaces. New compact explosive generators developed specifically for a use at proton radiography facilities are also presented.

2012-01-01T23:59:59.000Z

413

Accelerator Modeling with MATLAB Accelerator Toolbox  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources.

Terebilo, Andrei

2002-08-21T23:59:59.000Z

414

Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation  

SciTech Connect (OSTI)

Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with conventional WBI.

Rodrguez, Nria, E-mail: nrodriguez@parcdesalutmar.cat [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Sanz, Xavier [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Dengra, Josefa [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Foro, Palmira [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Membrive, Ismael; Reig, Anna [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Quera, Jaume [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Fernndez-Velilla, Enric; Pera, scar; Lio, Jackson; Lozano, Joan [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Algara, Manuel [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain)

2013-12-01T23:59:59.000Z

415

User Facility Access Policy | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Access Policy Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the facility was upgraded to a state-of-the-art third generation lightsource in 2004, providing major improvements in emittance, ring current and new or upgraded beam lines. SSRL's research programs include both the x-ray and ultraviolet regions of the spectrum. SSRL is primarily supported by the DOE Offices of Basic Energy Sciences

416

North Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

417

REVIEW ARTICLE Taming molecular beams  

E-Print Network [OSTI]

REVIEW ARTICLE Taming molecular beams The motion of neutral molecules in a beam can be manipulated time-varying fields can be used to decelerate or accelerate beams of molecules to any desired velocity. We review the possibilities that this molecular-beam technology offers, ranging from ultrahigh

Loss, Daniel

418

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

419

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect (OSTI)

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

420

Accelerator Driven System Target Requirements and R&D  

E-Print Network [OSTI]

-nosed assessment, addressing the technical requirements for ADS the current status and readiness of accelerator #12;Accelerator Driven Systems High-power, highly reliable proton accelerator · ~1 GeV beam energy · ~1 MW of beam power for demonstration · Tens of MW beam power for Industrial-Scale System Spallation

McDonald, Kirk

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fixed target facility at the SSC  

SciTech Connect (OSTI)

The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures.

Loken, S.C.; Morfin, J.G.

1985-01-01T23:59:59.000Z

422

FPGA-based Particle Recognition in the HADES Abstract--Modern FPGA technologies are often employed in nuclear and particle physics experimental facilities to accelerate  

E-Print Network [OSTI]

1 FPGA-based Particle Recognition in the HADES Experiment Abstract--Modern FPGA technologies-specific computation. We present the particle recognition computation for the HADES experiment in this article of commodity PCs for the HADES experiment. Index Terms--reconfigurable computing, FPGA accelerator, pattern

Jantsch, Axel

423

New Ion Beam Materials Laboratory for Materials Modification and Irradiation Effects Research  

SciTech Connect (OSTI)

A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion-solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

Zhang, Yanwen [ORNL; Crespillo, Miguel L [University of Tennessee (UT); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Jin, Ke [University of Tennessee, Knoxville (UTK); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Fontana, Cristiano L [ORNL; Graham, Dr. Joseph T. [The University of Tennessee; Weber, William J [ORNL

2014-01-01T23:59:59.000Z

424

The Conceptional Design of the Shielding Layout and Beam Absorber at the PXIE  

SciTech Connect (OSTI)

Project X is a high intensity proton facility conceived to support a world-leading physics program at Fermilab. Project X will provide high intensity beams for neutrino, kaon, muon, and nuclei based experiments and for studies supporting energy applications. The Project X Injector Experiment (PIXIE) is a prototype of the Project X front end. A 30 MeV 50 kW beam will be used to validate the design concept of the Project X. This paper discusses a design of the accelerator enclosure radiation shielding and the beam dump.

Eidelman, Yu.; Kerby, J.; Lebedev, V.; Leibfritz, J.; Leveling, T.; Nagaisev, S.; Stanek, R.; /Fermilab

2012-05-14T23:59:59.000Z

425

Accelerators for Testing Radiation Tolerances of Electronics...  

Office of Science (SC) Website

Text Size: A A A FeedbackShare Page Applicationinstrumentation: Accelerated beams test semiconductor devices for tolerances to space radiation. Developed at: Texas A&M...

426

Design for a fusion materials irradiation facility  

SciTech Connect (OSTI)

A fusion materials irradiation facility is required for the timely and cost-effective development of economical fusion power. Our conceptual machine provides sufficient neutron fluence for accelerated lifetime material tests in a time span of 1--2 y while producing less than 1 MW of fusion power. Neutral deuterium beams at 150 keV are injected into the center of a high-density warm tritium plasma housed in a 12-m-long cylindrical vessel. Superconducting magnets hold the plasma, which transfers the power to each end of the solenoid. The stainless steel end sections absorb the beam power and are externally cooled by high-pressure water to maintain the plasma-side wall temperature below 740 K. A service loop separates tritium from deuterium in the plasma effluent. Tritium is reinjected at each end. 9 refs., 2 figs., 2 tabs.

Walter, C.E.; Coensgen, F.H.

1988-09-02T23:59:59.000Z

427

User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research & Development Principal...

428

SuperB Progress Report for Accelerator  

SciTech Connect (OSTI)

This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

2012-02-14T23:59:59.000Z

429

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Organization The Argonne Accelerator Institute is a matrixed organization. Its members and fellows reside in programmatic Argonne divisions. The Institute reports to the Associate Laboratory Director for Photon Science), and the administrative functions of the Institute are within the PSC directorate. Director: Rodney Gerig Associate Director: Hendrik Weerts ( Director of High Energy Physics Division) Associate Director: Sasha Zholents (Director of Accelerator Systems Division) Associate Director: Robert Janssens ( Director of Argonne Physics Division)

430

Accelerator Toolbox for MATLAB  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks.

Terebilo, Andrei

2001-05-29T23:59:59.000Z

431

Time Structure of the LANSCE Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam One of the greatest strengths of the LANSCE facility is that it can produce proton beams with a wide range of time structures. Time Structure of the LANSCE Beam One of the...

432

Polarimeter for an Accelerated Spheromak.  

E-Print Network [OSTI]

??A three-beam heterodyne polarimeter has been designed and constructed to measure line-integrated density and Faraday rotation of accelerated spheromak plasmas in the Plasma Injector 1 (more)

Carle, PATRICK

2014-01-01T23:59:59.000Z

433

Proton beam on lithium film experiment for the FRIB stripper - Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering Experimentation > High Power Accelerator Components > Proton beam on lithium film experiment... Capabilities Engineering Experimentation Reactor Safety Testing and Analysis High Power Accelerator Components Proton beam on lithium film experiment for the FRIB stripper Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Proton beam on lithium film experiment for the FRIB stripper 1 2 Argonne National Laboratory has developed a liquid lithium charge stripper for use in the Facility for Rare Isotope Beams (FRIB) located at Michigan State University. FRIB will provide intense beams of rare isotopes that can not be handled by ordinary means, creating a challenge to find a workable concept for the charge stripper and to test it in a beamline environment. Argonne's experiment showed, for the first time, the operation of a liquid lithium stripper under realistic conditions of beam-deposited power, and verified that the liquid lithium film was not perturbed by a high power density beam.

434

Novel ASTA Users Facility At Fermilab: A Testbed For Superconducting RF Technology And ERL R&D  

E-Print Network [OSTI]

The Advanced Superconducting Test Accelerator (ASTA) currently under commissioning at Fermilab will enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SRF) linac coupled to a photoinjector and small-circumference storage ring capable of storing electrons or protons. ASTA will establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high-brightness beam applications, including ERLs. The unique features of ASTA include: (1) a high repetition-rate, (2) one of the highest peak and average brightness within the U.S., (3) a GeV-scale beam energy, (4) an extremely stable beam, (5) the availability of SRF and high quality beams together, and (6) a storage ring capable of supporting a broad range of ring-based advanced beam dynamics experiments. These unique featur...

Shiltsev, V

2014-01-01T23:59:59.000Z

435

Realizing novel accelerator concepts in an X-band photo-injector  

SciTech Connect (OSTI)

In this project we propose to investigate the use of novel accelerator structure cell geometry to enhance the performance of X-band photo-injectors. Making novel accelerator concepts possible involves fabrication and testing of components to ensure that the performance predicted by simulation is robustly achievable. This work is important because photo-injectors are increasingly used to provide high brightness electron beams for light sources, pushing their performance to the limits, but also requiring them to be user-facility stable. Careful investigation in both computer simulation and design, and low power testing of piece parts will enable the successful fabrication of an advanced X-band photo-injector.

Marsh, R

2010-04-13T23:59:59.000Z

436

New Wind Test Facilities Open in Colorado and South Carolina  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

437

Colorado and South Carolina: New Wind Test Facilities Open  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

438

BNL | Accelerators for Applied Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

439

A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source  

SciTech Connect (OSTI)

This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present, no others are planned.

Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

1982-09-01T23:59:59.000Z

440

RAON experimental facilities for nuclear science  

Science Journals Connector (OSTI)

The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named RAON. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei the equation of state of nuclear matter the origin of the universe process of nucleosynthesis super heavy elements etc. Various high performance magnetic spectrometers for nuclear science have been designed which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus) LAMPS (Large Acceptance Multi-Purpose Spectrometer) and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

Y. K. Kwon; Y. K. Kim; T. Komatsubara; J. Y. Moon; T. S. Shin; Y. J. Kim

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A High Intensity Linear e+ e- Collider Facility at Low Energy  

E-Print Network [OSTI]

I discuss a proposal for a high intensity $e^+e^-$ linear collider operated at low center of mass energies $\\sqrt{s}intensity beams. Such a facility would provide high statistics samples of (charmed) vector mesons and would permit searches for LFV with unprecedented precision in decays of $\\tau$ leptons and mesons. Implications on the design of the linear accelerator are discussed together with requirements to achieve luminosities of $10^{35}$ cm$^{-2}$s$^{-1}$ or more.

A. Schoning

2006-10-23T23:59:59.000Z

442

LASER ACCELERATORS  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA Accelerator & Fusion Researchat the 1983 Particle Accelerator Conference, Santa Fe, NM,March 21-23, 1983 LASER ACCELERATORS A.M. Sessler TWO-WEEK

Sessler, A.M.

2008-01-01T23:59:59.000Z

443

Neutral beam monitoring  

DOE Patents [OSTI]

Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

Fink, Joel H. (Livermore, CA)

1981-08-18T23:59:59.000Z

444

R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM  

SciTech Connect (OSTI)

This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

2010-02-24T23:59:59.000Z

445

About the Neutron and Nuclear Science Research (WNR) facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Neutron and Nuclear Science (WNR) Facility The Neutron and Nuclear Science (WNR) Facility provides neutron and proton beams and detector arrays for basic, applied,...

446

Conception design of helium ion FFAG accelerator with induction accelerating cavity  

E-Print Network [OSTI]

In the recent decades of particle accelerator R&D area, fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost, although there are still some technical challenges. In this paper, FFAG accelerator is adopted to accelerate helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of FFAG accelerator and exploring the possibility of developing high power FFAG accelerators. The conventional period focusing unit of helium ion FFAG accelerator and three-dimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given. For low energy and low revolution frequency, induction acceleration is proposed to replace conventional radio frequency(RF) acceleration for helium ion FFAG accelerator, which avoids the potential breakdown of acceleration field caused by wake field and improves the acceleratio...

Huan-li, Luo; Xiang-qi, Wang; Hong-Liang, Xu

2013-01-01T23:59:59.000Z

447

Modern electron accelerators for radiography  

SciTech Connect (OSTI)

Over the past dozen years or so there have been significant advances in electron accelerators designed specifically for radiography of hydrodynamic experiments. Accelerator technology has evolved to accomodate the radiographers' contitiuing quest for multiple images in t h e and space:, improvements in electron beam quality have resulted in smaller radiographic spot sizes for better resolution, while higher radiation do% now provides imprcwed penetration of large, dense objects. Inductive isolation and acceleration techniques have played a ley rob in these advances.

Ekdahl, C. A. (Carl A.)

2001-01-01T23:59:59.000Z

448

100 MeV laser accelerator demonstration and 1 GeV baseline design development. 1992 Annual report  

SciTech Connect (OSTI)

The acceleration of relativistic electrons using the inverse Cerenkov effect was first demonstrated at Stanford University in 1981. Later, Fontana and Pantell developed an improved configuration for the inverse Cerenkov acceleration (ICA) process. A radially polarized laser beam is focused by an axicon onto the e-beam traveling through a gas-filled interaction region. The light intersects the e-beam at the Cerenkov angle {theta}{sub c}, where {theta}{sub c} = cos{sup {minus}1}(1/n{beta}), n is the index of refraction of the gas, and {beta} is the ratio of the electron velocity to the speed of light. The goal of the present program is to demonstrate improved laser acceleration using the Fontana and Pantell configuration. The experiments will be performed on the Accelerator Test Facility (ATF) located at Brookhaven National Laboratory (BNL). This facility features a 50 MeV linac fed by a Nd:YAG (4{omega}) laser-driven photocathode e-gun. It will be upgraded to 65 MeV in the near future. The ATF also has a high peak power CO{sub 2} laser, which was developed for laser acceleration studies. The present ICA experiment was divided into two phases. Phase 1 was to examine certain experimental issues in preparation for Phase 2. Phase 1 was successfully completed in the spring of 1992. Phase 2 is to perform the actual laser acceleration experiments on the ATF e-beam. The authors are currently waiting for the availability of the e-beam so that they can begin the Phase 2 experiments. In this section, the theory and experimental hardware for the present program are described. The results of the Phase 1 experiments are presented, and an update on the Phase 2 experiment is given.

Not Available

1992-12-01T23:59:59.000Z

449

Accelerators for Testing Radiation Tolerances of Electronics at TAMU | U.S.  

Office of Science (SC) Website

Accelerators for Testing Radiation Accelerators for Testing Radiation Tolerances of Electronics at TAMU Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Accelerators for Testing Radiation Tolerances of Electronics at TAMU Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Accelerated beams test semiconductor devices for tolerances to space

450

Cryogenic supply for accelerators and experiments at FAIR  

SciTech Connect (OSTI)

In the coming years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be built at GSI. In the final construction FAIR consists of synchrotrons and storage rings with up to 1,100 meters in circumference, two linear accelerators and about 3.5 kilometers beam transfer lines. The existing GSI accelerators serve as pre-accelerators. Partly the new machines will consist of superconducting magnets and therefore require a reliable supply with liquid helium. As the requirements for the magnets is depending on the machine and have a high variety, the cooling system is different for each machine; two phase cooling, forced flow cooling and bath cooling respectively. In addition the cold mass of the individual magnets varies between less than 1t up to 80t and some magnets will cause a dynamic heat load due to ramping that is higher than the static loads. The full cryogenic system will be operated above atmospheric pressure. The refrigeration and liquefaction power will be provided by two main cryogenic plants of 8 and 25 kW at 4K and two smaller plants next to the experiments.

Kauschke, M.; Xiang, Y.; Schroeder, C. H.; Streicher, B.; Kollmus, H. [GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Planckstrae 1,64291 Darmstadt (Germany)

2014-01-29T23:59:59.000Z

451

NREL: Energy Systems Integration Facility - Research Themes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

laboratory. Researchers use the testing and simulation capabilities of the Energy Systems Integration Facility to accelerate grid modernization research, development, and...

452

Fermilab's Accelerator and Research Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 19, 1996 July 19, 1996 Number 14 Fixed-target experimenters not only expect Fermilab's Accelerator and Research Divisions to turn water into wine-they need 10 different vintages. Providing beam to fixed-target experiments presents the challenge of converting high-inten- sity protons into 10 separate beams of varying intensities and particles, from kaons to neu- trinos. The Accelerator Division generates and splits the beam, and then hands the protons off to the Research Division, which converts them into beams of different particles. The process begins with a breath of hydrogen gas. Eventually the hydrogen atoms lose their outer electrons and become a stream of protons-the formation of the beam. Physicists measure two characteristics of the beam: its energy (eV) and its intensity. Intensity

453

Calculational analysis of structural activation induced by 20-100 MeV proton beam loss in high-power linear accelerators  

E-Print Network [OSTI]

to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on...

Lee, Stacey Kirsten

2012-06-07T23:59:59.000Z

454

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

455

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents [OSTI]

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

456

Review of Heavy-ion Induced Desorption Studies for Particle Accelerators  

E-Print Network [OSTI]

During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

Mahner, E

2008-01-01T23:59:59.000Z

457

Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator  

SciTech Connect (OSTI)

In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

2011-11-11T23:59:59.000Z

458

E-Print Network 3.0 - advanced accelerator experimental Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NIU), where advanced accelerator concepts and beam manipulation techniques... accelerators are among the most powerful scientific instruments mankind has built. They are...

459

E-Print Network 3.0 - acceleration linear collider Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PARTICLES Electrons can be produced by Summary: is invariant Many current particle accelerators are used to collide high energy particle beams. The majority... of accelerators are...

460

E-Print Network 3.0 - accelerating monoenergetic protons Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26 proposed an acceleration scheme for the generation of monoenergetic proton beams, where all... in the charge density, which accelerates those protons close to the...

Note: This page contains sample records for the topic "beam accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - accelerated retrieval project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

462

Microsoft Word - Designated_User_Facilities_April_13_2010  

Broader source: Energy.gov (indexed) [DOE]

4/13/2010 4/13/2010 DOE Designated Scientific User Facilities Laboratory/Facility Argonne National Laboratory Advanced Photon Source (APS) Intense Pulsed Neutron Source (IPNS) Electron Microscopy Center for Materials Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National Laboratory Scanning Transmission Electron Microscope Facility National Synchrotron Light Source (NSLS) Accelerator Test Facility (ATF) Relativistic Heavy Ion Collider (RHIC) Center for Functional Nanomaterials Fermi National Accelerator Laboratory 1,000 GeV Superconducting Accelerator System

463

Energy Production Demonstrator for Megawatt Proton Beams  

E-Print Network [OSTI]

A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

Vitaly S. Pronskikh; Nikolai Mokhov; Igor Novitski; Sergey I. Tyutyunnikov

2014-07-16T23:59:59.000Z

464

HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

by university grants. As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator...

465