Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE - Office of Legacy Management -- Bayo Canyon NM Site - NM 01  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bayo Canyon NM Site - NM 01 Bayo Canyon NM Site - NM 01 FUSRAP Considered Sites Bayo Canyon, NM Alternate Name(s): Bayo Canyon Area Bayo Canyon (TA-10) Site NM.01-2 Location: Canyon in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.01-3 Historical Operations: Used in 1944-1961 by the MED and later AEC at Los Alamos National Laboratory as a firing site for conventional and high-explosives experiments involving natural and depleted uranium, strontium, and lanthanum as a radiation source for blast diagnosis. NM.01-3 NM.01-5 Eligibility Determination: Eligible NM.01-1 Radiological Survey(s): Assessment Survey NM.01-3 Site Status: Certified- Certification Basis NM.01-5 NM.01-6 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

2

bayo.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bayo Bayo Canyon, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Bayo Canyon, New Mexico, Site is located approximately 3 miles west of Los Alamos, New Mexico, 25 miles northwest of Santa Fe, and 60 miles north-northeast of Albuquerque. Partly in Los Alamos County and partly in Santa Fe County, Bayo Canyon is one of numerous canyons that cut into the Pajarito Plateau in north-central New Mexico. The U.S. government owned the site from 1943 to 1967 as part of the Los Alamos National Laboratory (LANL) operations. The Manhattan Engineer District (MED) constructed facilities in Bayo Canyon in 1943 and 1944. MED and later the U.S. Atomic Energy Commission (AEC) used the site between 1944 and 1961 as a firing range for high explosive experiments in conjunction with research on nuclear development. These explosions

3

Beneficial Reuse at Bodo Canyon Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Environmental Justice » Beneficial Reuse at Bodo Services » Environmental Justice » Beneficial Reuse at Bodo Canyon Site Beneficial Reuse at Bodo Canyon Site The George Washington University Environmental Resource Policy Graduate Program Capstone Project Beneficial Reuse at Bodo Canyon Site Feasibility and Community Support for Photovoltaic Array May 2012 The George Washington University Environmental Resource Policy Graduate Program Capstone Project was an analysis of LM's efforts to support the installation of a commercial solar photovoltaic system at the former uranium mill site near Durango, Colorado. Beneficial Reuse at Bodo Canyon Site More Documents & Publications EA-1770: Final Environmental Assessment Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

4

FINDING OF MD SIGNIFICANT IMPACT FORMERLY UTILIZED HED/AEC SITES REMEDIAL ACTION PROGRAM:  

Office of Legacy Management (LM)

FINDING OF MD SIGNIFICANT IMPACT FINDING OF MD SIGNIFICANT IMPACT FORMERLY UTILIZED HED/AEC SITES REMEDIAL ACTION PROGRAM: BAY0 CANYONS, NEW MEXICO Under the Formerly Utilized Sites Remedial Action Program (FUSRAP), the U.S. Department of Energy (DOE) has proposed to carry out rcmedfrl action at a site located in Bayo Canyon, Los Alamos County, New Mexico. Although the site as partially decontaminated and decommissioned in the 196Os, there remain above-background amounts of radionuclides. DOE has determined that strontium-90 in excess of DDE's proposed remedial- action criterir exists in subsurface materials underlying an area of about 0.6 ha (1.5 acres) at the Bayo Canyon site. The proposed action is to demarcate this are8 and restrict its use to activities that will not disturb this sub-

5

Savannah River Sites H Canyon Work Ensures Future Missions for Facility  

Broader source: Energy.gov [DOE]

EM and its primary contractor at the Savannah River Site (SRS) safely completed 16 facility modifications three months ahead of schedule in support of the continued operation and sustainability of the H Canyon facility.

6

DOE - Office of Legacy Management -- LM Sites Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LM Sites Map LM Sites Map LM Sites LM Sites Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Disposal Site BONUS Decommissioned Reactor Buffalo Site Burrell Disposal Site CEER Sites Canonsburg Disposal Site Central Nevada Test Area Site Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site Colonie Site Columbus Sites Columbus East Site Durango Disposal Site Durango Processing Site

7

DOE - Office of Legacy Management -- LM Sites Map  

Office of Legacy Management (LM)

LM Sites Map LM Sites Map LM Sites LM Sites Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Disposal Site BONUS Decommissioned Reactor Buffalo Site Burrell Disposal Site CEER Sites Canonsburg Disposal Site Central Nevada Test Area Site Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site Colonie Site Columbus Sites Columbus East Site Durango Disposal Site Durango Processing Site

8

DOE/EV-0005/15 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

5 5 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/15 UC-71 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545 Under Contract No. W-7405-ENG-36 Available from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

9

Savannah River Site's H Canyon Begins 2012 with New and Continuing  

Broader source: Energy.gov (indexed) [DOE]

Site's H Canyon Begins 2012 with New and Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 Savannah River Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 January 1, 2012 - 12:00pm Addthis H Canyon, above, and HB-Line are scheduled to soon begin dissolving and purifying plutonium currently stored at the Savannah River Site to demonstrate the capability to produce oxide material that meets the Mixed Oxide Facility (MOX) feedstock specifications. The production process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies.

10

RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY  

SciTech Connect (OSTI)

The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

Sexton, L.; Fuller, Kenneth

2013-07-09T23:59:59.000Z

11

Completed Sites Listing  

Broader source: Energy.gov (indexed) [DOE]

Hallam Nuclear Power Facility, NE Hallam Nuclear Power Facility, NE 1969 1998 2. Piqua Nuclear Power Facility, OH 1969 1998 3. Bayo Canyon, NM 1982 1998 4. Kellex/Pierpont, NJ 1982 1998 5. University of California, CA 1982 1998 6. Acid/Pueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex Municipal Landfill, NJ 1987 2000 11. Niagara Falls Storage Site Vicinity Properties, NY 1987 2001 12. Salt Lake City, UT 1989 2001 13. Spook, WY 1989 2001 14. National Guard Armory, IL 1989 2002 15. University of Chicago, IL 1989 2005 16. Green River, UT 1990 2005 17. Lakeview, OR 1990 2006 18. Riverton, WY 1990 2006 19. Tuba City, AZ 1990 2006 20 Durango, CO 1991 2007 21. Lowman, ID 1992 2007 22. Pagano Salvage Yard, NM 1992 2007 23. Elza Gate, TN 1992 2007 24. Albany Research Center, OR

12

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

Not Available

1994-03-01T23:59:59.000Z

13

Process centrifuge operating problems and equipment failures in canyon reprocessing facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Site (SRS). At present, the data bank contains more than 230,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the canyon process centrifuges. This report contains a compilation of the centrifuge operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 11 refs., 2 figs., 4 tabs.

Durant, W.S.; Baughman, D.F.

1990-03-01T23:59:59.000Z

14

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

NONE

1995-11-01T23:59:59.000Z

15

Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex  

SciTech Connect (OSTI)

This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

Clark, T.G.

2000-12-01T23:59:59.000Z

16

Untitled-1  

Office of Legacy Management (LM)

fact sheet provides information about the Bayo Canyon, New Mexico, Site. fact sheet provides information about the Bayo Canyon, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Bayo Canyon, New Mexico, Site is located approx- imately 3 miles west of Los Alamos, New Mexico, 25 miles northwest of Santa Fe, and 60 miles north- northeast of Albuquerque. Partly in Los Alamos County

17

Oak Ridge Operations Formerly Utilized Sites Remedial Action Program  

Office of Legacy Management (LM)

IC77GLg /'-Oi. SEP 20 1982 IC77GLg /'-Oi. SEP 20 1982 10-05-04B-001 Deportment of Energy Oak Ridge Operations Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 PRELIMINARY ENGINEERING EVALUATION OF REMEDIAL ACTION ALTERNATIVES BAYO CANYON SITE, LOS ALAMOS, NEW MEXICO SEPTEMBER 1982 Bechtel Job 14501 Bechtel National, Inc. Nuclear Fuel Operations LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use

18

Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir  

SciTech Connect (OSTI)

The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

W.J.Stone; D.L.Newell

2002-08-01T23:59:59.000Z

19

Upper Los Alamos Canyon Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

20

Upper Los Alamos Canyon Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

septic tanks, sanitary and industrial waste lines, storm drains, incinerators, transformer sites, and areas in which soil has been contaminated. The Upper Los Alamos Canyon...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geological control of springs and seeps in the Farmington Canyon Complex, Davis County, Utah  

E-Print Network [OSTI]

METHODOLOGY Selection of Canyons This study concentrates on two canyons in Davis County, Utah. The location and distribution of springs was documented in Lightning and Steed Canyons. These canyons were the site of documented debris flows that occurred... METHODOLOGY Selection of Canyons This study concentrates on two canyons in Davis County, Utah. The location and distribution of springs was documented in Lightning and Steed Canyons. These canyons were the site of documented debris flows that occurred...

Skelton, Robyn Kaye

2012-06-07T23:59:59.000Z

22

Hot Canyon  

ScienceCinema (OSTI)

This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

None

2013-03-01T23:59:59.000Z

23

EIS-0219: F-Canyon Plutonium Solutions  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impacts of processingthe plutonium solutions to metal form using the F-Canyon and FB-Line facilities at the Savannah River Site.

24

La Jolla Canyon and Scripps Canyon Bibliography  

E-Print Network [OSTI]

said the cable was called Beal's Cable when he arrived atthe cable pre-dates 1951. Alan Beal worked for/with Francisunderwater canyons was done. Beal's Cable was laid by E.R. (

Brueggeman, Peter

2009-01-01T23:59:59.000Z

25

DOE - Office of Legacy Management -- Acid Pueblo Canyon - NM 03  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acid Pueblo Canyon - NM 03 Acid Pueblo Canyon - NM 03 FUSRAP Considered Sites Acid/Pueblo Canyon, NM Alternate Name(s): Radioactive Liquid Waste Treatment Plant (TA-45) Acid/Pueblo and Los Alamos Canyon NM.03-3 Location: Canyons in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.03-3 Historical Operations: Late 1943 or early 1944, head of the south fork of Acid Canyon received untreated liquid waste containing tritium and isotopes of strontium, cesium, uranium, plutonium, and americium discharged from main acid sewer lines and subsequently from the TA-3 plutonium treatment plant. NM.03-3 Eligibility Determination: Radiological Survey(s): Verification Surveys NM.03-5 NM.03-6 Site Status: Certified- Certification Basis and Federal Register Notice NM.03-2

26

Microsoft Word - Badger Canyon CXWEB.doc  

Broader source: Energy.gov (indexed) [DOE]

KEC-4 KEC-4 SUBJECT: Environmental Clearance Memorandum David Tripp Project Manager - TEP-CSB-1 Proposed Action: Badger Canyon Substation Radio Communication Tower Project Budget Information: Work Order 00253262 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." B1.19 "Siting, construction, and operation of microwave and radio communication towers and associated facilities..." Location: Badger Canyon Substation, Benton County, Washington - Township 8 North, Range 28 East, Section 1 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace a 40-foot monopole communication

27

FINAL REPORT CANYON AND SLOPE  

E-Print Network [OSTI]

and the influence of canyons on slope cur- rents ; f) identification of communities which may be affected by oil#12;FINAL REPORT CANYON AND SLOPE PROCESSES STUDY VOLUME I EXECUTIVE S(2@lARY Prepared for United and provides diverse habi- tats for biological communities. In the Mid- and North Atlantic Region, canyons have

Mathis, Wayne N.

28

Camp Pendleton Kings Canyon  

E-Print Network [OSTI]

Camp Pendleton Marine Corps Base Kings Canyon National Park China Lake Naval Weapons Center Edwards Valley National Park Fort Irwin Mojave National Preserve Mono County Fresno County Inyo County Tulare County San Bernardino County Kern County Ventura County Los Angeles County Riverside County Orange County

29

Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico  

SciTech Connect (OSTI)

The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

1994-12-01T23:59:59.000Z

30

California Nuclear Profile - Diablo Canyon  

U.S. Energy Information Administration (EIA) Indexed Site

Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

31

Prehistoric deforestation at Chaco Canyon?  

Science Journals Connector (OSTI)

...human-caused deforestation. Fuel use frequently is invoked...forced residents to seek fuel outside the canyon and prevented...of grayware cooking vessels (utility wares) were...by factors other than fuel availability and that...anything reliable about fuel consumption in the canyon during...

W. H. Wills; Brandon L. Drake; Wetherbee B. Dorshow

2014-01-01T23:59:59.000Z

32

DOE - Office of Legacy Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Calibration Facilities Ecosystem Management Team Environmental Justice Environmental Management System Long-Term Surveillance and Maintenance Operations and Maintenance Post-Closure Benefits Property Records Management Stakeholder Relations Sites Considered Sites LM Sites Sites Pending Transfer to LM Programmatic Framework Mission News About Us LM Sites Select a Site Acid/Pueblo Canyon Adrian Site Albany Site Aliquippa Site Ambrosia Lake Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Site BONUS Site Buffalo Site Burrell Site Canonsburg Site CEER Sites Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site CNTA Site Colonie Site Columbus Sites Columbus

33

Hudson Canyon | Open Energy Information  

Open Energy Info (EERE)

Canyon Canyon Jump to: navigation, search Name Hudson Canyon Facility Hudson Canyon Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Deepwater Wind Long Island Developer Deepwater Wind Location Atlantic Ocean NY Coordinates 40.151°, -73.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.151,"lon":-73.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Juniper Canyon | Open Energy Information  

Open Energy Info (EERE)

Juniper Canyon Juniper Canyon Jump to: navigation, search Name Juniper Canyon Facility Juniper Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Developer Iberdrola Energy Purchaser Merchant Location In Klickitat County 4.6 miles Southeast of Goldendale Coordinates 45.910223°, -120.224317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.910223,"lon":-120.224317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005  

SciTech Connect (OSTI)

As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample size prevents a detailed examination of reproduction composition. Because of small sample size of some species and differences that might occur on a seasonal basis, additional sampling would need to be conducted to further evaluate sex ratios, body weights, and reproductive characteristics.

Kathy Bennett, Sherri Sherwood, and Rhonda Robinson

2006-08-15T23:59:59.000Z

36

Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah  

SciTech Connect (OSTI)

This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. (US Geological Survey (US)); McDonnell, J.R. (Bureau of Mines (US))

1990-09-01T23:59:59.000Z

37

Engineers Constructors  

Office of Legacy Management (LM)

Engineers Engineers - Constructors ~ /:~ ( ' r,.... I!~\ l.,_",z;(J;' Bechtel National, Inc. Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge. Tennessee Mail Address: P. O. B01l 350. Oak Ridge. TN 37830 bce-. R. Barber C. t1iller E. Wal ker C. Knoke G. Phillips G. Scott L. Blevins K. Harer DOE File No. 030-04G Professional Land Surveying 1404 Second Street Santa Fe, New Mexico 87501 Attn: Mr. Robert Benavides Reference: Purchase Contract l4501-01j04-PC-19 Bayo Canyon Survey Dear Mr. Benavides: The following are clarifications to the referenced contract specification. The need for clarification to the specification arises from the fact that the Bayo Canyon site is transected by a corporate boundary, the Los Alamos County-Santa Fe County line. This condition affects three items in the specification Scope Of Work: Item 1.2.5, the as-built site plan of the Bayo

38

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

39

Internal Tides in Monterey Submarine Canyon  

Science Journals Connector (OSTI)

The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. ...

Rob A. Hall; Glenn S. Carter

2011-01-01T23:59:59.000Z

40

P-Wave Residual Differences and Inferences on an Upper Mantle Source for the Silent Canyon Volcanic Centre, Southern Great Basin, Nevada  

Science Journals Connector (OSTI)

......Canyon volcanic centre of the Nevada Test Site have been reduced by corresponding...1968. Geologic setting of Nevada Test Site and Neliis Air Force Range...comparison of the Lake Superior and Nevada Test Site source regions, Seism. Data......

William Spence

1974-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE - Office of Legacy Management -- White Canyon AEC Ore Buying Station -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

White Canyon AEC Ore Buying Station White Canyon AEC Ore Buying Station - UT 04 FUSRAP Considered Sites Site: White Canyon AEC Ore Buying Station (UT.04) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

42

Sites Pending Transfer to LM | Department of Energy  

Office of Legacy Management (LM)

Moab Disposal Site Salt Lake City 11e(2) Disposal Site Shootaring Canyon Disposal Site White Mesa Disposal Site Washington Ford Disposal Site Wyoming Bear Creek Disposal Site Gas...

43

New York Canyon Stimulation Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Stimulation Geothermal Project Stimulation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New York Canyon Stimulation Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The projects expected outcomes and benefits are; - Demonstrated commercial viability of the EGS-stimulated reservoir by generating electricity using fluids produced from the reservoir at economic costs. - Significant job creation and preservation and economic development in support of the Recovery Act of 2009. State Nevada Objectives Demonstrate the commercial application of EGS techniques at the New York Canyon (NYC) site in a way that minimizes cost and maximizes opportunities for repeat applications elsewhere.

44

Bear Canyon Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Canyon Geothermal Facility Canyon Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bear Canyon Geothermal Facility General Information Name Bear Canyon Geothermal Facility Facility Bear Canyon Sector Geothermal energy Location Information Location Clear Lake, California, Coordinates 38.762851116528°, -122.69217967987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.762851116528,"lon":-122.69217967987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Threemile Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Threemile Canyon Wind Farm Threemile Canyon Wind Farm Jump to: navigation, search Name Threemile Canyon Wind Farm Facility Threemile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.837861°, -119.701286° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.837861,"lon":-119.701286,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Three Mile Canyon | Open Energy Information  

Open Energy Info (EERE)

Mile Canyon Mile Canyon Jump to: navigation, search Name Three Mile Canyon Facility Three Mile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Momentum RE Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.717419°, -119.502258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.717419,"lon":-119.502258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Hay Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hay Canyon Wind Farm Hay Canyon Wind Farm Jump to: navigation, search Name Hay Canyon Wind Farm Facility Hay Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Snohomish Public Utility District Location Near Moro OR Coordinates 45.479548°, -120.741491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.479548,"lon":-120.741491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Untitled Page -- Other Sites Summary  

Office of Legacy Management (LM)

Other Sites Summary Other Sites Summary Search Other Sites Considered Sites Other Sites All LM Quick Search All Other Sites 11 E (2) Disposal Cell - 037 ANC Gas Hills Site - 040 Argonne National Laboratory - West - 014 Bodo Canyon Cell - 006 Burro Canyon Disposal Cell - 007 Cheney Disposal Cell - 008 Chevron Panna Maria Site - 030 Clive Disposal Cell - 036 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 Conoco Conquista Site - 031 Cotter Canon City Site - 009 Dawn Ford Site - 038 EFB White Mesa Site - 033 Energy Technology Engineering Center - 044 Estes Gulch Disposal Cell - 010 Exxon Ray Point Site - 032 Fermi National Accelerator Laboratory - 016 Fernald Environmental Management Project - 027 Fort St Vrain - 011 Geothermal Test Facility - 001 Hecla Durita Site - 012

50

Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico  

Science Journals Connector (OSTI)

Logging-while-drilling data acquired during the 2009 Gulf of Mexico (GoM) Gas Hydrate Joint Industry Project Leg II program combined with features observed in seismic data allow assessment of the depositional environment, geometry, and internal architecture of gas-hydrate-bearing sand reservoirs from three sites in the northern Gulf of Mexico (GoM): Walker Ridge 313, Alaminos Canyon 21, and Green Canyon 955. The site descriptions assist in the understanding of the geological development of gas-hydrate-bearing sands and in the assessment of their energy production potential. Three sand-rich units are described from the Walker Ridge site, including multiple ponded sand-bodies representing turbidite channel and associated levee and terminal lobe environments within the Terrebonne basin on the lower slope of the GoM. Older units display fewer but greater-reservoir-quality channel and proximal levee facies as compared to thinner, more continuous, and unconfined sheet-like sands that characterize the younger units, suggesting a decrease in depositional gradient with time in the basin. The three wells in the Green Canyon 955 site penetrated proximal levee sands within a previously recognized Late Pleistocene basin floor turbidite-channel-levee complex. Reservoirs encountered in GC955 exhibit thin-bedded internal structure and complex fault compartmentalization. Two wells drilled in the Alaminos Canyon 21 site tested a large, shallow, sand unit within the Diana mini-basin that exhibits steep lateral margins, non-sinuous elongate form, and flat base with hummocky upper surface. These features suggest deposition as a mass-transport deposit consisting of remobilized sand-rich turbidites or as a large basin-floor fan that was potentially eroded and buried by later-stage, mud-prone, mass-transport deposits.

Ray Boswell; Matthew Frye; Dianna Shelander; William Shedd; Daniel R. McConnell; Ann Cook

2012-01-01T23:59:59.000Z

51

Devil's Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Devil's Canyon Geothermal Project Devil's Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information Coordinates 40.938333333333°, -117.53916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.938333333333,"lon":-117.53916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Coyote Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Project Coyote Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Coyote Canyon Geothermal Project Project Location Information Coordinates 39.723055555556°, -118.08027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.723055555556,"lon":-118.08027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Red Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Canyon Wind Farm Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Florida Power & Light Co. Location Borden TX Coordinates 32.95326011°, -101.215539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.95326011,"lon":-101.215539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Biglow Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Wind Farm Biglow Canyon Wind Farm Facility Biglow Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion/Portland General Electric Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.629003°, -120.605607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.629003,"lon":-120.605607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Measurements of net radiation, ground heat flux and surface temperature in an urban canyon  

SciTech Connect (OSTI)

The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

Gouveia, F J; Leach, M J; Shinn, J H

2003-11-06T23:59:59.000Z

56

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area (Redirected from Coyote Canyon Geothermal Resource Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Big Canyon Creek Ecological Restoration Strategy.  

SciTech Connect (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

58

Microsoft Word - canyon disposition rpt 2 01 05.doc  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Efforts to Department of Energy Efforts to Dispose of Hanford's Chemical Separation Facilities DOE/IG-0672 February 2005 -2- benefits of using the facility as a disposal site. Instead, the study focused on characterizing and performing technical analysis on the structural integrity of the facility. In studying the merits of the Initiative, the Department did not ensure that the cost study was sufficient in scope, and once completed, never reviewed the study to determine whether it was accurate and complete or adequately supported the preferred alternative. As a result of not thoroughly evaluating the feasibility of using canyon facilities for waste disposal, the Department may not realize savings ranging up to $500 million. This report highlights the importance of the Department's oversight of its contractors' activities to

59

Trail Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Trail Canyon Geothermal Project Trail Canyon Geothermal Project Project Location Information Coordinates 38.325555555556°, -114.29388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.325555555556,"lon":-114.29388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Panther Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Panther Canyon Geothermal Project Panther Canyon Geothermal Project Project Location Information Coordinates 40.549444444444°, -117.57666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.549444444444,"lon":-117.57666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Internal tides in canyons and their effect on acoustics  

Science Journals Connector (OSTI)

Internal gravity waves of tidal frequency are generated as the ocean tides push water upward onto the continental shelf. Such waves also arrive at the continental slope from deep water and are heavily modified by the change in water depth. The wave generation and wave shoaling effects have an additional level of complexity where a canyon is sliced into the continental slope. Recently steps have been taken to simulate internal tides in canyons to understand the physical processes of internal tides in canyons and also to compute the ramifications on sound propagation in and near the canyons. Internal tides generated in canyons can exhibit directionality with the directionality being consistent with an interesting multiple-scattering effect. The directionality imparts a pattern to the sound-speed anomaly field affecting propagation. The directionality also means that short nonlinear internal waves which have specific strong effects on sound can have interesting patterns near the canyons. In addition to the directionality of internal tides radiated from canyons the internal tide energy within the canyons can be patchy and may unevenly affect sound.

2014-01-01T23:59:59.000Z

64

20140430_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

Thibedeau, Joe

2014-05-05T23:59:59.000Z

65

Green Machine Florida Canyon Hourly Data 20130731  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

Vanderhoff, Alex

2013-08-30T23:59:59.000Z

66

20130416_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

Vanderhoff, Alex

2013-04-24T23:59:59.000Z

67

Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

Vanderhoff, Alex

2013-07-15T23:59:59.000Z

68

Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

Vanderhoff, Alex

69

20130416_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

Vanderhoff, Alex

70

20140430_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

Thibedeau, Joe

71

Green Machine Florida Canyon Hourly Data 20130731  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

Vanderhoff, Alex

72

DOE Site List  

Office of Environmental Management (EM)

Links Links Central Internet Database CID Photo Banner DOE Site List Site Geo Site Code State Operations Office1 DOE Programs Generating Streams at Site DOE Programs Managing Facilities Associated Data2 Acid/Pueblo Canyons ACPC NM Oak Ridge Waste/Media, Facilities Airport Substation CA Western Area Power Administration Facilities Akron Hill Communication Site CO Western Area Power Administration Facilities Akron Substation CO Western Area Power Administration Facilities AL Complex NM Albuquerque DP Facilities Alba Craft ALCL OH Oak Ridge Facilities Albany Research Center AMRC OR Oak Ridge Facilities Alcova Switchyard WY Western Area Power Administration Facilities Aliquippa Forge ALFO PA Oak Ridge Facilities

73

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona |  

Broader source: Energy.gov (indexed) [DOE]

27: Grapevine Canyon Wind Project, Coconino County, Arizona 27: Grapevine Canyon Wind Project, Coconino County, Arizona EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona Summary This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE's Western Area Power Administration's existing Glen Canyon-Pinnacle Peak transmission lines. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 11, 2012 EIS-0427: Record of Decision Interconnection of the Grapevine Canyon Wind Project, Coconino County,

74

Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248  

SciTech Connect (OSTI)

Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ?2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)

Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)] [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

2013-07-01T23:59:59.000Z

75

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Appendix B to Attachment 3, Lithologic logs and monitor well construction information. Final report  

SciTech Connect (OSTI)

This volume contains lithology logs and monitor well construction information for: NC processing site; UC processing site; and Burro Canyon disposal site. This information pertains to the ground water hydrology investigations which is attachment 3 of this series of reports.

NONE

1995-09-01T23:59:59.000Z

76

Klondike III / Biglow Canyon Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

Proposed Action and Alternatives 2-3 Proposed Action and Alternatives 2-3 Figure 1 Proposed 230-kV Towers and Rights-of-Way Klondike III/Biglow Canyon Wind Integration Project Bonneville Power Administration Proposed Action and Alternatives 2-4 Figure 1, continued CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. 32 Figure 1. Region map of wind projects proposed for Sherman County. D e s c h u t e s Ri ver C a n y o n C o l u m b ia R i v e r Hwy 19 H w y 2 0 6 H w y 9 7 I 8 4 Grass Valley Moro Wasco Biggs Arlington Condon Fourmile Canyon McDonald Ferry Biggs Junction Deschutes River Crossing The Dalles Complex RM 15.9-16.8 RM 40 Sherman Co Wasco Co G i l l i a m C o Gilliam Co Morrow Co Rowena Plateau Historic Columbia River Highway John D a y R i v e r C a n y o n P:\B\BPAX00000324\0600INFO\GS\arcmap\figures\visiblity_tech_report\fig2_visual_resources_or.mxd January 9, 2006

77

Nine Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Blue Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Blue Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Horizon Developer Zilkha Renewable/Kirmart Corp. Energy Purchaser Western Farmers' Electric Cooperative Location North of Lawton OK Coordinates 34.852678°, -98.551807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.852678,"lon":-98.551807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Marble Canyon 1/sup 0/ x 2/sup 0/ NTMS area Arizona: data report  

SciTech Connect (OSTI)

Results of ground water and stream/surface sediment reconnaissance (HSSR) in the National Topographic Map Series (NTMS) Marble Canyon 1/sup 0/ x 2/sup 0/ quadrangle are presented. The target sampling density for all media collected was one site per 12 square kilometers. This resulted in 884 sediment samples being collected; however, dry conditions and sparse population resulted in the collection of only 2 ground water samples. Grand Canyon National Park, Glen Canyon National Recreation Area, and much Indian tribal land in the southern half of the quadrangle were not sampled. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements for sediment samples are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from ground water include: water chemistry measurements (pH, conductivity, and alkalinity); physical measurements (water temperature, and scintillometer readings); and elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from sediment sites include: water chemistry measurements (where available) for pH, conductivity, and alkalinity; and elemental analyses(U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Histograms, cumulative frequency, and areal distribution plots for most elements; Log U/Th, Log U/Hf, and Log U/(Th + Hf) ratios; and scintillometer readings are included.

Heffner, J.D.

1980-07-01T23:59:59.000Z

80

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area (Redirected from Olowalu-Ukumehame Canyon Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Facility Canyon Bloomers, Inc Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

82

The Role of Convective Outflow in the Waldo Canyon Fire  

Science Journals Connector (OSTI)

The meteorological conditions associated with the rapid intensification and spread of the catastrophic Waldo Canyon fire on 26 June 2012 are studied. The fire caused two fatalities, destroyed 347 homes in Colorado Springs, and resulted in ...

Richard H. Johnson; Russ S. Schumacher; James H. Ruppert Jr.; Daniel T. Lindsey; Julia E. Ruthford; Lisa Kriederman

2014-09-01T23:59:59.000Z

83

Copper Canyon, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Display map This article is a stub. You can help OpenEI by expanding it. Copper Canyon is a town in Denton County, Texas. It falls under Texas's 26th congressional...

84

Safety Evaluation for Packaging (onsite) T Plant Canyon Items  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

OBRIEN, J.H.

2000-07-14T23:59:59.000Z

85

CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE  

SciTech Connect (OSTI)

Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.

Fuller, K.; Smith, Robert H. Jr.; Goergen, Charles R.

2013-01-09T23:59:59.000Z

86

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Before Cocooning N Reactor Before Cocooning U Canyon Aerial U Canyon Aerial Aerial Photo of 200 West Groundwater Treatment Facility Aerial Photo of 200 West Groundwater...

87

LA-9252-MS UC-70a  

Office of Legacy Management (LM)

/p/j ,()i --' /p/j ,()i --' z!- LA-9252-MS UC-70a Issued: May 1982 Environmental Analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico Roger W. Ferenbaugh Thomas E. Buhl Alan K. Stoker Wayne FL Hansen kos A[am@ Los Alamos,New Mexico 87545 Los Alamos National Laboratory CONTENTS ABSTRACT 1 1.0 INTRODUCTION AND BACKGROUND 1.1 The FUSRAP Program 1.2 Preferred Alternative 2.0 THE BAY0 CANYON SITE 2.1 Summary History and Description of Site 2.1.1 Description of Site 2.1.2 History of Site 2.2 Need for Action 2.2.1 Radiological Risk 2.2.1.1 Method of Estimating Risk 2.2.1.2 Results of Dose Calculations 2.2.1.3 Health Risks from Residual Bayo Canyon Contamination 2.2.2 Criteria upon Which Cleanup Action is Based 2.3 Other Agencies Involved in Implementation of the

88

Patterns in biodiversity and distribution of benthic Polychaeta in the Mississippi Canyon, Northern Gulf of Mexico  

E-Print Network [OSTI]

) and deep (> 1500 m). Results of statistical analyses revealed that depth was the most important determinant in organizing polychaete assemblages in the study area. The Mississippi Canyon and the Central Transect (a non-canyon area) were found...

Wang, Yuning

2006-04-12T23:59:59.000Z

89

Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability  

E-Print Network [OSTI]

Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon...

Burden, Cheryl A

1999-01-01T23:59:59.000Z

90

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

91

Microsoft Word - Final_NineCanyon_CommunicationTowerInstall_CX  

Broader source: Energy.gov (indexed) [DOE]

1, 2013 1, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Kelly Gardner, PMP Project Manager, TEP-TPP-1 Proposed Action: Nine Canyon Substation Communication Tower Addition: 331800 McNary Sub Bus Tie Relay Replacements and 310427 McNary-Badger Canyon Transfer Trip Install Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions and modifications to transmission facilities Location: Kennewick, Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a 60-foot communications tower and associated communication equipment at the Benton County Public Utility District's Nine Canyon Substation in Benton County, Washington. The upgrade would involve replacing the

92

Nine Canyon III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nine Canyon III Wind Farm Nine Canyon III Wind Farm Facility Nine Canyon III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest/RES Americas Energy Purchaser Energy Northwest Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA  

E-Print Network [OSTI]

produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 Canyon; Colorado river; Pleistocene floods; Lava dams; Hydraulic modeling; Paleoflood indicators; DamPeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

94

New insights on the runout of large landslides in the Valles-Marineris canyons, Mars  

E-Print Network [OSTI]

New insights on the runout of large landslides in the Valles-Marineris canyons, Mars E. Lajeunesse-Marineris canyons, Mars, Geophys. Res. Lett., 33, L04403, doi:10.1029/ 2005GL025168. 1. Introduction [2] Since the first pictures returned from Viking Orbiters, the numerous landslides identified along the canyons

Lajeunesse, Eric

95

Engineering Geologic Assessment of Risk to Visitors: Canyon Lake Gorge, Texas  

E-Print Network [OSTI]

Presented here are the results of a study of geological hazards conducted in Canyon Lake Gorge of Central Texas. Canyon Lake Gorge formed in 2002 when the emergency spillway of Canyon Lake was overtopped. Since that time, the gorge has been opened...

Kolkmeier, Benjamin D.

2010-07-14T23:59:59.000Z

96

Preliminary Thermal Modeling of HI-STORM 100 Storage Modules at Diablo Canyon Power Plant ISFSI  

SciTech Connect (OSTI)

Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for two modules at the Diablo Canyon Power Plant ISFSI identified as candidates for inspection. These are HI-STORM 100 modules of a site-specific design for storing PWR 17x17 fuel in MPC-32 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these storage systems, with the following boundary conditions and assumptions. storage module overpack configuration based on FSAR documentation of HI-STORM100S-218, Version B; due to unavailability of site-specific design data for Diablo Canyon ISFSI modules Individual assembly and total decay heat loadings for each canister, based on at-loading values provided by PG&E, aged to time of inspection using ORIGEN modeling o Special Note: there is an inherent conservatism of unquantified magnitude informally estimated as up to approximately 20% -- in the utility-supplied values for at-loading assembly decay heat values Axial decay heat distributions based on a bounding generic profile for PWR fuel. Axial location of beginning of fuel assumed same as WE 17x17 OFA fuel, due to unavailability of specific data for WE17x17 STD and WE 17x17 Vantage 5 fuel designs Ambient conditions of still air at 50F (10C) assumed for base-case evaluations o Wind conditions at the Diablo Canyon site are unquantified, due to unavailability of site meteorological data o additional still-air evaluations performed at 70F (21C), 60F (16C), and 40F (4C), to cover a range of possible conditions at the time of the inspection. (Calculations were also performed at 80F (27C), for comparison with design basis assumptions.) All calculations are for steady-state conditions, on the assumption that the surfaces of the module that are accessible for temperature measurements during the inspection will tend to follow ambient temperature changes relatively closely. Comparisons to the results of the inspections, and post-inspection evaluations of temperature measurements obtained in the specific modules, will be documented in a separate follow-on report, to be issued in a timely manner after the inspection has been performed.

Cuta, Judith M.; Adkins, Harold E.

2014-04-17T23:59:59.000Z

97

Biglow Canyon Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Phase III Wind Farm Biglow Canyon Phase III Wind Farm Jump to: navigation, search Name Biglow Canyon Phase III Wind Farm Facility Biglow Canyon Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Blue Canyon II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Blue Canyon II Wind Farm Blue Canyon II Wind Farm Jump to: navigation, search Name Blue Canyon II Wind Farm Facility Blue Canyon II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser American Electric Power Location North of Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Glen Canyon Dam Long-Term Experimental and Management Plan EIS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glen Canyon LTEMP EIS Glen Canyon LTEMP EIS Glen Canyon Dam, a 1,300-MW water-storage and hydroelectric facility is located on the Colorado River upstream of the Grand Canyon. EVS is evaluating the effects of dam operations on the Colorado River. A comprehensive evaluation of Glen Canyon Dam operations and their effects on the Colorado River through the Grand Canyon is being conducted by the Department of the Interior with EVS assistance. The Long-Term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS) - the first such evaluation in over 15 years - will examine flow regimes to meet the goals of supplying water for communities, agriculture, and industry and will protect the resources of the Grand Canyon, while providing clean hydropower. The LTEMP EIS, which is expected to be completed by the end of 2013, will

100

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.  

SciTech Connect (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

McLeod, Bruce

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.  

SciTech Connect (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving delisting goals established by National Marine Fisheries Service (NMFS). Complete returns for all three acclimation facilities will not occur until the year 2002. Progeny (which would then be natural origin fish protected under the Endangered Species Act) from those returns will be returning for the next five years. In 2001, a total of 2,051,099 fish weighing 59,647 pounds were released from the three acclimation facilities. The total includes 318,932 yearling fish weighing 31,128 pounds and 1,732,167 sub-yearling fish weighing 28,519 pounds. Yearling fish numbers were reduced by Bacterial Kidney Disease (BKD) and sub-yearling acclimation time was limited by record low river water flows.

McLeod, Bruce

2004-01-01T23:59:59.000Z

102

Coyote Canyon Steam Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Steam Plant Biomass Facility Steam Plant Biomass Facility Jump to: navigation, search Name Coyote Canyon Steam Plant Biomass Facility Facility Coyote Canyon Steam Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

New York Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

New York Canyon Geothermal Project New York Canyon Geothermal Project Project Location Information Coordinates 40.056111111111°, -118.01083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.056111111111,"lon":-118.01083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Blue Canyon V Wind Farm | Open Energy Information  

Open Energy Info (EERE)

V Wind Farm V Wind Farm Jump to: navigation, search Name Blue Canyon V Wind Farm Facility Blue Canyon V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Public Service of Oklahoma Location Caddo & Comanche Counties OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

106

Harbison Canyon, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbison Canyon, California: Energy Resources Harbison Canyon, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8203296°, -116.8300236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8203296,"lon":-116.8300236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New York Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New York Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Lovelock, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

108

American Canyon Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type Landfill Gas Location Napa County, California Coordinates 38.5024689°, -122.2653887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5024689,"lon":-122.2653887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Aquatic macroinvertebrates and water quality in Sandia Canyon  

SciTech Connect (OSTI)

In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities.

Bennett, K.

1994-05-01T23:59:59.000Z

110

Landslide assessment of Newell Creek Canyon, Oregon City, Oregon  

SciTech Connect (OSTI)

A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

Growney, L.; Burris, L.; Garletts, D.; Walsh, K. (Portland State Univ., OR (United States). Dept. of Geology)

1993-04-01T23:59:59.000Z

111

Nine Canyon Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nine Canyon Wind Farm Phase II Jump to: navigation, search Name Nine Canyon Wind Farm Phase II Facility Nine Canyon Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

DE-AI26-06NT42878 - Alaminos Canyon Task | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Oil Recovery Deepwater Tech Methane Hydrate Geochemical Evaluation of Deep Sediment Hydrate Deposits in Alaminos Canyon, Block 818, Texas-Louisiana Shelf...

113

Study of bacterial activity and ecology of Bingham Canyon mine dumps;.  

E-Print Network [OSTI]

??There were at least two types of chemoautotrophic thiobacilli found in the leaching streams of Bingham Canyon min dump. One of these organisms oxidizes free (more)

Chen, Young-Chang

1968-01-01T23:59:59.000Z

114

EA-1980: Spar Canyon-Round Valley Access Road System Improvements...  

Energy Savers [EERE]

proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on BLM land in Custer County, Idaho. Additional information is...

115

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

canyon U Plant Contamination Fixative U Plant Contamination Fixative U Plant Transformer U Plant Transformer U Plant Lock-outTag-out U Plant Lock-outTag-out U Plant Equipment U...

116

Environmental assessment, Deaf Smith County site, Texas  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

Not Available

1986-05-01T23:59:59.000Z

117

Top Topics and Achievements by Site  

Broader source: Energy.gov (indexed) [DOE]

Topics and Topics and Accomplishments EM Site-Specific Advisory Board EM Site-Specific Advisory Board Chairs' Meeting October 2-3, 2012 Savannah River  Issue: Salt Waste Processing Facility  CAB understands some schedule and funding issues may be brewing.  DOE has internal assessment underway.  Delays could have dramatic impact on overall Site Closure schedule and Process.  While this is early in process we do have concerns. Savannah River  Issue (April 2012): Receipt of Research Reactor Spent Nuclear Fuel and Long Term Storage of Existing Inventories with no known, approved disposition path  Processing of SNF In H-Canyon was once considered viable.  SNF processing in H-Canyon seems to no longer be the preferred

118

DOE/EA-1521; Environmental Assessment for Spring Canyon Wind Project, Logan County, Colorado  

Broader source: Energy.gov (indexed) [DOE]

EA, Spring Canyon Wind Project ix EA, Spring Canyon Wind Project ix TABLE OF CONTENTS Page 1.0 PURPOSE AND NEED......................................................................................................... 1 1.1 INTRODUCTION ..................................................................................................... 1 1.2 PURPOSE AND NEED............................................................................................. 3 1.2.1 Federal Agency Action ............................................................................... 3 1.2.2 Applicant's Purpose and Need .................................................................... 3 1.3 SCOPING .................................................................................................................. 3

119

ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold  

E-Print Network [OSTI]

ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold to infer the canyon-infilling, fold uplift, and gas hydrate occurrences beneath the frontal fold at the toe simu- lating reflector (BSR) on seismic sections indicates the base of gas hydrate stability zone

Lin, Andrew Tien-Shun

120

Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Greenhouse Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

20140301-0331_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

Thibedeau, Joe

2014-04-07T23:59:59.000Z

122

20140601-0630_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

Thibedeau, Joe

2014-06-30T23:59:59.000Z

123

20140701-0731_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

Thibedeau, Joe

2014-07-31T23:59:59.000Z

124

20131201-1231_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

Thibedeau, Joe

2014-01-08T23:59:59.000Z

125

20140201-0228_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

Thibedeau, Joe

2014-03-03T23:59:59.000Z

126

20140501-0531_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

Thibedeau, Joe

2014-06-02T23:59:59.000Z

127

20131101-1130_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

Thibedeau, Joe

2013-12-02T23:59:59.000Z

128

20130801-0831_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

Vanderhoff, Alex

2013-09-10T23:59:59.000Z

129

20130901-0930_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

Thibedeau, Joe

2013-10-25T23:59:59.000Z

130

20131001-1031_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

Thibedeau, Joe

2013-11-05T23:59:59.000Z

131

20140101-0131_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

Thibedeau, Joe

2014-02-03T23:59:59.000Z

132

20130501-20130531_Green Machine Florida Canyon Hourly Data  

SciTech Connect (OSTI)

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

Vanderhoff, Alex

2013-06-18T23:59:59.000Z

133

20140201-0228_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

Thibedeau, Joe

134

20131101-1130_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

Thibedeau, Joe

135

20140301-0331_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

Thibedeau, Joe

136

20131001-1031_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

Thibedeau, Joe

137

20140601-0630_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

Thibedeau, Joe

138

20131201-1231_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

Thibedeau, Joe

139

20130801-0831_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

Vanderhoff, Alex

140

20130501-20130531_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

Vanderhoff, Alex

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

20140701-0731_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

Thibedeau, Joe

142

20140101-0131_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

Thibedeau, Joe

143

20140501-0531_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

Thibedeau, Joe

144

20130901-0930_Green Machine Florida Canyon Hourly Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

Thibedeau, Joe

145

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

146

Biglow Canyon Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase II Wind Farm Phase II Wind Farm Jump to: navigation, search Name Biglow Canyon Phase II Wind Farm Facility Biglow Canyon Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams  

SciTech Connect (OSTI)

Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

Carlson, J.L.

1995-03-01T23:59:59.000Z

148

Site Index - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page |Text Increase Font Size Decrease...

149

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

SciTech Connect (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

150

Depositional environment and reservoir morphology of Canyon sandstones, Central Midland Basin, Texas  

E-Print Network [OSTI]

channels are thinner, have lim1ted lateral extent compared to upper- and m1ddle-fan channels, and consist of bet- ter developed Bouma sequences. Few sequences exceed thicknesses of 1 foot in distal channels. Canyon sandstones are fine grained (0. 14... divisions. Texture Canyon sandstones 1n Lucky Canyon and Jameson field exh1b1t sim- ilar textural characteristics (Table 3). Mean size of monocrystalline quartz is f1ne to very fine grained. Sort1ng, as measured by standard deviations in each sample...

Jones, James Winston

2012-06-07T23:59:59.000Z

151

MOBILIZATION, POISONING, AND FILTRATION OF F-CANYON TANK 804 SLUDGE  

SciTech Connect (OSTI)

The Savannah River Site (SRS) Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the F-Canyon 800 series underground tanks (including removal of the sludge heels from these tanks) and requested assistance from Savannah River National Laboratory (SRNL) personnel to develop methods to effectively mobilize the sludge from these tanks (i.e., Tanks 804, 808, and 809). Because of the high plutonium content in Tank 804 (estimated to be as much as 1500 g), SDD needs to add a neutron poison to the sludge. They considered manganese and boron as potential poisons. Because of the large amount of manganese needed and the very slow filtration rate of the sludge/manganese slurry, SDD requested that SRNL investigate the impact of using boron rather than manganese as the poison. SRNL performed a series of experiments to help determine the disposal pathway of the material currently located in Tank 804. The objectives of this work are: (1) Determine the mobility of Tank 804 sludge when mixed with 10-15 parts sodium hydroxide as a function of pH between 10 and 14. (2) Determine the solubility of boron in sodium hydroxide solution with a free hydroxide concentration between 1 x 10{sup -4} and 2.0 M. (3) Recommend a filter pore size for SDD such that the filtrate contains no visible solids. (4) Determine whether a precipitate forms when the filtrate pH is adjusted to 12, 7, or 2 with nitric acid.

Poirier, M; Thomas Peters, T; Samuel Fink, S

2006-05-04T23:59:59.000Z

152

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

153

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

154

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Broader source: Energy.gov (indexed) [DOE]

63: Vegetation Management on the Glen Canyon-Pinnacle Peak 63: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

155

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Broader source: Energy.gov (indexed) [DOE]

3: Vegetation Management on the Glen Canyon-Pinnacle Peak 3: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

156

Micro-Earthquake At New York Canyon Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

York Canyon Geothermal Area (2011) York Canyon Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At New York Canyon Geothermal Area (2011) Exploration Activity Details Location New York Canyon Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

157

Record of Decision - Klondike III/ Biglow Canyon Wind Integration Project - 10-25-06  

Broader source: Energy.gov (indexed) [DOE]

Klondike III/Biglow Canyon Wind Integration Project Klondike III/Biglow Canyon Wind Integration Project DECISION The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE) 1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects,

158

Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico  

E-Print Network [OSTI]

Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico-carried from isolated mountaintops 75­100 km away. Because strontium from local dust, water, and underlying

159

Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating  

E-Print Network [OSTI]

Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

Li, Xian-Xiang

160

Evolution of depositional and slope instability processes on Bryant Canyon area, Northwest Gulf of Mexico  

E-Print Network [OSTI]

Bryant and Eastern Canyon systems are located on the northwest Gulf of Mexico, and they are characterized by a very complex sedimentological history related to glacioeustatic cycles, river discharges, and interactions of depositional and halokinetic...

Tripsanas, Efthymios

2005-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.  

E-Print Network [OSTI]

morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

Mechler, Suzanne Marie

2012-06-07T23:59:59.000Z

162

Early Channel Evolution in the Middle Permian Brushy Canyon Formation, West Texas, USA  

E-Print Network [OSTI]

measured at both locations. A total of 16 samples were collected for petrographic analysis and X-ray fluorescence (XRF) imaging. Spectacular outcrop quality makes the Middle Permian Brushy Canyon Formation in Guadalupe Mountains National Park an ideal...

Gunderson, Spencer

2011-10-21T23:59:59.000Z

163

Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel  

SciTech Connect (OSTI)

This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

Oar, D.L.

1994-09-29T23:59:59.000Z

164

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Broader source: Energy.gov (indexed) [DOE]

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

165

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Broader source: Energy.gov (indexed) [DOE]

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

166

Explaining the relationship between prehistoric agriculture and environment at Chaco Canyon, New Mexico  

E-Print Network [OSTI]

5000 feet and reaches elevations up to 11, 000 feet. The physical landscape consists of steepwalled sandstone mesa, deep canyons with many drainage resources, volcanic mountains, sand desert, and shale desert (Hunt 1974:6, 426) Most..., in the early A. D. 1200s the Chacoan culture collapsed altogather and the canyon was abandoned. Chaco Chronology and Regional System The San Juan Basin can be divide into three subareas: the Interior Lowland, the Encircling Upland, and Puerco-Red Mesa...

Gang, G-Young

2012-06-07T23:59:59.000Z

167

Canyon and channel networks of Peru-Chile fore arc at Arica Bight  

SciTech Connect (OSTI)

Canyons and channels of the Peru-Chile fore arc between 17{degree}30'S to 19{degree}30'S form a complex, integrated network revealed in SeaMARC II side-scan mosaics. The largest canyon, incised 200-600 m, is bordered by a series of sidewall slumps, producing a sinuosity that mimics subaerial meanders. The canyon courses across the Arequipa fore-arc basin floor, across a structural high and onto the middle trench slope to about 4,000 m where it disappears into a background of complex small-scale structures, From 500-2,500 m depth the canyon strikes north-south oblique to the regional slope. At 2,500 m, it abruptly turns to the southwest toward the trench axis. At this elbow, a second canyon heads on the midslope and also trends north-south until 3,500 m, where it too abruptly changes to a southwest course. A history of stream piracy analogous to subaerial systems is implied in this geometry. Tributaries join this main canyon from the landward side, forming a dendritic pattern. These channels have levees which are linked by submarine crevasse splays to sediment waves on the Arequipa basin floor. The orientation of the waves is reminiscent of bow waves from a passing ship, oblique to channel and pointing downslope, and may provide an indication of the vertical extent of passing turbidity currents. Sediments are dominantly olive gray, hemipelagic silts with sands present only immediately adjacent to the canyons. Boulders of mudstone line portions of the canyon floor. Sands are absent from the lowermost slope and trench axis, as are any indications of submarine fans. Sands may be rare in this system, with those that are present kneaded into the active margin system along the lower trench slope.

Coulbourn, W.T. (Hawaii Institute of Geophysics, Honolulu (USA))

1990-05-01T23:59:59.000Z

168

EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Broader source: Energy.gov [DOE]

Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

169

Amphipods of the deep Mississippi Canyon, northern Gulf of Mexico: ecology and bioaccumulation of organic contaminants  

E-Print Network [OSTI]

AMPHIPODS OF THE DEEP MISSISSIPPI CANYON, NORTHERN GULF OF MEXICO: ECOLOGY AND BIOACCUMULATION OF ORGANIC CONTAMINANTS A Dissertation by YOUSRIA S. SOLIMAN Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2007 Major Subject: Oceanography AMPHIPODS OF THE DEEP MISSISSIPPI CANYON, NORTHERN GULF OF MEXICO: ECOLOGY AND BIOACCUMULATION...

Soliman, Yousria Soliman

2009-05-15T23:59:59.000Z

170

Hydropower and the environment: A case study at Glen Canyon Dam  

SciTech Connect (OSTI)

The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

Wegner, D.L. [Denver Technical Service Center, Flagstaff, AZ (United States)

1995-12-31T23:59:59.000Z

171

Stratigraphic and structural configuration of the Navajo (Jurassic) through Ouray (Mississippian-Devonian) formations in the vicinity of Davis and Lavender Canyons, southeastern Utah  

SciTech Connect (OSTI)

This study developed a three-dimensional computer model of stratigraphic and structural relationships within a 3497-km/sup 2/ (1350-mi/sup 2/) study area centered on the proposed site for a high-level nuclear waste repository in southeastern Utah. The model consists of a sequence of internally reconciled isopach and structure contour maps horizontally registered and stored in stratigraphic order. This model can be used to display cross sections, perspective block diagrams, or fence diagrams at any orientation; estimate depth of formation contacts and thicknesses for any new stratigraphic or hydrologic boreholes; facilitate ground-water modeling studies; and evaluate the structural and stratigraphic evolution of the study area. This study also includes limited evaluations of aquifer continuity in the Elephant Canyon and Honaker Trail Formations, and of salt dissolution and flowage features as interpreted from geophysical logs. The study identified a long history of movement in the fault system in the north-central part of the study area and a major salt flowage feature in the northeastern part. It describes the Elephant Canyon Formation aquifer as laterally limited, the Honaker Trail Formation aquifer as fairly continuous over the area, and Beef Basin in the southern part of the area as a probable dissolution feature. It also concludes that the Shay-Bridger Jack-Salt Creek Graben system is apparently a vertically continuous feature between the basement and ground surface. No stratigraphic or structural discontinuities were detected in the vicinity of Davis Canyon that appear to be detrimental to the siting of a waste repository.

McCleary, J.R.; Romie, J.E.

1986-04-01T23:59:59.000Z

172

Bechtel National, Inc. Engineers Constructors Oak Ridge Office  

Office of Legacy Management (LM)

389 389 Bechtel National, Inc. Engineers - Constructors Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee Mail Address: P. O. Box 350, Oak Ridge. TN 37830 u.s. Department of Energy Oak Ridge Operations Post Office Box E Oak Ridge, TN 37830 ATTN: E. L. Keller, Director Technical Services Division SUBJECT: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-8l0R20722 Bayo Canyon Restrictive Covenants WBS No. 04D Dear Mr. Keller: Attached are the restrictive covenants on the Bayo Canyon parcels. These documents were prepared by the attorney for Professional Land Surveying, a Subcontractor to Bechtel who performed the required survey at Bayo Canyon. Please have your legal people review and comment on the subject convenants and return them to Bechtel for further action. Very truly yours, /12::..// tJ:Zf!-5-t:. Robert L. Rudolph Project Manager-FUSRAP

173

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

materials from the Slick RockOld North Continent site and the Slick RockUnion Carbide site were disposed of in this dedicated disposal cell. The Department of Energys...

174

The Impact of the Medieval Climatic Anomaly in Prehistoric California: A Case Study from Canyon Oaks, CA-ALA-613/H  

E-Print Network [OSTI]

Burial Removal, and Monitoring at Ca-Ala-613/H, Pleasanton,Case Study From Canyon Oaks, CA-ALA-613/H | Pilloud ViolentCase Study From Canyon Oaks, CA-ALA-613/H | Pilloud McGuhe,

Pilloud, Marin A

2006-01-01T23:59:59.000Z

175

Colorado's perfect firestorm Conflagrations such as the Waldo Canyon fire may make climate change skeptics easier to  

E-Print Network [OSTI]

Op-Ed Colorado's perfect firestorm Conflagrations such as the Waldo Canyon fire may make climate their belongings and flee as the Waldo Canyon fire barreled toward their house in Colorado Springs. They were among. Colorado this year has been far drier than normal and has seen record-high temperatures. Streams

California at Davis, University of

176

PUBLISHED ONLINE: 20 JUNE 2010 | DOI: 10.1038/NGEO894 Rapid formation of a modern bedrock canyon by a  

E-Print Network [OSTI]

and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated 7 m of limestone canyon by a single flood event Michael P. Lamb1 * and Mark A. Fonstad2 Deep river canyons are thought carved rapidly during ancient megaflood events4­12 . Quantification of the flood discharge, duration

177

Role of oxidized, S-rich mafic magmas for giant Cu mineralization: Evidence from Pinatubo, Bingham Canyon and El Teniente  

E-Print Network [OSTI]

dacitic magma chamber (~ 800/C), then acid-sulphatehydrothermal fluids. At Bingham Canyon, UtahRole of oxidized, S-rich mafic magmas for giant Cu mineralization: Evidence from Pinatubo, Bingham Canyon and El Teniente Hattori, K.H. and De Hoog, J.C.M., Earth Sciences, Univ. Ottawa, Ottawa, K1N 6N5

178

Microsoft Word - CX-BadgerCanyon-RichlandNo1_WoodPoles_FY13.docx  

Broader source: Energy.gov (indexed) [DOE]

7, 2013 7, 2013 REPLY TO ATTN OF: KEPR/Pasco SUBJECT: Environmental Clearance Memorandum Walker Miller Electrical Engineer - TPCF-W RICHLAND Proposed Action: Wood pole replacements on the Badger Canyon-Richland #1 transmission line PP&A Project No.: 2670 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities. Location: City of Richland, Benton County, WA Transmission Line/ROW Structure # Township Range Section County, State Badger Canyon-Richland #1 4/9 and 4/10 9N 28E 26 Benton, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA, at the expense of the City of Richland, proposes to raise structures 4/9 and 4/10 of the Badger Canyon-Richland #1 115-kilovolt transmission line to

179

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Pool and Spa Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

180

Cosmogenic-nuclide burial ages for Pleistocene sedimentary fill in Unaweep Canyon, Colorado, USA  

Science Journals Connector (OSTI)

We applied both single-sample and isochron methods of cosmogenic-nuclide burial dating to determine the age of the sedimentary fill in Unaweep Canyon, western Colorado, USA. This stratigraphic sequence is of interest because it documents capture and diversion of the ancestral Gunnison River by the Colorado River during late Cenozoic incision of the Colorado Plateau. Seven 26Al10Be burial ages from sedimentary infill penetrated by a borehole in central Unaweep Canyon, as well as a 26Al10Be burial isochron age formed by multiple clasts and grain-size separates in a sample from the stratigraphically lower Gateway gravels, indicate that canyon blockage, initiation of lacustrine sediment accumulation, and presumed river capture, took place 1.410.19Ma. Lacustrine sedimentation ceased 1.340.13Ma.

Greg Balco; Gerilyn S. Soreghan; Dustin E. Sweet; Kristen R. Marra; Paul R. Bierman

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41{degrees} to 74{degrees}. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash.

Dickerson, R.P. [Science Applications International Corp., Golden, CO (United States); Spengler, R.W. [Geological Survey, Denver, CO (United States)

1994-12-31T23:59:59.000Z

182

Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project  

SciTech Connect (OSTI)

The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: ?¢???¢ Increasing safety at Boulder Canyon Hydro ?¢???¢ Increasing protection of the Boulder Creek environment ?¢???¢ Modernizing and integrating control equipment into Boulder?¢????s municipal water supply system, and ?¢???¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

Joe Taddeucci, P E

2013-03-29T23:59:59.000Z

183

Abandonment of the name Elephant Canyon Formation in southeastern Utah: Physical and temporal implications  

SciTech Connect (OSTI)

At its type locality near the confluence of the Green and Colorado rivers, the Elephant Canyon Formation consists of about 1,000 ft (310 m) of cyclically interbedded sandstones, limestones, and shales. The base of the formation was previously interpreted as an angular unconformity, with Wolfcampian (Lower Permian) strata resting directly on a Missourian (lower Upper Pennsylvanian) sequence composed of similar-appearing strata called the Honaker Trail Formation. The authors however, have traced individual strata within the lower Elephant Canyon and upper Honaker Trail and have found no evidence of the angular unconformity that supposedly defines their contact. After recollecting the type section of the Elephant Canyon, they found faunal evidence indicating that the lower 450 ft (138 m) of the formation is uppermost Pennsylvanian (Virgilian) in age rather than Permian (Wolfcampian). Owing to the illusory nature of the angular unconformity and the lack of biostratigraphic evidence for a major stratigraphic break at the base of the type section, they are here abandoning Elephant Canyon Formation and reinstating the pre-1962, lithostratigraphically-based terminology. Until better physical correlations between the type locality of the Rico Formation and the Canyonlands area are available, they recommend the informal term lower Cutler beds rather than Rico Formation for the rocks below the Cedar Mesa Sandstone and above the upper member of the Hermosa Formation. In addition, interpretations of the origin and history of the Meander Anticline based on the existence of an angular unconformity within the upper Paleozoic strata of the study area must be modified.

Loope, D.B. (Univ. of Nebraska, Lincoln (USA)); Sanderson, G.A. (Amoco Production Co., Tulsa, OK (USA)); Verville, G.J.

1990-10-01T23:59:59.000Z

184

Submarine canyons: hotspots of benthic biomass and productivity in the deep sea  

Science Journals Connector (OSTI)

...benthic invertebrate biomass and the estimated productivity...deposited onto flat, low-energy areas of the Kaikoura...the highest megabenthic biomass previously recorded at...export. The overall biomass and organic loading patterns...Kaikoura Canyon is a low-energy depocentre for POM derived...

2010-01-01T23:59:59.000Z

185

The Influence of Canyon Winds on Flow Fields near Colorado's Front Range  

Science Journals Connector (OSTI)

A network of sodars was operated in the late summer and fall of 1993 to monitor the occurrence of nocturnal winds from a canyon in Colorado's Front Range near the Rocky Flats Plant and to determine the influence of those winds on the flow fields ...

J. C. Doran

1996-04-01T23:59:59.000Z

186

EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho  

Broader source: Energy.gov [DOE]

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

187

Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico  

SciTech Connect (OSTI)

Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

Advanced Resources International

2010-01-31T23:59:59.000Z

188

Geology and Production Characteristics of Fractured Reservoirs in the Miocene Monterey Formation, West Cat Canyon Oilfield, Santa Maria Valley, California  

Science Journals Connector (OSTI)

West Cat Canyon Field is a faulted anticlinal ... of central coastal California known as Santa Maria Valley (Figs. 33-1, 33-2). ... fields), Lompoc, Jesus Maria, Santa Maria Valley, Casmalia, and Orcutt.

Perry O. Roehl; R. M. Weinbrandt

1985-01-01T23:59:59.000Z

189

Cap de Creus canyon: a link between shelf and slope sediment dispersal systems in the western Gulf of Lions, France  

E-Print Network [OSTI]

river, ~160 km to the NE). It is hypothesized that the westernmost Cap de Creus canyon is intercepting the regional sediment-transport pathway and directing it offshore, allowing significant sediment export through this area. The overall goal...

DeGeest, Amy Louise

2006-04-12T23:59:59.000Z

190

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

box Box 29 Box Label boxes Bratcher Brockman Bruce Covert Buffalo Burial burial ground burn pit c-107 c-farm Campaign Canister Storage Building canyon capsule Cast Cathy Louie...

191

Depositional environment and reservoir morphology of Guadalupian Bell Canyon sandstones, Scott field, Ward and Reeves counties, Texas  

E-Print Network [OSTI]

DEPOSITIONAL ENVIRONMENT AND RESERVOIR MORPHOLOGY OF GUADALUPIAN BELL CANYON SANDSTONES, SCOTT FIELD. WARD AND REEVES COUNTIES, TEXAS A Thesis by GERARD PAUL KASHATUS Submitted to the Graduate College of Texas ASM University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geology DEPOSITIONAL ENVIRONMENT AND RESERVOIR MORPHOLOGY OF GUADALUPIAN BELL CANYON SANDSTONES, SCOTT FIELD, WARD AND REEVES COUNTIES, TEXAS A Thesis by GERARD...

Kashatus, Gerard Paul

2012-06-07T23:59:59.000Z

192

Hanford Site Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

193

Microsoft Word - CX-Franklin-BadgerCanyonGrandview-RedMtnsDisconnectSwitch_WEB.docx  

Broader source: Energy.gov (indexed) [DOE]

8, 2012 8, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Franklin-Badger Canyon and Grandview-Red Mountain switch replacements PP&A Project No.: 2,349 / 2,350 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace disconnect switches and related equipment on the Franklin-Badger Canyon No.2 and Grandview-Red Mountain No.1 115- kilovolt transmission lines. The switch stands will be replaced in the same locations as the existing structures, and related load break equipment will be upgraded in-kind to existing. Both

194

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

195

Large-eddy simulation of flows over two-dimensional idealised street canyons with height variation  

Science Journals Connector (OSTI)

A series of large-eddy simulation (LES) models consisting of two-dimensional (2D) idealised street canyons with building height variability (BHV) are examined. Building blocks with two different heights are placed alternately in the computational domains, constructing repeated street canyons of building-height-to-street-width (aspect) ratio (AR) = 1, 0.5, 0.25 and 0.125 together with BHV = 0.2, 0.4 and 0.6. LES results show that the air exchange rate (ACH) increases with increasing aerodynamic resistance. Apart from AR, BHV is another factor affecting the aerodynamic resistance and thus the ACH. The (vertical) dispersion coefficient ?z of plume transport is also closely related to the aerodynamic resistance, suggesting that introducing BHV in urban areas could help improve the air quality.

Colman C.C. Wong; Chun-Ho Liu

2014-01-01T23:59:59.000Z

196

Upper Mission Canyon coated-grain producing facies in Williston basin  

SciTech Connect (OSTI)

The upper Mission Canyon formation, along the northeastern flank of the Williston basin, is a regressive carbonate and evaporite sequence, which has been informally divided into log-defined intervals. Oil production locally occurs at the transition from anhydrite to carbonate for each of the regressive intervals. These carbonate shoreline reservoirs are limestones dominated by coated grains. Porosity is intergranular and vuggy, and production from these reservoirs locally exceeds 400,000 bbl of oil/well. Upper Mission Canyon beds are also productive in island-shoal reservoirs, which developed basinward of of shorelines. These limestone reservoirs are also dominated by coated grains and porosity is intergranular and vuggy. Oil production from these reservoirs is variable, but wells within the Sherwood field along the US-Canadian border have produced over 2.0 MMbbl of oil/well.

Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (USA))

1989-08-01T23:59:59.000Z

197

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

Summary S-1 Summary S-1 Summary In this Summary: * Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary covers the major points of the draft Environmental Impact Statement (EIS) prepared for the Klondike III/Biglow Canyon Wind Integration Project proposed by the Bonneville Power Administration (BPA). The project includes constructing a new double-circuit 230-kilovolt (kV) transmission line in northern Sherman County, Oregon. The new line would connect the Klondike III Wind Project and the Biglow Canyon Wind Farm to BPA's existing John Day 500-kV Substation. The project would also require expansion of BPA's existing John Day 500-kV Substation and a new 230-kV substation to integrate the two wind projects. As a federal agency, BPA is required by the National Environmental Policy Act

198

Depositional environment and facies relationships of the Canyon sandstone, Val Verde Basin, Texas  

E-Print Network [OSTI]

and generous wi. th their time were Mr. Jim Patterson, Mr. Andy McDade, Mr. Buddy Reily, and Mr. Gary Swindell. Mr. Jim Hayes, Hayes Oil Company, Midland, Texas, provided the Shanklin 1-10 core. The interest and help of Mr. Hayes and Mr. Wayne Piette... Model . Transport Mechanism. Depositional History RESERVOIR CHARACTERISTICS OF THE CANYON SANDSTONE CONCI USIONS. . . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ REFERENCES CITED. . . . . . . . . . . ~ . ~ ~ ~ ~ APPENDIX, . . . . . . ~ ~ ~ ~, ~ ~ ~ ~ ~ ~ Osborn-Hayes-Shanklin...

Mitchell, Michael Harold

2012-06-07T23:59:59.000Z

199

Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.  

SciTech Connect (OSTI)

Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

Goulet, C. T.; LaGory, K. E.; Environmental Science Division

2009-10-05T23:59:59.000Z

200

Overview of ''Red Oil'' Frequency Analyses for F-Canyon  

SciTech Connect (OSTI)

A very small potential exists in the Savannah River Site (SRS) separations operations for an uncontrolled reaction between tri-n-butyl phosphate (TBP) and nitric acid that could result in unacceptable damage to separations facilities and a significant release of radioactive materials. The recent ''red oil'' (TBP and nitric acid) accident in Tomsk, Russia, resulted in considerable damage and radioactive release. Explosions have also occurred at SRS during the early years of operations. While the SRS separations facilities have operated without incident for many years, it is prudent to revisit the SRS defense-in-depth approach to preventing such an accident and to upgrade preventive procedures and hardware as appropriate.

Lux, C.R.

2000-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin  

Science Journals Connector (OSTI)

Abstract Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

Erich R. Mueller; Paul E. Grams; John C. Schmidt; Joseph E. Hazel Jr.; Jason S. Alexander; Matt Kaplinski

2014-01-01T23:59:59.000Z

202

CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)  

Office of Legacy Management (LM)

CERTIFICATION DOCKET CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45) AND THE EFFLUENT RECEIVING AREAS OF ACID, PUEBLO, AND LOS ALAMOS CANYOM, LOS ALAMOS, NEW MEXICO DEPARTMENT OF ENERGY Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects -. CONTENTS A Page - Introduction to the Certification Docket for the Former Site of the Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico Description of the Formeriy Utilized Sites Program at the Former Site of the T.4-45 Treatment Plant and Acid, Pueblo, and Los Alamos Canyons Purpose Property Identification Docket Contents

203

Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010  

Broader source: Energy.gov [DOE]

This report documents the results of the Type B Accident Investigation Board investigation of the June 14, 2010, employee puncture wound at the Department of Energy (DOE) Savannah River Site (SRS) F-TRU Wste Facility located in the F Canyon Facility.

204

Numerical simulation and wind tunnel studies of pollution dispersion in an isolated street canyon  

Science Journals Connector (OSTI)

A three dimensional numerical modelling study of an urban isolated street canyon are done using Computational Fluid Dynamics (CFD) software FLUENT. The concentration predictions of FLUENT are compared with the Environmental Wind Tunnel (EWT) test results conducted at Indian Institute of Technology, Delhi for the Aspect Ratio (AR) of 1 and 1.5 at perpendicular wind direction. In FLUENT, three different k??? turbulence models, i.e., standard, Renormalisation Group (RNG) and realisable, are used. RNG model has been found to be best matched with the wind tunnel results (d = 0.80) for AR = 1, showing that for separated flows, it works best.

Seema Awasthi; K.K. Chaudhry

2009-01-01T23:59:59.000Z

205

221-U Facility concrete and reinforcing steel evaluations specification for the canyon disposition initiative (CDI)  

SciTech Connect (OSTI)

This describes a test program to establish the in-situ material properties of the reinforced concrete in Building 221-U for comparison to the original design specifications. Field sampling and laboratory testing of concrete and reinforcing steel structural materials in Building 221-U for design verification will be undertaken. Forty seven samples are to be taken from radiologically clean exterior walls of the canyon. Laboratory testing program includes unconfined compressive strength of concrete cores, tensile strength of reinforcing steel, and petrographic examinations of concrete cores taken from walls below existing grade.

Baxter, J.T.

1998-05-28T23:59:59.000Z

206

Seismic stratigraphy and salt tectonics along the Sigsbee Escarpment, southeastern Green Canyon region  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE December 1986 Major Subject: Geophysics SEISItllC STRATIGHAPHY AND SALT TECTONICS ALONG THE 'ilGSHEL' L'SCARPMENT. SOI. THEASTERX GREEN CANYON RFGION A Thesis ALAN MARK SWIERCZ Approved as to style and content by: Earl... R. Hoskins (Chairman of Committee) Robert J. McCabe (Member) Gr M. arberg (Member) AVilliam R. Bryant ('Member) j~/ Earl R. Hoskins (Head of Department) December 1986 ABSTRAC'T Seismic Stratigraphy and Salt Tectonics along the Sigsbee...

Swiercz, Alan Mark

2012-06-07T23:59:59.000Z

207

Deformation of a basement corner, Crazy Woman Canyon, northeastern Bighorn Mountains, Wyoming  

E-Print Network [OSTI]

to differential uplift and rotation of basement blocks. The objectives of the pmject are as follows: 1. To study how the crystalline basement deforms and how it interacts with the sedimentary cover rocks, 2. To produce a detailed geologic map of the area... mapping at a scale of 1:12, 000, clay models, and geologic cross sections suggest two possible interpretations of how the uplifted and rotated basement blocks in the Crazy Woman Canyon area are related to the regional geometry of the eastern Bighorn...

Smith, Gretchen Louise

2012-06-07T23:59:59.000Z

208

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

209

Completed Sites  

Broader source: Energy.gov [DOE]

The Office of Environmental Management (EM) has been or is currently responsible for cleaning up sites across the United States. These sites were associated with the legacy of the nations nuclear...

210

TRACKING SITE  

Energy Science and Technology Software Center (OSTI)

003235MLTPL00 AASG Geothermal Data submissions tracking application and site. https://github.com/usgin/aasgtrack

211

A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies  

Science Journals Connector (OSTI)

As a result of rapid urbanization in numerous cities around the world, the demand for transportation has increased rapidly, resulting in emission of high levels of exhaust pollutants into the atmosphere. This is a major cause of deterioration in the ... Keywords: Urban street canyon, air quality, flow structure, pollutant dispersion

Afiq Witri Muhammad Yazid, Nor Azwadi Che Sidik, Salim Mohamed Salim, Khalid M Saqr

2014-08-01T23:59:59.000Z

212

Basin configuration and depositional trends in the Mission Canyon and Ratcliffe beds, U.S. portion of the Williston basin  

SciTech Connect (OSTI)

Construction of Mission Canyon and Ratcliffe depositional trends utilizing shoreline models and anhydrite edge maps shows a significant change in basin configuration associated with regional sea level changes. Sea level highstand, which began during deposition of the Scallion member of the Lodgepole Formation, was punctuated by two lowstand events. The first occurred during deposition of the MC-2 anhydrite (Tilston). During this lowstand event, the width of the carbonate basin decreased significantly. With sea level rise, a broad basin formed with carbonate and evaporate ramp deposition (Lands, Wayne, Glenburn and Mohall members). The top of the Mohall contains evidence of the second lowstand event. This event introduced quartz sand detritus into the basin (Kisbey Sandstone). Because of sea level lowstand, Sherwood and younger Mission Canyon beds were deposited during highstand in a narrower carbonate basin. Funneling of marine currents and tides in this basin created higher energy shoreline and shoal deposits than those commonly found in older Mission Canyon sediments. The top of the Mission Canyon (Rival) was capped by a deepening event or transgression which enlarged the basin and created broad Ratcliffe ramp systems similar to those that existed during Glenburn and Mohall deposition. By utilizing sequence stratigraphy and mapping shoreline trends and basin configuration, reservoir and trap geometries are identified, and exploration success is improved.

Hendricks, M.L. [Hendricks and Associates, Inc., Englewood, CO (United States)

1996-06-01T23:59:59.000Z

213

Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques  

Science Journals Connector (OSTI)

...Rock Art of the Colorado Plateau and Four...Johnson Books , Boulder, CO ). 21 Schaafsma...in canyons of the Colorado Plateau . Geol Soc Am Bull...record of extreme floods and climate change...drought in the upper Colorado River Basin . Geophys...Study of Rock Art (Boulder, CO). The authors...

Joel L. Pederson; Melissa S. Chapot; Steven R. Simms; Reza Sohbati; Tammy M. Rittenour; Andrew S. Murray; Gary Cox

2014-01-01T23:59:59.000Z

214

Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques  

Science Journals Connector (OSTI)

...coincident with the top of former T1 flood deposits providing a platform...sediment storage in canyons of the Colorado Plateau . Geol Soc Am Bull 99 ( 2...5000-year record of extreme floods and climate change in the southwestern...Medieval drought in the upper Colorado River Basin . Geophys Res Lett...

Joel L. Pederson; Melissa S. Chapot; Steven R. Simms; Reza Sohbati; Tammy M. Rittenour; Andrew S. Murray; Gary Cox

2014-01-01T23:59:59.000Z

215

Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon  

E-Print Network [OSTI]

experiment (CFE) in the Grand Canyon to show that three types of fluvial processes can be monitored from as the dominant seismic source between 15 and 45 Hz. Two lower-frequency seismic bands also excited by the CFE and infrasound responses to the CFE. Citation: Schmandt, B., R. C. Aster, D. Scherler, V. C. Tsai, and K

Tsai, Victor C.

216

Record of Decision: Stabilization of Plutonium Solutions Stored in the F-Canyon Facility at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

24 24 Federal Register / Vol. 60, No. 35 / Wednesday, February 22, 1995 / Notices determination have been corrected, and the SEA or LEA is, in all other respects, in compliance with the requirements of the applicable program; (2) SEA has submitted to the Secretary a plan for the use of the funds to be awarded under the grantback arrangement that meets the requirements of the program, and to the extent possible, benefits the population that was affected by the failure to comply or by the misexpenditures that resulted in the audit exception; and (3) Use of funds to be awarded under the grantback arrangement in accordance with the SEA's plan would serve to achieve the purposes of the program under which the funds were originally granted. C. Plan for Use of Funds Awarded Under a Grantback Arrangement

217

W00604050033 W00604040011  

E-Print Network [OSTI]

-Site Canyon Area A Canyon Fish Ladder Canyon HE K-SITE 340 430 BURNING GROUND 410 V-SITE 360 BUNKER 411

218

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report: Appendix B, Preliminary final  

SciTech Connect (OSTI)

Detailed investigations of geologic, geomorphic, and seismic conditions at the Burro Canyon site were conducted by the US Department of Energy (DOE) as a disposal site for the tailings at two processing sites near the Slick Rock, Colorado, post office. The purposes of these studies are basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies (e.g., analyses of hydrologic and liquefaction hazards) used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65-km radius of the site, provided the basis for seismic design parameters.

Not Available

1994-03-01T23:59:59.000Z

219

Summary - Plutonium Preparation Project at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

Site Site EM Project: PuPP ETR Report Date: October 2008 ETR-17 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Plutonium Preparation Project at the Savannah River Site Why DOE-EM Did This Review The purpose of the Plutonium Preparation Project (PuPP) is to prepare for disposition of plutonium materials; for examination, re-stabilization, and disassembly of the Fast Flux Test Facility (FFTF) unirradiated fuel; and for repackaging of Pu stored in 3013 containers. Of ~12.8 MT of plutonium, ~4.1 MT will be directly transferred to the MOX Fuel Fabrication Facility (MFFF); ~3.7 MT will require processing prior to transfer to the MFFF; and ~5 MT was proposed to be processed in H-Canyon with the

220

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Integrated study of Mediterranean deep canyons: Novel results and future challenges  

Science Journals Connector (OSTI)

Abstract This volume compiles a number of scientific papers resulting from a sustained multidisciplinary research effort of the deep-sea ecosystem in the Mediterranean Sea. This started 20 years ago and peaked over the last few years thanks to a number of Spanish and European projects such as PROMETEO, DOS MARES, REDECO, GRACCIE, HERMES, HERMIONE and PERSEUS, amongst others. The geographic focus of most papers is on the NW Mediterranean Sea including the Western Gulf of Lion and the North Catalan margin, with a special attention to submarine canyons, in particular the Blanes and Cap de Creus canyons. This introductory article to the Progress in Oceanography special issue on Mediterranean deep canyons provides background information needed to better understand the individual papers forming the volume, comments previous reference papers related to the main topics here addressed, and finally highlights the existing relationships between atmospheric forcing, oceanographic processes, seafloor physiography, ecosystem response, and litter and chemical pollution. This article also aims at constituting a sort of glue, in terms of existing knowledge and concepts and novel findings, linking together the other twenty papers in the volume, also including some illustrative figures. The main driving ideas behind this special issue, particularly fitting to the study area of the NW Mediterranean Sea, could be summarized as follows: (i) the atmosphere and the deep-sea ecosystem are connected through oceanographic processes originating in the coastal area and the ocean surface, which get activated at the occasion of high-energy events leading to fast transfers of matter and energy to the deep; (ii) shelf indented submarine canyons play a pivotal role in such transfers, which involve dense water, sedimentary particles, organic matter, litter and chemical pollutants; (iii) lateral inputs (advection) from the upper continental margin contributes significantly to the formation of intermediate and deep-water masses, and the associated fluxes of matter and energy are a main driver of deep-sea ecosystems; (iv) deep-sea organisms are highly sensitive to the arrival of external inputs, starting from the lowest food web levels and propagating upwards as time passes, which also relies upon the biology, nutritional needs and life expectancy of each individual species; and (v) innovative knowledge gained through such multidisciplinary research is of the utmost significance for an improved management of deep-sea living resources, such as the highly priced red shrimp Aristeus antennatus, for which a pilot management plan largely based in the findings described here and in related articles has been recently published (BOE, 2013). The researchers involved in such challenging endeavour have learnt tremendously from the results obtained so far and from each other, but are fully aware that there are still many unsolved questions. That is why this introductory article also includes Future challenges both in the title and as an individual section at the end, to express that there is still a long way to go.

M. Canals; J.B. Company; D. Martn; A. Snchez-Vidal; E. Ramrez-Llodr

2013-01-01T23:59:59.000Z

222

Dynamic modelling of transient emissions and concentrations from traffic in street canyons  

Science Journals Connector (OSTI)

In the EU 5th framework project DECADE (2001??2003), a new methodology has been developed to calculate in detail the engine power required to drive a given vehicle over any particular route. It includes the rapidly changing (transient) demands placed on the engine, an area that has proved an obstacle to accurate simulations in the past. Together with the associated speed profiles, the actual power demands allow a detailed calculation of emissions and ambient air concentrations in street canyons. This makes the methodology a valuable tool for detailed assessments of the ambient air quality impact of e.g., street design (traffic lights, road bumps, busy crossings), driving patterns, driving behaviour and fleet composition.

Clemens Mensink; Guido Cosemans; Luc Pelkmans

2005-01-01T23:59:59.000Z

223

Hydrodynamic effects on Mission Canyon (Mississippian) oil accumulations, Billings Nose area, North Dakota  

SciTech Connect (OSTI)

Mission Canyon oil production on the south flank of the Williston basin provides an example of an area in the mature stage of exploration that shows significant hydrodynamic effects on oil accumulations related to stratigraphic traps. The effects are illustrated by the Billings Nose fields and the Elkhorn Ranch field. The reservoirs have low hydraulic gradients of about 2 m/km (10 ft/mi), tilted oil-water contacts with gradients of 5 m/km (25 ft/mi), and variable formation-water salinities that range from brackish to highly saline. Oil accumulations in some zones are displayed off structure and downdip to the northeast, parallel to porosity pinch-outs. Other zones are pure hydrodynamic closure. Future success in exploration and development in the play will depend on recognizing the hydrodynamic effects and predicting oil displacement. 34 refs., 15 figs., 1 tab.

Berg, R.R. (Texas A M Univ., College Station, TX (United States)); DeMis, W.D. (Marathon Oil Co., Houston, TX (United States)); Mitsdarffer, A.R. (Dupont Environmental Remediation Services, Houston, TX (United States))

1994-04-01T23:59:59.000Z

224

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

SciTech Connect (OSTI)

A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

2009-07-15T23:59:59.000Z

225

Paleoseismic investigations of the Paintbrush Canyon fault in southern Midway Valley, Yucca Mountain, Nevada: Preliminary results  

SciTech Connect (OSTI)

Trench mapping in southern Midway Valley provides evidence of multiple surface-faulting events on a western splay of the Paintbrush Canyon fault during the middle to late Pleistocene. The 6-m-wide fault zone exposed in the trench strikes N30-45E and dips steeply ([approximately]78[degree]) to the west, although some shears within the zone dip to the east. Tertiary volcanic bedrock is exposed only on the footwall block within the trench. Unconsolidated colluvial and eolian deposits are present in the hanging-wall block and above bedrock in the footwall block. These deposits tentatively are assigned, respectively, mid Pleistocene and late Pleistocene ages based on correlations with surficial map units in Midway Valley. Three to five displacement events are inferred based on faulted colluvial and eolian deposits, and scarp-derived colluvial wedges. Total cumulative dip-slip displacement of the oldest middle Pleistocene subunit is estimated to be about 170 to 270 cm. The dip-slip displacement associated with the youngest event is about 15 cm. The earlier displacements are estimated to have produced between 40 and 85 cm of dip-slip displacement per event. The most recent event occurred after deposition of late Pleistocene colluvium deposited against the fault scarp but before deposition of an overlying hillslope-derived colluvium of probable late pleistocene age. Based on the preliminary results of the authors study, the middle to late Quaternary rate of dip-slip displacement is approximately 0.01 m/kyr or less. Ongoing work, including soil-stratigraphic studies and numerical dating of deposits, should better constrain the timing and a rate of faulting along this western splay of the Paintbrush Canyon fault.

Swan, F.H.; Wesling, J.R.; Thomas, A.P. (Geomatrix Consultants, San Francisco, CA (United States))

1993-04-01T23:59:59.000Z

226

Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.  

SciTech Connect (OSTI)

On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

2010-07-31T23:59:59.000Z

227

Tectonostratigraphic reconstruction and lithofacies distribution of tertiary slope sedimentary rocks in the Western Mississippi Canyon area  

SciTech Connect (OSTI)

The distribution of upper Tertiary, sandstone-prone, deep-water sedimentary rocks from the vicinity of Cognac field, Mississippi Canyon (MC) 194, south of Mars field (MC763) is presented based on an integrated sequence stratigraphic analysis of seismic, well log, and biostratigraphic data. Paleo-salt distributions were reconstructed by plotting the changing positions of depocenters on five isopach maps generated from six key sequence boundaries. Depositional trends, projected under allochthonous salt sheets, indicated subsalt prospectivity. Sixteen sequences were interpreted and subdivided into three lowstand depositional units (basin-floor fan, slope fan, and prograding wedge). Thirty isochron/seismic facies maps were made to reveal the stratigraphic pattern through the late Tertiary. During the early Miocene, a salt-rimmed syncline centered north of Mars field in MC455 accumulated sediments. The salt rim collapsed, creating a middle Miocene turtle structure. Middle-late Miocene sand-rich turbidites bypassed this structure and were deposited to the south around Mars field and beyond. At the same time, another depotrough 30 mi east of Mars field channeled deep-water sands to the MC730 area. A late Miocene-early Pliocene counterregional fault striking parallel to the shelf edge formed as salt evacuated the area on the south side of the Cognac (MC194) and Lena (MC280) fields. This fault trapped the Pliocene reservoir sandstones that produce in these fields. Sedimentation during the late Pliocene-early Pleistocene was very slow (0.2m/1,000 yr) and characterized by thin, stacked, condensed sections of hemipelagic shale. Since the mid-Pleistocene, the Mississippi River has supplied sediments to the Mississippi Canyon area that have induced salt deformation that has in turn affected recent sedimentation.

Hannan, A.E.; Risch, D.L.; Chowdhury, A.N. [Geco-Prakla, Inc., Houston, TX (United States)

1994-12-31T23:59:59.000Z

228

CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON  

SciTech Connect (OSTI)

Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

Mickalonis, J.

2014-06-01T23:59:59.000Z

229

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park  

SciTech Connect (OSTI)

This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-08-01T23:59:59.000Z

230

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

Murphy, Mark B.

1999-02-24T23:59:59.000Z

231

Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home » Site Map Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Select Publications Jeff Broughton Katie Antypas John Shalf Francesca Verdier Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Lynn Rippe Suzanne Stevenson David Tooker Center Communications Jon Bashor Linda Vu Margie Wylie Kathy Kincade Advanced Technologies Group Nicholas Wright Brian Austin Research Projects Matthew Cordery Christopher Daley Analytics Group Peter Nugent David Camp Hank Childs Harinarayan Krishnan Burlen Loring Joerg Meyer Prabhat Oliver Ruebel Daniela Ushizima Gunther Weber Yushu Yao Computational Systems Group Jay Srinivasan James Botts Scott Burrow Tina Butler Nick Cardo Tina Declerck Ilya Malinov David Paul Larry Pezzaglia Iwona Sakrejda

232

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

SciTech Connect (OSTI)

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

233

Behavioral and phylogenetic differentiation in a potential cryptic species complex, the canyon treefrog  

Science Journals Connector (OSTI)

Detection of genetic and behavioral diversity within morphologically similar species has led to the discovery of cryptic species complexes. We tested the hypothesis that the canyon treefrog (Hyla arenicolor) may consist of cryptic species by examining mate-attraction signals among highly divergent lineages defined by mitochondrial DNA (mtDNA). Unexpectedly calls exhibited little variation among the three U.S. lineages despite large mtDNA sequence divergences. We re-analyzed intraspecific and interspecific phylogenetic relationships by sequencing both mitochondrial and nuclear genetic markers among populations and a closely related but morphologically and behaviorally different species the Arizona treefrog (H. wrightorum). Discordance between mitochondrial and nuclear datasets suggests multiple instances of introgression of H. wrightorum's mitochondrial genome into populations of H. arenicolor. Furthermore intraspecific population structure based on nuclear markers shows better congruence with patterns of call variation than population structure based on the mitochondrial dataset. Although the U.S. lineages do not appear to represent cryptic species Mexican lineages do show biologically relevant call differences as assessed through female preference tests. Our results suggest that call variation can indicate genetic structure of populations; however a multilocus approach should be used in defining genetic structure as using only mtDNA may lead to erroneous conclusions.

2014-01-01T23:59:59.000Z

234

EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY  

SciTech Connect (OSTI)

A source-receiver geometry was designed for a 9C3D seismic survey in Montrail County, North Dakota, that will involve the largest number of active 3-component stations (1,800 to 2,100) ever attempted in an onshore U.S. multicomponent seismic survey. To achieve the data-acquisition objectives, 3-component geophone strings will be provided by the Bureau of Economic Geology, Dawson Geophysical, and Vecta Technology. Data acquisition will commence in late October 2003. The general objective of this study is to demonstrate the value of multicomponent seismic technology for exploring for subtle oolitic-bank reservoirs in the Mission Canyon Formation of the Williston Basin. The work tasks done during this report period concentrated on developing an optimal design for the seismic survey. This first semiannual report defines the geographical location and geometrical shape of the survey and documents the key acquisition parameters that will be implemented to yield high-fold, high-resolution 9-component seismic data.

John Beecherl

2003-10-01T23:59:59.000Z

235

Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21B well  

Science Journals Connector (OSTI)

Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ?2ohm-m and P-wave velocity in the range of ?1.9km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 828%, with 20% being our best estimate.

M.W. Lee; T.S. Collett; K.A. Lewis

2012-01-01T23:59:59.000Z

236

Site C  

Office of Legacy Management (LM)

' ' u. s. A r my Corps or Engineers Kurfal.. Ilisfr ifl om« 1776 N1 . ~lI rll Sfred , lIu fflll" , New v ur k. 14207 Site C loseout Report for th e Ashland I (Includlng Seaway Arca D), Ashland 2 and Rattlesnake Creek FUS RAP Sites To nawanda . New Yor k F ina l - Octo ber 2006 Formerl y Ut ilized Sites Remedi al Actiun Program Dt:CLAlUlfiO lO OF RF ~ I'O""" A <:n o .. ('oMnLflOI'O '" 1 S-~1 1 A "n· nvnn: S Ill: C'lO'iU 'U l RtrUlIT f OR A SlIu x u l (I "ICLU I ING S t:A" ·,H A RU D j, AS H I .A ~O 2 A."n RAnU:M'AKf eRU" ~ rn~ I!d'on at A.hland 1 (Ind udonl Seaway Area DJ. Ashland 2 and kan~snak c Creek is Wi,...... 1c in acwr.hnu willi ~ Rcconl or Oecisim (ROD) . igned 00> April 20. 1998 and l'.1pbIWlOII <;If

237

Williams Holding Lease steamflood demonstration project, Cat Canyon Field. Final report  

SciTech Connect (OSTI)

The objective of this pilot program was to evaluate the efficiency and economics of the steam displacement process for future full-scale development of the Cat Canyon S1-B reservoir and in similar heavy crude oil reservoirs. Acivities prior to the initiation of displacement steam injection in April, 1977 included cyclic steam stimulations of the production wells, acquisition of steam generator permits, and the drilling of pilot injection wells. Initial displacement operations were hampered by packer failures and the loss of sand control in the injection wells. Steamflood response occurred over a ten-month period beginning in October, 1977 in four of the nine pilot producers. Subsequent attempts to divert steam to the non-responding producers failed. Poor oil production and high water/oil ratios characterized steamflood performance. Computer thermal simulation studies identified steam channeling, over-injection of steam, and poor quality steam at the sand face as causes of the adverse response. This led to a decision to temporarily suspend steamflood injection from February, 1980 to December, 1981. Improvement in oil production and a decrease in the water/oil ratio resulted during this dewatering period. Displacement injection was resumed in January, 1982 through insulated tubulars and at lower injection rates. Although steamflood response has occurred in three of the nine producers to date, total pilot production has declined steadily since January, 1982. The non-responding producers have been responsible for the majority of this decline. Additionally, the wells that have responded have not met performance expectations. For these reasons, displacement injection was permanently halted on December 15, 1982. Getty Oil Company is presently operating a third generation pilot using knowledge and experience gained from the Williams Holding DOE pilot and a previous pilot. 21 figures, 3 tables.

Bardet, C.K.

1983-07-01T23:59:59.000Z

238

Auxiliary feedwater system risk-based inspection guide for the Diablo Canyon Unit 1 Nuclear Power Plant  

SciTech Connect (OSTI)

This document presents a compilation of auxiliary feedwater (AFW) system failure information which has been screened for risk significance in terms of failure frequency and degradation of system performance. It is a risk-prioritized listing of failure events and their causes that are significant enough to warrant consideration in inspection planning at Diablo Canyon. This information is presented to provide inspectors with increased resources for inspection planning at Diablo Canyon. The risk importance of various component failure modes was identified by analysis of the results of probabilistic risk assessments (PRAs) for many pressurized water reactors (PWRs). However, the component failure categories identified in PRAs are rather broad, because the failure data used in the PRAs is an aggregate of many individual failures having a variety of root causes. In order to help inspectors to focus on specific aspects of component operation, maintenance and design which might cause these failures, an extensive review of component failure information was performed to identify and rank the root causes of these component failures. Both Diablo Canyon and industry-wide failure information was analyzed. Failure causes were sorted on the basis of frequency of occurrence and seriousness of consequence, and categorized as common cause failures, human errors, design problems, or component failures. This information permits an inspector to concentrate on components important to the prevention of core damage. Other components which perform essential functions, but which are not included because of high reliability or redundancy, must also be addressed to ensure that degradation does not increase their failure probabilities, and hence their risk importances. 23 refs., 1 fig., 1 tab.

Gore, B.F.; Vo, T.V.; Harrison, D.G.

1990-08-01T23:59:59.000Z

239

Big Stick/Four Eyes fields: structural, stratigraphic, and hydrodynamic trapping within Mission Canyon Formation, Williston basin  

SciTech Connect (OSTI)

The Mississippian Mission Canyon formation of the Williston basin is the region's most prolific oil producing horizon. Big Stick/Four Eyes is among the most prolific of the Mission Canyon fields. Primary production from 87 wells is projected to reach 47 million bbl of oil. An additional 10-20 million bbl may be recovered through waterflooding. The complex was discovered in 1977 by the Tenneco 1-29 BN, a wildcat with primary objectives in the Devonian Duperow and Ordovician Red River Formations. A series of Mission Canyon discoveries followed in the Big Stick, Treetop, T-R, and Mystery Creek fields. Early pressure studies showed that these fields were part of an extensive common reservoir covering 44.75 mi/sup 2/ (115.91 km/sup 2/). The reservoir matrix is formed from restricted marine dolostones deposited on a low-relief ramp. Landward are algal-laminated peritidal limestones and saline and supratidal evaporites of a sabkhalike shoreline system. Open-marine limestones, rich in crinoids, brachiopods, and corals, mark the seaward limit of reservoir facies. Regressive deposition placed a blanket of anhydrite over the carbonate sequence providing a seal for the reservoir. Lateral trapping is accomplished through a combination of processes. Upper reservoir zones form belts of porosity that parallel the northeasterly trending shoreline. The trend is cut by the northward plunging Billings anticline, which provides structural closure to the north. Facies changes pinch out porosity to the south and east. Trapping along depositional strike to the southwest is only partially controlled by stratigraphic or structural factors. A gentle tilt of 25 ft per mi (5 m per km) occurs in the oil-water contact to the east-northeast, due to freshwater influx from Mississippian outcrop on the southern and southwestern basin margins.

Breig, J.J.

1988-07-01T23:59:59.000Z

240

Thermal and daylighting evaluation of the effect of varying aspect ratios in urban canyons in Curitiba, Brazil  

Science Journals Connector (OSTI)

Urbanization is commonly associated with densification which may lead to vertical growth or urban consolidation. The present study evaluates the daylighting potential as a function of urban morphology for the city of Curitiba ( 25 2 5 ? 5 0 ? ? S 46 1 6 ? 1 5 ? ? W ). It also presents a thermal analysis for a representative street axis orientation in this location showing indoor conditions within a test office for different aspect ratios. In Curitiba certain street axes were designated to allow densification (in the so-called structural sector of the city). As a consequence there is a great risk of urban canyons being formed as local legislation does not impose height restrictions to adjacent buildings. Daylight analysis was based on software simulations with LUZ DO SOL DLN ECOTECT and RADIANCE. Thermal analysis was carried out by means of computer simulations with the IDA ICEsoftware. It was verified that diagonal axial orientations relative to the north (rotated in 45) provide higher daylighting potentials to buildings located in urban canyons. With regard to the thermal effect of varying the aspect ratio in an east-west street axis results confirm daylighting simulations showing the interrelation between both comfort parameters.

Eduardo Krger; Mauro Suga

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Historical macrobenthic community assemblages in the Avils Canyon, N Iberian Shelf: Baseline biodiversity information for a marine protected area  

Science Journals Connector (OSTI)

Deep-sea ecosystems are highly diverse, and European countries seek to protect these environments by identifying conservation targets. One of these is the Avils Canyon, southern Bay of Biscay, NE Atlantic, Spain. We present the first analysis of historical benthic communities (19871988) of this canyon ecosystem, which is a valuable source of biodiversity baseline information. We found 810 taxa divided in five main macrobenthic assemblages, showing a highly diverse benthic community. Bathymetry was the major structuring agent of benthic community, separating shallow (assemblages I and II, 31 to 307m depth) from deep stations (assemblages III, IV and V, 198 to 1400m depth). Especially diverse was assemblage IV, located at the easternmost part of the continental slope (3781100m depth) where we found reef-forming corals Lophelia pertusa and Madrepora oculata. These and other communities (sea-pens [Order Pennatulacea, Phylum Cnidaria] and burrowing macrofauna) represent key habitats in NE Atlantic continental slopes, which are currently threatened. The present dataset has produced the most comprehensive assessment of diversity in this area to date, focusing on the taxonomic groups which may best reflect the health of the marine ecosystem and supporting previous studies which indicate that the continental slope of the southern Bay of Biscay hosts key benthic habitats.

Maite Louzao; Nuria Anadn; Julio Arrontes; Consuelo lvarez-Claudio; Dulce Mara Fuente; Francisco Ocharan; Araceli Anadn; Jos Luis Acua

2010-01-01T23:59:59.000Z

242

The stratigraphy of selected Mission Canyon wireline log markers, US portion of the Williston basin, North Dakota  

SciTech Connect (OSTI)

The Mission Canyon Formation along the northeast flank of the US Williston basin has been informally subdivided into intervals (members) based on wireline log markers. Wireline log responses of the markers are produced by both lithologic changes and radioactive elements present within these thin stratigraphic intervals. The wireline markers were originally described as transgressive events. Detailed stratigraphic analyses of the Sherwood and State A markers indicate they were deposited during progradation and sea level stillstand. A typical facies tract from east to west within the Sherwood marker contains anhydrites and anhydritic dolomites deposited in sabkha environments; patterned dolomudstones along shoreline trends (the Sherwood argillaceous marker); and limestones in shoaling environments along the Mission Canyon shelf (Sherwood gamma marker). During stillstand, brines produced in sabkha environments (east of the Sherwood shoreline) were enriched in magnesium and potassium. These brines migrated basinward first, dolomitizing mudstones. These brines were magnesium depleted by the time they reached shoals along the shelf. Potassium, however, remained in the system and is present within the marker along the shelf, as shown by a slight increase in API units on Spectrologs.

Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (United States))

1991-06-01T23:59:59.000Z

243

Hanford Site Safety Standards - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Rigging Manual DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual Hanford Site LockoutTagout Procedure DOE-0336, Hanford Site LockoutTagout Procedure (PDF) Hanford...

244

SITE MAINTENANCE PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

...............................................................................................................5 5.2 Ground and Surface Water MonitoringSITE MAINTENANCE PLAN CSMRI SITE REMEDIATION June 29, 2004 Prepared by: Colorado School of Mines .................................................................................................4 5.0 SITE AIR AND WATER MONITORING

245

Division Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Reduction Catalysts Carbon Dioxide Reduction Catalysts Our research program is directed toward developing and understanding metal complexes that catalyze reactions relevant to renewable energy, particularly those that reduce carbon dioxide to fuels or fuel precursors. Carbon dioxide reduction catalysts are important targets because they could enable "recycling" of hydrocarbon fuels, thus lowering their carbon footprint. Our research addresses two key challenges in this area. First, we aim to improve the lifetimes, activity, and selectivity of homogeneous catalysts by incorporating them into porous heterogeneous frameworks derived from structurally persistent organic polymers. These frameworks allow isolation of the catalytic centers, which inhibits reaction pathways that lead to catalyst decomposition, and enable the spatially controlled deployment of ancillary functional groups that bind and concentrate substrate near the active site and/or assist with its activation. Second, we are developing homogeneous dual-catalyst systems and assemblies that couple CO2 reduction catalysis to a parallel catalytic reaction that provides the reducing equivalents. We are especially interested in proton-coupled electron-transfer reactions involving activation of H2 and of organic dehydrogenation substrates, wherein the proton pathway also participates in the conversion of CO2 to CO. In both of these research thrusts we are studying catalysts that may be activated under thermal, electrochemical, or photochemical conditions.

246

Hanford Site Wide Programs - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Decrease Font Size Hanford Site Wide Programs Hanford Safety Hanford Site Wide Programs Hanford Fire Department Health & Safety Exposition Hanford Traffic Safety Hanford...

247

Site Map | DOEpatents  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website PoliciesImportant Links...

248

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

249

The Role of Convective Outflow in the Waldo Canyon Fire* RICHARD H. JOHNSON, RUSS S. SCHUMACHER, AND JAMES H. RUPPERT JR.  

E-Print Network [OSTI]

The Role of Convective Outflow in the Waldo Canyon Fire* RICHARD H. JOHNSON, RUSS S. SCHUMACHER-00361.s1. Corresponding author address: Richard H. Johnson, Dept. of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: johnson

Johnson, Richard H.

250

Upper Plio-Pleistocene salt tectonics and seismic stratigraphy on the lower continental slope, Mississippi Canyon OCS Area, Gulf of Mexico  

E-Print Network [OSTI]

of sequence E, which represents the late Wisconsinan glacial. Salt generally occurs as tongues or sheets, and forms continuous masses in the basinward part of the canyon at water depths of about 1300 m (4300 ft). Areas without salt are near the "spur...

Liu, Jia-Yuh

2012-06-07T23:59:59.000Z

251

Long-Term Surveillance Plan for the Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 1 0 CFR Part 40. The purpose of this general...

252

Chapter 3: Building Siting  

Broader source: Energy.gov (indexed) [DOE]

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

253

MIDC: Web Site Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MIDC Web Site Search Enter words or phrases: Search Clear Help Also see the site directory. NREL MIDC...

254

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

255

Small Site Closures  

Office of Environmental Management (EM)

CO 1997 Old Rifle, CO 1997 Slick Rock Old North Continent, CO 1997 Slick Rock Union Carbide, CO 1997 New Brunswick Site, NJ 1997 List of Small Site Closures by Year 2 Site Name,...

256

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

We assessed the relationships between specific stream attributes and Yellowstone cutthroat trout Oncorhynchus clarki bouvieri distribution and biomass at 773 stream reaches (averaging 100 m in length) throughout the Upper Snake River Basin in Idaho, in an effort to identify possible limiting factors. Because limiting factors were expected to vary across the range of cutthroat trout distribution in Idaho, separate logistic and multiple regression models were developed for each of the nine major river drainages to relate stream conditions to occurrence and biomass of cutthroat trout. Adequate stream flow to measure fish and habitat existed at 566 sites, and of those, Yellowstone cutthroat trout were present at 322 sites, while rainbow trout O. mykiss (or rainbow x cutthroat hybrids) and brook trout Salvelinus fontinalis occurred at 108 and 181 sites, respectively. In general, cutthroat trout presence at a specific site within a drainage was associated with a higher percentage of public property, higher elevation, more gravel and less fine substrate, and more upright riparian vegetation. However, there was much variation between drainages in the direction and magnitude of the relationships between stream characteristics and Yellowstone cutthroat trout occurrence and biomass, and in model strength. This was especially true for biomass models, in which we were able to develop models for only five drainages that explained more than 50% of the variation in cutthroat trout biomass. Sample size appeared to affect the strength of the biomass models, with a higher explanation of biomass variation in drainages with lower sample sizes. The occurrence of nonnative salmonids was not strongly related to cutthroat trout occurrence, but their widespread distribution and apparent ability to displace native cutthroat trout suggest they may nevertheless pose the largest threat to long-term cutthroat trout persistence in the Upper Snake River Basin.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2004-03-01T23:59:59.000Z

257

Hanford Site Freedom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007; 3. Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 2008; 4. Radionuclide Air Emissions Report for the Hanford Site, Calendar Year 2010. (The 2009...

258

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

259

DOE/EV-0005/30 LA-8890-ENV UC-70 Formerly Utilized MED/AEC Sites  

Office of Legacy Management (LM)

0 0 LA-8890-ENV UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Site of a Former Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico May 1981 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness Environmental and Safety Engineering Division Washington, DC 20545 Los Alamos National Laboratory Los Alamos, New Mexico 87545 PREFACE This series of reports results from a program initiated in 1974 by the Atomic Energy Commission (AEC) for determination of the condition of sites formerly utilized by the Manhattan Engineer District (MED) and the AEC for work involving the handling of radioactive materials. Since the early

260

Hanford Site Solid Waste Acceptance Program - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Site Wide Programs > Hanford Site Solid Waste Acceptance Program About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Site...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Site Map | ScienceCinema  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Audio Search Fielded Search About Help Site Map Contact Us Website PoliciesImportant Links...

262

PHP SCILAB | .. | 1 (Web Site) Web Site ,  

E-Print Network [OSTI]

PHP SCILAB | .. | 1 Chapter 1 , (Web Site) Web Site , (World Wide Web) : http://school.obec.go.th/borkruwitt/inter/internet01.gif HTML PHP,JavaScript,ASP PHP SCILAB AppServ PHP http://www.appservnetwork.com #12; PHP SCILAB | .. | 2 1. 2. Next 3. I

Kovintavewat, Piya

263

Demonstration of shield-type longwall supports at York Canyon Mine of Kaiser Steel Corporation. Final technical report A  

SciTech Connect (OSTI)

This report represents work on a program that was originated by the USBM of the Department of the Interior and was transferred to the Department of Energy on October 1, 1977. A demonstration with the Government funded Hemscheidt 320 HSL caliper type shield supports was conducted at three longwall panels of Kaiser Steel Corporation's York Canyon Mine. The purpose of this longwall demonstration was to provide the US coal industry with information on all aspects of shield longwall mining in high seams. The demonstration provided a working model for the coal industry and during the project, 350 people from the industry, schools, and government agencies visited the demonstration. They were provided with a first hand knowledge of a working shield longwall. The demonstration showed that the control of large coal lumps may be a problem in the mining of coal seam thicker than 8 feet. Mining with shield type supports provided good working conditions and a safe working environment. The shield requires very little maintenance and has a high mechanical availability.

Lawrence, R.G.; King, R.

1980-04-01T23:59:59.000Z

264

La Jolla Canyon and Scripps Canyon Bibliography  

E-Print Network [OSTI]

Henry, M.J. (1976). The unconsolidated sediment distributionfan valley cut into unconsolidated sediment is encountered.water saturated and unconsolidated) surficial deposits on

Brueggeman, Peter

2009-01-01T23:59:59.000Z

265

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Recovery Act funding, contractors are cleaning up dozens of waste sites. In this photo from October 2009, workers continue to excavate soil from the 100-UPR-K-1 waste site,...

266

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

truck, trucks, waste site, BC, BC Control Area Area: BC Control Area Description: This photo shows the BC Control Area of the Hanford Site before remediation began. The area is...

267

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

site H Reactor Hanford High School Hanford Site Historic Historical Building Historical Photo IC ISS Long-Term Stewardship LTS metal debris military Mt. Rainier N Reactor N-Area...

268

ORNL Site Ofice  

Broader source: Energy.gov (indexed) [DOE]

ORNL Site Ofice ORNL Site Ofice P.O. Box 2008 Oak Ridge, Tennessee 37831-6269 January 28, 2013 MEMORANDUM FOR GREGORY H. WOODS GENERAL COUNSEL GC-1 FROM: SUBJECT: ��MK = MOORE, MANAGER lF �NL SITE OFFICE ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY FOR 2013- OAK RIDGE NATIONAL LABORATORY (ORNL) SITE OFFICE (OSO) This correspondence transmits the Annual NEPA Planning Summary for 2013 for OSO.

269

Fire Protection Related Sites  

Broader source: Energy.gov [DOE]

Fire Protection related sites for Department of Energy, Non-DOE Government and Non-Government information.

270

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bluffs Landslide Popular Keywords: Archeological Excavation archeological excavation burn pit landfill old Hanford town site > Archeological Excavation Archeological...

271

Completed Sites Listing  

Broader source: Energy.gov [DOE]

As of fiscal year 2012, EM (and its predecessor organization UMTRA) completed cleanup and closed 90 sites in 24 states.

272

AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I  

Broader source: Energy.gov (indexed) [DOE]

58 58 AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I C O C E A N E d w a r d s A F B E d w a r d s A F B K e r n C o u n t y L o s A n g e l e s C o u n t y Ve n t u r a C o u n t y S a n B e r n a r d i n o C o u n t y S a n t a B a r b a r a C o u n t y S . L . O . Red Rock Red Rock Canyon Canyon State Rec Area State Rec Area P i t M St t P k T St t P k H e s p e r i H e s p e r i C a m a r i l l o C a m a r i l l o V i c t o r v i l l V i c t o r v i l l A r v i n A r v i n A g o u r a A g o u r a M o o r p a r k M o o r p a r k A d e l a n t o A d e l a n t o F i l l m o r e F i l l m o r e C a l a b a s a s C a l a b a s a s T e h a c h a p i T e h a c h a p i C a r p i n t e r i a C a r p i n t e r i a S a n t a S a n t a P a u l a P a u l a S i e r r a S i e r r a M a d r e M a d r e P o r t P o r t H u e n e m e H u e n e m e L a L a C a n a d a C a n a d a F l i n t r i d g e F l i n t r i d g e Piru Taft Somis Boron Lebec Keene Muscoy Devore Summit Saugus Gorman Mojave Atolia Cantil Lamont Edison El Rio Saticoy Garlock Montalvo Rosamond Monolith Maricopa Caliente Rosedale De Verdemont Crestline Helendale Oak View Wrightwood Littlerock Val Verde ummerland

273

Potential Release Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PRS PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and the town of Los Alamos at which hazardous materials from past activities have been found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators sumps firing ranges

274

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

275

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

Murphy, Mark B.

2000-10-25T23:59:59.000Z

276

Stratigraphic and diagenetic controls on the occurrence of porosity in the Mississippian Mission Canyon Formation in the Billings Nose Area, North Dakota  

E-Print Network [OSTI]

). The south-plunging OOOO SASKATCHEWAN MONTANA POPLAR -4000 0 0 0 CEDAR CREEK ANTICLINE CQ i(r NESSON ~ ANTICLINE 0 A I. 'v, ??. . . qO 0 "'OS J PRYGURG 0 0 I MANITOBA NORTH DAKOTA Y I EDGE OF M I SS ION CANYON I I I I NORTH... in the Williston Basin in 1936 on the Cedar Creek anticline in Montana (Gerhard et al, 1982a). The discovery was uneconomical and was not developed. Despite this poor start, the Williston Basin has become a major producer of oil and gas on the North American...

Beaber, Daniel Edward

1989-01-01T23:59:59.000Z

277

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance...  

Office of Legacy Management (LM)

Site. LM provides periodic communications through several means, such as this report, web-based tools, and public meetings. LM prepared the Rocky Flats, Colorado, Site Site...

278

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance  

Office of Legacy Management (LM)

Site. LM provides periodic communications through several means, such as this report, web-based tools, and public meetings. LM prepared the Rocky Flats, Colorado, Site Site...

279

NETL: Site Environmental Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Environmental Quality Site Environmental Quality About NETL Site Environmental Quality - Certified to ISO 14001:2004 Questions about NETL's Environment, Safety and Health Management System may be directed to Michael Monahan, 304-285-4408, michael.monahan@netl.doe.gov. NETL has implemented an Environment, Safety and Health (ES&H) Management System, based on DOE's Integrated Safety Management System, the International Organization for Standardization (ISO) 14000 series, and the Occupational Health and Safety Assessment (OHSAS) 18000 series. While the original scope of the ES&H Management System included the Morgantown and Pittsburgh sites, in fiscal year 2010, the Albany site was incorporated into the existing ES&H Management System. In addition, all three sites underwent ISO 14001:2004 recertification audits and Morgantown and

280

WCI | Site 300 CORS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: CORS : CORS Weather Site Access Contained Firing Facility (CFF) Continuosly Operating Reference Station (CORS) CORS logo How to access GPS satellite data The National Geodetic Survey(NGS) Home Page for the S300 CORS base station is: http://www.ngs.noaa.gov/CORS/ Type S300 into "enter SiteID" To get user-friendly data: http://www.ngs.noaa.gov/UFCORS/ The GPS data will be in "receiver independent exchange" (RINEX) format, version 2.10. CORS Proxy Data Availability Details: NGS Reference Position Information Site 300 CORS Reference Position RTK Transmission Frequency NGS s300 Site Log NGS s300 Site Map Links to other GPS sites Last modified: July 27, 2011 UCRL-MI-134143 | Privacy & Legal Notice Contact: wci-webteam@llnl.gov NNSA Logo DOE Logo

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

.. ' \ MONTICELLO NPL SITES FFA QUARTERLY REPORT: October 1 -December 31, 2008 DOE Site Manager: Jalena Dayvault JR 7CJ7 This report summarizes current project status and activities implemented during October tiU'ough December 2008, and provides a schedule of planned near term activities for the Monticello MIII Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection repmis, site meteorological data, and monitoring summary for tlw ex situ ground water treatment system. 1.0 MMTS Activities/Status Repository and Pond 4 · * Monthly and quarterly inspection of the repository identified no abnormalities (see attached repmis). .

282

ColumbusSites.cdr  

Office of Legacy Management (LM)

Columbus, Ohio, Sites consist of two geographically Columbus, Ohio, Sites consist of two geographically separate properties owned by the Battelle Memorial Institute: the King Avenue site, located in the city of Columbus, and the West Jefferson site, located approx- imately 15 miles west of Columbus. Battelle conducted extensive nuclear research at both locations for the U.S. Department of Energy (DOE) and its predecessor agencies between 1943 and 1986. The research resulted in contamination of soil, buildings, and equipment with radioactive and mixed waste materials. Environmental cleanup of the sites began in 1986. The 6-acre King Avenue site, which was historically a part of the federal government's fuel and target fab- rication program, consisted of 9 buildings and the surrounding grounds. Nuclear research conducted at the

283

Site Map - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map Printable Version Share this resource Quick Links Energy Innovation Portal Site Map Commercialization Home Page About Success Stories Legacy Initiatives Small...

284

Site Map | DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Basic Search Advanced Search DDE FAQ About DDE Site Map Data ID Service Contact Us Website PoliciesImportant Links...

285

Hanford Cleanup - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cleanup About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Cleanup Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

286

Ecological Monitoring - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

support of the National Environmental Protection Act, Endangered Species Act, Migratory Bird Treaty Act, and other laws and regulations. Management Plans Hanford Site Revegetation...

287

Maintaining STAR - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VPP Hanford Site Champions Committee Getting Started Maintaining STAR VPP CampaignPosters VPP Tools VPP Presentations VPP Awareness VPP Communications VPP Conferences...

288

Disposal Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

289

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soil generated by ARRA-funded cleanup projects across the Hanford Site. In this photo, additional containers needed to haul waste are delivered by Rule Steel to the...

290

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Recovery Act funding, contractors are cleaning up dozens of waste sites. In this photo, a Bell 412 helicopter outfitted with radiation detection equipment flies over a large...

291

1999 Site Environmental Report  

SciTech Connect (OSTI)

The Site Environmental Report for Brookhaven National Laboratory for the calendar year 1999, as required by DOE Order 231.1.

NONE

2000-09-01T23:59:59.000Z

292

Contact Us - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hanford Feedback Hanford RSS Blogger DOE Office of River Protection Hanford @ Social Media Tank Waste and Construction of the Vitrification Plant Hanford Site Facebook Hanford...

293

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a cover from a waste container used to haul waste to the Hanford Site's engineered landfill, the Environmental Restoration Disposal Facility. Nearly 100 of the first 400 workers...

294

Weather Charts - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

295

Seasonal Precipitation - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

296

Contacts / Hours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts Hours Current NWS...

297

Hanford ARRA Photogallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

remediation Waste Site Sampling Waste Site Sampling 100 K Pipeline 100 K Pipeline F Area Walk Down F Area Walk Down 100 K Waste Sites 100 K Waste Sites BC Control Area Remediation...

298

Hanford ARRA Photogallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste site Waste Site Sampling Waste Site Sampling 100 K Pipeline 100 K Pipeline Multi-Incremental Sampling Project Multi-Incremental Sampling Project 100 K Waste Sites 100 K Waste...

299

Site Energy Reduction Program  

E-Print Network [OSTI]

DuPonts Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU...

Jagen, P. R.

2007-01-01T23:59:59.000Z

300

Protein active sites, interaction  

E-Print Network [OSTI]

for active site identification ! Manual MSA and structure analysis ! Catalytic Site Atlas (homology-based) ! Evolutionary Trace (MSA subfamily- and family-wide conservation; phylogenetic tree and structure analysis) ! 3D", Bartlett et al. J Mol Biol. 2002 Nov 15;324(1):105-21. · "An evolutionary trace method defines binding

Sjölander, Kimmen

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Savannah River Site's Site Specific Plan  

SciTech Connect (OSTI)

This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

Not Available

1991-08-01T23:59:59.000Z

302

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

April 1 - June 30, 2008 April 1 - June 30, 2008 DOE Site Manager: Jalena Maestas This report summarizes current project status, activities implemented during April through June 2008, and provides a schedule of planned near term activities, for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection results, and site meteorological monitoring data. 1.0 MMTS Activities/Status Repository and Pond 4 * Monthly and quarterly inspection of the repository identified no abnormalities. * Shrub seedlings planted last fall had a poor survival rate. * New damage to shrubs and vole infestation is not evident. * Monthly inspection of Pond 4 identified no abnormalities.

303

site_transition.cdr  

Broader source: Energy.gov (indexed) [DOE]

Legacy Legacy Management U.S. DEPARTMENT OF This fact sheet explains the process for transferring a site to the U.S. Department of Energy Office of Legacy Management. Site Transition Process Upon Cleanup Completion Introduction Transition Process After environmental remediation is completed at a site and there is no continuing mission, responsibility for the site and the associated records are transferred to the U.S. Department of Energy (DOE) Office of Legacy Management for post-closure management. Where residual hazards (e.g., disposal cells, ground water contamination) remain, active long-term surveillance and maintenance will be required to ensure protection of human health and the environment. The DOE Office of Legacy Management (LM) established transition guidance for remediated sites that will transfer to LM for long-term surveillance and maintenance. The

304

Related Data Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Data Sites Related Data Sites CDIAC has listed the following Web sites because these sites offer high-quality data sets (not available through CDIAC) from a variety of global-change themes. These links will take you outside of CDIAC, therefore, we are not responsible for the content or intent of these outside links. This list is not intended to be comprehensive, but we do hope you find it useful if you cannot find what you are looking for here at CDIAC. Multi-Agency Sites Global Change Data and Information System (GCDIS) GCDIS is a collection of distributed information systems operated by government agencies involved in global change research. GCDIS provides global change data to scientists and researchers, policy makers, educators, industry, and the public at large and includes multidisciplinary data from

305

Web Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help » Web Site Map Help » Web Site Map Web Site Map The links listed below include all pages on the site except document topic pages. Home Privacy/Security Help Web Site Map Mailing Services Remove me from the List Contact Us About Us News and Events News Archives News/Media FAQs Internet Resources Documents DUF6 EIS Historical Context What is an EIS? Why EIS is Needed Who is Responsible? EIS Process EIS Topics EIS Alternatives EIS Schedule Public Involvement Opportunities Public Comment Form For More Info DUF6 Management and Uses Management Responsibilities DUF6 Storage How DUF6 is Stored Where DUF6 is Stored Cylinder Leakage DUF6 Storage Safety DUF6 PEIS Cylinder Surveillance and Maintenance Conversion Potential DU Uses "Business Case" for R&D on Beneficial Uses of DU Catalysts for Destruction of Air Pollutants

306

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

January 1 - March 31, 2008 January 1 - March 31, 2008 DOE Site Manager: Jalena Maestas This report summarizes current project status, activities implemented during January through March 2008, and provides a schedule of planned near term activities, for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection results, and site meteorological monitoring data. The first semi-annual FFA meeting of 2008 was held at UDEQ in Salt Lake City, Utah, March 26 and 27, 2008. Minutes and action items resulting from that meeting will be prepared under separate cover pending review and concurrence by EPA and UDEQ. Draft minutes and action items are scheduled for submittal by May 1, 2008.

307

Site decommissioning management plan  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

308

AT-TN: Mr. R. L. Rudolph  

Office of Legacy Management (LM)

MAR 1 ? 7982 MAR 1 ? 7982 3echW tiational, Inc. AT-TN: Mr. R. L. Rudolph PO Box 350 Oak Ridge, TFi 37830 Gentlemen: CRITERIA FOR REMEDIAL ACTION AT ACID/PUEBLO AND BAY0 CANYONS; REQUEST FOR COST/BENEFIT ANALYSES OF REMEDIAL ACTION OPTIONS AT THE CANYONS Enclosed are several pieces of cqrespondence related to AcldjPueblo * and Bayo Canyons. . . . . . . . . . . . . . First, EP has concurred with the remedial action DATE criteria for the New Mexico sftes that were proposed to them on August 20, 1987 (wfth the addition of a criterion for Pu-239 added RTG SYMBO, October 20, 7981). In summary, the cri terla will be: . . . . . . . IUITI*LSSIG. f ---- Radionuclfdt Sr-90 cs-137 Th-228 Th-230 Th-232 u-234 U-238 Pu-239 Pu-240 Pu-241 Am-241 Sofl Limft (pCi/g) 100 80

309

Crime Alert: Theft of Cell Phone near Campus On November 8th, at about 4:00 pm, a student was walking on Blaine St, near Canyon Crest Drive  

E-Print Network [OSTI]

Crime Alert: Theft of Cell Phone near Campus On November 8th, at about 4:00 pm, a student was walking on Blaine St, near Canyon Crest Drive listening to his iPhone on a pair of headphones. A subject approached him, asked to use his iPhone and when the victim refused, the suspect grabbed the phone and ran

310

CALIBRATION OF LOW ENERGY PRODUCTION OF 36 AND THE CREATION OF AN EXPOSURE AGE CALCULATOR  

E-Print Network [OSTI]

Copper Canyon to calibrate Pf(0)36 Cl. We show that for the Copper Canyon calibration site Pf(0)36 Cl . . . . . . . . . . . . . . . . . . . . . 18 2.5 Copper Canyon site schematic . . . . . . . . . . . . . .

Borchers, Brian

311

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

MONTICELLO NPL SITES MONTICELLO NPL SITES FFA QUARTERLY REPORT: October 1 - December 31, 2007 DOE Site Manager: Jalena Maestas 1.0 MMTS Activities/Status Repository and Pond 4 * Monthly and quarterly inspection of the repository identified no problems that have not been addressed. (inspection checklists attached). * Monthly inspection of Pond 4 identified no unacceptable conditions. * Pond 4 leachate detection and removal systems continue to operate at normal levels (leachate pumping summary attached). * Repository leachate collection and removal system (LCRS) and leachate collection system (LDS) continue to operate at normal and acceptable levels (leachate pumping summary attached). * Portions of repository cover were planted with rabbitbrush seedlings to repair areas

312

Site Map - Pantex Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map Site Map Page Content Pantex.com Mission & Strategies Mission National Security Nuclear Explosive Operations Nuclear Material Operations HE Operations Strategies Advance HE Center of Excellence Exemplify a High Reliability Organization Health & Safety Safety Training Occupational Medicine Contractor Safety Environment Environmental Projects & Operations Regulatory Compliance Waste Operations Environmental Management System Environmental Document Library Public Meetings Doing Business With Pantex Procurement How We Buy Subcontracting Opportunities Supplier Information Profile Suspect/Counterfiet Items Business Definitions Documents and Forms Accounts Payable Work for Others Our Capabilities How to do Business with the Pantex eXMC Employee Information Benefits

313

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Darwin SiteInstruments Darwin SiteInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Darwin, Australia [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] CSPHOT Cimel Sunphotometer Aerosols, Radiometric Browse Data [ Single installation ] DISDROMETER Impact Disdrometer Surface Meteorology Browse Plots Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Browse Data [ Single installation ] GNDRAD Ground Radiometers on Stand for Upwelling Radiation Radiometric Browse Plots

314

The DOD Siting Clearinghouse  

Broader source: Energy.gov (indexed) [DOE]

The DoD Siting Clearinghouse The DoD Siting Clearinghouse Dave Belote Director, Siting Clearinghouse Office of the Secretary of Defense The Nexus of National Security & Renewable Energy * Unintended Consequences - Rapid development of renewable technologies - Rapidly changing military technology research & development * Existing Policy and Processes - Not up to date with changing technologies - Land use decision-making authorities fragmented across all levels of government 2 From Nellis to Shepherds Flat: Congressional Push for Action 3 Congressional Response - FY2011 NDAA, Section 358 * Section 358 "Study Of Effects Of New Construction Of Obstructions On Military Installations And Operations" - Integrated review process - 180-day backlog assessment

315

Princeton Site Ofice  

Broader source: Energy.gov (indexed) [DOE]

Princeton Site Ofice Princeton Site Ofice P.O. Box 102 Princeton, New Jersey 08542-0102 TO: Gregory H. Woods, General Counsel JA N Z Q= LMN N= SUBJECT: PRINCETON SITE OFFICE (PSO) 2013 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a)(7) of DOE Order 451.1B Change 3, NEPA Compliance Program, requires each Secretarial Oficer and Head of Field Organization to submit an Annual NEPA Planning Summary to the General Coun. s el. We have reviewed

316

The Grand (Canyon) Experiment  

Science Journals Connector (OSTI)

...was bad. Water was viewed as a...power at the peak consumption times. Today, the...billion cubic meters of water must pass through...during the day and reduce that flow to as little...few years, just to make up for the erosion that occurs...Sediments Rivers Snails Water Movements georef...

Elizabeth Pennisi

2004-12-10T23:59:59.000Z

317

Boulder Canyon Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 2015 * All work is contingent on outage availability Hoover Instrument Transformer Replacement * 6 out the 12 have been replaced * 3 of the remaining will be done in...

318

Considered Sites | Department of Energy  

Office of Legacy Management (LM)

Sites » Considered Sites Sites » Considered Sites Considered Sites View Considered Sites View Other Sites DOE maintains the Considered Sites Database to provide information to the public about sites that were formerly used in the nation's nuclear weapons and early atomic energy programs and that had the potential for residual radioactive contamination on site. Formerly Utilized Sites Remedial Action Program The U.S. Atomic Energy Commission (AEC) established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in March 1974 under the authority of the Atomic Energy Act of 1954 to identify, investigate, and take appropriate cleanup action at sites where work was performed in support of the Manhattan Engineer District (MED) and early AEC programs. Site activities included uranium ore storage and processing, uranium metal

319

Site Lead TQP Standard  

Broader source: Energy.gov (indexed) [DOE]

Qualification Standard for the Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program May 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy 1 Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program A Site Lead is an individual, normally at a senior General Schedule (GS) level or Excepted Service, who is assigned the responsibility to assess and evaluate management systems, safety and health programs, and technical activities associated with U.S. Department of Energy (DOE) nuclear and non-nuclear facilities. Typically, a Site Lead has previously qualified as a Nuclear Safety Specialist or a Senior Technical Safety Manager. For exceptionally qualified individuals,

320

Savannah River Site - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - TWP Nauru Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nauru Site Nauru Site TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Nauru Site Location: 0° 31' 15.6" S, 166° 54' 57.60" E Altitude: 7.1 meters The Nauru facility was established in November 1998 as the second TWP climate research station. It is situated in the Denigomodu district on Nauru Island, the Republic of Nauru, which is located in the western South Pacific, approximately 1,200 miles northeast of Papua New Guinea. The ARM Program selected this location because it is on the eastern edge of the Pacific warm pool under La Niña conditions, which affect weather patterns

322

TWP Darwin Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Darwin Site Darwin Site TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Darwin Site Location: 12° 25' 28.56" S, 130° 53' 29.75" E Altitude: 29.9 meters The third TWP climate research facility was established in April 2002 in Darwin, Northern Territory, Australia. The facility is situated adjacent to the Australian Bureau of Meteorology's (BOM) Meteorological Office near Darwin International Airport. Darwin was chosen because it meets the scientific goal of the ARM Program, providing a unique set of climate regimes that are not seen at the other TWP facilities. Annually, Darwin

323

TWP Nauru Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nauru Site Nauru Site TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Nauru Site Location: 0° 31' 15.6" S, 166° 54' 57.60" E Altitude: 7.1 meters The Nauru facility was established in November 1998 as the second TWP climate research station. It is situated in the Denigomodu district on Nauru Island, the Republic of Nauru, which is located in the western South Pacific, approximately 1,200 miles northeast of Papua New Guinea. The ARM Program selected this location because it is on the eastern edge of the Pacific warm pool under La Niña conditions, which affect weather patterns

324

Colorado, Processing Sites  

Office of Legacy Management (LM)

of the New Rifle site were observed and recorded in trip reports. During CY 2013, DOE was in communication with property owners and various users of City-owned property...

325

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that once supported two nuclear reactors in the 100 K Area of the Hanford Site. In this photo, a worker directs the crane operator lifting the roof panel off of the 117KE Exhaust...

326

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor was the first reactor built on the Hanford Site, and was also the first full-scale reactor in the world. It took about one year to build B Reactor. This photo is from 1944...

327

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soil generated by ARRA-funded cleanup projects across the Hanford Site. In this photo, lights are installed for a new access road to ERDF and striping of the roadway was...

328

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that once supported two nuclear reactors in the 100 K Area of the Hanford Site. In this photo, a crane lifts the roof panel from the 117KE Exhaust Air Filter Building, with the K...

329

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the soil beneath the former location of the K East Basin in the 100K Area. In this photo from late September, the first bucket of soil from the waste site known as UPR-100-K-1...

330

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the K East Basin in the 100K Area, known as the UPR-100-K-1 Waste Site. In this photo, an excavator prepares materials for load out. The track hoe will mix the material...

331

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that once supported two nuclear reactors in the 100 K Area of the Hanford Site. In this photo, workers guide a roof panel as it is lifted from an exhaust air filter building. The...

332

The DOD Siting Clearinghouse  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingprovides an overview on the U.S. Department of Defense (DoD) clearinghouse for siting renewable energy technologies.

333

WRPS Contract - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PDF J.3 Hanford Site Services and Interface Requirements Matrix 198 PDF J.4 Performance Evaluation and Measurement Plan (PEMP) 288 PDF J.5 Performance Guarantee Agreement PDF J.6...

334

SRNL Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE DOE-EM DOE-SR NNSA SRS SRNS Site Map Disclaimer Legal Information SRNL * Aiken * SC * 29808-0001 * SRNL Operator: 803-725-6211 SRNL is the DOE Office of Environmental...

335

CERCLA - Site Selector  

Office of Legacy Management (LM)

Energy | 1000 Independence Ave., SW | Washington, DC 20585 202-586-7550 | f202-586-1540 Web Policies | No Fear Act | Site Map | Privacy & Security | USA Jobs | Plug-Ins | Document...

336

Land Management - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

land. Long-Term Stewardship For more information, contact the Site Real Estate Officer, Boyd Hathaway at (509) 376-7340 or by email at HBBoydHathaway@rl.gov. Last Updated 0331...

337

ParaSITE  

E-Print Network [OSTI]

paraSITE proposes the appropriation of exterior ventilation systems on existing architecture to inflate pneumatic shelters that are designed for homeless people. This project involves the production of a series of inflatable ...

Rakowitz, Michael

1998-01-01T23:59:59.000Z

338

SSA Old Aspen Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSA-OA) SSA-OA) View an aerial photo-map of the SSA-OA site The two huts and boardwalk The scaffold flux tower The base of the scaffold flux tower One of the canopy access towers The SRC meteorology tower The truss tower and cables from the flux tower Cabled tethersonde above the SSA Old Aspen (SSA-OA) site The tethersonde about to be launched (tethered balloon and radiosonde) Picture of the SRC meteorological tower at the SSA-OA site taken from the flux tower. Improved road into the SSA-OA site within the Prince Albert National Park. Aerial of SSA-OA tower during the winter IFC. SSA-OA flux tower about 40 meters in height, approximately 20 meters above canopy. Photograph of investigator hut and boardwalk at the SSA-OA site. Andy Black and associate within the hut at the SSA-OA site showing the various recording and data display instruments from the tower.

339

Environmental Assessment and Finding of No Significant Impact: Curecanti-Lost Canyon 230-kV Transmission Line Reroute Project, Montrose County, Colorado  

SciTech Connect (OSTI)

The Department of Energy (DOE), Western Area Power Administration (Western) is proposing to reroute a section of the Curecanti-Lost Canyon 230-kilovolt (kV) transmission line, in Montrose County, Colorado. A portion of the transmission line, situated 11 miles southeast of Montrose, Colorado, crosses Waterdog Peak, an area of significant geologic surface activity, which is causing the transmission line's lattice steel towers to shift. This increases stress to structure hardware and conductors, and poses a threat to the integrity of the transmission system. Western proposes to relocate the lattice steel towers and line to a more geologically stable area. The existing section of transmission line and the proposed relocation route cross Bureau of Land Management and private land holdings.

N /A

2000-03-20T23:59:59.000Z

340

NSA-Fen Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSA-Fen) NSA-Fen) The Fen from the air, looking North. You can see the boardwalk, the hut, and the size of the bog. The road (Highway 391) is visible at the top. The round "crater" near the base of the boardwalk on the right is a collapsed palsa. View an aerial photo-map of the NSA-Fen site. The ground cover on the Fen itself The hut and flux tower The Fen site from the shore looking toward the hut The Fen site flux tower The boardwalk in the Fen, looking back at the shore The generator shed and the storage tent The NSA-Fen site from the air during IFC-2. Top of image is to Southeast. The NSA-Fen site in September (IFC-3) 1994 looking to the southeast. The tower is at the end of the boardwalk in right center of image with the hut near the center. The boardwalk connects to the far border at left center of the slide. Note that the tamarack (deciduous evergreen) within the fen has its fall colors.

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SSA Mixed Canopy Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixed Canopy Site (SSA-Mix) Mixed Canopy Site (SSA-Mix) The TE canopy tower The mixed trees Terrestrial Ecology canopy access tower at the SSA mixed coniferous/deciduous site. A picture taken looking down from the TE canopy access tower at the SSA mixed auxiliary site, showing the aspen and spruce canopies. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

342

Overview and History of DOE's Hanford Site - 12502  

SciTech Connect (OSTI)

Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses

Flynn, Karen; McCormick, Matt [US DOE (United States)

2012-07-01T23:59:59.000Z

343

Princeton Site Office  

Broader source: Energy.gov (indexed) [DOE]

Princeton Site Office Princeton Site Office P.O. Box 102 Princeton, New Jersey 08542-0102 JAN 18 2012 To: Timothy G. Lynch , Acting General Counsel Subject: Princeton Site Office (PSO) 2012 Annual National Environmental Policy Act (NEPA) Planning Summary Section 5(a)(7) of DOE Order 451 .1 B Change 2, NEPA Compliance Program , requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA Planning Summary to the General Counsel. We have reviewed your associated December 5, 2011 , memorandum and in consultation with Princeton Plasma Physics Laboratory (PPPL) staff determined that we have no Environmental Impacts Statements or Environmental Assessments either ongoing or forecast for the next 12 to 24 months. If you have any questions or need additional information

344

Former Sites Restoration. Division  

Office of Legacy Management (LM)

@j&s* **$r* :. .+:., @j&s* **$r* :. .+:., II' .,.. I .&i. , :"': T.1 . i *&+t&&., @i i -:.+; L I. * . . .p.isit-!'..r'ir~i _, +.&.., . I. :?I,?.* .L,! j?' aa&* pi 4 L', ..b,- ., .e /w.1( ,v_.c ~A&$?>*:, ,..:.' .1 > . . . . . *. ,.. .I., .( j .~.~:,;;,.".,Certificafion ,Dockef for The ;,il' t:i~>$:+-.. ~~y:Remeciial Action. Performed "' . ::;:cxcgt the @+zb Gate Site in . ;' ! ,Oak Ridge, Tennessee, 7.99 7- 7 992 -.. Department .of Energy Former Sites Restoration. Division . ,Oak Ridge Operations .Office _. February 7 994 @ Printed on recycledhcy&ble paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE ELZA GAP SITE IN OAK RIDGE, TENNESSEE, 1991-1992 FEBRUARY 1994 I Prepared for UNITED STATES DEPARTMENT OF ENERGY

345

Manhattan Project: Site Map  

Office of Scientific and Technical Information (OSTI)

SITE MAP SITE MAP Resources > Site Map THE MANHATTAN PROJECT Events 1890s-1939: Atomic Discoveries A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 1939-1942: Early Government Support Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942 1942: Difficult Choices More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 1942-1944: The Uranium Path to the Bomb Y-12: Design, 1942-1943 Y-12: Construction, 1943

346

Particle Physics Education Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

347

Microsoft Word - Site Selection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selection Selection One of the very first tasks of General Leslie Groves and the Manhattan Project in early 1943 was to locate and acquire sites in the United States where uranium and plutonium could be produced, as well as a site where the atomic bomb actually would be constructed. Production of uranium and plutonium required vast amounts of power. Thus, Oak Ridge, Tennessee, and Hanford, Washington, were chosen because of proximity to major rivers. Oak Ridge could draw on the power of the hydroelectric plants on the Tennessee River. Hanford could use the power from the Columbia River. The cold waters of the Columbia also could be used to cool the plutonium production reactors at Hanford. A third site, with

348

ARM - Site Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govSite Index govSite Index Expand | Collapse Site Index Videos Image Library About ARM About ARM (home) ARM and the Recovery Act ARM and the Recovery Act (home) ARM Recovery Act Project FAQs Recovery Act Instruments ARM Climate Research Facility Contributions to International Polar Year (IPY) ARM Climate Research Facility Contributions to International Polar Year (IPY) (home) ARM Education and Outreach Efforts Support IPY Research Support for International Polar Year (IPY) ARM Organization ARM Organization (home) Laboratory Partners ARM Safety Policy ARM Science Board ARM Science Board (home) Board Business Become a User Comments and Questions Contacts Contacts (home) ARM Engineering and Operations Contacts Facility Statistics Facility Statistics (home) Historical Field Campaign Statistics

349

Considered Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Considered Sites Considered Sites Considered Sites View Considered Sites View Other Sites DOE maintains the Considered Sites Database to provide information to the public about sites that were formerly used in the nation's nuclear weapons and early atomic energy programs and that had the potential for residual radioactive contamination on site. Formerly Utilized Sites Remedial Action Program The U.S. Atomic Energy Commission (AEC) established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in March 1974 under the authority of the Atomic Energy Act of 1954 to identify, investigate, and take appropriate cleanup action at sites where work was performed in support of the Manhattan Engineer District (MED) and early AEC programs. Site activities included uranium ore storage and processing, uranium metal

350

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

351

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

352

Berkeley Lab: Educational Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Educational Sites Educational Sites The Center for Science & Engineering Education (CSEE) Berkeley Lab's Center for Science & Engineering Education (CSEE) carries out the Department of Energy's education mission to train the next generation of scientists, as well as helping them to gain an understanding of the relationships among frontier science, technology, and society. CSEE supports science literacy in the community and nationally through a broad range of programs from elementary school to undergraduate and graduate education, including internships, mentoring, school workshops and summer research programs for teachers. Through its broad range of programs, CSEE serves as the center for Berkeley Lab's science education efforts, developing partnerships with schools, government agencies, and non-profit

353

Summary Site Environmental Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Environmental Report Site Environmental Report for Calendar Year 2011 ANL-12/02 (Summary) Environment, Safety, and Quality Assurance Division Argonne National Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

354

PPPL Site Environmental Report  

SciTech Connect (OSTI)

Contained in the following report are data for radioactivity in the environment collected and analyzed by Princeton Plasma Physics Laboratorys Princeton Environmental, Analytical, and Radiological Laboratory (PEARL). The PEARL is located on?site and is certified for analyzing radiological and non?radiological parameters through the New Jersey Department of Environmental Protections Laboratory Certification Program, Certification Number 12471. Non?radiological surface and ground water samples are analyzed by NJDEP certified subcontractor laboratories QC, Inc. and Accutest Laboratory. To the best of our knowledge, these data, as contained in the Annual Site Environmental Report for 2011, are documented and certified to be correct.

Virginia Finley, Robeert Sheneman and Jerry Levine

2012-12-21T23:59:59.000Z

355

Hanford Workers Compensation - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Site Wide Programs > Hanford Workers Compensation About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Workers Compensation...

356

Hanford Private Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

357

Cleanup Sites | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sites Cleanup Sites The 33,500-acre Oak Ridge Reservation, outlined in red, contains three primary cleanup areas-- the East Tennessee Technology Park, Oak Ridge National...

358

VPP Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hanford Site Voluntary Protection Program > VPP Communications > VPP Photo Gallery Hanford Site Voluntary Protection Program Photo Gallery Email Email Page | Print Print Page |Text...

359

Solar Site Screening Decision Tree  

Broader source: Energy.gov [DOE]

The solar site screening decision tree guides users through a process for screening sites for their suitability for future redevelopment with solar photovoltaic energy. EPA encourages the...

360

Indoor Sampler Siting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indoor Sampler Siting Indoor Sampler Siting Title Indoor Sampler Siting Publication Type Conference Proceedings Year of Publication 2009 Authors Sohn, Michael D., and David M. Lorenzetti Conference Name 11th International Conference on Air Distribution in Rooms Conference Location Busan, Korea Abstract Contaminant releases in or near a building can lead to significant human exposures unless prompt response is taken. U.S. Federal and local agencies are implementing programs to place air-monitoring samplers in buildings to quickly detect biological agents. We describe a probabilistic algorithm for siting samplers in order to detect accidental or intentional releases of biological material. The algorithm maximizes the probability of detecting a release from among a suite of realistic scenarios. The scenarios may differ in any unknown, for example the release size or location, weather, mode of building operation, etc. The algorithm also can optimize sampler placement in the face of modeling uncertainties, for example the airflow leakage characteristics of the building, and the detection capabilities of the samplers. In anillustrative example, we apply the algorithm to a hypothetical 24-room commercial building, finding optimal networks for a variety of assumed sampler types and performance characteristics. We also discuss extensions of this work for detecting ambient pollutants in buildings, and for understanding building-wide airflow, pollutant dispersion, and exposures

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

362

Solar Site Survey Toolkit  

Broader source: Energy.gov [DOE]

After a couple outings, a principal technologist at Sandia National Laboratories saw a need for a travel kit that would have the necessary tools to make the task of site surveys more manageable and safer. They have had great success using the kit in the field already.

363

A Messenian Site  

Science Journals Connector (OSTI)

...Messenian Site 10.1126/science.204.4398.1192 DAVID LUBELL Department of Anthropology, University of Alberta, Edmonton...even more had the book been edited with a harsher hand. DAVID LUBELL Department ofAnthropology, University ofAlberta, Edmonton...

DAVID LUBELL

1979-06-15T23:59:59.000Z

364

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

365

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

366

Sundial Substation Site Baxter Road Substation Site Casey Road  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sundial Substation Site Baxter Road Substation Site Casey Road Substation Site Monahan Creek Substation Site YALE DAM MERWIN DAM S i l v e r L a k e Lake Merwin Y a l e L a k e V a...

367

Site Visit Report, Livermore Site Office - February 2011 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Site Visit Report, Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 February 2011 Livermore Site Office Safety Basis Self-Assessment This site visit report documents the collective results of the Office of Health, Safety and Security's (HSS) assessment of National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. The assessment was sponsored by LSO as a self-assessment and conducted jointly by HSS and LSO staff. It was completed in late 2010 and included site visits from November 29 - December

368

uth93a1.tmp  

National Nuclear Security Administration (NNSA)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...49 4.2.6 Fortymile Canyon Tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...49 4.2.6.1 Site...

369

EERE: Clean Cities Mobile Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities Mobile Sites Alternative Fueling Station Locator FuelEconomy.gov Truck Stop Electrification Locator...

370

US nuclear waste site "unsuitable"  

Science Journals Connector (OSTI)

... about the suitability of Yucca Mountain as the site for the nation's first highlevel nuclear ...

Mary Manning

1988-01-28T23:59:59.000Z

371

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

372

Nevada National Security Site - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Nevada National Security Site Review Reports 2013 Independent Oversight Targeted Review of the Safety Significant Blast Door and Special Door Interlock Systems and Review of Federal Assurance Capability at the Nevada National Security Site, December 2013 Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013 Review Reports 2012 Review of the Nevada National Security Site Implementation Verification Review Processes, March 2012 Activity Reports 2012 Nevada National Security Site Operational Awareness Visit, December 2012 Operational Awareness Oversight of the Nevada National Security Site, August 2012 Review Reports 2011 Review of Nevada Site Office and National Security Technologies, LLC, Line Oversight and Contractor Assurance Systems

373

Cleanup Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup Sites Cleanup Sites Cleanup Sites Center Map As the largest environmental cleanup program in the world, EM has been charged with the responsibility of cleaning up 107 sites across the country whose area is equal to the combined area of Rhode Island and Delaware. EM has made substantial progress in nearly every area of nuclear waste cleanup and as of September 2012, completed cleanup at 90 of these sites. The "active" sites continue to have ongoing cleanup projects under EM's purview. Use the interactive map above to see states that still have cleanup activities associated with them. The tooltip in the upper-right corner shows site data for each state, and each marker gives site information as well as links to the site fact sheets here on the EM website and each site's full website.

374

MEMORANDUM TO: FILE SITE  

Office of Legacy Management (LM)

SITE SITE NAME: /+%&'&&c /-i-QS~,~~-L ALTERNATE ------------ -------------------------- NAME: - -------------------___ C 1 T-f: -~~~~~L--~-----_--___,TATE: '"' y-/ OWNER ('=I B-----Z- Past: L?!lc~i&~~~~-~-~ Cut-rent: - Owner cnntacted q yes q:no; i,f yes, dats-c~~Fact,d------------- TYPE OF OPESATION ---------m-L----- @Research & Develapment & Facility Type 0 Production scale testing 0 Pilot Scale a bnch scale ~~~~~~~ 0 Theoretical Studies G Sample 84 Analysis 0 Production G Disposal/Storage Manufacturing University Research Organization Government Sponsored Facility llther +r.PfTzK-- --------------------- TYPZ OF CONTRACT ~~__----__------ q Prime E SubccntractkrT u&lv.$Ch,ck>b 0 Purchase Order 0 Other information

375

NDB Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site map NDB Home Search Structures Search DNA Search RNA Advanced Search Nucleic acid tools RNA 3D motif atlas Non-redundant lists RNA base triples atlas WebFR3D R3D Align Contact NDB Mailing Address About NDB NDB Members Goal References Publications Site map Tools Software Standards Standard Reference Supplementary Information Ideal Geometries X-PLOR Parameters Valence Geometries RNA Ontology Consortium mmCIF Resources PDBML Resources Education Introduction to Nucleic Acids: DNA Definition of terms RNA Base Pair Families RNA Base-Phosphate Families Base Stacking Interactions Non Redundant list Equivalence classes RNA 3D Motifs Relative Frequency Introduction to Nucleic Acids: RNA Nucleic Acid Highlight (PDB): DNA DNA Polymerase Nucleosome Transfer RNA RNA Polymerase Self-splicing RNA

376

AshtabulaSite.cdr  

Office of Legacy Management (LM)

Ashtabula, Ohio, Site comprises 42.5 acres of Ashtabula, Ohio, Site comprises 42.5 acres of privately owned land adjacent to the city of Ashtabula, about 55 miles east of Cleveland. From 1962 to 1988 Reactive Metals Inc. (RMI) operated a facility on the property that manufactured metallic uranium tubes and rods and experimental quantities of thorium metal for use in the Hanford, Washington; and Savannah River, Georgia, weapons program reactors. The facility operated under contract to the U.S. Atomic Energy Commission and its successor agency the U.S. Department of Energy (DOE). RMI also extruded depleted uranium under a U.S. Nuclear Regulatory Commission (NRC) license and extruded nonradioactive materials, primarily copper-based, for the private sector. RMI once operated a small wastewater evaporation pond near the northern boundary of the plant area for

377

Transmission Siting_071508.indd  

Broader source: Energy.gov (indexed) [DOE]

Coordinating Interstate Electric Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate The National Council on Electricity Policy 2 DISCLAIMER: The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the authors and may not necessarily agree with the positions of the National Council on Electricity Policy, its committ ee members or the organizations they represent, the National Council funders, or those who commented on the paper during its draft ing. ACKNOWLEDGMENTS Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate was prepared with the fi nancial assistance of a grant from the U.S. Department of Energy (DOE) Offi ce of Electricity Delivery

378

PNNL: Site index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Index Site Index # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z # # 3-D Body Holographic Scanner # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Alerts - PNNL Staff Information Applied Geology and Geochemistry Applied Process Engineering Laboratory Asymmetric Resilient Cybersecurity (External website) Atmospheric Radiation Measurement (ARM) Program Atmospheric Sciences & Global Change Division Available Technologies Awards Awards - Science and Engineering External Recognition (SEER) Program # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B Battelle Corporate Contributions Battelle Memorial Institute Battelle Offices (addresses) Benefits (Insurance Forms, Savings Plan) Bio-Based Product Research at PNNL Biological & Environmental Research-Proteomics

379

Land Validation web site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graphs and more worldwide NPP datasets graphs and more worldwide NPP datasets Graphs of biomass dyanmics and climate data for grassland sites have been added to the global terrestrial Net Primary Production (NPP) reference database at the ORNL DAAC. The NPP database has been compiled by Dick Olson and Jonathan Scurlock under the auspices of the International Geosphere-Biosphere Programme and funding from the Terrestrial Ecology Program of NASA's Office of Earth Science. Browsing through the graphs will help users to select data of interest, and to see relationships between grassland biomass changes and driving climate variables such as rainfall. Graphs are presently available for 14 of the 31 grassland sites. In addition, two more well-known worldwide datasets are available for browsing and downloading from the ORNL DAAC's NPP Web pages. The Osnabruck

380

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology Transfer: Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

382

Site Sustainability Plan  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy U.S. Department of Energy Office of Legacy Management December 2013 LMS/S07225 This page intentionally left blank This page intentionally left blank U.S. Department of Energy Site Sustainability Plan December 2013 Doc. No. S07225 Page i Contents Abbreviations ................................................................................................................................. iii I. Executive Summary ...............................................................................................................1 II. Performance Review and Plan Narrative ...............................................................................9 1 GHG Reduction and Comprehensive GHG Inventory ...........................................................9

383

1999 SITE ENVIRONMENTAL REPORT  

SciTech Connect (OSTI)

Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

2000-09-01T23:59:59.000Z

384

Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: Part 2Mixed conifer, spruce-fir, and quaking aspen forests  

Science Journals Connector (OSTI)

This study examined changes in never-harvested mixed conifer (MCF), spruce-fir (SFF), and quaking aspen forests (QAF) in Grand Canyon National Park (GCNP), Arizona, USA based on repeat sampling of two sets of vegetation study plots, one originally sampled in 1935 and the other in 1984. The 1935 plots are the earliest-known, sample-intensive, quantitative documentation of forest vegetation over a Southwest USA landscape. Findings documented that previously described increases in densities and basal areas attributed to fire exclusion were followed by decreases in 19352004 and 19842005. Decreases in MCF were attributable primarily to quaking aspen (Populus tremuloides) and white fir (Abies concolor), but there were differences between dry-mesic and moist-mesic MCF subtypes. Decreases in SFF were attributable to quaking aspen, spruce (Picea engelmannii+Picea pungens), and subalpine fir (Abies lasiocarpa). Decreases in QAF resulted from the loss of quaking aspen during succession. Changes in ponderosa pine forest (PPF) are described in a parallel paper (Vankat, J.L., 2011. Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: part 1 ponderosa pine forest. Forest Ecology and Management 261, 309325). Graphical synthesis of historical and modern MCF data sets for GCNP indicated tree densities and basal areas increased from the late 19th to the mid 20th century and then decreased to the 21st century. Changes began earlier, occurred more rapidly, and/or were larger at higher elevation. Plot data showed that basal area decreased earlier and/or more rapidly than density and that decreases from 1935 to 2004 resulted in convergence among MCF, SFF, and PPF. If GCNP coniferous forests are trending toward conditions present before fire exclusion, this implies density and basal area were more similar among these forests in the late 19th century than in 1935. Changes in MCF and SFF can be placed in a general framework of forest accretion, inflection, and recession in which increases in tree density and basal area are followed by an inflection point and decreases. Accretion was triggered by the exogenous factor of fire exclusion, and inflection and recession apparently were driven by the endogenous factor of density-dependent mortality combined with exogenous factors such as climate. Although the decreases in density and basal area could be unique to GCNP, it is likely that the historical study plots provided a unique opportunity to quantitatively determine forest trends since 1935. This documentation of post-1935 decreases in MCF and SFF densities and basal areas indicates a shift in perspective on Southwestern forests is needed.

John L. Vankat

2011-01-01T23:59:59.000Z

385

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central FacilityInstruments Central FacilityInstruments SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility [ Single installation ] ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Data [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Plots Browse Data [ Single installation ] BRS Broadband Radiometer Station Radiometric Browse Plots Browse Data [ Single installation ] BSRN Baseline Solar Radiation Network

386

Argonne Transportation Site Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Site Index General Information About TTRDC Media Center Current News News Archive Photo Archive Transportation Links Awards Contact Us Interesting Links Working with Argonne Research Resources Experts Batteries Engines & Fuels Fuel Cells Management Materials Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Facilities Advanced Powertrain Research Facility Powertrain Test Cell 4-Wheel Drive Chassis Dynamometer Battery Test Facility Engine Research Facility Fuel Cell Test Facility Tribology Laboratory Tribology Laboratory Photo Tour Vehicle Recycling Partnership Plant Publications Searchable Database: patents, technical papers, presentations

387

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AlaskaInstruments AlaskaInstruments NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts Instruments : North Slope Alaska [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AMC Ameriflux Measurement Component Radiometric, Surface/Subsurface Properties Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Data [ Single installation ] CCN Cloud Condensation Nuclei Particle Counter Aerosols Browse Data [ Single installation ] CLAP Continuous Light Absorption Photometer Aerosols Browse Data [ Single installation ] CPC Condensation Particle Counter Aerosols Browse Data

388

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PlainsInstruments PlainsInstruments SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Instruments : Southern Great Plains [ Single installation ] ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Data [ Installed at 5 facilities ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Plots Browse Data [ Single installation ] BRS Broadband Radiometer Station Radiometric Browse Plots Browse Data [ Single installation ] BSRN Baseline Solar Radiation Network

389

Hanford Site, Richland, Washington  

Broader source: Energy.gov (indexed) [DOE]

for the Environmental for the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington September 1992 U.S. Department of Energy Richland, Washington 99352 Contents 1 . 0 Summary . . 2.0 Purpose of and Need for the Proposed Action . . . . . . 3.0 Proposed Action and Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Proposed Action 3.2 Onsite Alternatives . . . . . . . . . . 3.3 Offsite Alternatives . . . . . . . . . 3.4 No Action Alternative ~ ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 Affected Environment . . . . . . . . . . . 5.0 Environmental Impacts . . . . . . . . . . . 5.1 Construction Impacts 5.1.1 Atmospheric Impacts . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Terrestrial Impacts . 5.1.3 Impacts on CERCLA Remedial Actions . 5.1.4 Construction Accidents .

390

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PacificInstruments PacificInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Tropical Western Pacific [ Installed at 3 facilities ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Installed at 2 facilities ] CSAPR C-Band ARM Precipitation Radar Cloud Properties Browse Data [ Installed at 3 facilities ] CSPHOT Cimel Sunphotometer Aerosols, Radiometric Browse Data [ Single installation ] DISDROMETER Impact Disdrometer Surface Meteorology Browse Plots Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Browse Data [ Installed at 3 facilities ]

391

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oliktok Point, Oliktok Point, AlaskaInstruments Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator Instruments : Oliktok Point, Alaska [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Not Online [ Single installation ] CSAPR C-Band ARM Precipitation Radar Cloud Properties Not Online [ Single installation ] CSPHOT Cimel Sunphotometer Aerosols Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Not Online [ Single installation ] ECOR Eddy Correlation Flux Measurement System Surface/Subsurface Properties Not Online [ Single installation ]

392

1994 Site Environmental Report  

SciTech Connect (OSTI)

The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

NONE

1995-05-01T23:59:59.000Z

393

Site Vice President  

E-Print Network [OSTI]

In response to your request for information (Reference 1), Vermont Yankee submits the attached NRC Form 536. Form 536 summarizes our projected site-specific operator licensing examination schedules, as well as the estimated number of applicants planning to take operator licensing examinations and the NRC's generic fundamentals examinations. There are no new regulatory commitments contained in this submittal. If you have any questions or require additional information, please contact our Operations Training Superintendent, Mr. Michael A. Romeo at (802) 258-4197. Sincerely,

Vermont Yankee; Vermont Yankee; Nuclear Power Station; Mr. Marvin; D. Sykes

2007-01-01T23:59:59.000Z

394

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

395

T H E A E R O S P A C E C O R P O R A T I O N  

Office of Legacy Management (LM)

H H E A E R O S P A C E C O R P O R A T I O N ~\ -.-./ Sr/i/e 4 0 0 0 , 95 5 L' Enfanf Plaza, S. W., Washington, D.C. 20024, Telepho~ze: ( 2 0 2 ) 488-6000 7016.83.rna.j .23 7 December 1983 M r . A r t h u r Clhitrnar! O f f i c e of Nuclear Energy, NE-24 D i v i s i o n o f Remedial A c t i o n U . S . Departnent o f Energy Germantob~n , Mary1 and 20545 Dear M r . k'hitman: DRAFT CERTIFICATIOIJ PACKAGE: BAY0 CAIlYON SITE LOS ALAMOS, N E W M E X I C O Enclosed i s a w o r k i n g d r a f t copy o f t h e C e r t i f i d t i o n Docket f o r t h e Bayo Canyon S i t e , Los Alamos, New Mexico, f o r y o u r r e v i e w . I f you have any q u e s t i o n s o r changes, please c o n t a c t me a t 488-6353. S i n c e r e l y , ( J J J - a />+L-m~&--fl C/ Mary A1 i c e Jennison Environmental C o n t r o l s and Analys i s D i r e c t o r a t e Eastern Technology D i v i s i o n MAJ : s e j Enclosure cc: J. B

396

1996 Site environmental report  

SciTech Connect (OSTI)

The FEMP is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the FEMP in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the FEMP. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1996 SER provides the general public as well as scientists and engineers with the results from the ongoing Environmental Monitoring Program. Also included in this report is information concerning the FEMP progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (EPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish are presented here. All information presented in this summary is discussed more fully in the main body of this report.

NONE

1997-06-01T23:59:59.000Z

397

Harvard Forest Environmental Measurement Site  

E-Print Network [OSTI]

Harvard University #12;Site Descrip>on · Mixed hardwood and conifer forest · 40Harvard Forest Environmental Measurement Site Petersham, MA Evan Goldman interannual variability and long-term trends in fluxes and forest physiological responses

398

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 2009 September 30, 2009 Hanford Workers Resume Cleanup of 200 North Area of the Hanford Site Hanford Workers Resume Cleanup of 200 North Area of the Hanford Site...

399

2011 Los Alamos National Laboratory Riparian Inventory Results  

SciTech Connect (OSTI)

A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

2012-03-29T23:59:59.000Z

400

LIQUEFACTION EVALUATIONS AT DOE SITES  

Broader source: Energy.gov [DOE]

Liquefaction Evaluations at DOE Sites M. Lewis, M. McHood, R. Williams, B. Gutierrez October 25, 2011

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO/2445 2012 #12;Cover Image Jeff Riggs Logistical Services Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2012 #12;DOE/ORO/2445 Oak Ridge Reservation Annual Site Environmental

Pennycook, Steve

402

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO-2473 2013 #12;Cover Image & Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2013 #12;DOE/ORO/2473 Oak Ridge Reservation Annual Site Environmental Report for 2013 on the World

Pennycook, Steve

403

Annual Site Environmental Reports (ASER)  

Broader source: Energy.gov [DOE]

Annual Site Environmental Reports (ASERs) are required by DOE O 231.1B. The ASERs provide important information needed by site managers and DOE Headquarters to assess field environmental program performance, site-wide environmental monitoring and surveillance effectiveness, and confirm compliance with environmental standards and requirements. They are also the means by which DOE sites demonstrate compliance with the radiological protection requirements of DOE O 458.1. In addition, ASERs are an important means of conveying DOE's environmental protection performance to stakeholders and members of the public living near DOE sites.

404

NNSA Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NNSA Sites NNSA Sites NNSA Sites Compliance agreements for National Nuclear Security Administration sites are listed here with accompanying summaries. Los Alamos National Laboratory Consent Agreement, December 10, 1993 Los Alamos National Laboratory Consent Agreement, December 10, 1993 Summary Los Alamos National Laboratory Compliance Order, October 4, 1995 Los Alamos National Laboratory Compliance Order, October 4, 1995 Summary South Valley Compliance Agreement South Valley Compliance Agreement Summary Mutual Consent Agreement for Storage of LDR, January 6, 1994 Mutual Consent Agreement for Storage of LDR, January 6, 1994 Summary Nevada Test Site FFCA Consent Order, March 27, 1996 Nevada Test Site FFCA Consent Order, March 27, 1996 Summary Nevada Test Site FFCA Consent Order, May 10, 1996

405

Building & Site Services Coordination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQs FAQs Conference Center and APS Site Activity Coordination Management and/or Coordination of APS Site Work/Services Safety & Emergency Management Database Maintenance Personnel Building and Site Services Coordination "We're at the End of our Pagers" The mission of the Building & Site Services Coordination is to efficiently manage and minimize the impact of APS building and site activities and to provide optimal support to APS staff and users in all 400 buildings and areas. FAQs Conference Center and APS Site Activity Coordination Locations Reservations Setups Visits & Tours Management and/or Coordination of APS Site Work/Services Work Entry Clearances Utility Shutdowns Telephone System Rigging Stockroom Office Furniture Installation Safety & Emergency Management

406

Site Management Guide (Blue Book)  

SciTech Connect (OSTI)

The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Departments postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOEs postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site cleanup is complete, LM accepts title to these sites on behalf of the United States and assumes long-term management.

None

2014-03-01T23:59:59.000Z

407

OFF-SITE S  

Office of Legacy Management (LM)

S S e T B ~ I L L ~ C E ACTIVITIES OF THE NATIONAL E N V I R O N M E N T A L R E S E A R C H CENTER from July through December 197C / t i o n a l Environmental Research Centeq U. S. ~ ~ I R O N M E L S T P ~ TR~ECTIQN AGENCY e Unders tancling No. 23 (26-1)-539 for the U. S o ATOMIC ENERGY COlQ4ISSION OFF-SITE SURVEILLANCE ACTIVITIES OF THE NATIONAL E N V I R O N M E N T A L RESEARCH CENTER from July through December 197C by Monitoring Operations Laboratory National Environmental Research Center U. S. ENVIRONMENTAL P R O T E C T I O N AGENCY Las Vegas , Nevada Published February 1974 This work performed under a Memorandum of Understanding No. AT (26-1)-539 for the U . S. A T O M I C ENERGY C O M M I S S I O N ABSTRACT During t h e period J u l y through December 1970, s i x announced underground n u c l e a r tests were conducted a t t h e Nevada T

408

IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be sent to INL for treatment and characterization: the Argonne National Laboratory; Bettis Atomic Power Laboratory; General Electric Vallecitos Nuclear Center; the Hanford Site;...

409

Umatilla Satellite and Release Sites Project : Final Siting Report.  

SciTech Connect (OSTI)

This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

Montgomery, James M.

1992-04-01T23:59:59.000Z

410

Nevada National Security Site Industrial Sites Project Closeout - 12498  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the end of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the closeout document, along with a table listing each CAU and corresponding corrective action sites within each CAU. Using this process of conducting the activity closeout and developing a closeout document may prove useful for other ER projects within the DOE complex in describing how a long period of ER can be summarized in a single document. The NNSS Industrial Sites activities were completed over the span of 15 years and involved the investigation, cleanup or Use Restriction, and closure of more than 260 CAUs and over 1,800 sites. These activities will conclude in FY 2012 (with the exception of one CAU). In order to capture the work completed over this length of time and document decisions made during the activities, a closeout effort was initiated. The closeout will review the work conducted during the Industrial Sites activities and produce a single document that summarizes Industrial Sites activities. This closeout is being conducted at an interim stage in the overall NNSA/NSO ER Project since the Soils and UGTA activities will continue for a number of years, but the completion of the Industrial Sites project warrants conducting a closeout now while personnel are available and information is still current. The process followed by NNSA/NSO in conducing project closeout for the Industrial Sites portion of the ER program may prove useful within the DOE complex in demonstrating how a large ER project can be summarized. (authors)

Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, Nevada 89193 (United States); Krauss, Mark [S.M. Stoller for Navarro-Intera, LLC, Las Vegas, Nevada 89193 (United States); Matthews, Pat [Navarro-Intera, LLC, Las Vegas, Nevada 8919 (United States)

2012-07-01T23:59:59.000Z

411

Redesigned ORNL DAAC Web Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

released a major revision to its Web site on Thursday, released a major revision to its Web site on Thursday, May 27, 2010. The new site includes many enhancements aimed at helping users locate and obtain data products and services. The simplified menu bar allows users to navigate quickly to products and services of interest and to access data through a variety of tools. The DAAC's Web site address remains unchanged (http://daac.ornl.gov), and as always, our products and services are available free of charge. Please note that your user account information will work on the new Web site. The Sign-in and Registration pages have a different look and will accept your email address as the User Name and retain your current password. If you have any problems accessing, signing-in, or registering with our new Web site, please contact our User Services Office, at +1 (865) 241-3952, or

412

Moab Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Moab Site Moab Site Moab Site Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab

413

SSA Old Jack Pine Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSA-OJP) SSA-OJP) View an aerial photo-map of the SSA-OJP site. The road to the OJP site The flux tower and the hut The truss tower connected to the flux tower by cables The flux tower< The canopy access tower The SRC meteorology tower The under-canopy flux station The moss-covered jack pine tree The ground cover at the OJP site Aerial view of the SSA-Old Jack Pine site looking to the northeast. The Flux Tower at SSA-Old Jack Pine site. The Sodar site. The NOAA sodar located near the Old Jack Pine in the SSA. The under-canopy radiation track This is a 14 meter-long metal track in the forest with a mobile radiometer out on an arm on a small motorized cart (visible at the center of the picture) that travels through the forest taking measurements of PAR and net radiation.

414

Closure Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Closure Sites Closure Sites Closure Sites View a list of the compliance agreements for the many EM closure sites, such as Mound and Rocky Flats, below. Associated summaries are also included. Pinellas Remediation Agreement Pinellas Remediation Agreement Summary Maxey Flats Consent Decree -Part 1, April 18, 1996 Maxey Flats Consent Decree -Part 2, April 18, 1996 Maxey Flats Consent Decree April 18, 1996 Summary Monticello Mill site Federal Facility Agreement, December 22, 1988 Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Summary Fernald Environmental Management Project Consent Agreement and Final Order,

415

HANFORD SITE ASSETS AND ATTRIBUTES  

Broader source: Energy.gov (indexed) [DOE]

HANFORD SITE ASSETS AND ATTRIBUTES HANFORD SITE ASSETS AND ATTRIBUTES The Hanford Site provides the opportunity for long-term sustainable energy and industry development. The area boasts a specialized workforce that is highly educated and well-established; is rich in resources including land, infrastructure, low-cost energy, and available workforce; more scientists and engineers per capita than any other area in the Pacific Northwest; and is an optimum location for the development of sustainable energy solutions. Land The Hanford Site is one of the largest remaining land mega-sites available in the United States. * The 586-square-mile Hanford Site includes 39,000 acres designated for industrial use (9,000 acres for R&D). * The Comprehensive Land-Use Plan Environmental Impact Statement allows for a planning process

416

Spatial patch patterns and altered forest structure in middle elevation versus upper ecotonal mixed-conifer forests, Grand Canyon National Park, Arizona, USA  

Science Journals Connector (OSTI)

In the American Southwest, mixed-conifer forest experienced altered disturbance regimes with the exclusion of fire since the early 1900s. This research analyzes patch development and tree spatial patterns in the middle versus upper mixed-conifer forests at Grand Canyon National Park in Arizona (USA). The methods used include: (1) sizestructure analyses, to compare species patch development; (2) dendrochronological dating of tree establishment and fire history; (3) tree ring master chronology, to determine periods of suppressed growth, compared to a palmer drought severity index; (4) spatial analyses by size and age, with univariate and bivariate analyses of spatial association as well as spatial autocorrelation. Results show that unlike the lower ecotone of the mixed-conifer zone, both the middle elevation and upper ecotone were mixed-conifer forests before Euro-American settlement. At the upper ecotone, two decades (1870s and 1880s) had no successful conifer establishment but instead aspen cohorts, corresponding to the fire history of synchronized fires. Overall, the upper ecotone has shifted in composition in the absence of surface fires from mixed conifer to encroachment of subalpine species, particularly Engelmann spruce. Spatial patterns of tree sizes and tree ages imply development of a size hierarchy in an aging patch. In addition, shifts in species composition from ponderosa pine and white fir overstory to Engelmann spruce and Douglas-fir understory affected within-patch spatial patterns. These results provide quantitative evidence of past and present forest conditions for the development of restoration strategies for Southwestern mixed-conifer forests.

Joy Nystrom Mast; Joy J. Wolf

2006-01-01T23:59:59.000Z

417

Transition of Sites from Environmental Management Memorandum...  

Broader source: Energy.gov (indexed) [DOE]

Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from...

418

2014 Site Sustainability Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2014 Site Sustainability Plan 2014 Site Sustainability Plan The purpose of this Site Sustainability Plan (SSP) is to outline the strategies for managing, funding, and implementing...

419

Site Environmental Report for 2008, Volume II  

E-Print Network [OSTI]

Page SW-2 Site Environmental Report for 2008 StormwaterPage SD-1 Site Environmental Report for 2008 SedimentNational Laboratory Site Environmental Report for 2008

Lackner, Regina

2009-01-01T23:59:59.000Z

420

DOE - Office of Legacy Management -- Tatum Salt Dome Test Site...  

Office of Legacy Management (LM)

Tatum Salt Dome Test Site - MS 01 FUSRAP Considered Sites Site: Tatum Salt Dome Test Site (MS.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE - Office of Legacy Management -- Belfield Mill Site - ND...  

Office of Legacy Management (LM)

Belfield Mill Site - ND 0-01 FUSRAP Considered Sites Site: Belfield Mill Site (ND.0-01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

422

DOE - Office of Legacy Management -- EFB White Mesa Site - 033  

Office of Legacy Management (LM)

EFB White Mesa Site - 033 FUSRAP Considered Sites Site: EFB White Mesa Site (033 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

423

Chernobyls waste site  

SciTech Connect (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

424

Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application. Revision 1  

SciTech Connect (OSTI)

In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation.

Not Available

1993-03-24T23:59:59.000Z

425

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Ecology, Tribal Nations, stakeholders, and the general public to define the vision for cleaning up the center of the Hanford Site. October 21, 2009 Hanford Update...

426

Power Services Site Navigation Menus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Information Power Services home page PBL banner with photos of Bonneville dam and wind turbines Power Services Site Navigation Menus Instructions: Click on (or tab to) a...

427

Untitled Page -- Considered Sites Summary  

Office of Legacy Management (LM)

STATE UNIVERSITY (Columbus, Ohio) CATALYTIC CO. (Philadelphia, Pennsylvania) CENTER FOR ENERGY AND ENVIRONMENTAL RESEARCH (MAYAGUAZ, Puerto Rico) CENTRAL NEVADA TEST SITE...

428

Hanford Web Site What's New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whatsnew Hanford Web Site What's New DOE-ORP Prime Contracts http:www.hanford.govpage.cfmDOE-ORPPrimeContracts Bechtel National, Inc. (BNI)- Design, construction,...

429

AMH Web Site What's New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whatsnew AMH Web Site What's New Health News & InsideOut Newsletter http:www.hanford.govhealthpage.cfmnewsletter InsideOut Newsletter: 2015 Edition February 2015 Issue II...

430

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 2009 April 28, 2009 DOE Selects Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site DOE Selects Mission Support Alliance, LLC for Mission Support...

431

Yesterday's Daily Summary - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

432

Current Month Summary - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

433

Current HMS Observations - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts Hours Current NWS...

434

Daily Normal Precipitation - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

435

Seasonal Average Temperature - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Historical Weather Charts Contacts...

436

Hanford Meteorological Station - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts Hours Current NWS...

437

Forensic Sites | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forensic Sites Meetings, Conferences, and Short Courses MFRC Training Calendar Reports of Interest NAS Report A Guide for Forensic Science Laboratories, Educational Institutions...

438

Site locality identification study: Hanford Site. Volume II. Data cataloging  

SciTech Connect (OSTI)

Data compilation and cataloging for the candidate site locality identification study were conducted in order to provide a retrievable data cataloging system for the present siting study and future site evaluation and licensng processes. This task occurred concurrently with and also independently of other tasks of the candidate site locality identification study. Work in this task provided the data utilized primarily in the development and application of screening and ranking processes to identify candidate site localities on the Hanford Site. The overall approach included two steps: (1) data acquisition and screening; and (2) data compilation and cataloging. Data acquisition and screening formed the basis for preliminary review of data sources with respect to their probable utilization in the candidate site locality identification study and review with respect to the level of completeness and detail of the data. The important working assumption was that the data to be used in the study be based on existing and available published and unpublished literature. The data compilation and cataloging provided the basic product of the Task; a retrievable data cataloging system in the form of an annotated reference list and key word index and an index of compiled data. The annotated reference list and key word index are cross referenced and can be used to trace and retrieve the data sources utilized in the candidate site locality identification study.

Not Available

1980-07-01T23:59:59.000Z

439

Nevada Test Site Environmental Report 2005, Attachment A - Site Description  

SciTech Connect (OSTI)

This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy A. Wills

2006-10-01T23:59:59.000Z

440

Annual update for the Nevada Test Site site treatment plan  

SciTech Connect (OSTI)

This document describes the purpose and scope of the Draft Annual Update for the Nevada Test Site Treatment Plan, the framework for developing the Annual Update, and the current inventory of mixed waste covered under the Site Treatment Plan and the Federal Facility Compliance Act Consent Order and stored at the Nevada Test Site. No Site Treatment Plan milestones or Federal Facility Cleanup Act Consent Order deadlines have been missed for fiscal year 1996. The Shipping Cask, a portion of the solvent sludge waste stream, and eight B-25 boxes from the lead-contaminated soil waste stream have been deleted from the Site Treatment Plan and the Federal Facility Cleanup Act Consent Order, in accordance with Part XI of the Federal Facility Cleanup Act Consent Order.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2010 Site Environmental Report  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and national security. BNL manages its world-class scientific research with particular sensitivity to environmental issues and community concerns. The Laboratory's motto, 'Exploring Life's Mysteries...Protecting its Future,' and its Environmental, Safety, Security and Health Policy reflect the commitment of BNL's management to fully integrate environmental stewardship into all facets of its mission and operations.

Ratel, K.; Lee, R; Remien, J; Hooda, B; Green, T; Williams, J; Pohlot, P; Dorsch, W; Paquette, D; Burke, J

2011-10-01T23:59:59.000Z

442

2013 ANNUAL SITE ENVIRONMENTAL REPORT (ASER)  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety and Health Reporting, requires that each DOE site prepare an Annual Site Environmental Report (ASER) documenting the sites...

443

EERE: Weatherization and Intergovernmental Program - Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map Site Map Printable Version Share this resource Send a link to EERE: Weatherization and Intergovernmental Program - Site Map to someone by E-mail Share EERE: Weatherization and Intergovernmental Program - Site Map on Facebook Tweet about EERE: Weatherization and Intergovernmental Program - Site Map on Twitter Bookmark EERE: Weatherization and Intergovernmental Program - Site Map on Google Bookmark EERE: Weatherization and Intergovernmental Program - Site Map on Delicious Rank EERE: Weatherization and Intergovernmental Program - Site Map on Digg Find More places to share EERE: Weatherization and Intergovernmental Program - Site Map on AddThis.com... Site Map About Plans, Implementation, & Results Weatherization Assistance Program Weatherization Services

444

Hanford Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site Hanford Site Hanford Site Workers safely demolished a 175-foot-high exhaust stack at the Hanford Site in southeastern Washington state, a project supported by $420,000 in Recovery Act funds Workers safely demolished a 175-foot-high exhaust stack at the Hanford Site in southeastern Washington state, a project supported by $420,000 in Recovery Act funds Slurry pumps are used in the tank farms to pick up liquid and solid particle mixture, or slurry, and provide the force necessary to transport the waste from tank to tank during retrieval operations Slurry pumps are used in the tank farms to pick up liquid and solid particle mixture, or slurry, and provide the force necessary to transport the waste from tank to tank during retrieval operations The Pretreatment Facility control room building pad (foreground) and the Low-Activity Waste Facility (background)

445

Piketon Site Partnering Agreement 2011  

Broader source: Energy.gov (indexed) [DOE]

Fluor-B&W I Fluor-B&W I Portsmouth" Restoration Services. Inc. B:W conversion serVices, Ie ~~WEMS Wastren-EnergX Mission Support, LLC Piketon Site Partnering Agreement 2011 O n behalf of the taxpayers of this nation and the communities of the four counties surrounding the former Gaseous Diffusion Plant Site in Piketon, Ohio, we, the U.S. Department of Energy and its Prime Contractors, stand together as One Site Team. We enter into this Partnering Agreement with the conviction and shared responsibility to operate and clean up the Piketon Site safely and efficiently -- while protecting the public health and the environment. We believe that - only together - can we return the Site to the community as a platform for sustainable regional growth and new jobs.

446

NSA-Beaver Pond Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beaver Pond Site (NSA-BP) Beaver Pond Site (NSA-BP) The storage tent and gas collectors NSA-BP site looking to the east. Visible is the investigator hut on drier land to the west and the boardwalk leading out to the tower site in the right portion of the image with the mounded beaver lodge visible in the middle of the image. The bridge and the 3 meter flux tower The beaver lodge The bridge from the flux tower This is the floating bridge leading from the flux tower back to the shore. The large tent for holding equipment is clearly visible on the shore. The TGB gas collectors on the beaver pond Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos

447

Savannah River Site - Enforcement Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enforcement Documents Enforcement Documents Savannah River Site Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Puncture Wound Injury resulting in a Radiological Uptake at the Savannah River Site, July 22, 2011 (NEA-2011-02) Consent Order issued to Parsons Infrastructure & Technology Group, Inc., related to Nuclear Facility Construction Deficiencies and Subcontractor Oversight at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies, Inc. related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010

448

Recommendation 198: Establish a site transition process  

Broader source: Energy.gov [DOE]

The ORSSAB recommends DOE Establish a Site Transition Process Upon Completion of Remediation at Ongoing Mission Sites.

449

Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites  

Broader source: Energy.gov [DOE]

Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (Waste Management Conference 2008)

450

acid  

Office of Legacy Management (LM)

Acid/Pueblo Canyon, New Mexico, Site is Acid/Pueblo Canyon, New Mexico, Site is located near the town of Los Alamos, New Mexico, approximately 25 miles northwest of Santa Fe and 60 miles north-northeast of Albuquerque. The site is accessible from Canyon Road, which runs just south of the former waste treatment plant. The plant was situated on a mesa that forms the south rim of Acid Canyon. Acid Canyon is a small tributary near the head

451

Type B Accident Investigation Board Report of the Plutonium Intake between August 4, 1996, and February 10, 1997, by a Crane Operator at the Savannah River Site F-Canyon  

Broader source: Energy.gov [DOE]

This report is an independent product of an accident investigation board appointed by Dr. Mario P. Fiori, Manager, Savannah River Operations Office, U.S. Department of Energy.

452

Structural constraints for proposed Fort Hancock low-level radioactive waste disposal site (NTP-S34), southern Hudspeth County, Texas  

SciTech Connect (OSTI)

Structural complexities reduce the homogeneity necessary for a site characterization model to an unacceptable level for performance assessment for radioactive waste disposal sites. The proposed site lies between the northern, stable Diablo platform and the southern, mobile Mesozoic Chihuahua tectonic belt. Structural movement along this interface has been active for the past 14,000 years. In addition, the area lies along the northern margin of the Permian Marfa basin and the northeastern margin of the deeply faulted Hueco bolson segment of the late Cenozoic Rio Grande rift system. Recent seismic activity with extensive surface rupture in Quitman Canyon (30 mi southeast of the site) is also documented from the 1931 Valentine, Texas, earthquake (6.4 Richter scale). The site is underlain by either a thrust fault or the complex terminus of a Mesozoic thrust fault. This fault is a segment of the continuous thrust sheet extending from exposures in the Sierra Blanc area, 30 mi east (Devil Ridge fault), to the El Paso area west (Rio Grande fault). This segment of the Devil Ridge-Rio Grande thrust is documented by the Haymond Krupp No. 1 Thaxton wildcat drilled at Campogrande Mountain immediately south of the site. The recent rift fault scarp (Campo Grande) immediately south of the Thaxton well has a 17-mi surface trace and is, no doubt, related to the subsurface Clint fault to the west in the El Paso area. An additional complexity is the presence of a monoclinal flexure with a minimum of 900 ft of surface relief (2 mi northeast of NTP-S34). A 4.5-mi, east-west, down-to-the-south normal fault occurs near the top of the monocline with a small associated graben. These complexities seriously compromise the proposed Fort Hancock site.

Lemone, D.V.

1989-03-01T23:59:59.000Z

453

Electric Transmission Line Siting Compact  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission Line Siting Compact Electric Transmission Line Siting Compact 1 ______________________________________________________________________________ 2 ARTICLE I 3 PURPOSE 4 5 Siting electric transmission lines across state borders and federal lands is an issue for states, the 6 federal government, transmission utilities, consumers, environmentalists, and other stakeholders. 7 The current, multi-year application review process by separate and equal jurisdictions constitutes 8 a sometimes inefficient and redundant process for transmission companies and complicates the 9 efforts of state and federal policy-makers and other stakeholders to develop more robust 10 economic opportunities, increase grid reliability and security, and ensure the consumers have the 11 lowest cost electricity possible. 12

454

Idaho Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Idaho Site Idaho Site Idaho Site Idaho National Laboratory Advance Training Reactor | September 2009 Aerial View Idaho National Laboratory Advance Training Reactor | September 2009 Aerial View Idaho National Laboratory Idaho National Laboratory's (INL) mission is to ensure the nation's energy security with safe, competitive, and sustainable energy systems and unique national and homeland security capabilities. To support these activities, INL operates numerous laboratories, reactors, test facilities, waste storage facilities, and support facilities. Idaho Closure Project The Idaho Closure Project (ICP) is a multi-year cleanup effort involving decommissioning and dismantlement of over 200 excess environmental management facilities. The scope includes D&D of three reactors, management

455

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.  

SciTech Connect (OSTI)

During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over-fishing practices is limiting the recruitment of white sturgeon into larger size classes (>183 cm). Habitat, food resources, and migration have been severely altered by the impoundment of the Snake River and it appears that the recruitment of young may not be severely affected as recruitment of fish into size classes > 183 cm.

Hoefs, Nancy (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-02-01T23:59:59.000Z

456

Information Request Yucca Mountain Site  

Broader source: Energy.gov (indexed) [DOE]

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

457

Liquefaction Evaluations at DOE Sites  

Broader source: Energy.gov (indexed) [DOE]

LIQUEFACTION EVALUATIONS AT LIQUEFACTION EVALUATIONS AT DOE SITES M. Lewis, M. McHood, R. Williams, B. Gutierrez October 25, 2011 Agenda  Background  Purpose and Objective  Liquefaction Methods  Site Evaluations  Aging  Conclusions 2 Background 3 Liquefaction at DOE Sites Background  Liquefaction evaluations are required at all DOE sites  Methods have evolved over the years, but there is currently only one consensus methodology;  Youd et al., 2001  Two other methods have emerged in the last few years;  Cetin et al., 2004  Idriss & Boulanger, 2008 4 Background  Youd et al., was the result of two workshops (NCEER/NSF) held in the late 1990s, culminating in a NCEER report and a ASCE publication in 2001. The method is widely used.  Cetin et al., was the result of several doctoral

458

Site Cleanup | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

K-25 cleanup at the East Tenneseee Technology Park. Unlike many EM cleanup sites, Oak Ridge has numerous ongoing missions aside from EM. The success and rate of progress...

459

Oak Ridge Site Specific Advisory ...  

Office of Environmental Management (EM)

Ridge Site Specific Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831 Phone: 865-241-4583, 865-241-4584, 1-800-382-6938 * Fax: 865-574-3521 * Internet:...

460

SiteEnvironmentalReport BROOKHAVENNATIONALLABORATORY  

E-Print Network [OSTI]

species are known to nest on site. The Red-tailed hawk, a bird of prey, is protected by the Migratory Bird Treaty Act. Chapter 6 of this report discusses habitat management and protection efforts

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hanford Blog Archive - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Hanford's Office of River Protection On Tuesday, the U.S. Department of Energy named Scott L. Samuelson Manager of the Office of River Protection at the Hanford Site. April...

462

RECERTIFICATION OVERVIEW The WIPP Site  

E-Print Network [OSTI]

and production of nuclear weapons. The WIPP site is located outside of Carlsbad, New Mexico, where TRU waste 176 529 Carlsbad Caverns National Park 2005 EPA WIPP RECERTIFICATION FACT SHEET No.1 Recertification

463

Hanford Site 1998 Environmental Report  

SciTech Connect (OSTI)

This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

RL Dirkes; RW Hanf; TM Poston

1999-09-21T23:59:59.000Z

464

FY 2012 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

465

FY 2011 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

466

FY 2014 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

467

FY 2013 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

468

FY 2010 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

469

Tropical Western Pacific CART Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

climate: the Tropical Western Pacific (TWP) CART site, along the equator in the western Pacific Ocean. The TWP locale lies between 10 degrees North latitude and 10 degrees South...

470

Photos on This Web Site  

Broader source: Energy.gov [DOE]

Most of the geothermal energy photos used on this web site can be obtained from the National Renewable Energy Laboratory's Photographic Information eXchange (PIX). Before using a photo, please read...

471

SSA Old Black Spruce Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSA-OBS) SSA-OBS) View an aerial photo-map of the SSA-OBS site. The 1.3 km road and boardwalk from OBS (facing North) The control box at the base of the flux tower The ARGO ATV used to haul equipment to OBS The double-scaffold flux tower The hut and boardwalk The TE canopy tower Construction during 1993 of the tower site at the Old Black Spruce (SSA-OBS) Trail into SSA-OBS. Large scar and canal created by construction vehicles cutting a new path each visit to avoid being mired in bog. Photograph of construction vehicle in action as it lays the electrical cable into SSA-OBS sites. Tower construction crew working on the foundation for the SSA-OBS tower. Aerial view of double-scaffold flux tower at SSA-OBS site and 100 m cable tramway for transporting the PARABOLA instrument between the flux and Rohn tower.

472

Site Environmental Report for 1998  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment. Chapter 3, ''Compliance Summary,'' reviews the site's various environmental protection activities and compliance status with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1998 show that SNL/California operations had no harmful effects on the environment or the public.

Holland, R.C.

1999-06-01T23:59:59.000Z

473

Hanford Site environmental management specification  

SciTech Connect (OSTI)

The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

Grygiel, M.L.

1998-06-10T23:59:59.000Z

474

acid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acid/Pueblo Canyon, New Mexico, Site. Acid/Pueblo Canyon, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Acid/Pueblo Canyon, New Mexico, Site is located near the town of Los Alamos, New Mexico, approximately 25 miles northwest of Santa Fe and 60 miles north-northeast of Albuquerque. The site is accessible from Canyon Road, which runs just south

475

Site Sustainability Plan (SSP) 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2 Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2012 2012 More Documents & Publications Site Sustainability Plan (SSP) 2013 2014 Site Sustainability Plan Site...

476

Assessor Training Evaluating OnSite Reports  

E-Print Network [OSTI]

NVLAP Assessor Training Evaluating OnSite Reports and Corrective Actions #12;Assessor Training 2009Site Report form ·NVLAP OnSite Assessment Review form #12;Assessor Training 2009: Evaluating OnSite Reports · Nonconformities cited #12;Assessor Training 2009: Evaluating OnSite Reports & Corrective Actions 44 Evaluating

477

2012 Annual Site Environmental Report (ASER)  

Broader source: Energy.gov [DOE]

2012 Annual Site Environmental Report (ASER) Department of Energy (DOE) Order 231.1B, Environment, Safety and Health Reporting, requires that each DOE site prepare an Annual Site Environmental Report (ASER) documenting the sites environmental conditions. The ASER is submitted to DOE-Headquarters annually and is available to the public.

478

Instrumentation for CTA site characterization  

E-Print Network [OSTI]

Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the "Cherenkov Telescope Array" CTA. Such data are not available with sufficient precision or the comparability to allow for a comprehensive characterization of the proposed sites to be made. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize ...

Fruck, Christian; Ernenwein, Jean-Pierre; Mandt, Duan; Schweizer, Thomas; Hfner, Dennis; Bulik, Tomasz; Cieslar, Marek; Costantini, Heide; Dominik, Michal; Ebr, Jan; Garczarczyk, Markus; Lorentz, Eckart; Pareschi, Giovanni; Pech, Miroslav; Puerto-Gimnez, Irene; Teshima, Masahiro

2015-01-01T23:59:59.000Z

479

SITE  

Office of Legacy Management (LM)

-@-Y? ALTERNATE -@-Y? ALTERNATE NfiME: --___---------------___________________N~ME:---------------------- CITY- - .---------------^---------- STATE: wz ------ OWNER(S) -------- Past: Current: ------------------------ _~~--___~~-----_~~----~~-- Owner contacted [3 yes 0 no; if yes, date contacted ------------- TYPE OF ' OPERATION ____-------~----- q Research & Development !zl Facility Type 0 Production scale testing 0 Manufactuiinq 0 Pilot Scale [7 University 0 Bench Scale Process 0 Research Organization 0 Theoretical Studies 0 Government Sponsored Faci 1 i ty 0 Sample & Analysis Cl Other ---_-~~----_~~---~-~ 0 Production 0 Disposal/Storage TYPE OF CONTRACT -_---------~~~~~ q Prime q Subcontract& 0 Purchase Order 0 Other information (i.e., c&t

480

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

US ENC WI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

482

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

483

Manhattan Project: About the Site  

Office of Scientific and Technical Information (OSTI)

ABOUT THIS SITE ABOUT THIS SITE Resources Project Directors: Terrence R. Fehner, Chief Historian F. G. Gosling, former Chief Historian (retired) Assisted By: David Rezelman, Glenn T. Seaborg Fellow in Nuclear History Stephanie Young, Edward Teller Fellow in Science and National Security Studies Andrew Mamo, Edward Teller Fellow in Science and National Security Studies Emily Hamilton, Edward Teller Fellow in Science and National Security Studies Douglas O’Reagan, Edward Teller Fellow in Science and National Security Studies James Skee, Edward Teller Fellow in Science and National Security Studies Site Designer: Jennifer Johnson, Archivist Summary Words (estimate): 120,000 Total Pages if Printed (estimate): 430 Total Images: 500+ Photographs: 450+ Maps and Diagrams: 64 Total Images (counting varying sizes, etc.): 1,000+

484

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

485

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

486

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

487

2007 Annual Site Environmental Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Annual Site Environmental Report 2007 Annual Site Environmental Report October 2008 U.S. Department of Energy National Energy Technology Laboratory Albany, Oregon Fairbanks, Alaska Morgantown, West Virginia Pittsburgh, Pennsylvania Tulsa, Oklahoma NETL Customer Service Line: (800) 553-7681 www.netl.doe.gov NETL's Annual Site Environmental Report for 2007 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-

488

Human Radiation Experiments: Related Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experiment Experiment Related Sites Related Links Home Roadmap What's New Search HREX Multimedia Related Sites Federal DOE DOE Sites & National Laboratories Federal Other The following are organizations which provide related information and links to databases, electronic documents, and servers. FEDERAL - DOE U.S. Department of Energy (DOE) homepage (http://www.doe.gov/)contains information on DOE's Departmental Resources, Programs, Offices, National Labs and other DOE related topics. DOE's Environment, Safety and Health (ES&H) Technical Information Services (TIS) homepage (http://nattie.eh.doe.gov/) is a collection of information services designed to provide safety and health professionals with reliable, accurate and current information to assist them in performing their jobs.

489

DNAPL site evaluation. Research report  

SciTech Connect (OSTI)

Dense nonaqueous-phase liquids (DNAPLs), especially chlorinated solvents, are among the most prevalent subsurface contaminants identified in ground-water supplies and at waste disposal sites. There are several site-characterization issues specific to DNAPL sites including: (a) the risk of inducing DNAPL migration by drilling, pumping or other field activities; (b) the use of special sampling and measurement methods to assess DNAPL presence and migration potential; and (c) development of a cost-effective characterization strategy that accounts for DNAPL chemical transport processes, the risk of inducing DNAPL movement during field work, and the data required to select and implement a realistic remedy. The manual provides information to address these issues and describes and evaluates activities that can be used to determine the presence, fate and transport of subsurface DNAPL contamination.

Cohen, R.M.; Mercer, J.W.

1993-02-01T23:59:59.000Z

490

Legacy Management FUSRAP Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Long-Term Surveillance and Maintenance (LTS&M) of Remediated FUSRAP Sites The DOE Office of Legacy Management (LM) established LTS&M requirements for remediated FUSRAP sites. DOE evaluates the final site conditions of a remediated site on the basis of risk for different future uses. DOE then confirms that LTS&M requirements will maintain protectiveness. Most Formerly Utilized Sites Remedial Action Program (FUSRAP) sites are remediated to conditions that pose no risk to human health and the environment under any future use scenario. With regulator concurrence, these sites are released for unrestricted use. No ongoing surveillance is required and LM responsibilities consist of preserving site records and

491

Site Map | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome Welcome Visitor Information Job Openings Apply for Beam Time Machine Status | Schedule Conferences Seminars & Meetings Publications Safety and Training Construction Schedule Find People Organization Charts Email | WebVPN | Intranet APS Conference Rooms Suggestion Box Document Central Argonne Guest House external link Argonne Accelerator Inst. external link National User Facility Org. external link lightsources.org external link Facebook Twitter YouTube Wikipedia Site Map Looking for something else? Try a site search or contact webmaster for assistance. About Welcome Overview Visiting the APS Mission and Goals Organization Charts Committees Job Openings User Information For Prospective Users For New Users For Current Users For Administrators Find a Beamline Contacts Calendars Community

492

Site survey method and apparatus  

DOE Patents [OSTI]

The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow