Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE - Office of Legacy Management -- Bayo Canyon NM Site - NM 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Bayo Canyon NM Site - NM 01 Bayo Canyon NM Site - NM 01 FUSRAP Considered Sites Bayo Canyon, NM Alternate Name(s): Bayo Canyon Area Bayo Canyon (TA-10) Site NM.01-2 Location: Canyon in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.01-3 Historical Operations: Used in 1944-1961 by the MED and later AEC at Los Alamos National Laboratory as a firing site for conventional and high-explosives experiments involving natural and depleted uranium, strontium, and lanthanum as a radiation source for blast diagnosis. NM.01-3 NM.01-5 Eligibility Determination: Eligible NM.01-1 Radiological Survey(s): Assessment Survey NM.01-3 Site Status: Certified- Certification Basis NM.01-5 NM.01-6 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

2

Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico  

SciTech Connect

The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

1982-05-01T23:59:59.000Z

3

bayo.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Bayo Bayo Canyon, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Bayo Canyon, New Mexico, Site is located approximately 3 miles west of Los Alamos, New Mexico, 25 miles northwest of Santa Fe, and 60 miles north-northeast of Albuquerque. Partly in Los Alamos County and partly in Santa Fe County, Bayo Canyon is one of numerous canyons that cut into the Pajarito Plateau in north-central New Mexico. The U.S. government owned the site from 1943 to 1967 as part of the Los Alamos National Laboratory (LANL) operations. The Manhattan Engineer District (MED) constructed facilities in Bayo Canyon in 1943 and 1944. MED and later the U.S. Atomic Energy Commission (AEC) used the site between 1944 and 1961 as a firing range for high explosive experiments in conjunction with research on nuclear development. These explosions

4

bayo.cdr  

Office of Legacy Management (LM)

owned the site from 1943 to 1967 as part of the Los Alamos National Laboratory (LANL) operations. The Manhattan Engineer District (MED) constructed facilities in Bayo...

5

Beneficial Reuse at Bodo Canyon Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Environmental Justice » Beneficial Reuse at Bodo Services » Environmental Justice » Beneficial Reuse at Bodo Canyon Site Beneficial Reuse at Bodo Canyon Site The George Washington University Environmental Resource Policy Graduate Program Capstone Project Beneficial Reuse at Bodo Canyon Site Feasibility and Community Support for Photovoltaic Array May 2012 The George Washington University Environmental Resource Policy Graduate Program Capstone Project was an analysis of LM's efforts to support the installation of a commercial solar photovoltaic system at the former uranium mill site near Durango, Colorado. Beneficial Reuse at Bodo Canyon Site More Documents & Publications EA-1770: Final Environmental Assessment Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

6

FINDING OF MD SIGNIFICANT IMPACT FORMERLY UTILIZED HED/AEC SITES REMEDIAL ACTION PROGRAM:  

Office of Legacy Management (LM)

FINDING OF MD SIGNIFICANT IMPACT FINDING OF MD SIGNIFICANT IMPACT FORMERLY UTILIZED HED/AEC SITES REMEDIAL ACTION PROGRAM: BAY0 CANYONS, NEW MEXICO Under the Formerly Utilized Sites Remedial Action Program (FUSRAP), the U.S. Department of Energy (DOE) has proposed to carry out rcmedfrl action at a site located in Bayo Canyon, Los Alamos County, New Mexico. Although the site as partially decontaminated and decommissioned in the 196Os, there remain above-background amounts of radionuclides. DOE has determined that strontium-90 in excess of DDE's proposed remedial- action criterir exists in subsurface materials underlying an area of about 0.6 ha (1.5 acres) at the Bayo Canyon site. The proposed action is to demarcate this are8 and restrict its use to activities that will not disturb this sub-

7

Thirty-five years at Pajarito Canyon Site  

SciTech Connect

A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

Paxton, H.C.

1981-05-01T23:59:59.000Z

8

DOE - Office of Legacy Management -- LM Sites Map  

NLE Websites -- All DOE Office Websites (Extended Search)

LM Sites Map LM Sites Map LM Sites LM Sites Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Disposal Site BONUS Decommissioned Reactor Buffalo Site Burrell Disposal Site CEER Sites Canonsburg Disposal Site Central Nevada Test Area Site Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site Colonie Site Columbus Sites Columbus East Site Durango Disposal Site Durango Processing Site

9

DOE - Office of Legacy Management -- LM Sites Map  

Office of Legacy Management (LM)

LM Sites Map LM Sites Map LM Sites LM Sites Puerto Rico Connecticut New Jersey Massachusetts Alaska Texas Florida Arizona Missouri Colorado Utah Idaho Washington South Dakota New Mexico California Oregon Tennessee Illinois Ohio Michigan New York Pennsylvania Wyoming Nebraska West Virginia Kentucky Mississippi Nevada Select a Site Acid/Pueblo Canyon Site Adrian Site Albany Site Aliquippa Site Ambrosia Lake Disposal Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Disposal Site BONUS Decommissioned Reactor Buffalo Site Burrell Disposal Site CEER Sites Canonsburg Disposal Site Central Nevada Test Area Site Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site Colonie Site Columbus Sites Columbus East Site Durango Disposal Site Durango Processing Site

10

Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho  

E-Print Network (OSTI)

in the unsaturated zone at the Idaho National Engineeringzone: Box Canyon Site, Idaho. , Rep. LBNL-42925, Lawrencethe U.S. Department of Energy, Idaho Operations Office, DOE

Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

11

DOE/EV-0005/15 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

5 5 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/15 UC-71 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545 Under Contract No. W-7405-ENG-36 Available from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

12

Savannah River Site's H Canyon Begins 2012 with New and Continuing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site's H Canyon Begins 2012 with New and Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 Savannah River Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 January 1, 2012 - 12:00pm Addthis H Canyon, above, and HB-Line are scheduled to soon begin dissolving and purifying plutonium currently stored at the Savannah River Site to demonstrate the capability to produce oxide material that meets the Mixed Oxide Facility (MOX) feedstock specifications. The production process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies.

13

Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA  

E-Print Network (OSTI)

reactions of a nuclear power plant. Diablo Canyon wasmeters from the nuclear power plant) while having suitableThe Diablo Canyon Nuclear Power Plant site in San Luis

Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

2004-01-01T23:59:59.000Z

14

Completed Sites Listing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hallam Nuclear Power Facility, NE Hallam Nuclear Power Facility, NE 1969 1998 2. Piqua Nuclear Power Facility, OH 1969 1998 3. Bayo Canyon, NM 1982 1998 4. Kellex/Pierpont, NJ 1982 1998 5. University of California, CA 1982 1998 6. Acid/Pueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex Municipal Landfill, NJ 1987 2000 11. Niagara Falls Storage Site Vicinity Properties, NY 1987 2001 12. Salt Lake City, UT 1989 2001 13. Spook, WY 1989 2001 14. National Guard Armory, IL 1989 2002 15. University of Chicago, IL 1989 2005 16. Green River, UT 1990 2005 17. Lakeview, OR 1990 2006 18. Riverton, WY 1990 2006 19. Tuba City, AZ 1990 2006 20 Durango, CO 1991 2007 21. Lowman, ID 1992 2007 22. Pagano Salvage Yard, NM 1992 2007 23. Elza Gate, TN 1992 2007 24. Albany Research Center, OR

15

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

16

DOE - Office of Legacy Management -- Bodo Canyon Cell - 006  

Office of Legacy Management (LM)

Bodo Canyon Cell - 006 FUSRAP Considered Sites Site: Bodo Canyon Cell (006) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

17

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

18

Untitled-1  

Office of Legacy Management (LM)

fact sheet provides information about the Bayo Canyon, New Mexico, Site. fact sheet provides information about the Bayo Canyon, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Bayo Canyon, New Mexico, Site is located approx- imately 3 miles west of Los Alamos, New Mexico, 25 miles northwest of Santa Fe, and 60 miles north- northeast of Albuquerque. Partly in Los Alamos County

19

Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir  

Science Conference Proceedings (OSTI)

The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

W.J.Stone; D.L.Newell

2002-08-01T23:59:59.000Z

20

Oak Ridge Operations Formerly Utilized Sites Remedial Action Program  

Office of Legacy Management (LM)

IC77GLg /'-Oi. SEP 20 1982 IC77GLg /'-Oi. SEP 20 1982 10-05-04B-001 Deportment of Energy Oak Ridge Operations Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 PRELIMINARY ENGINEERING EVALUATION OF REMEDIAL ACTION ALTERNATIVES BAYO CANYON SITE, LOS ALAMOS, NEW MEXICO SEPTEMBER 1982 Bechtel Job 14501 Bechtel National, Inc. Nuclear Fuel Operations LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

22

DOE - Office of Legacy Management -- Bayo_FUSRAP  

Office of Legacy Management (LM)

in conjunction with cleanup activities for the entire Los Alamos site. Office of Legacy Management activities consist of managing site records and responding to stakeholder...

23

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

septic tanks, sanitary and industrial waste lines, storm drains, incinerators, transformer sites, and areas in which soil has been contaminated. The Upper Los Alamos Canyon...

24

EIS-0219: F-Canyon Plutonium Solutions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Plutonium Solutions Stored in the F-Canyon Facility, Savannah River Site, Aiken, SC December 1, 1994 EIS-0219: Final Environmental Impact Statement F-Canyon Plutonium...

25

DOE - Office of Legacy Management -- Bayo_FUSRAP  

NLE Websites -- All DOE Office Websites (Extended Search)

was established in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations. History-The...

26

Intense, Variable Mixing near the Head of Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

A microstructure survey near the head of Monterey Submarine Canyon, the first in a canyon, confirmed earlier inferences that coastal submarine canyons are sites of intense mixing. The data collected during two weeks in August 1997 showed ...

Glenn S. Carter; Michael C. Gregg

2002-11-01T23:59:59.000Z

27

Use of Modeling for Prevention of Solids Formation During Canyon Processing of Legacy Nuclear Materials at the Savannah River Site  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) Environmental Management (EM) nuclear material stabilization program includes the dissolution and processing of legacy materials from various DOE sites. The SRS canyon facilities were designed to dissolve and process spent nuclear fuel and targets. As the processing of typical materials is completed, unusual and exotic nuclear materials are being targeted for stabilization. These unusual materials are often difficult to dissolve using historical flowsheet conditions and require more aggressive dissolver solutions. Solids must be prevented in the dissolver to avoid expensive delays associated with the build-up of insoluble material in downstream process equipment. Moreover, it is vital to prevent precipitation of all solids, especially plutonium-bearing solids, since their presence in dissolver solutions raises criticality safety issues. To prevent precipitation of undesirable solids in aqueous process solutions, the accuracy of computer models to predict precipitate formation requires incorporation of plant specific fundamental data. These data are incorporated into a previously developed thermodynamic computer program that applies the Pitzer correlation to derive activity coefficient parameters. This improved predictive model will reduce unwanted precipitation in process solutions at DOE sites working with EM nuclear materials in aqueous solutions.

Rhodes, W. D.; Crooks III, W. J.; Christian, J. D.

2002-02-26T23:59:59.000Z

28

SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION  

SciTech Connect

The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

Magoulas, V.

2013-06-03T23:59:59.000Z

29

Improved accountability method for measuring enriched uranium in H-Canyon dissolver solution at the Savannah River Site  

SciTech Connect

At the Savannah River Site (SRS), accountability measurement of enriched uranium dissolved in H-Canyon is performed using isotope dilution mass spectrometry (IDMS). In the IDMS analytical method, a known quantity of uranium{sup 233} is added to the sample solution containing enriched uranium and fission products. The resulting uranium mixture must first be purified using a separation technique in the shielded analytical(``hot``) cells to lower radioactivity levels by removing fission products. Following this purification, the sample is analyzed by mass spectrometry to determine the total uranium content and isotopic abundance. The magnitude of the response of each uranium isotope in the sample solution and the response of the U{sup 233} spike is measured. By ratioing these responses, relative to the known quantity of the U{sup 233} spike, the uranium content can be determined. A hexane solvent extraction technique, used for years at SRS to remove fission products prior to the mass spectrometry analysis of uranium, has several problems. The hexone method is tedious, requires additional sample clean-up after the purified sample is removed from the shielded cells and requires the use of Resource Conservation and Recovery Act (RCRA)-listed hazardous materials (hexone and chromium compounds). A new high speed separation method that enables a rapid removal of fission products in a shielded cells environment has been developed by the SRS Central Laboratory to replace the hexone method. The new high speed column extraction chromatography technique employs applied vacuum and columns containing tri (2-ethyl-hexyl) phosphate (TEHP) solvent coated on a small particle inert support (SM-7 Bio Beads). The new separation is rapid, user friendly, eliminates the use of the RCA-listed hazardous chemicals and reduces the amount of solid waste generated by the separation method. 2 tabs. 4 figs.

Maxwell, S.L. III; Satkowski, J.; Mahannah, R.N.

1992-08-01T23:59:59.000Z

30

Improved accountability method for measuring enriched uranium in H-Canyon dissolver solution at the Savannah River Site  

SciTech Connect

At the Savannah River Site (SRS), accountability measurement of enriched uranium dissolved in H-Canyon is performed using isotope dilution mass spectrometry (IDMS). In the IDMS analytical method, a known quantity of uranium{sup 233} is added to the sample solution containing enriched uranium and fission products. The resulting uranium mixture must first be purified using a separation technique in the shielded analytical( hot'') cells to lower radioactivity levels by removing fission products. Following this purification, the sample is analyzed by mass spectrometry to determine the total uranium content and isotopic abundance. The magnitude of the response of each uranium isotope in the sample solution and the response of the U{sup 233} spike is measured. By ratioing these responses, relative to the known quantity of the U{sup 233} spike, the uranium content can be determined. A hexane solvent extraction technique, used for years at SRS to remove fission products prior to the mass spectrometry analysis of uranium, has several problems. The hexone method is tedious, requires additional sample clean-up after the purified sample is removed from the shielded cells and requires the use of Resource Conservation and Recovery Act (RCRA)-listed hazardous materials (hexone and chromium compounds). A new high speed separation method that enables a rapid removal of fission products in a shielded cells environment has been developed by the SRS Central Laboratory to replace the hexone method. The new high speed column extraction chromatography technique employs applied vacuum and columns containing tri (2-ethyl-hexyl) phosphate (TEHP) solvent coated on a small particle inert support (SM-7 Bio Beads). The new separation is rapid, user friendly, eliminates the use of the RCA-listed hazardous chemicals and reduces the amount of solid waste generated by the separation method. 2 tabs. 4 figs.

Maxwell, S.L. III; Satkowski, J.; Mahannah, R.N.

1992-01-01T23:59:59.000Z

31

ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION  

SciTech Connect

At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

KEHLER KL

2011-01-13T23:59:59.000Z

32

New York Canyon Stimulation  

Science Conference Proceedings (OSTI)

The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "????No Go"??? decision and initiate project termination in April 2012.

Raemy, B. Principal Investigator, TGP Development Company, LLC

2012-06-21T23:59:59.000Z

33

DOE - Office of Legacy Management -- Acid Pueblo Canyon - NM 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Acid Pueblo Canyon - NM 03 Acid Pueblo Canyon - NM 03 FUSRAP Considered Sites Acid/Pueblo Canyon, NM Alternate Name(s): Radioactive Liquid Waste Treatment Plant (TA-45) Acid/Pueblo and Los Alamos Canyon NM.03-3 Location: Canyons in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.03-3 Historical Operations: Late 1943 or early 1944, head of the south fork of Acid Canyon received untreated liquid waste containing tritium and isotopes of strontium, cesium, uranium, plutonium, and americium discharged from main acid sewer lines and subsequently from the TA-3 plutonium treatment plant. NM.03-3 Eligibility Determination: Radiological Survey(s): Verification Surveys NM.03-5 NM.03-6 Site Status: Certified- Certification Basis and Federal Register Notice NM.03-2

34

EXPERIENCE MONITORING FOR LOW LEVEL NEUTRON RADIATION AT THE H-CANYON AT THE SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Department of Energy contractors are required to monitor external occupational radiation exposure of an individual likely to receive an effective dose equivalent to the whole body of 0.1 rem (0.001sievert) or more in a year. For a working year of 2000 hours, this translates to a dose rate of 0.05 mrem/hr (0.5 {micro}Sv/hr). This can be a challenging requirement for neutron exposure because traditional surveys with shielded BF{sub 3} proportional counters are difficult to conduct, particularly at low dose rates. A modified survey method was used at the Savannah River Site to find low dose rates in excess of 0.05 mrem/hr. An unshielded He{sup 3} detector was used to find elevated gross slow neutron counts. Areas with high count rates on the unshielded He{sup 3} detector were further investigated with shielded BF{sub 3} proportional counters and thermoluminescent neutron dosimeters were placed in the area of interest. An office area was investigated with this method. The data initially suggested that whole body neutron dose rates to office workers could be occurring at levels significantly higher than 0.1 rem (0.001sievert). The final evaluation, however, showed that the office workers were exposed to less than 0.1 rem/yr (0.001sievert/yr) of neutron radiation.

HOGUE, MARK

2005-10-07T23:59:59.000Z

35

Microsoft Word - Badger Canyon CXWEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEC-4 KEC-4 SUBJECT: Environmental Clearance Memorandum David Tripp Project Manager - TEP-CSB-1 Proposed Action: Badger Canyon Substation Radio Communication Tower Project Budget Information: Work Order 00253262 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." B1.19 "Siting, construction, and operation of microwave and radio communication towers and associated facilities..." Location: Badger Canyon Substation, Benton County, Washington - Township 8 North, Range 28 East, Section 1 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace a 40-foot monopole communication

36

California Nuclear Profile - Diablo Canyon  

U.S. Energy Information Administration (EIA) Indexed Site

Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

37

H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS  

Science Conference Proceedings (OSTI)

Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.

Weinheimer, E.

2012-08-06T23:59:59.000Z

38

The Honorable Wlliaq~ S. Cohen  

Office of Legacy Management (LM)

Name Citv and State KellexPierpont - AcidPueblo Canyon Bayo Canyon* University% of California, - Chupadera Mesa . White Sands'Missile Range, New : Mexico Middlesex Municipal...

39

Post-project appraisal of Martin Canyon Creek restoration  

E-Print Network (OSTI)

Haltiner, Jeffery. 1997. Martin Canyon Stream Stabilization:Williams & Associates, Ltd. 1999. Martin Canyon Creek StreamPost-Project Appraisal of Martin Canyon Creek Restoration

Wagner, Wayne; Roseman, Jesse

2006-01-01T23:59:59.000Z

40

Hudson Canyon | Open Energy Information  

Open Energy Info (EERE)

Canyon Canyon Jump to: navigation, search Name Hudson Canyon Facility Hudson Canyon Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Deepwater Wind Long Island Developer Deepwater Wind Location Atlantic Ocean NY Coordinates 40.151°, -73.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.151,"lon":-73.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Juniper Canyon | Open Energy Information  

Open Energy Info (EERE)

Juniper Canyon Juniper Canyon Jump to: navigation, search Name Juniper Canyon Facility Juniper Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Developer Iberdrola Energy Purchaser Merchant Location In Klickitat County 4.6 miles Southeast of Goldendale Coordinates 45.910223°, -120.224317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.910223,"lon":-120.224317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

DOE - Office of Legacy Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Calibration Facilities Ecosystem Management Team Environmental Justice Environmental Management System Long-Term Surveillance and Maintenance Operations and Maintenance Post-Closure Benefits Property Records Management Stakeholder Relations Sites Considered Sites LM Sites Sites Pending Transfer to LM Programmatic Framework Mission News About Us LM Sites Select a Site Acid/Pueblo Canyon Adrian Site Albany Site Aliquippa Site Ambrosia Lake Site Amchitka Site Ashtabula Site Bayo Canyon Site Berkeley Site Beverly Site Bluewater Site BONUS Site Buffalo Site Burrell Site Canonsburg Site CEER Sites Chariot Site Chicago North Site Chicago South Site Chupadera Mesa Site CNTA Site Colonie Site Columbus Sites Columbus

43

Engineers Constructors  

Office of Legacy Management (LM)

Engineers Engineers - Constructors ~ /:~ ( ' r,.... I!~\ l.,_",z;(J;' Bechtel National, Inc. Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge. Tennessee Mail Address: P. O. B01l 350. Oak Ridge. TN 37830 bce-. R. Barber C. t1iller E. Wal ker C. Knoke G. Phillips G. Scott L. Blevins K. Harer DOE File No. 030-04G Professional Land Surveying 1404 Second Street Santa Fe, New Mexico 87501 Attn: Mr. Robert Benavides Reference: Purchase Contract l4501-01j04-PC-19 Bayo Canyon Survey Dear Mr. Benavides: The following are clarifications to the referenced contract specification. The need for clarification to the specification arises from the fact that the Bayo Canyon site is transected by a corporate boundary, the Los Alamos County-Santa Fe County line. This condition affects three items in the specification Scope Of Work: Item 1.2.5, the as-built site plan of the Bayo

44

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-11-08T23:59:59.000Z

45

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

46

Internal Tides in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. ...

Rob A. Hall; Glenn S. Carter

2011-01-01T23:59:59.000Z

47

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

48

Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability  

E-Print Network (OSTI)

Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon. Large- and small-particle intermediate nepheloid layers were consistently present in the canyon axis and were not observed on the slope to either side of the canyon. The temporal variability in currents, temperature, and particulate matter was measured at a station located at 300 m depth in the canyon axis during consecutive deployments in May-July and August-November 1998. Two moored current meters, one at 3.5 mab and one at 50 mab, recorded flow, while thermographs, a light-scattering sensor, and sediment traps gathered information about the characteristics of the flow and movement of particulate matter. Currents in the upper Mississippi Canyon were oscillatory, with alternating periods of up-canyon and down-canyon flow. Harmonic analysis revealed that the diurnal tidal signal was the dominant component of the flow. Currents were most intense at 3.5 mab. Mean current speed at this depth was approximately 8 cm s? during both deployments, reaching maximum speeds of over 50 cm s?. Current velocities generated sufficient shear stress to resuspend canyon floor sediments about 30% of the time during both deployments. During the second mooring deployment, Hurricane Georges passed 150 km NE of the study site. Near-bottom current velocities and temperature fluctuations were intensified. As the hurricane passed, maximum current speed reached 68 cm s? and a temperature decrease of approximately 7 degrees C occurred in less than 2 hours. Conditions were favorable for sediment resuspension approximately 50% of the time during the five days of hurricane influence. Further evidence for sediment resuspension was provided by similarities between canyon floor core samples and sediment trap collections.

Burden, Cheryl A

1999-01-01T23:59:59.000Z

49

DOE - Office of Legacy Management -- White Canyon AEC Ore Buying Station -  

NLE Websites -- All DOE Office Websites (Extended Search)

White Canyon AEC Ore Buying Station White Canyon AEC Ore Buying Station - UT 04 FUSRAP Considered Sites Site: White Canyon AEC Ore Buying Station (UT.04) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

50

Pages that link to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

51

Changes related to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

52

New York Canyon Stimulation Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Stimulation Geothermal Project Stimulation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New York Canyon Stimulation Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The projects expected outcomes and benefits are; - Demonstrated commercial viability of the EGS-stimulated reservoir by generating electricity using fluids produced from the reservoir at economic costs. - Significant job creation and preservation and economic development in support of the Recovery Act of 2009. State Nevada Objectives Demonstrate the commercial application of EGS techniques at the New York Canyon (NYC) site in a way that minimizes cost and maximizes opportunities for repeat applications elsewhere.

53

Bear Canyon Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Canyon Geothermal Facility Canyon Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bear Canyon Geothermal Facility General Information Name Bear Canyon Geothermal Facility Facility Bear Canyon Sector Geothermal energy Location Information Location Clear Lake, California, Coordinates 38.762851116528°, -122.69217967987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.762851116528,"lon":-122.69217967987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Hay Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hay Canyon Wind Farm Hay Canyon Wind Farm Jump to: navigation, search Name Hay Canyon Wind Farm Facility Hay Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Snohomish Public Utility District Location Near Moro OR Coordinates 45.479548°, -120.741491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.479548,"lon":-120.741491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Threemile Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Threemile Canyon Wind Farm Threemile Canyon Wind Farm Jump to: navigation, search Name Threemile Canyon Wind Farm Facility Threemile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.837861°, -119.701286° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.837861,"lon":-119.701286,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Three Mile Canyon | Open Energy Information  

Open Energy Info (EERE)

Mile Canyon Mile Canyon Jump to: navigation, search Name Three Mile Canyon Facility Three Mile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Momentum RE Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.717419°, -119.502258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.717419,"lon":-119.502258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Turbulent Kinetic Energy Dissipation in Barrow Canyon  

Science Conference Proceedings (OSTI)

Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast ...

E. L. Shroyer

2012-06-01T23:59:59.000Z

59

Internal Waves in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

Velocity, temperature, and salinity profile surveying in Monterey Submarine Canyon during spring tide reveals an internal wave field almost an order of magnitude more energetic than that in the open ocean. Semidiurnal fluctuations and their ...

Eric Kunze; Leslie K. Rosenfeld; Glenn S. Carter; Michael C. Gregg

2002-06-01T23:59:59.000Z

60

Rectified Barotropic Flow over a Submarine Canyon  

Science Conference Proceedings (OSTI)

The effect of an isolated canyon interrupting a long continental shelf of constant cross section on the along-isobath, oscillatory motion of a homogeneous, incompressible fluid is considered by employing laboratory experiments (physical models) ...

Nicolas Pernne; Jacques Verron; Dominique Renouard; Don L. Boyer; Xiuzhang Zhang

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Small mammal study of Sandia Canyon, 1994 and 1995  

SciTech Connect

A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

Bennett, K.; Biggs, J.

1996-11-01T23:59:59.000Z

62

Physical Modeling of Flow Field inside Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow characteristics inside urban street canyons were studied in a laboratory water channel. The approaching flow direction was horizontal and perpendicular to the street axis. The street width was adjusted to form street canyons of aspect ...

Xian-Xiang Li; Dennis Y. C. Leung; Chun-Ho Liu; K. M. Lam

2008-07-01T23:59:59.000Z

63

Wintertime Boundary Layer Structure in the Grand Canyon  

Science Conference Proceedings (OSTI)

Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during ...

C. David Whiteman; Shiyuan Zhong; Xindi Bian

1999-08-01T23:59:59.000Z

64

Coyote Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Project Coyote Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Coyote Canyon Geothermal Project Project Location Information Coordinates 39.723055555556°, -118.08027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.723055555556,"lon":-118.08027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Red Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Canyon Wind Farm Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Florida Power & Light Co. Location Borden TX Coordinates 32.95326011°, -101.215539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.95326011,"lon":-101.215539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Devil's Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Devil's Canyon Geothermal Project Devil's Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information Coordinates 40.938333333333°, -117.53916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.938333333333,"lon":-117.53916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Biglow Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Wind Farm Biglow Canyon Wind Farm Facility Biglow Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion/Portland General Electric Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.629003°, -120.605607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.629003,"lon":-120.605607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

A Laboratory Model of Urban Street-Canyon Flows  

Science Conference Proceedings (OSTI)

A circulating water channel is constructed to examine urban street-canyon flow. In the cases of an even-notch street canyon in which model buildings on both sides of the street have equal heights, one vortex is observed in model canyons with ...

Jong-Jin Baik; Rae-Seol Park; Hye-Yeong Chun; Jae-Jin Kim

2000-09-01T23:59:59.000Z

69

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area (Redirected from Coyote Canyon Geothermal Resource Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Radionuclide contaminant analysis of small mammels, plants and sediments within Mortandad Canyon, 1994  

SciTech Connect

Small mammals, plants and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos County, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation ingestion, or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, and total U. With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

Bennett, K.; Biggs, J.; Fresquez, P.

1996-01-01T23:59:59.000Z

71

Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.  

DOE Green Energy (OSTI)

This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.

Christian, Richard

2004-02-01T23:59:59.000Z

72

Big Canyon Creek Ecological Restoration Strategy.  

DOE Green Energy (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

73

Big Canyon Creek Ecological Restoration Strategy.  

Science Conference Proceedings (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

74

Untitled Page -- Other Sites Summary  

Office of Legacy Management (LM)

Other Sites Summary Other Sites Summary Search Other Sites Considered Sites Other Sites All LM Quick Search All Other Sites 11 E (2) Disposal Cell - 037 ANC Gas Hills Site - 040 Argonne National Laboratory - West - 014 Bodo Canyon Cell - 006 Burro Canyon Disposal Cell - 007 Cheney Disposal Cell - 008 Chevron Panna Maria Site - 030 Clive Disposal Cell - 036 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 Conoco Conquista Site - 031 Cotter Canon City Site - 009 Dawn Ford Site - 038 EFB White Mesa Site - 033 Energy Technology Engineering Center - 044 Estes Gulch Disposal Cell - 010 Exxon Ray Point Site - 032 Fermi National Accelerator Laboratory - 016 Fernald Environmental Management Project - 027 Fort St Vrain - 011 Geothermal Test Facility - 001 Hecla Durita Site - 012

75

Microsoft Word - canyon disposition rpt 2 01 05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Efforts to Department of Energy Efforts to Dispose of Hanford's Chemical Separation Facilities DOE/IG-0672 February 2005 -2- benefits of using the facility as a disposal site. Instead, the study focused on characterizing and performing technical analysis on the structural integrity of the facility. In studying the merits of the Initiative, the Department did not ensure that the cost study was sufficient in scope, and once completed, never reviewed the study to determine whether it was accurate and complete or adequately supported the preferred alternative. As a result of not thoroughly evaluating the feasibility of using canyon facilities for waste disposal, the Department may not realize savings ranging up to $500 million. This report highlights the importance of the Department's oversight of its contractors' activities to

76

Trail Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Trail Canyon Geothermal Project Trail Canyon Geothermal Project Project Location Information Coordinates 38.325555555556°, -114.29388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.325555555556,"lon":-114.29388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Panther Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Panther Canyon Geothermal Project Panther Canyon Geothermal Project Project Location Information Coordinates 40.549444444444°, -117.57666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.549444444444,"lon":-117.57666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

SURVEY OF LOS ALAMOS AND PUEBLO CANYON FOR RADIOACTIVE CONTAMINATION AND RADIOASSAY TESTS RUN ON SEWER-WATER SAMPLES AND WATER AND SOIL SAMPLES TAKEN FROM LOS ALAMOS AND PUEBLO CANYONS  

SciTech Connect

Chemical sewers and sanitary lines draining the Tech Area, D. P. Site, CMR-12 Laundry, and surrounding residential areas flow into Pueblo and Los Alamos Canyon streams. In order to determine the extent and sources of radioactive contamination in these localities, fluid samples from each of the sewers, soil samples from each of the sewers, soil samples from the ground surrounding the sewer exits, and water and soil samples from selected spots in or near each of the two canyon streams were collected and analyzed for polonium and . plutonium. (W.D.M.)

Kingsley, W.H.; Fox, A.; Tribby, J.F.

1947-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, 1995  

Science Conference Proceedings (OSTI)

The Biology Team of ESH-20 (the Ecology Group) at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies measure water quality parameters and collect aquatic macroinvertebrates from sampling sites within the upper canyon stream. Reports by Bennett and Cross discuss previous aquatic studies in Sandia Canyon. This report updates and expands the previous findings. The Biology Team collected water quality data and aquatic macroinvertebrates monthly at three sampling stations within Sandia Canyon in 1995. The two upstream stations occur near a cattail (Typha latifolia) dominated marsh downstream from outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. The third station is approximately 1.5 miles downstream from the outfalls within a mixed conifer forest. All water chemistry parameters measured in Sandia Canyon during 1995 fell within acceptable State limits and scored in the {open_quotes}good{close_quotes} or {open_quotes}excellent{close_quotes} ranges when compared to an Environmental Quality Index. However, aquatic macroinvertebrates habitats have been degraded by widespread erosion, channelization, loss of wetlands due to deposition and stream lowering, scour, limited acceptable substrates, LANL releases and spills, and other stressors. Macroinvertebrate communities at all the stations had low diversities, low densities, and erratic numbers of individuals. These results indicate that although the stream possesses acceptable water chemistry, it has reduced biotic potential. The best developed aquatic community occurs at the sampling station with the best habitat and whose downstream location partially mitigates the effects of upstream impairments.

Cross, S.; Nottelman, H.

1997-01-01T23:59:59.000Z

82

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Grapevine Canyon Wind Project, Coconino County, Arizona 27: Grapevine Canyon Wind Project, Coconino County, Arizona EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona Summary This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE's Western Area Power Administration's existing Glen Canyon-Pinnacle Peak transmission lines. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 11, 2012 EIS-0427: Record of Decision Interconnection of the Grapevine Canyon Wind Project, Coconino County,

83

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Action and Alternatives 2-3 Proposed Action and Alternatives 2-3 Figure 1 Proposed 230-kV Towers and Rights-of-Way Klondike III/Biglow Canyon Wind Integration Project Bonneville Power Administration Proposed Action and Alternatives 2-4 Figure 1, continued CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. 32 Figure 1. Region map of wind projects proposed for Sherman County. D e s c h u t e s Ri ver C a n y o n C o l u m b ia R i v e r Hwy 19 H w y 2 0 6 H w y 9 7 I 8 4 Grass Valley Moro Wasco Biggs Arlington Condon Fourmile Canyon McDonald Ferry Biggs Junction Deschutes River Crossing The Dalles Complex RM 15.9-16.8 RM 40 Sherman Co Wasco Co G i l l i a m C o Gilliam Co Morrow Co Rowena Plateau Historic Columbia River Highway John D a y R i v e r C a n y o n P:\B\BPAX00000324\0600INFO\GS\arcmap\figures\visiblity_tech_report\fig2_visual_resources_or.mxd January 9, 2006

84

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994  

SciTech Connect

The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

Cross, S.

1995-08-01T23:59:59.000Z

85

Nine Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Blue Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Blue Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Horizon Developer Zilkha Renewable/Kirmart Corp. Energy Purchaser Western Farmers' Electric Cooperative Location North of Lawton OK Coordinates 34.852678°, -98.551807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.852678,"lon":-98.551807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area (Redirected from Olowalu-Ukumehame Canyon Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

88

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Facility Canyon Bloomers, Inc Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

89

Tidal Motion in Submarine CanyonsA Laboratory Experiment  

Science Conference Proceedings (OSTI)

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been explored with a laboratory experiment. A barotropic tide was forced in a stratified tank, containing continental shelf-slope topography into which a ...

Peter G. Baines

1983-02-01T23:59:59.000Z

90

Observations of the Internal Tide in Monterey Canyon  

Science Conference Proceedings (OSTI)

Data from two shipboard experiments in 1994, designed to observe the semidiurnal internal tide in Monterey Canyon, reveal semidiurnal currents of about 20 cm s?1, which is an order of magnitude larger than the estimated barotropic tidal currents. ...

Emil T. Petruncio; Leslie K. Rosenfeld; Jeffrey D. Paduan

1998-10-01T23:59:59.000Z

91

Flow Variability in a North American Downtown Street Canyon  

Science Conference Proceedings (OSTI)

Previous field and laboratory studies have indicated that flow and turbulence inside urban areas and, in particular, in street canyons, is very complex and is associated with wakes and vortices developing near buildings. However, a number of open ...

Petra Klein; James V. Clark

2007-06-01T23:59:59.000Z

92

DOE Site List  

Office of Environmental Management (EM)

Links Links Central Internet Database CID Photo Banner DOE Site List Site Geo Site Code State Operations Office1 DOE Programs Generating Streams at Site DOE Programs Managing Facilities Associated Data2 Acid/Pueblo Canyons ACPC NM Oak Ridge Waste/Media, Facilities Airport Substation CA Western Area Power Administration Facilities Akron Hill Communication Site CO Western Area Power Administration Facilities Akron Substation CO Western Area Power Administration Facilities AL Complex NM Albuquerque DP Facilities Alba Craft ALCL OH Oak Ridge Facilities Albany Research Center AMRC OR Oak Ridge Facilities Alcova Switchyard WY Western Area Power Administration Facilities Aliquippa Forge ALFO PA Oak Ridge Facilities

93

Nine Canyon III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nine Canyon III Wind Farm Nine Canyon III Wind Farm Facility Nine Canyon III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest/RES Americas Energy Purchaser Energy Northwest Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

95

Microsoft Word - Final_NineCanyon_CommunicationTowerInstall_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Kelly Gardner, PMP Project Manager, TEP-TPP-1 Proposed Action: Nine Canyon Substation Communication Tower Addition: 331800 McNary Sub Bus Tie Relay Replacements and 310427 McNary-Badger Canyon Transfer Trip Install Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions and modifications to transmission facilities Location: Kennewick, Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a 60-foot communications tower and associated communication equipment at the Benton County Public Utility District's Nine Canyon Substation in Benton County, Washington. The upgrade would involve replacing the

96

LA-9252-MS UC-70a  

Office of Legacy Management (LM)

/p/j ,()i --' /p/j ,()i --' z!- LA-9252-MS UC-70a Issued: May 1982 Environmental Analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico Roger W. Ferenbaugh Thomas E. Buhl Alan K. Stoker Wayne FL Hansen kos A[am@ Los Alamos,New Mexico 87545 Los Alamos National Laboratory CONTENTS ABSTRACT 1 1.0 INTRODUCTION AND BACKGROUND 1.1 The FUSRAP Program 1.2 Preferred Alternative 2.0 THE BAY0 CANYON SITE 2.1 Summary History and Description of Site 2.1.1 Description of Site 2.1.2 History of Site 2.2 Need for Action 2.2.1 Radiological Risk 2.2.1.1 Method of Estimating Risk 2.2.1.2 Results of Dose Calculations 2.2.1.3 Health Risks from Residual Bayo Canyon Contamination 2.2.2 Criteria upon Which Cleanup Action is Based 2.3 Other Agencies Involved in Implementation of the

97

Review of the Diablo Canyon probabilistic risk assessment  

SciTech Connect

This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

1994-08-01T23:59:59.000Z

98

Blue Canyon II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Blue Canyon II Wind Farm Blue Canyon II Wind Farm Jump to: navigation, search Name Blue Canyon II Wind Farm Facility Blue Canyon II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser American Electric Power Location North of Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Biglow Canyon Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Phase III Wind Farm Biglow Canyon Phase III Wind Farm Jump to: navigation, search Name Biglow Canyon Phase III Wind Farm Facility Biglow Canyon Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Properties of Saltstone Prepared Containing H-Canyon Waste  

Science Conference Proceedings (OSTI)

Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

Cozzi, A

2005-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

2006-07-01T23:59:59.000Z

102

Glen Canyon Dam Long-Term Experimental and Management Plan EIS  

NLE Websites -- All DOE Office Websites (Extended Search)

Glen Canyon LTEMP EIS Glen Canyon LTEMP EIS Glen Canyon Dam, a 1,300-MW water-storage and hydroelectric facility is located on the Colorado River upstream of the Grand Canyon. EVS is evaluating the effects of dam operations on the Colorado River. A comprehensive evaluation of Glen Canyon Dam operations and their effects on the Colorado River through the Grand Canyon is being conducted by the Department of the Interior with EVS assistance. The Long-Term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS) - the first such evaluation in over 15 years - will examine flow regimes to meet the goals of supplying water for communities, agriculture, and industry and will protect the resources of the Grand Canyon, while providing clean hydropower. The LTEMP EIS, which is expected to be completed by the end of 2013, will

103

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

McLeod, Bruce

2004-01-01T23:59:59.000Z

104

Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving delisting goals established by National Marine Fisheries Service (NMFS). Complete returns for all three acclimation facilities will not occur until the year 2002. Progeny (which would then be natural origin fish protected under the Endangered Species Act) from those returns will be returning for the next five years. In 2001, a total of 2,051,099 fish weighing 59,647 pounds were released from the three acclimation facilities. The total includes 318,932 yearling fish weighing 31,128 pounds and 1,732,167 sub-yearling fish weighing 28,519 pounds. Yearling fish numbers were reduced by Bacterial Kidney Disease (BKD) and sub-yearling acclimation time was limited by record low river water flows.

McLeod, Bruce

2004-01-01T23:59:59.000Z

105

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New York Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New York Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Lovelock, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

106

American Canyon Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type Landfill Gas Location Napa County, California Coordinates 38.5024689°, -122.2653887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5024689,"lon":-122.2653887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Coyote Canyon Steam Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Steam Plant Biomass Facility Steam Plant Biomass Facility Jump to: navigation, search Name Coyote Canyon Steam Plant Biomass Facility Facility Coyote Canyon Steam Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

New York Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

New York Canyon Geothermal Project New York Canyon Geothermal Project Project Location Information Coordinates 40.056111111111°, -118.01083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.056111111111,"lon":-118.01083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Blue Canyon V Wind Farm | Open Energy Information  

Open Energy Info (EERE)

V Wind Farm V Wind Farm Jump to: navigation, search Name Blue Canyon V Wind Farm Facility Blue Canyon V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Public Service of Oklahoma Location Caddo & Comanche Counties OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

111

Harbison Canyon, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbison Canyon, California: Energy Resources Harbison Canyon, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8203296°, -116.8300236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8203296,"lon":-116.8300236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

The Dissolution of Desicooler Residues in H-Canyon Dissolvers  

Science Conference Proceedings (OSTI)

A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

Gray, J.H.

2003-06-23T23:59:59.000Z

113

A review of proposed Glen Canyon Dam interim operating criteria  

DOE Green Energy (OSTI)

Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

1992-04-01T23:59:59.000Z

114

Nine Canyon Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nine Canyon Wind Farm Phase II Jump to: navigation, search Name Nine Canyon Wind Farm Phase II Facility Nine Canyon Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

DOE/EA-1521; Environmental Assessment for Spring Canyon Wind Project, Logan County, Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA, Spring Canyon Wind Project ix EA, Spring Canyon Wind Project ix TABLE OF CONTENTS Page 1.0 PURPOSE AND NEED......................................................................................................... 1 1.1 INTRODUCTION ..................................................................................................... 1 1.2 PURPOSE AND NEED............................................................................................. 3 1.2.1 Federal Agency Action ............................................................................... 3 1.2.2 Applicant's Purpose and Need .................................................................... 3 1.3 SCOPING .................................................................................................................. 3

116

Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar  

Science Conference Proceedings (OSTI)

Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in ...

Robert M. Banta; Lisa S. Darby; Pirmin Kaufmann; David H. Levinson; Cui-Juan Zhu

1999-08-01T23:59:59.000Z

117

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona  

E-Print Network (OSTI)

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona Brian J Canyon, Arizona, transport coarse-grained sediment onto debris fans adjacent to the Colorado River and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented

118

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray  

E-Print Network (OSTI)

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

119

Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Greenhouse Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Patterns in biodiversity and distribution of benthic Polychaeta in the Mississippi Canyon, Northern Gulf of Mexico  

E-Print Network (OSTI)

The distribution of benthic polychaetes in the Mississippi Canyon was examined to evaluate impacts of environmental variables on species assemblages. Environmental variables considered included depth, bathymetric slope, hydrographic features, sediment grain size, food availability and sediment contamination. Samples were collected using GOMEX boxcorer. Density decreased with increasing depth exponentially. Diversity exhibited a unimodal pattern with depth with a maximum value in the intermediate depth range (about 1269 m). Deposit feeders were the most abundant feeding guild. Both the feeding guilds and faunal composition could be divided into three groups along the depth gradient: shallow (300 ? 800 m), intermediate (800 ? 1500 m) and deep (> 1500 m). Results of statistical analyses revealed that depth was the most important determinant in organizing polychaete assemblages in the study area. The Mississippi Canyon and the Central Transect (a non-canyon area) were found not contaminated by trace metals or Polynuclear Aromatic Hydrocarbons (PAHs) in sediments, although the highest PAHs concentration occurred at the head of the Canyon, MT1. The mean density was higher in the Mississippi Canyon (1668 N/m2) than in the Central Transect (979 N/m2), while the mean diversity in the Canyon (ES(100) = 26.9 ) was lower than the Central Transect (ES(100) = 33.1). Large amounts of terrigenous input from the Mississippi River to the Canyon could enhance polychaete density and accelerate competitive exclusion, and thus lead to lower diversity. The faunal composition was significantly different between the two transects, with higher species richness in the Mississippi Canyon (301 species). This could be attributed to structure complexity in the Mississippi Canyon. The distribution of feeding guilds was similar between two transects. The differences observed in polychaete assemblages between two transects may be largely due to high terrigenous sediment and organic matter input to the Mississippi Canyon by the Mississippi River.

Wang, Yuning

2004-12-01T23:59:59.000Z

122

Biglow Canyon Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase II Wind Farm Phase II Wind Farm Jump to: navigation, search Name Biglow Canyon Phase II Wind Farm Facility Biglow Canyon Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

McLeod, Bruce

2003-01-01T23:59:59.000Z

124

Electromagnetic (EM-60) survey in the Panther Canyon Area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

Eight frequency domain electromagnetic soundings were measured over the Panther Canyon thermal anomaly in Grass Valley, Nevada. The data were collected with Lawrence Berkeley Laboratory's large moment horizontal loop system (EM-60). At the transmitter site located near the center of the thermal anomaly, square wave currents of up to 70 A were impressed into a fourturn 50 m radius coil at frequencies from 0.033 to 500 Hz. At the eight receiver sites, 0.5 to 1.5 km from the loop, magnetic fields were detected with a three-component SQUID magnetometer and vertical and radial magnetic field spectra were calculated. Data were interpreted with a computer program which fit filled spectra and associated ellipse polarization data to one-dimensional resistivity models and results were compared to interpretations from earlier dipole-dipole resistivity measurements. Comparison of these interpretations indicates fairly close agreement between the two, with both models clearly indicating the presence and dimensions of the conductivity anomaly associated with the thermal zone. Although the dc data was better able to resolve the high resistivity bedrock, the EM-data were able to resolve all major features without distortion at shorter transmitter receiver separations and in about one-third of the field time.

Wilt, M.; Goldstein, N.; Stark, M.; Haught, R.

1980-05-01T23:59:59.000Z

125

Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

Hathcock, Charles D. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

126

Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams  

DOE Green Energy (OSTI)

Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

Carlson, J.L.

1995-03-01T23:59:59.000Z

127

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3: Calculations, Final  

Science Conference Proceedings (OSTI)

This report contains calculations for: hydraulic gradients for Alluvial Aquifer and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Alluvial Aquifer and Salt Wash Aquifer; average linear groundwater velocity for Alluvial Aquifer and Salt Wash Aquifer; statistical analysis of the extent of existing groundwater contamination; hydraulic gradients for Dakota/Burro Canyon Formation and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Dakota/Burro Canyon Formation and Perched Salt Wash Aquifer; determination of hydraulic conductivity of the Dakota/Burro Canyon Formation from Packer Tests; average linear groundwater velocity for Dakota/Burro Canyon and Salt Wash Aquifer; chemical and mineralogical characterization of core samples from the Dry Flats Disposal Site; and demonstration of low groundwater yield from Uppermost Aquifer.

Not Available

1994-03-01T23:59:59.000Z

128

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

129

Top Topics and Achievements by Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topics and Topics and Accomplishments EM Site-Specific Advisory Board EM Site-Specific Advisory Board Chairs' Meeting October 2-3, 2012 Savannah River  Issue: Salt Waste Processing Facility  CAB understands some schedule and funding issues may be brewing.  DOE has internal assessment underway.  Delays could have dramatic impact on overall Site Closure schedule and Process.  While this is early in process we do have concerns. Savannah River  Issue (April 2012): Receipt of Research Reactor Spent Nuclear Fuel and Long Term Storage of Existing Inventories with no known, approved disposition path  Processing of SNF In H-Canyon was once considered viable.  SNF processing in H-Canyon seems to no longer be the preferred

130

RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION  

SciTech Connect

The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2{sigma}) for Tanks 15.4 and 17.5 are {approx}5% for uranium and {approx}25% for nitric acid.

Lascola, R

2008-10-29T23:59:59.000Z

131

Environmental assessment, Deaf Smith County site, Texas  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

Not Available

1986-05-01T23:59:59.000Z

132

Record of Decision - Klondike III/ Biglow Canyon Wind Integration Project - 10-25-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Klondike III/Biglow Canyon Wind Integration Project Klondike III/Biglow Canyon Wind Integration Project DECISION The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE) 1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects,

133

On Line Spectrophotometric Measurement of Uranium and Nitrate in H Canyon  

SciTech Connect

This report describes the on-line instrumentation developed by the Analytical Development Section of Savannah River Technology Center in support of Highly Enriched Uranium Blend Down processing in H Canyon.

Lascola, R.J.

2002-10-15T23:59:59.000Z

134

Impulsively Started Flow in a Submarine Canyon: Comparison of Results from Laboratory and Numerical Models  

Science Conference Proceedings (OSTI)

Intercomparisons have been made of results from laboratory experiments and a numerical model for the flow in the vicinity of an idealized submarine canyon located along an otherwise continuous shelf. Motion in the rotating and continuously ...

Nicolas Prenne; J. William Lavelle; David C. Smith IV; Don L. Boyer

2001-10-01T23:59:59.000Z

135

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

136

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

137

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63: Vegetation Management on the Glen Canyon-Pinnacle Peak 63: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

138

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Vegetation Management on the Glen Canyon-Pinnacle Peak 3: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

139

Micro-Earthquake At New York Canyon Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

York Canyon Geothermal Area (2011) York Canyon Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At New York Canyon Geothermal Area (2011) Exploration Activity Details Location New York Canyon Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

140

Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification  

Science Conference Proceedings (OSTI)

The time variability of the energetics and turbulent dissipation of internal tides in the upper Monterey Submarine Canyon (MSC) is examined with three moored profilers and five ADCP moorings spanning FebruaryApril 2009. Highly resolved time ...

Zhongxiang Zhao; Matthew H. Alford; Ren-Chieh Lien; Michael C. Gregg; Glenn S. Carter

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel  

Science Conference Proceedings (OSTI)

This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

Oar, D.L.

1994-09-29T23:59:59.000Z

142

Transport of a Power Plant Tracer Plume over Grand Canyon National Park  

Science Conference Proceedings (OSTI)

Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have ...

Jun Chen; Robert Bornstein; Charles G. Lindsey

1999-08-01T23:59:59.000Z

143

MSHA issues Crandall Canyon investigation report, fines owners $1.6 million  

Science Conference Proceedings (OSTI)

The paper summarises the findings of the Mine Safety and Health Administration report (available at www.msha.gov) into the death of six people at the Crandall Canyon Mine on 6 August 2007.

NONE

2008-08-15T23:59:59.000Z

144

A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow and pollutant dispersion in urban street canyons are investigated using a two-dimensional numerical model with the k? turbulent closure scheme. It is shown that the flow field is characterized mainly by the number and intensity of ...

Jong-Jin Baik; Jae-Jin Kim

1999-11-01T23:59:59.000Z

145

Aspects of the Load Circulation at the Grand Canyon during the Fall Season  

Science Conference Proceedings (OSTI)

The atmosphere and circulation of air within, above, and around the Grand Canyon of the Colorado River was studied from an instrumented aircraft and from ground-based instruments in September and October 1984. Several patterns were identified. ...

L. P. Stearns

1987-10-01T23:59:59.000Z

146

A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons  

Science Conference Proceedings (OSTI)

This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k? turbulent closure scheme is developed, and the heat transfer between the air and the building wall ...

Jae-Jin Kim; Jong-Jin Baik

1999-09-01T23:59:59.000Z

147

Sediment-Driven Downslope Flow in Submarine Canyons and Channels: Three-Dimensional Numerical Experiments  

Science Conference Proceedings (OSTI)

The role of submarine canyons and channels in sediment-driven downslope flow (sediment plumes) is examined, using a three-dimensional, rotational numerical model that couples the hydrodynamics and sediment transport. The model domain consists of ...

Jochen Kmpf; Hermann Fohrmann

2000-09-01T23:59:59.000Z

148

Cross-Shelf Exchange Driven by Oscillatory Barotropic Currents at an Idealized Coastal Canyon  

Science Conference Proceedings (OSTI)

Numerical simulations are used to study on-shelf transport of dense water by oscillatory barotropic currents incident upon an isolated coastal canyon. The physical system is a laboratory-scale annulus in which forcing is provided by an ...

D. B. Haidvogel

2005-06-01T23:59:59.000Z

149

LaboratoryNumerical Model Comparisons of Canyon Flows: A Parameter Study  

Science Conference Proceedings (OSTI)

An integrated set of laboratory and numerical-model experiments has been conducted to understand the development of residual circulation surrounding a coastal canyon and to explore further the degree to which laboratory experiments can provide ...

Don L. Boyer; Dale B. Haidvogel; Nicolas Prenne

2004-07-01T23:59:59.000Z

150

EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Energy.gov (U.S. Department of Energy (DOE))

Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

151

Bechtel National, Inc. Engineers Constructors Oak Ridge Office  

Office of Legacy Management (LM)

389 389 Bechtel National, Inc. Engineers - Constructors Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee Mail Address: P. O. Box 350, Oak Ridge. TN 37830 u.s. Department of Energy Oak Ridge Operations Post Office Box E Oak Ridge, TN 37830 ATTN: E. L. Keller, Director Technical Services Division SUBJECT: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-8l0R20722 Bayo Canyon Restrictive Covenants WBS No. 04D Dear Mr. Keller: Attached are the restrictive covenants on the Bayo Canyon parcels. These documents were prepared by the attorney for Professional Land Surveying, a Subcontractor to Bechtel who performed the required survey at Bayo Canyon. Please have your legal people review and comment on the subject convenants and return them to Bechtel for further action. Very truly yours, /12::..// tJ:Zf!-5-t:. Robert L. Rudolph Project Manager-FUSRAP

152

Tertiary oxidation in Westwater Canyon member of Morrison formation  

SciTech Connect

Hematitic oxidation in the Westwater Canyon Sandstone Member of the Morrison Formation extends along the outcrop from the Pipeline fault northeast of Gallup, New Mexico, to the San Mateo fault north of Grants, New Mexico. The hematitic sandstone forms a broad lobe in the subsurface to a depth of 2,400 ft (730 m). The downdip edge of this sandstone arcs eastward from northeast Church Rock through Crownpoint, and southeastward to the west edge of the Ambrosia Lake district. The red sandstone is bordered on the downdip side by a band of limonitic oxidation, which interfingers with reduced sandstones basinward. The limonitic oxidation forms a relatively narrow band along the north and west sides of the hematitic lobe but expands progressively in an east and southeast direction. Weak limonitic oxidation, as indicated by the absence of pyrite and by a bleached to faint yellowish-gray color, appears to extend from the San Mateo fault eastward under Mount Taylor to the Rio Puerco of the east. The hematitic oxidation is epigenetic and is believed to be of early Miocene to late Pliocene age. The limonitic oxidation follows the present ground-water flow pattern and probably dates from late Pliocene to the Holocene. The oxidation patterns are important in uranium exploration because the hematitic area is essentially barren, whereas the limonitic areas contain ore deposits that are in the process of being destroyed by oxidation.

Saucier, A.E.

1980-01-01T23:59:59.000Z

153

Explaining the relationship between prehistoric agriculture and environment at Chaco Canyon, New Mexico  

E-Print Network (OSTI)

Chaco Canyon, the Pueblo settlement of New Mexico, represents one of the major cultural developments in the prehistoric Southwest. Between A.D. 900 and A.D. 1100 Chaco reached its peak of cultural florescence. This period was characterized by considerable building activities, appearance of Chaco outliers, and the construction of an extensive road system. After this period a dramatic decline in population and a cessation of building activity took place. Archaeologists call this phenomenon abandonment. In general, development and abandonment of Chaco Canyon coincided with changes in climatic conditions. Between A.D. 900 and A.D. 1100 there was a gradual increase in effective moisture and warmer temperature which proved favorable for agriculture there. With these optimal climatic conditions,development of Chaco Canyon witnessed a great increase in population. However, the Chaco Canyon region could not support a large population indefinitely because of its agricultural marginality. To solve this population-resource imbalance, Chacoan farmers of this period intensified their agricultural activities by constructing water control systems such as check dams, contour terraces, canals, and ditches. These measures worked for a while and the influence of Chaco Canyon was felt in the political, economic, and religious life of a broad geographic region. However, summer moisture began to decrease in the years between A.D. 1130 and A.D. 1180. This decrease became a full scale drought from A.D. 1157 to A.D. 1179 that seems to have severely affected agriculture and wild food resources available for the Chacoans. In addition, the Chacoan water control system designed to capture runoff probably proved to be inadequate as a buffering mechanism. Consequently, population at Chaco Canyon began to decrease and the region was abandoned after A.D. 1140. In an attempt at explaining the specific abandonment of Chaco Canyon, this thesis focuses on relationship between prehistoric agriculture and environment.

Gang, G-Young

1993-01-01T23:59:59.000Z

154

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

155

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

156

Flow Patterns at the Ends of a Street Canyon: Measurements from the Joint Urban 2003 Field Experiment  

Science Conference Proceedings (OSTI)

During the Joint Urban 2003 experiment held in Oklahoma City, Oklahoma, an eastwest-running street canyon was heavily instrumented with wind sensors. In this paper, the flow patterns at the street canyon ends are investigated by looking at sonic ...

Suhas U. Pol; Michael J. Brown

2008-05-01T23:59:59.000Z

157

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Pool and Spa Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

Microsoft Word - CX-BadgerCanyon-RichlandNo1_WoodPoles_FY13.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2013 7, 2013 REPLY TO ATTN OF: KEPR/Pasco SUBJECT: Environmental Clearance Memorandum Walker Miller Electrical Engineer - TPCF-W RICHLAND Proposed Action: Wood pole replacements on the Badger Canyon-Richland #1 transmission line PP&A Project No.: 2670 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities. Location: City of Richland, Benton County, WA Transmission Line/ROW Structure # Township Range Section County, State Badger Canyon-Richland #1 4/9 and 4/10 9N 28E 26 Benton, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA, at the expense of the City of Richland, proposes to raise structures 4/9 and 4/10 of the Badger Canyon-Richland #1 115-kilovolt transmission line to

159

Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel  

SciTech Connect

The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ``Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel``, dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment.

Oar, D.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-01-23T23:59:59.000Z

160

Canyon dissolution of sand, slag, and crucible residues  

Science Conference Proceedings (OSTI)

An alternative to the FB-Line scrap recovery dissolver was desired for the dissolution of sand, slag, and crucible (SS{ampersand}C) residues from the plutonium reduction process due to the potential generation of hydrogen gas concentrations above the lower flammability limit. To address this concern, a flowsheet was developed for the F-Canyon dissolvers. The dissolvers are continually purged with nominally 33 SCFM of air; therefore the generation of flammable gas concentrations should not be a concern. Following removal of crucible fragments, small batches of the remaining sand fines or slag chunks containing less than approximately 350 grams of plutonium can be dissolved using the center insert in each of the four annular dissolver ports to address nuclear criticality safety concerns. Complete dissolution of the sand fines and slag chunks was achieved in laboratory experiments by heating between 75 and 85 degrees Celsius in a 9.3M nitric acid/0.013M (hydrogen) fluoride solution. Under these conditions, the sand and slag samples dissolved between 1 and 3 hours. Complete dissolution of plutonium and calcium fluorides in the slag required adjusting the dissolver solution to 7.5 wt% aluminum nitrate nonahydrate (ANN). Once ANN was added to a dissolver solution, further dissolution of any plutonium oxide (PuO2) in successive charges was not practical due to complexation of the fluoride by aluminum. During the laboratory experiments, well mixed solutions were necessary to achieve rapid dissolution rates. When agitation was not provided, sand fines dissolved very slowly. Measurement of the hydrogen gas generation rate during dissolution of slag samples was used to estimate the amount of metal in the chunks. Depending upon the yield of the reduction, the values ranged between approximately 1 (good yield) and 20% (poor yield). Aging of the slag will reduce the potential for hydrogen generation as calcium metal oxidizes over time. The potential for excessive corrosion in the dissolvers was evaluated using experimental data reported in the literature. Corrosion data at the exact flowsheet conditions were not available; however, the corrosion rate for 304L stainless steel (wrought material) corrosion coupons in 10M nitric acid/0.01M hydrofluoric acid at 95 degrees Celsius was reported as 21 mils per year. If the fluoride in the dissolver is complexed with aluminum, the corrosion rate will decrease to approximately 5 mils per year.

Rudisill, T.S.; Gray, J.H.; Karraker, D.G.; Chandler, G.T.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Influence of Canyon Winds on Flow Fields near Colorado's Front Range  

Science Conference Proceedings (OSTI)

A network of sodars was operated in the late summer and fall of 1993 to monitor the occurrence of nocturnal winds from a canyon in Colorado's Front Range near the Rocky Flats Plant and to determine the influence of those winds on the flow fields ...

J. C. Doran

1996-04-01T23:59:59.000Z

162

Functional design criteria, Project W-059, B Plant Canyon ventilation upgrade  

SciTech Connect

This document outlines the essential functions and requirements to be included in the design of the proposed B Plant canyon exhaust system upgrade. The project will provide a new exhaust air filter system and isolate the old filters from the airstream.

Roege, P.E.

1995-03-02T23:59:59.000Z

163

Observations of Thermally Driven Wind Jets at the Exit of Weber Canyon, Utah  

Science Conference Proceedings (OSTI)

Thermally driven valley-exit jets were investigated at Utahs Weber Canyon, a main tributary of the Great Salt Lake basin. An intensive measurement campaign during JulySeptember 2010 supplemented longer-term measurements to characterize the wind ...

Morgan F. Chrust; C. David Whiteman; Sebastian W. Hoch

2013-05-01T23:59:59.000Z

164

The Dependence of Canyon Winds on Surface Cooling and External Forcing in Colorado's Front Range  

Science Conference Proceedings (OSTI)

The atmospheric katabatic flow in the foothills of the Front Range of the Rocky Mountains has been monitored by a network of towers and sodars for several years as part of the ASCOT program. The dependence of the outflow from Coal Creek Canyon on ...

Richard L. Coulter; Paul Gudiksen

1995-06-01T23:59:59.000Z

165

FEASIBILITY STUDY FOR THE DEVELOPMENT OF A TEST BED PROGRAM FOR NOVEL DETECTORS AND DETECTOR MATERIALS AT SRS H-CANYON SEPARATIONS FACILITY  

Science Conference Proceedings (OSTI)

Researchers at the Savannah River National Laboratory (SRNL) have proposed that a test bed for advanced detectors be established at the H-Canyon separations facility located on the DOE Savannah River Site. The purpose of the proposed test bed will be to demonstrate the capabilities of emerging technologies for national and international safeguards applications in an operational environment, and to assess the ability of proven technologies to fill any existing gaps. The need for such a test bed has been expressed in the National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) program plan and would serve as a means to facilitate transfer of safeguards technologies from the laboratory to an operational environment. New detectors and detector materials open the possibility of operating in a more efficient and cost effective manner, thereby strengthening national and international safeguards objectives. In particular, such detectors could serve the DOE and IAEA in improving timeliness of detection, minimizing uncertainty and improving confidence in results. SRNL's concept for the H Canyon test bed program would eventually open the facility to other DOE National Laboratories and establish a program for testing national and international safeguards related equipment. The initial phase of the test bed program is to conduct a comprehensive feasibility study to determine the benefits and challenges associated with establishing such a test bed. The feasibility study will address issues related to the planning, execution, and operation of the test bed program. Results from the feasibility study will be summarized and discussed in this paper.

Sexton, L.; Mendez-Torres, A.; Hanks, D.

2011-06-07T23:59:59.000Z

166

Amphipods of the deep Mississippi Canyon, northern Gulf of Mexico: ecology and bioaccumulation of organic contaminants  

E-Print Network (OSTI)

In five summer cruises during the period 2000-2004, seventy-four box cores were collected from eleven locations from the Mississippi Canyon (480- 2750m, northern Gulf of Mexico), and an adjacent transect (336-2920) to understand the community structure and trophic function of amphipods and for measuring the bioaccumulation of polycyclic aromatic hydrocarbons, (PAHs). Amphipods were discovered to be an important component of the macrofauna of the Mississippi Canyon (40 % of the total faunal abundance). Seventy two species, belonging to nineteen families, were collected from the study area with 61 species from the canyon and only 38 species from the non-Canyon transect. The head of the canyon (480m) was dominated by dense mats (15,880 ind/m2) of a new amphipod (Ampelisca mississippiana). The logarithm of the amphipod abundance decreased linearly with depth. The species diversity (H`) exhibited a parabolic pattern with a maximum at 1100m. The differences in amphipod abundances and biodiversities were correlated with the variation in the amount of available organic matter. The depression in diversity in the canyon head is thought to be competitive exclusion resulting from the dominance by A.mississippiana, but the high species richness is presumed to be a function of the structural complexity of the canyon. Annual secondary production of A. mississippiana was 6.93 g dry wt m-2, based on size-frequency method and corresponding to an estimated univoltine generation from a regression model. The production/biomass ratio (P/B) was 3.11. Production of this magnitude is comparable to shallow marine ampeliscids but are high for the depauperate northern Gulf of Mexico. The effect of the organic contaminants and the bioavailability to the amphipods was determined through measuring the bioaccumulation of the PAHs. The distribution of PAHs in sediments was different from the distribution in the organisms suggesting preferential uptake/depuration or uptake from pore or bottom waters. The average bioaccumulation factor (4.36 2.55) and the biota sediment accumulation factor (0.240.13) for the total PAHs by the ampeliscids were within the range reported for other benthic invertebrates. The average bioaccumulation factors were highest for dibenzothiophenes (up to 132) and alkylated PAHs and lowest for parent high molecular weight PAHs.

Soliman, Yousria Soliman

2007-05-01T23:59:59.000Z

167

DOE - Office of Legacy Management -- Plateau Shootaring Canyon...  

NLE Websites -- All DOE Office Websites (Extended Search)

active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. After the owner completes U. S. Nuclear...

168

Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico  

SciTech Connect

Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

Advanced Resources International

2010-01-31T23:59:59.000Z

169

Properties of the Wind Field within the Oklahoma City Park Avenue Street Canyon. Part I: Mean Flow and Turbulence Statistics  

Science Conference Proceedings (OSTI)

Velocity data were obtained from sonic anemometer measurements within an eastwest-running street canyon located in the urban core of Oklahoma City, Oklahoma, during the Joint Urban 2003 field campaign. These data were used to explore the ...

M. A. Nelson; E. R. Pardyjak; J. C. Klewicki; S. U. Pol; M. J. Brown

2007-12-01T23:59:59.000Z

170

Characterization of the Thermal Structure inside an Urban Canyon: Field Measurements and Validation of a Simple Model  

Science Conference Proceedings (OSTI)

The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at ...

Lorenzo Giovannini; Dino Zardi; Massimiliano de Franceschi

2013-01-01T23:59:59.000Z

171

Observations of a Terrain-Forced Mesoscale Vortex and Canyon Drainage Flows along the Front Range of Colorado  

Science Conference Proceedings (OSTI)

Observations taken during the February 1991 Atmospheric Studies in Complex Terrain (ASCOT) Winter Validation Study are used to describe the wind field associated with a terrain-forced mesoscale vortex and thermally forced canyon drainage flows ...

David H. Levinson; Robert M. Banta

1995-07-01T23:59:59.000Z

172

Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park  

Science Conference Proceedings (OSTI)

During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex ...

Charles G. Lindsey; Jun Chen; Timothy S. Dye; L. Willard Richards; Donald L. Blumenthal

1999-08-01T23:59:59.000Z

173

A Large-Eddy Simulation Study of Thermal Effects on Turbulent Flow and Dispersion in and above a Street Canyon  

Science Conference Proceedings (OSTI)

Thermal effects on turbulent flow and dispersion in and above an idealized street canyon with a street aspect ratio of 1 are numerically investigated using the parallelized large-eddy simulation model (PALM). Each of upwind building wall, street ...

Seung-Bu Park; Jong-Jin Baik; Siegfried Raasch; Marcus Oliver Letzel

2012-05-01T23:59:59.000Z

174

Microsoft Word - CX-Franklin-BadgerCanyonGrandview-RedMtnsDisconnectSwitch_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2012 8, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Franklin-Badger Canyon and Grandview-Red Mountain switch replacements PP&A Project No.: 2,349 / 2,350 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace disconnect switches and related equipment on the Franklin-Badger Canyon No.2 and Grandview-Red Mountain No.1 115- kilovolt transmission lines. The switch stands will be replaced in the same locations as the existing structures, and related load break equipment will be upgraded in-kind to existing. Both

175

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

176

Potential of breccia pipes in the Mohawk Canyon Area, Hualapai Indian Reservation, Arizona  

Science Conference Proceedings (OSTI)

The Hualapai Indian Reservation is on the southwestern corner of the Colorado Plateau in northern Arizona. Hundreds of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northern Arizona. The pipes originated in the Mississippian Redwall Limestone and stoped their way upward through the upper Paleozoic strata, locally extending into the Triassic Moenkopi and Chinle Formations. The occurrence of high-grade U ore, associated with potentially economic concentrations of Cu, Ag, Pb, Zn, V, Co, and Ni in some of these pipes, has stimulated mining activity in northern Arizona despite the depressed market for most of these metals. Two breccia pipes, 241, and 242, have significant mineralized rock exposed on the Esplanade erosion surface; unfortunately, their economic potential is questionable because of their inaccessibility at the bottom of Mohawk Canyon. All warrant further exploration.

Wenrich, K.J.; Billingsley, G.H.; Van Gosen, B.S.

1990-09-21T23:59:59.000Z

177

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary S-1 Summary S-1 Summary In this Summary: * Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary covers the major points of the draft Environmental Impact Statement (EIS) prepared for the Klondike III/Biglow Canyon Wind Integration Project proposed by the Bonneville Power Administration (BPA). The project includes constructing a new double-circuit 230-kilovolt (kV) transmission line in northern Sherman County, Oregon. The new line would connect the Klondike III Wind Project and the Biglow Canyon Wind Farm to BPA's existing John Day 500-kV Substation. The project would also require expansion of BPA's existing John Day 500-kV Substation and a new 230-kV substation to integrate the two wind projects. As a federal agency, BPA is required by the National Environmental Policy Act

178

Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.  

DOE Green Energy (OSTI)

Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

Goulet, C. T.; LaGory, K. E.; Environmental Science Division

2009-10-05T23:59:59.000Z

179

DISSOLUTION OF FB-LINE METAL RESIDUES CONTAINING BERYLLIUM IN H-CANYON  

DOE Green Energy (OSTI)

Scrap materials containing plutonium (Pu) metal from FB-Line vaults are currently being dissolved in HB-Line for subsequent disposition through the H-Canyon facility. However, milestone and schedule commitments may require the dissolution of material containing Pu and beryllium (Be) metals in H-Canyon. To support this option, a flowsheet for dissolving Pu and Be metals in H-Canyon was demonstrated using a 4 M nitric acid (HNO{sub 3}) solution containing 0.3 M fluoride (F{sup -}). The F{sup -} was added as calcium fluoride (CaF{sub 2}). The dissolving solution also contained 2.5 g/L boron (B), a nuclear safety contingency for the H-Canyon dissolver, and 3.9 g/L iron (Fe) to represent the dissolution of carbon steel cans. The solution was heated to 90-95 C during the 8 h dissolution cycle. Dissolution of the Be metal appeared to begin as soon as the samples were added to the dissolver. Clear, colorless bubbles generated on the surface were observed and were attributed primarily to the generation of hydrogen (H{sub 2}) gas. The generation of nitrogen dioxide (NO{sub 2}) gas was also evident from the color of the solution. Essentially all of the Pu and Be dissolved during the first hour of the dissolution as the solution was heated to 90-95 C. The amount of residual solids collected following the dissolution was < 2% of the total metal charged to the dissolver. Examination of residual solids by scanning electron microscopy (SEM) showed that the largest dimension of the particles was less than 50 {micro}m with particles of smaller dimensions being more abundant. Energy dispersive spectra from spots on some of the particles showed the solids consisted of a small amount of undissolved material, corrosion products from the glassware, and dried salts from the dissolving solution.

Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

2005-07-15T23:59:59.000Z

180

Steam Generator Tube Integrity Risk Assessment: Volume 2: Application to Diablo Canyon Power Plant  

Science Conference Proceedings (OSTI)

Damage to steam generator tubing can impair its ability to adequately perform the required safety functions in terms of structural stability and leakage. This report describes the Diablo Canyon Power Plant application of a method for calculating risk for severe accidents involving steam generator tube failure. The method helps utilities determine risks associated with application of alternate repair criteria and/or operation with degraded tubing.

2000-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Dissolution of Plutonium Scrub Alloy and Anode Heel Materials in H-Canyon  

SciTech Connect

H-Canyon has a ''gap'' in dissolver operations during the last three months of FY03. One group of material to be processed during the gap is pre-existing scrub alloy material. There are 14 cans of material containing approximately 3.8 kilograms of plutonium. Of the 14 cans, it was anticipated that four cans contain salts, two cans contain anode heel materials, and eight cans contain scrub alloy buttons. H-Canyon desires to process the materials using a flowsheet similar to the SS and C (sand, slag and crucible) dissolution flowsheet used in F-Canyon. The materials will be loaded into carbon steel cans and then placed into aluminum metal charging bundles. Samples were sent to Savannah River Technology Center (SRTC) for characterization and flowsheet testing -- four MSE salts, two anode heels, and seven scrub alloy buttons. SRTC dissolved and characterized each of the samples. Two of them, originally thought to be MSE salts, were found to be graphite mold materials and were unsuitable for processing in H-Canyon. Characterization studies confirmed that the identification of the remaining items as MSE salts, scrub alloy buttons, and anode heel materials was correct. The MSE salts and anode heels solids are comprised primarily of plutonium, potassium, sodium and chloride. Both the MSE salts and anode heels left behind small amounts of residual solids. The scrub alloy buttons are comprised primarily of plutonium and aluminum. The solids dissolve readily with light, effervescent gas generation at the material surface and only trace amounts of NOx generation. Of the seven button samples, four dissolved completely. Two button samples contained small amounts of tantalum that did not dissolve. The last of the seven scrub alloy samples left a trace amount of residual plutonium solids. It is anticipated that the presence of undissolved fissile material is a function of where the sample was located relative to the button surface.

PIERCE, RA

2004-04-12T23:59:59.000Z

182

Evaluation of Zinc Addition During Cycle 9 at Diablo Canyon Unit 1  

Science Conference Proceedings (OSTI)

Laboratory studies have shown that zinc addition to primary coolant can mitigate primary water stress corrosion cracking (PWSCC) of Alloy 600 and reduce radiation fields in PWRs. This report documents experience with zinc addition during Cycle 9 at Diablo Canyon Power Plant Unit 1 (DCPP-1), operated by Pacific Gas & Electric. This project evaluated the effect of zinc addition on PWSCC initiation and propagation. It also examined the impact of zinc addition on radiation fields and fuel cladding deposition...

1999-10-27T23:59:59.000Z

183

Operational Readiness Review Final Report For F-Canyon Restart. Phase 1  

SciTech Connect

An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

McFarlane, A.F.; Spangler, J.B.

1995-04-05T23:59:59.000Z

184

Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment  

SciTech Connect

Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

2012-07-03T23:59:59.000Z

185

Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault  

E-Print Network (OSTI)

Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure and constitution and the mechanical and chemical processes responsible for them. The 140 km long Kern Canyon fault (KCF) is a fault of 15 km right-lateral separation exhumed from seismogenic depth that cuts batholithic and metamorphic rocks of the southern Sierra Nevada. The fault consists of at least three distinct phases: an early phase of lower-greenschist-grade ductile shear with an S-C' phyllonite, a subsequent, dominant phase of brittle faulting characterized by a through-going zone of cataclastic rock, and a late stage of minor faulting along discontinuous, thin, hematitic gouge zones. The S-C' fabric and subsidiary fault-slip data indicate that both the phyllonitic and cataclastic zones are approximately vertical and strike-slip; slip lineations within the hematitic gouge suggest oblique-slip. The phyllonite zone trends N20-40E and accommodated ~175 m of separation. The cataclastic zone cuts the phyllonite, trends N21E, and consists of foliated and non-foliated cataclasites; it accommodates the majority of displacement along the fault. Abundant veins and fluid-assisted alteration in the rock surrounding the fault zone attest to the presence of fluids of evolving chemistry during both ductile and brittle faulting. Mass balance calculations indicate quartz loss during phyllonite faulting and imply that the fault system was open and experienced a negative change in volume during phyllonite faulting. Mesoscale and microscale fracture intensities decrease with log distance from the foliated cataclasites and approach a relatively low level at approximately 500 m. The internal structure of the Kern Canyon fault is similar to other large displacement faults in that it consists of a broad zone of fractured and altered rock and a narrow zone of intense cataclasis.

Neal, Leslie Ann

2002-01-01T23:59:59.000Z

186

Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.  

E-Print Network (OSTI)

The Alaminos Canyon region is located at the change in the bathymetric trend between the slope and rise. Over 6,435 km of migrated seismic reflection profiles were analyzed to produce two structure and two isopach maps. Maps of the seafloor morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet in the east to a less continuous salt sheet in the western margin. Salt lobe canopies are located within the eastern and western margins of the study area, while the central region represents a transition zone between the two lobate canopies. The sediment isochron maps show that the salt has played an important role in the sediment deposition and the formation of intraslope basins. The salt sheet interacted with slope sediment deposition by acting as a barrier to downslope sediment transport and by influencing the direction of mass transport. The uplift of the salt has formed topographic lows in which sediment is transported from the shelf beyond the slope. Within the study area, intraslope basins consist of remnants of submarine canyons blocked by diapiric uplift and closed depressions formed by subsidence in response to salt withdrawal. These intraslope basins have trapped thick deposits of sediment, thereby reducing the sediment transport beyond the slope region. Pleistocene sealevel fluctuations appear to be the dominant force in the depostional record. As the lowering of relative sealevel ended, the transport of sandy material decreased and hemipelagic sedimentation increased. Eustatic sealevel fluctuations during the Pleistocene led to cyclic seismic depostional sequences throughout the study area.

Mechler, Suzanne Marie

1994-01-01T23:59:59.000Z

187

Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House  

DOE Green Energy (OSTI)

The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

Balcomb, J. D.; Hancock, C. E.; Barker, G.

1999-06-23T23:59:59.000Z

188

B Plant canyon sample TK-21-1 analytical results for the final report  

Science Conference Proceedings (OSTI)

This document is the analytical laboratory report for the TK-21-1 sample collected from the B Plant Canyon on February 18, 1998. The sample was analyzed in accordance with the Sampling and Analysis Plan for B Plant Solutions (SAP) (Simmons, 1997) in support of the B Plant decommissioning project. Samples were analyzed to provide data both to describe the material which would remain in the tanks after the B Plant transition is complete and to determine Tank Farm compatibility. The analytical results are included in the data summary table (Table 1).

Steen, F.H.

1998-04-10T23:59:59.000Z

189

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

190

Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic Data  

E-Print Network (OSTI)

Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins. Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting. We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ. Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.

Murad, Idris

2009-05-01T23:59:59.000Z

191

Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah  

SciTech Connect

On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

Ford, S R; Dreger, D S; Walter, W R

2008-07-01T23:59:59.000Z

192

Carbon Steel and Magnesium Oxide Dissolution for H-Canyon Process Applications  

DOE Green Energy (OSTI)

H Area Operations is planning to process plutonium-contaminated uranium metal scrap in its efforts to de-inventory excess nuclear materials. The Savannah River Technology Center (SRTC) performed flowsheet development to support the decision to process the scrap in H-Canyon using 2M nitric acid (HNO3) / 0.025M potassium fluoride (KF) and 2 g/L boron. The scrap will be charged to the H-Canyon dissolver via a stainless steel charging bundle with a carbon steel end cap that must dissolve in an appropriate time frame. Experimental work was performed with a range of potential materials to be used to fabricate the bundle end cap. Testing was conducted with samples of metal plate, wire, cans, rods, and rivets to assess their dissolution characteristics in 2M HNO3/ 0.025M KF and 2 g/L boron. Experiments also measured the amount of hydrogen gas generated during carbon steel dissolution using the above dissolver solution. Each material type and its associated dissolution characteristic relate to specific bundle end cap designs being considered. Supplemental studies were conducted to evaluate the behavior and effect of magnesium oxide (MgO) sand on dissolution of uranium metal in 2M HNO3/ 0.025M KF and 2 g/L boron. The potential exists for a small quantity of MgO to be introduced into the dissolution flowsheet due to the use of MgO sand to extinguish uranium metal fires.

PIERCE, RA

2004-04-12T23:59:59.000Z

193

CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)  

Office of Legacy Management (LM)

CERTIFICATION DOCKET CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45) AND THE EFFLUENT RECEIVING AREAS OF ACID, PUEBLO, AND LOS ALAMOS CANYOM, LOS ALAMOS, NEW MEXICO DEPARTMENT OF ENERGY Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects -. CONTENTS A Page - Introduction to the Certification Docket for the Former Site of the Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico Description of the Formeriy Utilized Sites Program at the Former Site of the T.4-45 Treatment Plant and Acid, Pueblo, and Los Alamos Canyons Purpose Property Identification Docket Contents

194

Numerical model to characterize the thermal comfort in new ecodistricts: methodology and validation through the canyon street case  

Science Conference Proceedings (OSTI)

In built-up areas, the urban structures affect the radiative and thermal environment. The numerical simulation models provide informations about urban thermal performance for many ranges of urban configurations. This paper presents a validation of a ... Keywords: CFD model, building heat transfers, coupling model, street canyon, thermo-radiative model

Khaled Athamena; Jean Francois Sini; Julien Guilhot; Jerome Vinet; Maeva Sabre; Jean-Michel Rosant

2011-01-01T23:59:59.000Z

195

Numerical model to characterize the thermal comfort in new eco-districts: methodology and validation through the canyon street case  

Science Conference Proceedings (OSTI)

In built-up areas, the urban structures affect the radiative and thermal environment. The numerical simulation models provide informations about urban thermal performance for many ranges of urban configurations. This paper presents a validation of a ... Keywords: CFD model, building heat transfers, coupling model, street canyon, thermo-radiative model

Khaled Athamena; Jean Francois Sini; Julien Guilhot; Jerome Vinet; Maeva Sabre; Jean-Michel Rosant

2011-01-01T23:59:59.000Z

196

Challenges When Predicting Reservoir Quality in the Subsalt K2/K2-North Field, Green Canyon, Gulf of Mexico  

E-Print Network (OSTI)

in the K2/ K2-North Field, Green Canyon, Gulf of Mexico, presents many challenges for planning primary for seismi- cally better-imaged deepwater reservoirs in the eastern Gulf of Mexico, we utilize well- log, we used depositional mod- els based on Gulf of Mexico shallow-seismic analogs of distributary channel

Greene, Todd J.

197

Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.  

DOE Green Energy (OSTI)

The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks. Material such as logs which are mobilized during high stream flows may damage the exclosures requiring maintenance to keep cattle from grazing in the riparian areas. The BLM spent approximately $4,000 on fencing materials and $1,375 on NEPA compliance. In addition, the estimated cost of the monitoring over five years is expected to be approximately $1,600. The $5,050 that the BLM received from the BPA for the project was used to hire two temporary employees to construct the exclosures.

Kuck, Todd

2003-03-01T23:59:59.000Z

198

Record of Decision: Stabilization of Plutonium Solutions Stored in the F-Canyon Facility at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24 24 Federal Register / Vol. 60, No. 35 / Wednesday, February 22, 1995 / Notices determination have been corrected, and the SEA or LEA is, in all other respects, in compliance with the requirements of the applicable program; (2) SEA has submitted to the Secretary a plan for the use of the funds to be awarded under the grantback arrangement that meets the requirements of the program, and to the extent possible, benefits the population that was affected by the failure to comply or by the misexpenditures that resulted in the audit exception; and (3) Use of funds to be awarded under the grantback arrangement in accordance with the SEA's plan would serve to achieve the purposes of the program under which the funds were originally granted. C. Plan for Use of Funds Awarded Under a Grantback Arrangement

199

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA

200

Uranium ore rolls in Westwater Canyon sandstone, San Juan Basin, New Mexico  

SciTech Connect

Recent relatively deep uranium-exploration drilling in the Nose Rock area, San Juan Basin, McKinley County, New Mexico, has resulted in the discovery of previously unrecognized uranium ore rolls in gray, unoxidized Westwater Canyon Sandstone of the Morrison Formation. Both the Nose Rock ores and the primary Ambrosia Lake uranium ores were emplaced during the Late Jurassic-Early Cretaceous erosional interval under the same geologic conditions by the same geochemical-cell process. The red, altered interior ground resulting from the geochemical-cell process has been re-reduced by the subsequent entry of reductants into the formation. The original roll form of the Ambrosia Lake orebodies has been obscured and modified by redistribution related to the present-day active redox interface interweaving with the Ambrosia Lake ores.

Clark, D.S.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CHARACTERIZATION OF H CANYON CONDUCTIVITY METER INDICATIONS WITH ELEVATED URANIUM IN NITRIC ACID  

SciTech Connect

Solution conductivity data from the 1CU conductivity meter in H-Canyon shows that uranium concentration in the 0 to 30 gram per liter (g/L) range has no statistically significant effect on the calibration of free nitric acid measurement. Based on these results, no additional actions are needed on the 1CU Conductivity Meter prior to or during the processing of uranium solutions in the 0 to 30 g/L range. A model based only on free nitric acid concentration is shown to be appropriate for explaining the data. Data uncertainties for the free acid measurement of uranium-bearing solutions are 8.5% or less at 95% confidence. The analytical uncertainty for calibrating solutions is an order of magnitude smaller only when uranium is not present, allowing use of a more accurate analytical procedure. Literature work shows that at a free nitric acid level of 0.33 M, uranium concentration of 30 g/L and 25 C, solution conductivity is 96.4% of that of a uranium-free solution. The level of uncertainties in the literature data and its fitting equation do not justify calibration changes based on this small depression in solution conductivity. This work supports preparation of H-Canyon processing of Super Kukla fuel; however, the results will be applicable to the processing of any similar concentration uranium and nitric acid solution. Super Kukla fuel processing will increase the uranium concentration above the nominal zero to 10 g/L level, though not above 30 g/L. This work examined free nitric acid levels ranging from 0.18 to 0.52 molar. Temperature ranged from 27.9 to 28.3 C during conductivity testing. The data indicates that sequential order of measurement is not a significant factor. The conductivity meter was thus flushed effectively between measurements as desired.

Nash, C

2007-10-31T23:59:59.000Z

202

Early Channel Evolution in the Middle Permian Brushy Canyon Formation, West Texas, USA  

E-Print Network (OSTI)

Submarine channels are important conduits for sediment in deep marine environments, and understanding their formation is critical to modeling basin fill processes. Most models describing channel evolution focus on turbidity currents as the erosive and constructive force in channel initiation. However, slope failure and slumping can be significant drivers of channelization, particularly in upper slope and ramp environments. Determining the relative roles of slumping and erosion by turbidity currents can provide important insight into the timing of channelization and the geometries of subsequent deposits. Samples were collected from Guadalupe Mountains National Park from two primary localities at Salt Flat Bench (Figure 2). Three vertical sections were measured at both locations. A total of 16 samples were collected for petrographic analysis and X-ray fluorescence (XRF) imaging. Spectacular outcrop quality makes the Middle Permian Brushy Canyon Formation in Guadalupe Mountains National Park an ideal location for the study of early channel evolution. A detailed facies analysis of fine-grained channel deposits was conducted in the Upper Brushy Canyon Formation in the Salt Flat Bench outcrops. After channelization, an interval of relative condensation dominated by hemipelagic settling of organic matter and silt was followed by an interval of incomplete sediment bypass by turbidity currents. This sequence of events suggests that sea level was at a relative highstand at the time of channel inception, whereas channel inception by turbidity currents is expected during a lowstand. Slumping rather than erosion by turbidity currents is the most likely mechanism to have initiated a channel at the study area. There is no evidence for the existence for high energy currents until after the interval of condensation. However, the action of weak contour currents during early channel evolution is observed in outcrop and microtextural features. Early carbonate cementation of channel-lining silts may have stabilized the slump surface with respect to erosion by later turbidity currents.

Gunderson, Spencer

2011-08-01T23:59:59.000Z

203

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

SciTech Connect

A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

2009-07-15T23:59:59.000Z

204

REDUCTIONS WITHOUT REGRET: AVOIDING WRONG TURNS, ROACH MOTELS, AND BOX CANYONS  

SciTech Connect

This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: ? Wrong Turn: The Reliable Replacement Warhead ? Roach Motel: SRAM T vs the B61 ? A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead Recognizing that new nuclear missions or weapons are not demanded by current circumstances ? a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons ? we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.

Swegle, J.; Tincher, D.

2013-09-11T23:59:59.000Z

205

Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.  

DOE Green Energy (OSTI)

On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

2010-07-31T23:59:59.000Z

206

Pantex Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Pantex Site Pantex Site The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear wespons in support of the NNSA stockpile...

207

Prognostic Prediction of Tracer Dispersion for the Diablo Canyon Experiments on August 31, September 2, and September 4, 1986  

DOE Green Energy (OSTI)

COAMPS/LODI simulations of the tracer experiments at Diablo Canyon on August 31, September 2, and September 4, 1986 had mixed results. Simulated tracer concentrations on August 31 differed significantly from the measured concentrations. The model transported SF{sub 6} too far south and did not predict transport of SF{sub 6} north along highway 101 or into See Canyon. Early in the day the model rapidly transported SF{sub 6} away from the release point while observations suggested the tracer stayed close to Diablo Canyon for 1-2 hours. For September 2, simulations agreed very well with the measurements. The model accurately predicted the change of wind direction from north northwest to east northeast at the release point. It also predicted the advection of tracer over Mot-r-0 Bay and through the Los Osos Valley toward San Luis Obispo in excellent agreement with the observations. On September 4, the calculated transport of SF{sub 6} from Diablo Canyon had defects similar to those on August 31, a trajectory too far south and limited intrusion of tracer north along highway 101. Conversely, simulations of the Freon release from Los Osos Cemetery on September 4 corresponded well with observations. Since the simulations used only global meteorological data and no local winds for input, even the limited success of COAMPS/LODI is a favorable result. COAMPS's inability to generate southerly winds through the highway 101 corridor on August 31 and September 4 is a symptom of its underestimate of the sea breeze. The weak sea breeze correlates with a small diurnal range of air temperature possibly associated with underestimates of surface solar heating and/or overestimates of surface wetness. Improvement of COAMPS/LODI simulations requires development of new data assimilation techniques to use the local surface and low altitude wind and temperature measurements. Also, quantitative methods are needed to assess the accuracy of the models.

Molenkamp, C.R.

1999-11-29T23:59:59.000Z

208

PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO  

Science Conference Proceedings (OSTI)

Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

T. Scott Hickman

2002-06-01T23:59:59.000Z

209

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report: Appendix B, Preliminary final  

SciTech Connect

Detailed investigations of geologic, geomorphic, and seismic conditions at the Burro Canyon site were conducted by the US Department of Energy (DOE) as a disposal site for the tailings at two processing sites near the Slick Rock, Colorado, post office. The purposes of these studies are basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies (e.g., analyses of hydrologic and liquefaction hazards) used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65-km radius of the site, provided the basis for seismic design parameters.

Not Available

1994-03-01T23:59:59.000Z

210

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

Science Conference Proceedings (OSTI)

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

211

Treating high pressure zones in one trip in Canyon Reef area of Texas  

Science Conference Proceedings (OSTI)

In the Canyon Reef area near Snyder, Texas, Chevron U.S.A. Inc. is employing ratchet operated, packer type retrievable bridge plugs which have allowed operators to test, treat, or squeeze high pressure zones over a 35-day period on a single trip of the workstring. More zones could have been treated if necessary. The bridge plug was moved and set 31 times while treating the zones. Elapsed time is shown in days starting with T-date being the day tools were first run in for the treatment. The job was run with an average treating pressure of 1,000 psi, and a differential pressure of 2,500 psi that alternated from above the bridge plug to below and back each time the plug was moved to a new zone. The bridge plug used for the job seals by the action of a patented ratcheting mechanism which requires relatively light weight to set. Design of the ratchet enables the sealing elements to hold a seal against the casing wall while the hold-down slips are being set.

Cooley, G.; Mccowen, D.; Fore, M.

1984-03-01T23:59:59.000Z

212

Summary - Plutonium Preparation Project at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site EM Project: PuPP ETR Report Date: October 2008 ETR-17 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Plutonium Preparation Project at the Savannah River Site Why DOE-EM Did This Review The purpose of the Plutonium Preparation Project (PuPP) is to prepare for disposition of plutonium materials; for examination, re-stabilization, and disassembly of the Fast Flux Test Facility (FFTF) unirradiated fuel; and for repackaging of Pu stored in 3013 containers. Of ~12.8 MT of plutonium, ~4.1 MT will be directly transferred to the MOX Fuel Fabrication Facility (MFFF); ~3.7 MT will require processing prior to transfer to the MFFF; and ~5 MT was proposed to be processed in H-Canyon with the

213

Site Environmental Report for 2005 Volume I and Volume II  

E-Print Network (OSTI)

Analyte Gross beta Location* Chicken Creek Field Blank S.I.Canyon Field Blank N. Fork Strawberry Creek Gross beta 69-beta Location* Chicken Creek East Canyon S.I. Conventional Field

Ruggieri, Michael

2006-01-01T23:59:59.000Z

214

EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN  

DOE Green Energy (OSTI)

Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

Mickalonis, J; Kerry Dunn, K

1999-08-01T23:59:59.000Z

215

Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011  

DOE Green Energy (OSTI)

This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases conducted in water year 2011 resulted only in financial costs; the total cost of all experimental releases was about $622,000.

Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration)

2012-07-16T23:59:59.000Z

216

Hanford Site  

NLE Websites -- All DOE Office Websites

Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts Hours Current NWS Forecast for the Tri-Cities NWS...

217

Medical Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Sites Name: Jenielle Location: NA Country: NA Date: NA Question: I started itching Aug. 1999. Diagnosed with ITP Oct.1999. I am in remission With a platelet count in...

218

Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.  

SciTech Connect

Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.

Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration, Colorado River Storage Project Management Center)

2011-08-22T23:59:59.000Z

219

Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona  

E-Print Network (OSTI)

A field study of positive inversion is conducted to describe associated structural fabrics and to infer kinematic development of the Palisades Monocline, Grand Canyon, Arizona. These features are then compared to sand, clay and solid rock models of positive inversion to test model results and improve understanding of inversion processes. The N40W 90 oriented Palisades fault underlying the monocline has experienced northeast-southwest Precambrian extension and subsequent northeastsouthwest Laramide contraction. The magnitude of inversion is estimated to be 25% based on vertical offset across the fault, although this does not account for flexure or horizontal shortening. The preferred N50W 90 joint and vein orientation and N50W 68 NE and SW conjugate normal faults are consistent with the Palisades fault and northeastsouthwest extension. The N45E 90 joint orientation and approximately N40W 28 NE and SW conjugate thrust faults are consistent with northeast-southwest contraction. The deformation is characterized by three domains across the fault zone: 1) the hanging wall, 2) the footwall, and 3) an interior, fault-bounded zone between the hanging wall and footwall. Extensional features are preserved and dominate the hanging wall, contractional features define footwall deformation, and the interior, fault-bounded zone is marked by the co-existence of extensional and contractional features. Extension caused a master normal fault and hanging wall roll-over with distributed joints, veinsand normal faults. During inversion, contraction induced reverse reactivation of existing hanging wall faults, footwall folding and footwall thrust-faulting. Precambrian normal slip along the master normal fault and subsequent Laramide reverse slip along the new footwall bounding fault created an uplifted domain of relatively oldest strata between the hanging wall and footwall. Physical models of co-axial inversion suggest consistent development of the three domains of deformation described at the Palisades fault, however the models often require magnitudes of inversion greater than 50%. Although vertical block motion during horizontal compression is not predicted directly by the Mohr-Coulomb criterion, physical models and analytical solutions (incorporating Mohr- Coulomb criterion) suggest maximum stress trajectories and near vertical failure above high angle basement faults that compare favorably with the Palisades fault zone.

Orofino, James Cory

2006-05-01T23:59:59.000Z

220

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field  

E-Print Network (OSTI)

The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has provided useful information about the behavior and characteristics of a typical unconsolidated, overpressured, fine-grained, turbidite reservoir, which constitutes the majority of the reservoirs present in the Outer Continental Shelf of the Gulf of Mexico. Reservoirs in the Green Canyon 18 (GC 18) field constitute part of a turbidite package with reservoir quality typically increasing with depth. Characterization of the relatively shallow 8 reservoir had hitherto been hindered by the difficulty in resolving its complex architecture and stratigraphy. Furthermore, the combination of its unconsolidated rock matrix and abnormal pore pressure has resulted in severe production-induced compaction. The reservoir's complex geology had previously obfuscated the delineation of its hydrocarbon accumulation and determination of its different resource volumes. Geological and architectural alterations caused by post-accumulation salt tectonic activities had previously undermined the determination of the reservoir's active drive mechanisms and their chronology. Seismic interpretation has provided the reservoir geometry and topography. The reservoir stratigraphy has been defined using log, core and seismic data. With well data as pilot points, the spatial distribution of the reservoir properties has been defined using geostatistics. The resulting geological model was used to construct a dynamic flow model that matched historical production and pressure data.. The reservoir's pressure and production behavior indicates a dominant compaction drive mechanism. The results of this work show that the reservoir performance is influenced not only by the available drive energy, but also by the spatial distribution of the different facies relative to well locations. The study has delineated the hydrocarbon bearing reservoir, quantified the different resource categories as STOIIP/GIIP = 19.8/26.2 mmstb/Bscf, ultimate recovery = 9.92/16.01 mmstb/Bscf, and reserves (as of 9/2001) = 1.74/5.99 mmstb/Bscf of oil and gas, respectively. There does not appear to be significant benefit to infill drilling or enhanced recovery operations.

Aniekwena, Anthony Udegbunam

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Home » Site Map Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Select Publications Jeff Broughton Katie Antypas John Shalf Francesca Verdier Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Lynn Rippe Suzanne Stevenson David Tooker Center Communications Jon Bashor Linda Vu Margie Wylie Kathy Kincade Advanced Technologies Group Nicholas Wright Brian Austin Research Projects Matthew Cordery Christopher Daley Analytics Group Peter Nugent David Camp Hank Childs Harinarayan Krishnan Burlen Loring Joerg Meyer Prabhat Oliver Ruebel Daniela Ushizima Gunther Weber Yushu Yao Computational Systems Group Jay Srinivasan James Botts Scott Burrow Tina Butler Nick Cardo Tina Declerck Ilya Malinov David Paul Larry Pezzaglia Iwona Sakrejda

222

Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios  

Science Conference Proceedings (OSTI)

This study employs a large-eddy simulation technique to investigate the flow, turbulence structure, and pollutant transport in street canyons of building-height-to-street-width (aspect) ratios of 0.5, 1.0, and 2.0 at a Reynolds number of 12 000 ...

Chun-Ho Liu; Mary C. Barth; Dennis Y. C. Leung

2004-10-01T23:59:59.000Z

223

Near-Surface Currents in DeSoto Canyon (199799): Comparison of Current Meters, Satellite Observation, and Model Simulation  

Science Conference Proceedings (OSTI)

This study evaluates a data-assimilated model simulation of near-surface circulation in DeSoto Canyon (DSC), Gulf of Mexico, with emphasis on analyzing moored current-meter observations and comparing them with satellite data and model results. ...

Dong-Ping Wang; Lie-Yauw Oey; Tal Ezer; Peter Hamilton

2003-01-01T23:59:59.000Z

224

Comparison of small mammal species diversity near wastewater outfalls, natural streams, and dry canyons  

SciTech Connect

A wide range of plant and wildlife species utilizes water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to compare nocturnal small mammal communities at wet areas created by wastewater outfalls with communities in naturally created wet and dry areas. Thirteen locations within LANL boundaries were selected for small mammal mark-recapture trapping. Three of these locations lacked surface water sources and were classified as {open_quotes}dry,{close_quotes} while seven sites were associated with wastewater outfalls ({open_quotes}outfall{close_quotes} sites), and three were located near natural sources of surface water ({open_quotes}natural{close_quotes} sites). Data was collected on site type (dry, outfall or natural), location, species trapped, and the tag number of each individual captured. This data was used to calculate mean number of species, percent capture rate, and species diversity at each type of site. When data from each type of site was pooled, there were no significant differences in these variables between dry, outfall, and natural types. However, when data from individual sites was compared, tests revealed significant differences. All sites in natural areas were significantly higher than dry areas in daily mean number of species, percent capture rate, and species diversity. Most outfall sites were significantly higher than dry areas in all three variables tested. When volume of water from each outfall site was considered, these data indicated that the number of species, percent capture rate, and species diversity of nocturnal small mammals were directly related to the volume of water at a given outfall.

Raymer, D.F. [Los Alamos National Lab., NM (United States); Biggs, J.R. [Ewing Technical Design, Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

225

High-Resolution Carbon Isotope Stratigraphy, Pennsylvanian Snaky Canyon Formation, East-Central Idaho: Implications for Regional and Global Correlations  

E-Print Network (OSTI)

Nearly 550 samples of fine grained carbonates, collected every 0.5 to 1.0 m from the Bloom Member of the Snaky Canyon Formation at Gallagher Peak, Idaho, were analyzed to determine the high-resolution carbon isotope stratigraphy. To constrain for diagenesis, thin sections were petrographically analyzed and viewed using cathodoluminescence microscopy. Chemical analyses were performed using an electron microprobe. Average delta18O and delta13C values from the Bloom Member are -4.5% +/- 1.6% (1 sigma) and 2.1% +/- 1.1%, respectively. Maximum delta13C values are about 1% higher for the Desmoinesian and Missourian than the Morrowan and Atokan, similar to results from the Yukon Territory. delta18O and delta13C values are lowest for crystalline mosaic limestones and siltstones, moderate for packstones, wackestones, and mudstones, and highest for boundstones and grainstones. The delta13C profile from Gallagher Peak consists of high frequency 1% oscillations with several larger excursions. No large delta13C increase at the base of the section suggests the Mid-Carboniferous boundary is in the underlying Bluebird Mountain formation. delta13C of Gallagher Peak and Arrow Canyon, NV, correlate well from 318 to 310 Ma, but correlation becomes more difficult around 310 Ma. This may result from increased restriction of the Snaky Canyon platform beginning in the Desmoinesian. Most of the short term (<1 Ma) isotopic excursions are the result of diagenesis. Two of the largest negative excursions at Gallagher Peak correlate with two large negative excursions at Big Hatchet Peak, NM, possibly due to sea level lowstands of the Desmoinesian. Phylloid algal mounds at Gallagher Peak are associated with positive excursions because of original aragonite composition and increased open marine influence. Positive excursions related to other facies characteristics also result from increased marine influence. The delta13C curve for the upper half of Gallagher Peak contains three repeated cycles of increasing delta13C over 1-1.5 Ma, which are possibly related to long-term sea level fluctuations. Given the complexity of each local environment, without detailed biostratigraphy, detailed rock descriptions, and analysis of the various rock components, delta13C stratigraphy of whole rocks can be misinterpreted.

Jolley, Casey

2012-05-01T23:59:59.000Z

226

Site C  

Office of Legacy Management (LM)

' ' u. s. A r my Corps or Engineers Kurfal.. Ilisfr ifl om« 1776 N1 . ~lI rll Sfred , lIu fflll" , New v ur k. 14207 Site C loseout Report for th e Ashland I (Includlng Seaway Arca D), Ashland 2 and Rattlesnake Creek FUS RAP Sites To nawanda . New Yor k F ina l - Octo ber 2006 Formerl y Ut ilized Sites Remedi al Actiun Program Dt:CLAlUlfiO lO OF RF ~ I'O""" A <:n o .. ('oMnLflOI'O '" 1 S-~1 1 A "n· nvnn: S Ill: C'lO'iU 'U l RtrUlIT f OR A SlIu x u l (I "ICLU I ING S t:A" ·,H A RU D j, AS H I .A ~O 2 A."n RAnU:M'AKf eRU" ~ rn~ I!d'on at A.hland 1 (Ind udonl Seaway Area DJ. Ashland 2 and kan~snak c Creek is Wi,...... 1c in acwr.hnu willi ~ Rcconl or Oecisim (ROD) . igned 00> April 20. 1998 and l'.1pbIWlOII <;If

227

Venting of Heat and Carbon Dioxide from Urban Canyons at Night  

Science Conference Proceedings (OSTI)

Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Exprience sur Sites pour Contraindre les ...

J. A. Salmond; T. R. Oke; C. S. B. Grimmond; S. Roberts; B. Offerle

2005-08-01T23:59:59.000Z

228

Glacial Chronology of a High Altitude Moraine Series, Tamarack Bench/Francis Canyon, Sierra Nevada, California  

E-Print Network (OSTI)

al. (1995. )showedthatgeomagneticstrengthvariedoverare:longterm?geomagneticlatitudeofa specificsite,componentsofthe geomagneticfield,andthetemporaland

Kohut, Daryl Lee

2011-01-01T23:59:59.000Z

229

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2001 Annual Report.  

Science Conference Proceedings (OSTI)

We investigated factors affecting the distribution and abundance of Yellowstone cutthroat trout (YCT), the abundance of all trout, and species richness in several drainages in the upper Snake River basin in Idaho. A total of 326 randomly selected sites were visited within the four study drainages, and of these, there was sufficient water to inventory fish and habitat in 56 of the sites in the Goose Creek drainage, 64 in the Raft River drainage, 54 in the Blackfoot River drainage, and 27 in the Willow Creek drainage. Fish were captured in 36, 55, 49, and 22 of the sites, respectively, and YCT were present at 17, 37, 32, and 13 of the sites, respectively. There was little consistency or strength in the models developed to predict YCT presence/absence and density, trout density, or species richness. Typically, the strongest models had the lowest sample sizes. In the Goose Creek drainage, sites with YCT were higher in elevation and lower in conductivity. In the Raft River drainage, trout cover was more abundant at sites with YCT than without YCT. In the Blackfoot River drainage, there was less fine substrate and more gravel substrate at sites with YCT than at sites without YCT. In the Willow Creek drainage, 70% of the sites located on public land contained YCT, but only 35% of private land contained YCT. The differences in variable importance between drainages suggests that factors that influence the distribution of YCT vary between drainages, and that for the most part the variables we measured had little influence on YCT distribution. n sites containing YCT, average cutthroat trout density was 0.11/m{sup 2}, 0.08/m{sup 2}, 0.10/m{sup 2}, and 0.08/m{sup 2} in the Goose Creek, Raft River, Blackfoot River, and Willow Creek drainages, respectively. In sites containing trout in general, average total trout density in these same drainages was 0.16/m{sup 2}, 0.15/m{sup 2}, 0.10/m{sup 2}, and 0.10/m{sup 2}. Models to predict YCT density, total trout density, and species richness were either weak (i.e., explained little variation) or contained small sample sizes. Based on our results, it appears that factors other than those we measured are affecting fish populations in these drainages.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2002-11-01T23:59:59.000Z

230

Decreasing Slip Rates From12.8 Ma to Present on the Solitario Canyon Fault at Yucca Mountain, Nevada  

DOE Green Energy (OSTI)

The Solitario Canyon fault, which bounds the west side of Yucca Mountain, Nevada, is the closest fault with Quaternary offset adjacent to the proposed spent nuclear fuel and high-level radioactive waste repository. Dip-slip offset between 12.8 and 10.7 Ma is determined from lithostratigraphic displacement in boreholes USW H-3 and USW WT-7, drilled in the footwall and hanging wall, respectively. The base of the 12.8-Ma Topopah Spring Tuff is interpreted to have 463.3 m of separation across the fault, an average dip slip rate of 0.036 mm/yr. Previous researchers identified a geothermal system active from 11.5 to 10.0 Ma with peak activity at 10.7 Ma that resulted in pervasive alteration of vitric rock to zeolitic minerals where the rocks were in the ground-water saturated zone. The contact between vitric (V) and pervasively zeolitic (Z) rocks cuts across the lithostratigraphic section and offset of this V-Z boundary can be used to measure slip rates between 12.8 and 10.7 Ma. In H-3, the V-Z boundary is 138.4 m below the base of the vitric, densely welded subzone of the Topopah Spring Tuff (Tptpv3). In WT-7, although the V-Z boundary is identified at the base of the Tptpv3, borehole video, cuttings, and geophysical log data indicate the Tptpv3 has well-developed zeolitic alteration along fractures, and this implies 19.5 m of the total thickness of Tptpv3 (and probably additional overlying crystallized rocks) also were in the saturated zone by 10.7 Ma. The V-Z relations across the Solitario Canyon fault in H-3 and WT-7 indicate a minimum of 157.9 m of separation before 10.7 Ma, which is 34.1 percent of the total slip of the Topopah Spring Tuff, and a minimum dip slip rate of 0.075 mm/yr from 12.8 to 10.7 Ma. These data are consistent with the broader structural history of the area near Yucca Mountain. Previous workers used angular unconformities, tilting of structural blocks, and paleomagnetic data to constrain the main period of extensional faulting between 12.7 and 8.5 Ma. Paleoseismic studies in Quaternary deposits documented slip rates on the Solitario Canyon fault from 0.01 to 0.02 mm/yr since 0.077 and 0.20 Ma. The decrease of extensional activity slip rates data on the Solitario Canyon fault provide evidence of decreasing tectonic activity from the middle Miocene to present.

D. Buesch

2006-07-11T23:59:59.000Z

231

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

232

Site Environmental Report for 2003, Volume 2  

E-Print Network (OSTI)

Split Blank A-69 Gross beta Field Blank ENV-75 Tritium FieldCreek (UC) Gross beta Chicken Creek Field Blank N. Forkbeta 69-Storm Drain Manhole Chicken Creek East Canyon Field

Pauer, Ron

2004-01-01T23:59:59.000Z

233

Division Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Reduction Catalysts Carbon Dioxide Reduction Catalysts Our research program is directed toward developing and understanding metal complexes that catalyze reactions relevant to renewable energy, particularly those that reduce carbon dioxide to fuels or fuel precursors. Carbon dioxide reduction catalysts are important targets because they could enable "recycling" of hydrocarbon fuels, thus lowering their carbon footprint. Our research addresses two key challenges in this area. First, we aim to improve the lifetimes, activity, and selectivity of homogeneous catalysts by incorporating them into porous heterogeneous frameworks derived from structurally persistent organic polymers. These frameworks allow isolation of the catalytic centers, which inhibits reaction pathways that lead to catalyst decomposition, and enable the spatially controlled deployment of ancillary functional groups that bind and concentrate substrate near the active site and/or assist with its activation. Second, we are developing homogeneous dual-catalyst systems and assemblies that couple CO2 reduction catalysis to a parallel catalytic reaction that provides the reducing equivalents. We are especially interested in proton-coupled electron-transfer reactions involving activation of H2 and of organic dehydrogenation substrates, wherein the proton pathway also participates in the conversion of CO2 to CO. In both of these research thrusts we are studying catalysts that may be activated under thermal, electrochemical, or photochemical conditions.

234

INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA  

SciTech Connect

Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A number of improvements in the processing of the survey were made compared to the original work. Pre-stack migration was employed, and some errors in muting in the original processing were found and corrected. In addition, improvements in computer hardware allowed interactive monitoring of the processing steps, so that parameters could be adjusted before completion of each step. The reprocessed survey was then loaded into SeisX, v. 3.5, for interpretation work. Interpretation was done on 2, 21-inch monitors connected to the work station. SeisX was prone to crashing, but little work was lost because of this. The program was developed for use under the Unix operating system, and some aspects of the design of the user interface betray that heritage. For example, printing is a 2-stage operation that involves creation of a graphic file using SeisX and printing the file with printer utility software. Because of problems inherent in using graphics files with different software, a significant amount of trial and error is introduced in getting printed output. Most of the interpretation work was done using vertical profiles. The interpretation tools used with time slices are limited and hard to use, but a number to tools and techniques are available to use with vertical profiles. Although this project encountered a number of delays and difficulties, some unavoidable and some self-inflicted, the result is an improved 3D survey and greater confidence in the interpretation. The experiences described in this report will be useful to those that are embarking on a 3D seismic interpretation project.

Eric H. Johnson; Don E. French

2001-06-01T23:59:59.000Z

235

Late Pleistocene to Recent sediment transport pathways of the Green Canyon OCS area, northern Gulf of Mexico  

E-Print Network (OSTI)

This study addresses some of the complexities of sediment transport systems on the continental slope of the Green Canyon OCS area south of the Louisiana coast. Five Late Pleistocene to Recent sedimentary sequences are identified using a combination of seismic and well data. Sediments are transported through pathways characterized by erosional surfaces and numerous channels which form as sediments remobilize and become transported downslope. Pathway margins are constricted by physiographic highs. Several processes are identified as means of carrying fine-grained sediments to and across the continental slope. The most important of these are mass movements (slumps and slides), debris flows, and turbidity currents. Faulting and/or slumping at the shelf edge remobilizes sediments which are then carried further downslope. These remobilized sediments may be transported as debris flows or other undifferentiated high-density flows, or may develop into turbidity currents which deposit graded sediments in response to decreases in slope gradient. Slumps and slides off salt uplifts also deposit large volumes of sediments into adjacent intraslope basins and sediment transport pathways, where they may contribute significant amounts of material to the downslope transport of sediments. Discrete channels are not often observed in the pathways due to multiple episodes of channel formation and erosion which occurred during a single sea level lowstand. These multiple episodes tend to remove or obscure prominent channel features. Sedimentation is cyclic. During one sea level lowstand a sequence is deposited in and along narrow pathways which successively fill intraslope basins from the shelf edge downslope. As each basin is filled, sediments spill over and continue downslope to a lower basin. Sedimentation during the next sea level lowstand occurs in broader pathways. Less sediments are deposited in the intraslope basin areas because they remain filled from the previous sequence. By the time of deposition of the next sequence, movement of underlying salt sheets has changed the shape of the pathway. The sedimentation pattern repeats as lower depressions fill and sediments spill over. Pathways transport slope sediments in the Green canyon area. Discrete channels are not often observed in the pathways. This is a result of two mechanisms: 1) multiple episodes of erosion during a sea level lowstand tend to remove or obscure prominent channel features, and 2) most sediments deposited within the pathways are mass transport deposits which do not often become channelized. The pathways are characterized by erosional surfaces and numerous conduits which form as sediments remobilize and become transported downslope. They are laterally relatively persistent, being constricted by structural highs,

Swanson, John Patrick

1994-01-01T23:59:59.000Z

236

Analyzing the connectivity potential of landscape geomorphic systems: a radar remote sensing and GIS approach, Estufa Canyon, Texas, USA  

E-Print Network (OSTI)

Connectivity is considered one of the fundamental aspects that influences the rate of mass movement in the landscape. The connectivity aspect has been acknowledged from various conceptual geomorphic frameworks. None of these provided a developmental methodology for studying the connectivity of geomorphic systems, especially at the scale of the fluvial system. The emphasis in this research is placed on defining variables of the geomorphic systems that influence the connectivity potential of these systems. The landscape gradient, which is extracted from the Digital Elevation Model (DEM), and the surface roughness, which is extracted from radar images, are used to analyze the connectivity potential of geomorphic systems in the landscape. Integration of these variables produces a connectivity potential index of the various geomorphic systems that compose the fluvial system. High values of the connectivity potential index indicate high potential of the geomorphic system to transport mass whereas the low values indicate low potential of the geomorphic system to transport mass in the landscape. Using the mean values of the connectivity potential index, the geomorphic systems in the landscape can be classified into geomorphic systems of low connectivity potential, geomorphic systems of intermediate connectivity potential and geomorphic systems of high connectivity potential. In addition to the determination of the relative connectivity potential of various geomorphic systems, the connectivity potential index is used to analyze the system-wide connectivity. The ratios between the connectivity potential index of the upstream geomorphic systems and the connectivity potential index of the downstream geomorphic systems define system-wide connectivity in the landscape. High ratios reflect the high potential of the upstream geomorphic systems to transport mass in the downstream direction. Low ratios indicate the influence of the downstream geomorphic systems in maximizing mass movement in the upstream geomorphic systems. The presence of high and low ratios suggests the presence of a high system-wide connectivity. As the ratio approaches unity, mass movement is minimized in the landscape indicating low system-wide connectivity. Applying the above approach to Estufa Canyon, Texas, illustrated that Estufa Canyon is a dynamic fluvial system with high system-wide connectivity.

Ibrahim, ElSayed Ali Hermas

2005-08-01T23:59:59.000Z

237

Supplement to the site observational work plan for the UMTRA Project Site at Ambrosia Lake, New Mexico  

SciTech Connect

The purpose of this document is to provide additional and more detailed information to supplement review of the site observational work plan (SOWP) for the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This document includes a discussion of (1) the average linear velocity of the ground water in the alluvium; (2) the ground water quality of the alluvium, weathered Mancos Shale, and the Tres Hermanos-C Member of the Mancos Shale; and (3) the fate and transport of contaminants from the uppermost aquifer to the Westwater Canyon Member of the Morrison Formation. The data from a 1989 aquifer test were analyzed using the curve-matching software AQTESOLV and then compared with the original results. A hydrograph of the ground water elevations in monitoring wells screened in the alluvium is presented to show how the ground water elevations change with time. Stiff and Piper diagrams were created to describe the changes in ground water geochemistry in the alluvium/weathered Mancos Shale unit, the Tres Hermanos-C Sandstone unit, the Tres Hermanos-B Sandstone unit, and the Dakota Sandstone. Background information on other related topics such as site history, cell construction, soil characteristics, and well construction are presented in the SOWP. Figure 1 is a geologic cross section depicting the conceptual model of the hydrostratigraphy and ground water chemistry of the Ambrosia Lake site. Table 1 presents hydrogeologic information of each hydrostratigraphic unit.

NONE

1996-02-01T23:59:59.000Z

238

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final  

SciTech Connect

This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

Not Available

1994-03-01T23:59:59.000Z

239

Draft Supplement to the Environmental Statement Fiscal Year 1976 Proposed Program : Facilty Location Evaluation for Franklin-Badger Canyon 230-kV Line and Badger Canyon Substation Study Area 74-6B.  

SciTech Connect

Proposed is the construction of a 15-mile, 230-kV double-circuit transmission line from Franklin Substation near Pasco, Washington, to a proposed new Badger Canyon Substation to be constructed 5 miles west of Kennewick, Washington. Depending on the final route location chosen, approximately 15 miles of 230-kV double circuit transmission line requiring 5.6 miles of new and 9.4 miles of existing right-of-way would be needed as well as approximately 2500 feet of new access road. Land use affected includes crossing Sacajawea State Park and passig through irrigated cropland and grassland on existing right-of-way, and depending on the alternative route chosen, could cross land proposed for residential development and a proposed interstate highway. An additional 10 to 11 acres of potential cropland would be required for the proposed substation. Disturbance to wildlife during construction would occur and habitat associated with the above land uses would be eliminated. Some erosion and sedimentation would occur. Visual impacts would affect Sacajawea State Park, a proposed highway, and potential residential development land. Noise and other disturbances to residents will occur, primarily during construction.

United States. Bonneville Power Administration.

1974-10-22T23:59:59.000Z

240

CERCLA - Site Selector  

NLE Websites -- All DOE Office Websites (Extended Search)

(LEHR) Fernald Preserve Monticello Site Mound Site - Miamisburg Closure Project Rocky Flats Site Weldon Spring Search the Administrative Record The White House USA.gov E-Gov...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ORNL DAAC Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map ORNL DAAC Site Map About Us About ORNL DAAC Who We Are User Working Group Biogeochemical Dynamics Data Citation Policy News Newsletters Workshops Site Map Products...

242

Savannah River Site  

NLE Websites -- All DOE Office Websites (Extended Search)

River Site Savannah River Site Savannah River Site (SRS) has mission responsibilities in nuclear weapons stockpile stewardship by ensuring the safe and reliable management of...

243

CERCLA - Site Selector  

Office of Legacy Management (LM)

Monticello Site Mound Site - Miamisburg Closure Project Rocky Flats Site Weldon Spring Search the Administrative Record The White House USA.gov E-Gov Information Quality FOIA...

244

Floodplain Assessment for the Proposed Outdoor Fire Range Upgrades at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) is preparing to implement actions in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is partially located within a 100-year floodplain. The proposed project is to upgrade the existing outdoor shooting range facilities at TA-72. These upgrades will result in increased safety and efficiencies in the training for Protective Force personnel. In order to remain current on training requirements, the firing ranges at TA-72 will be upgraded which will result in increased safety and efficiencies in the training for Protective Force personnel (Figure 1). These upgrades will allow for an increase in class size and more people to be qualified at the ranges. Some of these upgrades will be built within the 100-year floodplain. The upgrades include: concrete pads for turning target systems and shooting positions, new lighting to illuminate the firing range for night fire, a new speaker system for range operations, canopies at two locations, an impact berm at the far end of the 300-yard mark, and a block wall for road protection.

Hathcock, Charles D. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

245

Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico  

E-Print Network (OSTI)

The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area, northeastern Gulf of Mexico. These sediments were deposited in a slowly subsiding, stable tectonic environment. Two-dimensional (2-D) seismic data, supplemented with well log, paleontologic and velocity information were used to infer structural and stratigraphic features, especially small faults in the deep part of the De Soto Canyon Salt Basin area. Six sequence boundaries or correlative paleohorizons were interpreted on Landmark seismic interpretation workstation. They are Base of Salt or Equivalent, Top of Salt, Top of Smackover Formation, Top of Cotton Valley Group, Middle Cretaceous sequence boundary, and Top of Upper Cretaceous. Information generated from structural and stratigraphic analysis are used to analyze the evolution of salt movement and salt mechanism in this area. I used a software package Restore (Dan Schultz-Ela and Ken Duncan, 1991) for structural restoration. This program is suitable for extensional terrane. The restoration of one depth section was achieved through steps introduced by Restore. Regional extension, gravity spreading, and gliding are the most important mechanism of salt flow, buoyancy and differential loading mainly contribute to the vertical development of salt structure in this area.

Guo, Mengdong

1997-01-01T23:59:59.000Z

246

Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA  

E-Print Network (OSTI)

of rocks in the Monterey Formation along the coast nearIn: Guide to the Monterey Formation in the CaliforniaField Guide to the Monterey Formation Outcrops at Shell

Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

2004-01-01T23:59:59.000Z

247

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 2, Geology report. Revised final report  

Science Conference Proceedings (OSTI)

Detailed investigations of geologic, geomorphic, and seismic conditions at the Bodo Canyon disposal site were conducted. The purpose of these investigations was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65 kilometer radius of the site, provided the basis for seismic design parameters. The scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps; Review of historical and instrumental earthquake data; Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area; Photogeologic interpretations of existing conventional aerial photographs; and, Ground reconnaissance and mapping of the site region.

Not Available

1991-12-01T23:59:59.000Z

248

SSA Young Aspen Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site (SSA-YA) The pole-tower at the YA site Closer look at the pole-tower at the YA site Solar panels powering the site, mounted on a folding ladder The young aspen canopy...

249

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

250

Indiana Web Sites  

U.S. Energy Information Administration (EIA)

Indiana Web Sites Other Links : Indiana Electricity Profile: Indiana Energy Profile: Indiana Restructuring: Last Updated: April 2007 . Sites: Links ...

251

Florida Web Sites  

U.S. Energy Information Administration (EIA)

Florida Web Sites Other Links : Florida Electricity Profile: Florida Energy Profile: Florida Restructuring: Last Updated: April 2007 . Sites: Links ...

252

MIDC: Web Site Search  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDC Web Site Search Enter words or phrases: Search Clear Help Also see the site directory. NREL MIDC...

253

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

Science Conference Proceedings (OSTI)

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

254

Fourier grain shape analysis: a means for correlating alluvial deposits at the Nevada Test Site  

SciTech Connect

Quartz sand derived from alluvial fans that drain different lithologies at the Nevada Test Site can be distinguished on the basis of grain shape as described by the Fourier series in closed form. Specifically, we examined tuff units from the Piapi Canyon and Indian Trail Formations as well as carbonate-bearing clastic units from the Eleana Formation. Discrimiation between rock types was accomplished by examining the mean harmonic amplitude spectra and the grain shape frequency distributions at those harmonics that exhibit significant chi-square values. The results of these analyses indicate that the tuffs can be easily distinguished from the clastics. However, differences between samples from genetically similar rock types are not as prominent. Grain shape frequency distributions of tuffs and clastics show such strong differences that they can be characterized by standardized distributions. By comparing the shape frequency distributions of mixed sediment samples, it is possible to determine the relative contribution of tuff and clastics to any sediment sample taken within the drainage network. The Piapi Canyon, Indian Trail, and Eleana Formations have produced the thick alluvium sequence in the Rainier Mesa region of Yucca Flat. We believe it is likely that these grain shape relationships can also be applied to subsurface samples. Not only would this extended application enable more accurate correlation of alluvial layers, but more precise determination of the clastic-tuff contact within the alluvium sequence might also be possible.

Grothaus, B.T.; Hage, G.L.

1978-10-18T23:59:59.000Z

255

Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final  

Science Conference Proceedings (OSTI)

The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

NONE

1995-09-01T23:59:59.000Z

256

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

257

DOE/EV-0005/30 LA-8890-ENV UC-70 Formerly Utilized MED/AEC Sites  

Office of Legacy Management (LM)

0 0 LA-8890-ENV UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Site of a Former Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico May 1981 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness Environmental and Safety Engineering Division Washington, DC 20545 Los Alamos National Laboratory Los Alamos, New Mexico 87545 PREFACE This series of reports results from a program initiated in 1974 by the Atomic Energy Commission (AEC) for determination of the condition of sites formerly utilized by the Manhattan Engineer District (MED) and the AEC for work involving the handling of radioactive materials. Since the early

258

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

259

Land Validation web site  

NLE Websites -- All DOE Office Websites (Extended Search)

web site A web site is now available for the Land Validation project. It was created with the purpose of facilitating communication among MODIS Land Validation Principal...

260

Site Lead TQP Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of specific site safety functions. C. Must have the ability to provide an overall systematic assessment of site safety performance and to characterize the major issues and...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plug & Play Sensors Sites  

Science Conference Proceedings (OSTI)

... Documents. Plug & Play Sensors Sites. ... Plug & Play Sensors Sites. By selecting some of the links below, you will be leaving NIST webspace. ...

2012-06-05T23:59:59.000Z

262

Career Site FAQs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Working at ORNL Diversity Postdocs Internships and Postgrad Opportunities Fellowships Career Site FAQs Events and Conferences Careers Home | ORNL | Careers | Career Site...

263

Hanford Site Development Plan  

SciTech Connect

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

264

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites -...

265

Water quality in the vicinity of Fenton Hill, 1987 and 1988. [Fenton Hill site  

DOE Green Energy (OSTI)

Water-quality data have been collected since 1974 from established surface- and ground-water stations at, and in the vicinity of, Fenton Hill (site of the Laboratory's Hot Dry Rock Geothermal Project). The site is located on the southwest edge of the Valles Caldera in the Jemez Mountains. To determine the chemical quality of water, data were collected in 1987 and 1988 from 13 surface-water stations and 19 ground-water stations. The classification of the water quality is made on the basis of predominated ions and total dissolved solids. There are four classifications of surface water (sodium and chloride, calcium and bicarbonate, calcium and sulfate, and sodium and bicarbonate) and three classifications of ground water (sodium and chloride, calcium and bicarbonate, and sodium and bicarbonate). Variations in the chemical quality of the surface and ground water in 1987 and 1988 are apparent when data are compared with each other and with previous analyses. These variations are not considered significant, as they are in the range of normal seasonal changes. Cumulative production since 1976 from the supply well at Fenton Hill has been about 63 {times} 10{sup 6} gal, with a decline in the water level of the well of about 14 ft, or about 1.4 ft/yr. The aquifer penetrated by the well is still capable of reliable supply to the site for a number of years, based on past production. The quality of water from the well has deteriorated slightly; however, the water quality is in compliance with drinking water standards. The effects of discharge from the storage ponds into an adjacent canyon have been monitored by trace metal analyses of vegetation and soil. The study indicates minimal effects, which will be undetectable in a few years if there are no further releases of effluents into the canyon. 19 refs., 6 figs., 3 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Maes, M.N.; Williams, M.C.

1991-03-01T23:59:59.000Z

266

Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.  

Science Conference Proceedings (OSTI)

Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western whileothers resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $23 million.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration, Colorado River Storage Project Management Center

2011-01-11T23:59:59.000Z

267

Audit Report Hanford Site Contractors' Use of Site Services,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Hanford Site Contractors' Use of Site Services, WR-B-99-03 Audit Report Hanford Site Contractors' Use of Site Services, WR-B-99-03 To operate the Hanford Site (Site),...

268

Retrieval Group Sites  

Science Conference Proceedings (OSTI)

... Information Retrieval Tools and Systems: ... currently unavailable. Other sites with extensive information retrieval (IR) links: ...

269

DOE - Office of Legacy Management -- Mound Site  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

270

AT-TN: Mr. R. L. Rudolph  

Office of Legacy Management (LM)

MAR 1 ? 7982 MAR 1 ? 7982 3echW tiational, Inc. AT-TN: Mr. R. L. Rudolph PO Box 350 Oak Ridge, TFi 37830 Gentlemen: CRITERIA FOR REMEDIAL ACTION AT ACID/PUEBLO AND BAY0 CANYONS; REQUEST FOR COST/BENEFIT ANALYSES OF REMEDIAL ACTION OPTIONS AT THE CANYONS Enclosed are several pieces of cqrespondence related to AcldjPueblo * and Bayo Canyons. . . . . . . . . . . . . . First, EP has concurred with the remedial action DATE criteria for the New Mexico sftes that were proposed to them on August 20, 1987 (wfth the addition of a criterion for Pu-239 added RTG SYMBO, October 20, 7981). In summary, the cri terla will be: . . . . . . . IUITI*LSSIG. f ---- Radionuclfdt Sr-90 cs-137 Th-228 Th-230 Th-232 u-234 U-238 Pu-239 Pu-240 Pu-241 Am-241 Sofl Limft (pCi/g) 100 80

271

AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I C O C E A N E d w a r d s A F B E d w a r d s A F B K e r n C o u n t y L o s A n g e l e s C o u n t y Ve n t u r a C o u n t y S a n B e r n a r d i n o C o u n t y S a n t a B a r b a r a C o u n t y S . L . O . Red Rock Red Rock Canyon Canyon State Rec Area State Rec Area P i t M St t P k T St t P k H e s p e r i H e s p e r i C a m a r i l l o C a m a r i l l o V i c t o r v i l l V i c t o r v i l l A r v i n A r v i n A g o u r a A g o u r a M o o r p a r k M o o r p a r k A d e l a n t o A d e l a n t o F i l l m o r e F i l l m o r e C a l a b a s a s C a l a b a s a s T e h a c h a p i T e h a c h a p i C a r p i n t e r i a C a r p i n t e r i a S a n t a S a n t a P a u l a P a u l a S i e r r a S i e r r a M a d r e M a d r e P o r t P o r t H u e n e m e H u e n e m e L a L a C a n a d a C a n a d a F l i n t r i d g e F l i n t r i d g e Piru Taft Somis Boron Lebec Keene Muscoy Devore Summit Saugus Gorman Mojave Atolia Cantil Lamont Edison El Rio Saticoy Garlock Montalvo Rosamond Monolith Maricopa Caliente Rosedale De Verdemont Crestline Helendale Oak View Wrightwood Littlerock Val Verde ummerland

272

Spring Canyon RIVERVALLEY  

E-Print Network (OSTI)

Qal Qaf Qaf Qaf Qaf Tcl Qaf Qal Pzrm Qaf Qaf Qaf Pzrm Tog Tcc Tcu Qaf Ts Pzlc Ts Qal Tcu Pzrm Pzrm Ts Jgr Qaf Qaf Pzo Ts Qaf Tcl Pzrm Pzrm Qal Qaf Ts Tcc Tcl Tad Pzrm Tcs Tcs? Pzrm Qp Pzlc Ts Pzrm Qaf Tcl Qaf Tcu Tcl Tcl Tcs Tcs Tb Pzrm Tbm Tcic Ts? Tcs Tcu Pzrm Pzrm Tcu Pzlc Tcc Tcu Tad Pzrm Tct Qaf Tcic

Tingley, Joseph V.

273

Hanford Site Strategic Facilities Plan: Site planning  

SciTech Connect

This plan revises the Hanford Site Strategic Facilities Plan submitted by Westinghouse Hanford Company in 1988. It separates the Hanford Site facilities into two categories: ''strategically required'' facilities and ''marginal'' facilities. It provides a comparison of future facility requirements against existing capacities and proposed projects to eliminate or consolidate marginal facilities (i.e., those facilities that are not fully utilized or are no longer required to accomplish programmatic missions). The objective is to enhance the operating efficiency of the Hanford Site by maximizing facility use and minimizing unnecessary facility operating and maintenance costs. 11 refs.

1989-03-01T23:59:59.000Z

274

Discovery of the base of the Pinal Schist and the Bear Canyon sequence below it in the eastern Metamorphic terrane of the Dos Cabezas mountains, Cochise County, Arizona  

Science Conference Proceedings (OSTI)

The eastern metamorphic terrane of the Dos Cabezas mountains is underlain by Pinal Schist (PS). Recent detailed mapping along the western edge of this terrane shows that a flat planar regional unconformity (UC) bounds this Pinal body at its western stratigraphic base. Below the UC lies 8 km[sup 2] of greenschist facies metapelites and metafelsites here given the provisional name of the Bear Canyon sequence (BCS). The PS above the UC is over 10 stratigraphic km, grading from 1 km conglomerate at the base (clasts are metafelsites and metasediments with very minor quartz and granite) up into 3 km of sandstones and then pelite, all with greenschist facies overprint. Relict bedding with abundant crossbedding is common; the sequence is upright. Foliation parallels bedding. Lineation is absent. The UC itself is well exposed in two places, on both sides of Happy Camp Canyon (HCC). On the west of HCC, the surface is exposed at the mouth of Bear Canyon (NW1/4 Sec. 31, T13S R28E) striking south and then southwest about 4 km, ending in the N center of Sec. 12, T14S R27E. The unconformity and the Pinal above it lie NS 30E in the north and smoothly swing to NE 50 SE in the south. Below the UC are 6 km[sup 2] of metasandstone and metafelsites of the BCS. The metasandstone is quartz-sericite schist with strong lineation ([minus]50 S70E) in its northern km of exposure. Bedding and foliation are NS 60 E in N, and NE 70 SE in S. This schist body is intruded on the E by a dike of quartz-phyric metafelsite to 1 km wide which underlies the UC along its entire length. The felsite shows strong relict flow layering and no foliation. Flow layering is NS 90 in the N, and strikes and dips variably in the S. A 1/4 km[sup 2] metafelsite plug intrudes the schist on the W, with flow layering NE 90. The two exposures of the UC are separated by a Precambrian normal fault striking N45E and dipping moderately SE under HCC alluvial fill; it has about a km of dip slip.

Erickson, R.C. (Sonoma State Univ., Rohnert Park, CA (United States). Geology Dept.)

1993-04-01T23:59:59.000Z

275

Site Manager Kansas City Site Office  

National Nuclear Security Administration (NNSA)

Kansas City Site Office (KCSO) Workforce Diversity FY 2010 NNSA Service Center EEO and Diversity Program Office PO Box 5400 Albuquerque, NM 87185 (505) 845-5517 TTY (800)...

276

SSA Fen Site  

NLE Websites -- All DOE Office Websites (Extended Search)

View an aerial photo-map of the SSA-Fen site. A general view of the Fen The flux tower at the Fen The huts at the Fen Pink flamingos, fen hens at the SSA-Fen site. Aerial...

277

Redesigned Web Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Redesigned Web Sites In an ongoing effort to improve services to our customers, the ORNL DAAC is pleased to announce that it has released a major revision to its Web site. The new...

278

Web Site Metadata  

E-Print Network (OSTI)

International World Wide Web Conference, pages 11231124,Erik Wilde. Site Metadata on the Web. In Proceedings of theUCB ISchool Report 2009-028 Web Site Metadata [4] David R.

Wilde, Erik; Roy, Anuradha

2009-01-01T23:59:59.000Z

279

Towoomba Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphs Image TWM-1: General view of the Towoomba savanna grassland site, South Africa. (Photograph by Dr. R.J. Scholes, Forestek, CSIR, Pretoria, South Africa). Go to Site...

280

2012 Site Visit Manual  

Science Conference Proceedings (OSTI)

... before the first day on-site, all team members meet at their hotel to finalize ... All of the prework done above will save you much time and energy on-site ...

2012-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ORNL Site Ofice  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL Site Ofice ORNL Site Ofice P.O. Box 2008 Oak Ridge, Tennessee 37831-6269 January 28, 2013 MEMORANDUM FOR GREGORY H. WOODS GENERAL COUNSEL GC-1 FROM: SUBJECT: ��MK = MOORE, MANAGER lF �NL SITE OFFICE ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY FOR 2013- OAK RIDGE NATIONAL LABORATORY (ORNL) SITE OFFICE (OSO) This correspondence transmits the Annual NEPA Planning Summary for 2013 for OSO.

282

Completed Sites Listing  

Energy.gov (U.S. Department of Energy (DOE))

As of fiscal year 2012, EM (and its predecessor organization UMTRA) completed cleanup and closed 90 sites in 24 states.

283

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

284

Site Environmental Report, 1993  

SciTech Connect

The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

Not Available

1994-06-01T23:59:59.000Z

285

Potential Release Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

PRS PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and the town of Los Alamos at which hazardous materials from past activities have been found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators sumps firing ranges

286

Siting Handbook WIND ENERGY SITING HANDBOOK  

E-Print Network (OSTI)

This Wind Energy Siting Handbook (the "Handbook") presents general information about regulatory and environmental issues associated with the development and siting of wind energy projects in the United States. It is intended to be a general guidance document providing technical information and tools for identifying potential issues that may arise with wind energy projects. The Handbook contains links to resources on the Internet. Those links are provided solely as aids to assist you in locating other Internet resources that may be of interest. They are not intended to state or imply that AWEA or the Contributors endorse, approve, sponsor, or are affiliated or associated with those linked sites. The Handbook is not intended as a comprehensive discussion of all wind energy project issues and should be used in conjunction with other available resources. The Handbook also is not intended as legal or environmental advice or as a best practices manual, nor should it be considered as such. Because the Handbook is only a general guidance document, independent legal counsel and/or environmental consulting services should be obtained to further explore any wind energy siting issue, matter, or project. In reviewing all or any part of the Handbook, you acknowledge and understand that the Handbook is only a general guidance document and does not constitute a best practices manual, legal or environmental advice, or a legal or other relationship with the American Wind Energy Association ("AWEA") or any of the persons or entities

unknown authors

2008-01-01T23:59:59.000Z

287

ColumbusSites.cdr  

Office of Legacy Management (LM)

Columbus, Ohio, Sites consist of two geographically Columbus, Ohio, Sites consist of two geographically separate properties owned by the Battelle Memorial Institute: the King Avenue site, located in the city of Columbus, and the West Jefferson site, located approx- imately 15 miles west of Columbus. Battelle conducted extensive nuclear research at both locations for the U.S. Department of Energy (DOE) and its predecessor agencies between 1943 and 1986. The research resulted in contamination of soil, buildings, and equipment with radioactive and mixed waste materials. Environmental cleanup of the sites began in 1986. The 6-acre King Avenue site, which was historically a part of the federal government's fuel and target fab- rication program, consisted of 9 buildings and the surrounding grounds. Nuclear research conducted at the

288

NETL: Site Environmental Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Environmental Quality Site Environmental Quality About NETL Site Environmental Quality - Certified to ISO 14001:2004 Questions about NETL's Environment, Safety and Health Management System may be directed to Michael Monahan, 304-285-4408, michael.monahan@netl.doe.gov. NETL has implemented an Environment, Safety and Health (ES&H) Management System, based on DOE's Integrated Safety Management System, the International Organization for Standardization (ISO) 14000 series, and the Occupational Health and Safety Assessment (OHSAS) 18000 series. While the original scope of the ES&H Management System included the Morgantown and Pittsburgh sites, in fiscal year 2010, the Albany site was incorporated into the existing ES&H Management System. In addition, all three sites underwent ISO 14001:2004 recertification audits and Morgantown and

289

WCI | Site 300 CORS  

NLE Websites -- All DOE Office Websites (Extended Search)

: CORS : CORS Weather Site Access Contained Firing Facility (CFF) Continuosly Operating Reference Station (CORS) CORS logo How to access GPS satellite data The National Geodetic Survey(NGS) Home Page for the S300 CORS base station is: http://www.ngs.noaa.gov/CORS/ Type S300 into "enter SiteID" To get user-friendly data: http://www.ngs.noaa.gov/UFCORS/ The GPS data will be in "receiver independent exchange" (RINEX) format, version 2.10. CORS Proxy Data Availability Details: NGS Reference Position Information Site 300 CORS Reference Position RTK Transmission Frequency NGS s300 Site Log NGS s300 Site Map Links to other GPS sites Last modified: July 27, 2011 UCRL-MI-134143 | Privacy & Legal Notice Contact: wci-webteam@llnl.gov NNSA Logo DOE Logo

290

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

.. ' \ MONTICELLO NPL SITES FFA QUARTERLY REPORT: October 1 -December 31, 2008 DOE Site Manager: Jalena Dayvault JR 7CJ7 This report summarizes current project status and activities implemented during October tiU'ough December 2008, and provides a schedule of planned near term activities for the Monticello MIII Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection repmis, site meteorological data, and monitoring summary for tlw ex situ ground water treatment system. 1.0 MMTS Activities/Status Repository and Pond 4 · * Monthly and quarterly inspection of the repository identified no abnormalities (see attached repmis). .

291

Site environmental report summary  

Science Conference Proceedings (OSTI)

In this summary of the Fernald 1992 Site Environmental Report the authors will describe the impact of the Fernald site on man and the environment and provide results from the ongoing Environmental Monitoring Program. Also included is a summary of the data obtained from sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. These requirements are set to protect both man and the environment.

Not Available

1992-12-31T23:59:59.000Z

292

Nairobi Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

NRB-1: Canopy reflectance measurement within the Nairobi grassland site, Kenya. (Prof. Jenesio Kinyamario, University of Nairobi, is using a rednear-infrared spectral ratio meter....

293

CPER Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

CPR-1: Weather stationexclosure within the CPER grassland site, Colorado, USA. (Mark Lindquist, Colorado State University, is checking a wetdry deposition gauge. Photograph taken...

294

SITE LIGHTING FOUNDATIONS  

SciTech Connect

The purpose of this analysis is to design structural foundations for the Site Lighting. This analysis is in support of design drawing BABBDF000-01717-2100-23016.

M. Gomez

1995-01-17T23:59:59.000Z

295

Site Lead TQP Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program May 2011 Office of Enforcement and Oversight Office of Health, Safety and...

296

1994 Site environmental report  

Science Conference Proceedings (OSTI)

The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

NONE

1995-07-01T23:59:59.000Z

297

Site Transition Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Transition Guidance March 2010 Office of Environmental Management U.S. Department of Energy Washington D. C. 20585 Standard Review Plan (SRP) Technical Framework for EM...

298

Badkhyz Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

BDK-1: Experiment to study the effect of UV-b solar radiation on litter decomposition at the Badkhyz grassland site, Turkmenistan. (Prof. Leonid Rodin, Komarov Botanical Institute,...

299

historic site award  

Science Conference Proceedings (OSTI)

... Honors 'Historic Site' of NBS Physics Discovery. ... The American Physical Society (APS) has named ... revealed that in certain nuclear processes pairs ...

2011-11-16T23:59:59.000Z

300

SRS Site Needs  

SRS Site Needs Neil R. Davis Program Manager Technology Development and Tank Closure Projects Washington Savannah River Company Aluminum/Chromium Leaching Technical ...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Calabozo Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

CLB-1: General view of the Trachypogon savanna at the Calabozo grassland site, Venezuela. (Trees include Curatella americana, Bowdichia virgilioides and Byrsonima crassifolia....

302

1999 Site Environmental Report  

SciTech Connect

The Site Environmental Report for Brookhaven National Laboratory for the calendar year 1999, as required by DOE Order 231.1.

NONE

2000-09-01T23:59:59.000Z

303

Historical Photographs: Idaho Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Sites Small Image 1. Measuring intentional radiation release at the Idaho experimental dairy farm (1964). (195Kbytes) Small Image 2. Measuring intentional radiation...

304

Pantex Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Pantex Site Activity Reports 2013 Pantex Plant Operational Awareness Oversight, May 2013 Review Reports 2012 Assessment of Nuclear Safety Culture at the Pantex Plant,...

305

RMOTC RMOTC -Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Home About Us About Us Staff Field Info History Photo Gallery Awards & Testimonials Safety Initiatives Outreach & Community News Latest News Newsletters Press Releases...

306

2004 Environmental Site Report  

NLE Websites -- All DOE Office Websites (Extended Search)

phenolic compounds. Tests of underground coal gasification and tests of in-situ oil shale retorting resulted in contamination at these sites. The largest cleanup activity...

307

2001 SITE ENVIRONMENTAL REPORT  

Science Conference Proceedings (OSTI)

THE SITE ENVIRONMENTAL REPORT FOR BROOKHAVEN NATIONAL LABORATORY FOR THE CALENDAR YEAR 2001, AS REQUIRED BY DOE ORDER 231.1.

BROOKHAVEN NATIONAL LABORATORY

2002-09-01T23:59:59.000Z

308

Site Environmental Report  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2003. However, seven SWMUs could not be remediated to No Further Action (NFA) status. The long- term monitoring of these inactive waste sites has been incorporated into...

309

Kursk Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphs Image KRS-1: Clipping above-ground biomass at the Kursk grassland site, Russia. (Dr. Kira Khodashova and student Nina N., Moscow State University, are estimating monthly...

310

LM Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LM Sites LM Sites Alaska Puerto Rico Continental US Search Search Legacy Management Site Documents > Additional Information Guidance and Reports InspectionSampling Schedule...

311

Hanford Site Video Library  

DOE Data Explorer (OSTI)

The Hanford Site Video Library currently makes 30 videos related to the sites history and the clean-up available for online viewing. The Video Library (also referred to as the Broadcast Archive) can be searched by keywords in the title or description. They can also be browsed in a complete list.

312

Site characterization handbook  

SciTech Connect

This Handbook discusses both management and technical elements that should be considered in developing a comprehensive site characterization program. Management elements typical of any project of a comparable magnitude and complexity are combined with a discussion of strategies specific to site characterization. Information specific to the technical elements involved in site characterization is based on guidance published by the Nuclear Regulatory Commission (NRC) with respect to licensing requirements for LLW disposal facilities. The objective of this Handbook is to provide a reference for both NRC Agreement States and non-Agreement States for use in developing a comprehensive site characterization program that meets the specific objectives of the State and/or site developer/licensee. Each site characterization program will vary depending on the objectives, licensing requirements, schedules/budgets, physical characteristics of the site, proposed facility design, and the specific concerns raised by government agencies and the public. Therefore, the Handbook is not a prescriptive guide to site characterization. 18 refs., 6 figs.

Not Available

1988-06-01T23:59:59.000Z

313

Site decommissioning management plan  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

1993-10-01T23:59:59.000Z

314

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

April 1 - June 30, 2008 April 1 - June 30, 2008 DOE Site Manager: Jalena Maestas This report summarizes current project status, activities implemented during April through June 2008, and provides a schedule of planned near term activities, for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection results, and site meteorological monitoring data. 1.0 MMTS Activities/Status Repository and Pond 4 * Monthly and quarterly inspection of the repository identified no abnormalities. * Shrub seedlings planted last fall had a poor survival rate. * New damage to shrubs and vole infestation is not evident. * Monthly inspection of Pond 4 identified no abnormalities.

315

site_transition.cdr  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legacy Legacy Management U.S. DEPARTMENT OF This fact sheet explains the process for transferring a site to the U.S. Department of Energy Office of Legacy Management. Site Transition Process Upon Cleanup Completion Introduction Transition Process After environmental remediation is completed at a site and there is no continuing mission, responsibility for the site and the associated records are transferred to the U.S. Department of Energy (DOE) Office of Legacy Management for post-closure management. Where residual hazards (e.g., disposal cells, ground water contamination) remain, active long-term surveillance and maintenance will be required to ensure protection of human health and the environment. The DOE Office of Legacy Management (LM) established transition guidance for remediated sites that will transfer to LM for long-term surveillance and maintenance. The

316

Related Data Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Data Sites Related Data Sites CDIAC has listed the following Web sites because these sites offer high-quality data sets (not available through CDIAC) from a variety of global-change themes. These links will take you outside of CDIAC, therefore, we are not responsible for the content or intent of these outside links. This list is not intended to be comprehensive, but we do hope you find it useful if you cannot find what you are looking for here at CDIAC. Multi-Agency Sites Global Change Data and Information System (GCDIS) GCDIS is a collection of distributed information systems operated by government agencies involved in global change research. GCDIS provides global change data to scientists and researchers, policy makers, educators, industry, and the public at large and includes multidisciplinary data from

317

Web Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Help » Web Site Map Help » Web Site Map Web Site Map The links listed below include all pages on the site except document topic pages. Home Privacy/Security Help Web Site Map Mailing Services Remove me from the List Contact Us About Us News and Events News Archives News/Media FAQs Internet Resources Documents DUF6 EIS Historical Context What is an EIS? Why EIS is Needed Who is Responsible? EIS Process EIS Topics EIS Alternatives EIS Schedule Public Involvement Opportunities Public Comment Form For More Info DUF6 Management and Uses Management Responsibilities DUF6 Storage How DUF6 is Stored Where DUF6 is Stored Cylinder Leakage DUF6 Storage Safety DUF6 PEIS Cylinder Surveillance and Maintenance Conversion Potential DU Uses "Business Case" for R&D on Beneficial Uses of DU Catalysts for Destruction of Air Pollutants

318

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

January 1 - March 31, 2008 January 1 - March 31, 2008 DOE Site Manager: Jalena Maestas This report summarizes current project status, activities implemented during January through March 2008, and provides a schedule of planned near term activities, for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) NPL sites. This report also includes repository and Pond 4 leachate collection data, quarterly site inspection results, and site meteorological monitoring data. The first semi-annual FFA meeting of 2008 was held at UDEQ in Salt Lake City, Utah, March 26 and 27, 2008. Minutes and action items resulting from that meeting will be prepared under separate cover pending review and concurrence by EPA and UDEQ. Draft minutes and action items are scheduled for submittal by May 1, 2008.

319

The DOD Siting Clearinghouse  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The DoD Siting Clearinghouse The DoD Siting Clearinghouse Dave Belote Director, Siting Clearinghouse Office of the Secretary of Defense The Nexus of National Security & Renewable Energy * Unintended Consequences - Rapid development of renewable technologies - Rapidly changing military technology research & development * Existing Policy and Processes - Not up to date with changing technologies - Land use decision-making authorities fragmented across all levels of government 2 From Nellis to Shepherds Flat: Congressional Push for Action 3 Congressional Response - FY2011 NDAA, Section 358 * Section 358 "Study Of Effects Of New Construction Of Obstructions On Military Installations And Operations" - Integrated review process - 180-day backlog assessment

320

Princeton Site Ofice  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Princeton Site Ofice Princeton Site Ofice P.O. Box 102 Princeton, New Jersey 08542-0102 TO: Gregory H. Woods, General Counsel JA N Z Q= LMN N= SUBJECT: PRINCETON SITE OFFICE (PSO) 2013 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a)(7) of DOE Order 451.1B Change 3, NEPA Compliance Program, requires each Secretarial Oficer and Head of Field Organization to submit an Annual NEPA Planning Summary to the General Coun. s el. We have reviewed

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MONTICELLO NPL SITES  

Office of Legacy Management (LM)

MONTICELLO NPL SITES MONTICELLO NPL SITES FFA QUARTERLY REPORT: October 1 - December 31, 2007 DOE Site Manager: Jalena Maestas 1.0 MMTS Activities/Status Repository and Pond 4 * Monthly and quarterly inspection of the repository identified no problems that have not been addressed. (inspection checklists attached). * Monthly inspection of Pond 4 identified no unacceptable conditions. * Pond 4 leachate detection and removal systems continue to operate at normal levels (leachate pumping summary attached). * Repository leachate collection and removal system (LCRS) and leachate collection system (LDS) continue to operate at normal and acceptable levels (leachate pumping summary attached). * Portions of repository cover were planted with rabbitbrush seedlings to repair areas

322

Site Map - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map Site Map Page Content Pantex.com Mission & Strategies Mission National Security Nuclear Explosive Operations Nuclear Material Operations HE Operations Strategies Advance HE Center of Excellence Exemplify a High Reliability Organization Health & Safety Safety Training Occupational Medicine Contractor Safety Environment Environmental Projects & Operations Regulatory Compliance Waste Operations Environmental Management System Environmental Document Library Public Meetings Doing Business With Pantex Procurement How We Buy Subcontracting Opportunities Supplier Information Profile Suspect/Counterfiet Items Business Definitions Documents and Forms Accounts Payable Work for Others Our Capabilities How to do Business with the Pantex eXMC Employee Information Benefits

323

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Darwin SiteInstruments Darwin SiteInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Darwin, Australia [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] CSPHOT Cimel Sunphotometer Aerosols, Radiometric Browse Data [ Single installation ] DISDROMETER Impact Disdrometer Surface Meteorology Browse Plots Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Browse Data [ Single installation ] GNDRAD Ground Radiometers on Stand for Upwelling Radiation Radiometric Browse Plots

324

TWP Darwin Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Darwin Site Darwin Site TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Darwin Site Location: 12° 25' 28.56" S, 130° 53' 29.75" E Altitude: 29.9 meters The third TWP climate research facility was established in April 2002 in Darwin, Northern Territory, Australia. The facility is situated adjacent to the Australian Bureau of Meteorology's (BOM) Meteorological Office near Darwin International Airport. Darwin was chosen because it meets the scientific goal of the ARM Program, providing a unique set of climate regimes that are not seen at the other TWP facilities. Annually, Darwin

325

TWP Nauru Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru Site Nauru Site TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Nauru Site Location: 0° 31' 15.6" S, 166° 54' 57.60" E Altitude: 7.1 meters The Nauru facility was established in November 1998 as the second TWP climate research station. It is situated in the Denigomodu district on Nauru Island, the Republic of Nauru, which is located in the western South Pacific, approximately 1,200 miles northeast of Papua New Guinea. The ARM Program selected this location because it is on the eastern edge of the Pacific warm pool under La Niña conditions, which affect weather patterns

326

Site Lead TQP Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualification Standard for the Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program May 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy 1 Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program A Site Lead is an individual, normally at a senior General Schedule (GS) level or Excepted Service, who is assigned the responsibility to assess and evaluate management systems, safety and health programs, and technical activities associated with U.S. Department of Energy (DOE) nuclear and non-nuclear facilities. Typically, a Site Lead has previously qualified as a Nuclear Safety Specialist or a Senior Technical Safety Manager. For exceptionally qualified individuals,

327

Savannah River Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Savannah River Site Review Reports 2013 Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013 Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013 Independent Oversight Review of the Employee Concerns Program at the Savannah River Operations Office, July 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project, January 2013 Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design, January 2013 Activity Reports 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013

328

ARM - TWP Nauru Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Nauru Site Nauru Site TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts TWP Nauru Site Location: 0° 31' 15.6" S, 166° 54' 57.60" E Altitude: 7.1 meters The Nauru facility was established in November 1998 as the second TWP climate research station. It is situated in the Denigomodu district on Nauru Island, the Republic of Nauru, which is located in the western South Pacific, approximately 1,200 miles northeast of Papua New Guinea. The ARM Program selected this location because it is on the eastern edge of the Pacific warm pool under La Niña conditions, which affect weather patterns

329

Dzhanybek Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

DZH-1: Termite mound at the Dzhanybek grassland site, Kazakhstan. (Prof. Roman Zlotin is demonstrating the internal structure of the mound, which has been cut open with a shovel....

330

EERE: Web Site Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy (EERE) has developed this page to detail its compliance with the Office of Management and Budget Policies for Federal Public Web Sites. To learn more about EERE, visit...

331

Maryland Web Site Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Website M a r y l a n d Web site Introduction The University Of Maryland 2005 Solar Decathlon Team has created a website to inform the public about solar living, establish an...

332

Moss Web Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Moss Web Sites Name: Barbara Location: NA Country: NA Date: NA Question: I would like some on-line information about using various mosses in gardens - or pointers to other...

333

Site Energy Reduction Program  

E-Print Network (OSTI)

DuPonts Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU/LB basis. By 2004, overall progress had slowed, energy consumption increased slightly, and area results were mixed. It was time to shake things up with a new perspective. A coordinated site energy program was launched. In 2005, the first full year of the unified program, the site saved $6.9 MM from energy reduction projects. The rate of improvement is accelerating in 2006 with $3.6 MM in energy projects being implemented in the first four months.

Jagen, P. R.

2007-01-01T23:59:59.000Z

334

EERE: Web Site Policies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Web Site Policies The Office of Energy Efficiency and Renewable Energy (EERE) has developed this page to detail its compliance with the Office of Management and Budget Policies for...

335

Nylsvley Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

Image NLS-1: Typical view of fine-leaved savanna at the Nylsvley study site, South Africa. (Dominant trees are Acacia tortilis. Photograph taken 1997 by Dr. R.J. Scholes, CSIR,...

336

Kade Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

growth at the Kade tropical forest site, Ghana. (typically, the area would now be ready for burning and planting. Photograph taken 1958 by Dr. P.H. Nye, Beckley, Oxon., UK...

337

Matador Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

MTD-1: Field work in progress at the Matador grassland site, Saskatchewan, Canada. (The sample plots were located between 1.0 and 2.4 km from this point, on flat topography....

338

ParaSITE  

E-Print Network (OSTI)

paraSITE proposes the appropriation of exterior ventilation systems on existing architecture to inflate pneumatic shelters that are designed for homeless people. This project involves the production of a series of inflatable ...

Rakowitz, Michael

1998-01-01T23:59:59.000Z

339

SSA Old Aspen Site  

NLE Websites -- All DOE Office Websites (Extended Search)

SSA-OA) SSA-OA) View an aerial photo-map of the SSA-OA site The two huts and boardwalk The scaffold flux tower The base of the scaffold flux tower One of the canopy access towers The SRC meteorology tower The truss tower and cables from the flux tower Cabled tethersonde above the SSA Old Aspen (SSA-OA) site The tethersonde about to be launched (tethered balloon and radiosonde) Picture of the SRC meteorological tower at the SSA-OA site taken from the flux tower. Improved road into the SSA-OA site within the Prince Albert National Park. Aerial of SSA-OA tower during the winter IFC. SSA-OA flux tower about 40 meters in height, approximately 20 meters above canopy. Photograph of investigator hut and boardwalk at the SSA-OA site. Andy Black and associate within the hut at the SSA-OA site showing the various recording and data display instruments from the tower.

340

Considered Sites | Department of Energy  

Office of Legacy Management (LM)

Sites » Considered Sites Sites » Considered Sites Considered Sites View Considered Sites View Other Sites DOE maintains the Considered Sites Database to provide information to the public about sites that were formerly used in the nation's nuclear weapons and early atomic energy programs and that had the potential for residual radioactive contamination on site. Formerly Utilized Sites Remedial Action Program The U.S. Atomic Energy Commission (AEC) established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in March 1974 under the authority of the Atomic Energy Act of 1954 to identify, investigate, and take appropriate cleanup action at sites where work was performed in support of the Manhattan Engineer District (MED) and early AEC programs. Site activities included uranium ore storage and processing, uranium metal

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

T H E A E R O S P A C E C O R P O R A T I O N  

Office of Legacy Management (LM)

H H E A E R O S P A C E C O R P O R A T I O N ~\ -.-./ Sr/i/e 4 0 0 0 , 95 5 L' Enfanf Plaza, S. W., Washington, D.C. 20024, Telepho~ze: ( 2 0 2 ) 488-6000 7016.83.rna.j .23 7 December 1983 M r . A r t h u r Clhitrnar! O f f i c e of Nuclear Energy, NE-24 D i v i s i o n o f Remedial A c t i o n U . S . Departnent o f Energy Germantob~n , Mary1 and 20545 Dear M r . k'hitman: DRAFT CERTIFICATIOIJ PACKAGE: BAY0 CAIlYON SITE LOS ALAMOS, N E W M E X I C O Enclosed i s a w o r k i n g d r a f t copy o f t h e C e r t i f i d t i o n Docket f o r t h e Bayo Canyon S i t e , Los Alamos, New Mexico, f o r y o u r r e v i e w . I f you have any q u e s t i o n s o r changes, please c o n t a c t me a t 488-6353. S i n c e r e l y , ( J J J - a />+L-m~&--fl C/ Mary A1 i c e Jennison Environmental C o n t r o l s and Analys i s D i r e c t o r a t e Eastern Technology D i v i s i o n MAJ : s e j Enclosure cc: J. B

342

NSA-Fen Site  

NLE Websites -- All DOE Office Websites (Extended Search)

NSA-Fen) NSA-Fen) The Fen from the air, looking North. You can see the boardwalk, the hut, and the size of the bog. The road (Highway 391) is visible at the top. The round "crater" near the base of the boardwalk on the right is a collapsed palsa. View an aerial photo-map of the NSA-Fen site. The ground cover on the Fen itself The hut and flux tower The Fen site from the shore looking toward the hut The Fen site flux tower The boardwalk in the Fen, looking back at the shore The generator shed and the storage tent The NSA-Fen site from the air during IFC-2. Top of image is to Southeast. The NSA-Fen site in September (IFC-3) 1994 looking to the southeast. The tower is at the end of the boardwalk in right center of image with the hut near the center. The boardwalk connects to the far border at left center of the slide. Note that the tamarack (deciduous evergreen) within the fen has its fall colors.

343

SSA Mixed Canopy Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Canopy Site (SSA-Mix) Mixed Canopy Site (SSA-Mix) The TE canopy tower The mixed trees Terrestrial Ecology canopy access tower at the SSA mixed coniferous/deciduous site. A picture taken looking down from the TE canopy access tower at the SSA mixed auxiliary site, showing the aspen and spruce canopies. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

344

IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES  

NLE Websites -- All DOE Office Websites (Extended Search)

March 7, 2008 IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES Plan won't impact DOE commitment to removing all stored waste from Idaho Site Idaho's Advanced Mixed Waste...

345

ARM - Site Index  

NLE Websites -- All DOE Office Websites (Extended Search)

govSite Index govSite Index Expand | Collapse Site Index Videos Image Library About ARM About ARM (home) ARM and the Recovery Act ARM and the Recovery Act (home) ARM Recovery Act Project FAQs Recovery Act Instruments ARM Climate Research Facility Contributions to International Polar Year (IPY) ARM Climate Research Facility Contributions to International Polar Year (IPY) (home) ARM Education and Outreach Efforts Support IPY Research Support for International Polar Year (IPY) ARM Organization ARM Organization (home) Laboratory Partners ARM Safety Policy ARM Science Board ARM Science Board (home) Board Business Become a User Comments and Questions Contacts Contacts (home) ARM Engineering and Operations Contacts Facility Statistics Facility Statistics (home) Historical Field Campaign Statistics

346

Princeton Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Princeton Site Office Princeton Site Office P.O. Box 102 Princeton, New Jersey 08542-0102 JAN 18 2012 To: Timothy G. Lynch , Acting General Counsel Subject: Princeton Site Office (PSO) 2012 Annual National Environmental Policy Act (NEPA) Planning Summary Section 5(a)(7) of DOE Order 451 .1 B Change 2, NEPA Compliance Program , requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA Planning Summary to the General Counsel. We have reviewed your associated December 5, 2011 , memorandum and in consultation with Princeton Plasma Physics Laboratory (PPPL) staff determined that we have no Environmental Impacts Statements or Environmental Assessments either ongoing or forecast for the next 12 to 24 months. If you have any questions or need additional information

347

Former Sites Restoration. Division  

Office of Legacy Management (LM)

@j&s* **$r* :. .+:., @j&s* **$r* :. .+:., II' .,.. I .&i. , :"': T.1 . i *&+t&&., @i i -:.+; L I. * . . .p.isit-!'..r'ir~i _, +.&.., . I. :?I,?.* .L,! j?' aa&* pi 4 L', ..b,- ., .e /w.1( ,v_.c ~A&$?>*:, ,..:.' .1 > . . . . . *. ,.. .I., .( j .~.~:,;;,.".,Certificafion ,Dockef for The ;,il' t:i~>$:+-.. ~~y:Remeciial Action. Performed "' . ::;:cxcgt the @+zb Gate Site in . ;' ! ,Oak Ridge, Tennessee, 7.99 7- 7 992 -.. Department .of Energy Former Sites Restoration. Division . ,Oak Ridge Operations .Office _. February 7 994 @ Printed on recycledhcy&ble paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE ELZA GAP SITE IN OAK RIDGE, TENNESSEE, 1991-1992 FEBRUARY 1994 I Prepared for UNITED STATES DEPARTMENT OF ENERGY

348

Manhattan Project: Site Map  

Office of Scientific and Technical Information (OSTI)

SITE MAP SITE MAP Resources > Site Map THE MANHATTAN PROJECT Events 1890s-1939: Atomic Discoveries A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 1939-1942: Early Government Support Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942 1942: Difficult Choices More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 1942-1944: The Uranium Path to the Bomb Y-12: Design, 1942-1943 Y-12: Construction, 1943

349

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

350

Microsoft Word - Site Selection  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Selection One of the very first tasks of General Leslie Groves and the Manhattan Project in early 1943 was to locate and acquire sites in the United States where uranium and plutonium could be produced, as well as a site where the atomic bomb actually would be constructed. Production of uranium and plutonium required vast amounts of power. Thus, Oak Ridge, Tennessee, and Hanford, Washington, were chosen because of proximity to major rivers. Oak Ridge could draw on the power of the hydroelectric plants on the Tennessee River. Hanford could use the power from the Columbia River. The cold waters of the Columbia also could be used to cool the plutonium production reactors at Hanford. A third site, with

351

Site Energy Surveys  

E-Print Network (OSTI)

Operating improvements and selected investments have already improved US refining and petrochemical energy utilization efficiency by about 20%, compared to 1972 operating efficiencies. This is equivalent to saving well over 250,000 B/D of crude; which is equal to the output of several major synthetic fuels projects! Site Energy Surveys can be an important technique for achieving the next major increment (1520%) in energy savings, even when using existing technology. These surveys encompass the total site, all associated plants, and investigate all aspects of energy requirements, heat integration configurations, steam/power cogeneration possibilities and inefficient practices. After potential energy conservation opportunities have been identified, screening is conducted to develop their economic attractiveness. This presentation reviews factors leading to the need for Site Energy Surveys, the objectives for conducting surveys, the approach utilized, considerations given to values of energy and concludes with overall improvements achieved.

Lockett, W., Jr.; Guide, J. J.

1981-01-01T23:59:59.000Z

352

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

353

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

354

Summary Site Environmental Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Environmental Report Site Environmental Report for Calendar Year 2011 ANL-12/02 (Summary) Environment, Safety, and Quality Assurance Division Argonne National Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

355

Berkeley Lab: Educational Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Sites Educational Sites The Center for Science & Engineering Education (CSEE) Berkeley Lab's Center for Science & Engineering Education (CSEE) carries out the Department of Energy's education mission to train the next generation of scientists, as well as helping them to gain an understanding of the relationships among frontier science, technology, and society. CSEE supports science literacy in the community and nationally through a broad range of programs from elementary school to undergraduate and graduate education, including internships, mentoring, school workshops and summer research programs for teachers. Through its broad range of programs, CSEE serves as the center for Berkeley Lab's science education efforts, developing partnerships with schools, government agencies, and non-profit

356

PPPL Site Environmental Report  

SciTech Connect

Contained in the following report are data for radioactivity in the environment collected and analyzed by Princeton Plasma Physics Laboratorys Princeton Environmental, Analytical, and Radiological Laboratory (PEARL). The PEARL is located on?site and is certified for analyzing radiological and non?radiological parameters through the New Jersey Department of Environmental Protections Laboratory Certification Program, Certification Number 12471. Non?radiological surface and ground water samples are analyzed by NJDEP certified subcontractor laboratories QC, Inc. and Accutest Laboratory. To the best of our knowledge, these data, as contained in the Annual Site Environmental Report for 2011, are documented and certified to be correct.

Virginia Finley, Robeert Sheneman and Jerry Levine

2012-12-21T23:59:59.000Z

357

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Attachment 3, Groundwater hydrology report, Attachment 4, Water resources protection strategy: Preliminary final  

SciTech Connect

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR 192). The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 designated responsibility to the US Department of Energy (DOE) for assessing the inactive uranium milling sites. The DOE has determined that each assessment shall include information on site characterization, a description of the proposed action, and a summary of the water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards. To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards, the US Department of Energy (DOE) proposes that supplemental standards be applied at the Dry Flats disposal site because of Class III (limited use) groundwater in the uppermost aquifer (the basal sandstone of the Cretaceous Burro Canyon Formation) based on low yield. The proposed remedial action will ensure protection of human health and the environment.

Not Available

1993-08-01T23:59:59.000Z

358

Considered Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Considered Sites Considered Sites Considered Sites View Considered Sites View Other Sites DOE maintains the Considered Sites Database to provide information to the public about sites that were formerly used in the nation's nuclear weapons and early atomic energy programs and that had the potential for residual radioactive contamination on site. Formerly Utilized Sites Remedial Action Program The U.S. Atomic Energy Commission (AEC) established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in March 1974 under the authority of the Atomic Energy Act of 1954 to identify, investigate, and take appropriate cleanup action at sites where work was performed in support of the Manhattan Engineer District (MED) and early AEC programs. Site activities included uranium ore storage and processing, uranium metal

359

SSA Young Jack Pine Site  

NLE Websites -- All DOE Office Websites (Extended Search)

View an aerial photo-map of the SSA-YJP site. Beginning of the "flagged path" to the tower, from the road The "new trail" to the YJP site, looking towards the site The hut and...

360

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Indoor Sampler Siting  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Sampler Siting Indoor Sampler Siting Title Indoor Sampler Siting Publication Type Conference Proceedings Year of Publication 2009 Authors Sohn, Michael D., and David M. Lorenzetti Conference Name 11th International Conference on Air Distribution in Rooms Conference Location Busan, Korea Abstract Contaminant releases in or near a building can lead to significant human exposures unless prompt response is taken. U.S. Federal and local agencies are implementing programs to place air-monitoring samplers in buildings to quickly detect biological agents. We describe a probabilistic algorithm for siting samplers in order to detect accidental or intentional releases of biological material. The algorithm maximizes the probability of detecting a release from among a suite of realistic scenarios. The scenarios may differ in any unknown, for example the release size or location, weather, mode of building operation, etc. The algorithm also can optimize sampler placement in the face of modeling uncertainties, for example the airflow leakage characteristics of the building, and the detection capabilities of the samplers. In anillustrative example, we apply the algorithm to a hypothetical 24-room commercial building, finding optimal networks for a variety of assumed sampler types and performance characteristics. We also discuss extensions of this work for detecting ambient pollutants in buildings, and for understanding building-wide airflow, pollutant dispersion, and exposures

362

NVLAP Interactive Web Site (NIWS)  

Science Conference Proceedings (OSTI)

Welcome to the NVLAP Interactive Web Site (NIWS). ... The URL for the NVLAP Interactive Web Site (NIWS) is: https://www-s.nist.gov/niwsapp. ...

2012-02-03T23:59:59.000Z

363

2012 BNL Site Environmental Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Environmental Reports Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1B, Environment,...

364

Web Sites about Infectious Disease Web Sites about Infectious Disease  

E-Print Network (OSTI)

Web Sites about Infectious Disease Web Sites about Infectious Disease Stanford Center for Tuberculosis Research-Site Links http://molepi.stanford.edu/tblinks.html Virology on the World Wide Web http://www.idsociety.org/ file:///C|/Program%20Files/Adobe/Adobe%20Dreamweav...nks/Web%20Sites%20about%20Infectious%20Disease

de Lijser, Peter

365

Regional characteristics, timing, and significance of dissolution and collapse features in Lower Cretaceous carbonate platform strata, Desoto Canyon area, offshore Alabama-Florida  

E-Print Network (OSTI)

Lower Cretaceous carbonate strata from the central DeSoto Canyon area, offshore Alabama and Florida were studied to determine the extent, intensity, and controlling factors on dissolution-collapse features within these strata. The collapsed zones across the study area were mapped using a tight 2-D seismic grid. The zones of dissolution-collapse form a crude rectilinear pattern in plan view with the average trend of more elongated sections of the dissolution features being subparallel to regional southwestward dip on the Lower Cretaceous platform. Larger collapse features developed near the modern erosional margin that defines the seaward limit of the Lower Cretaceous platform in the study area. Middle Cretaceous strata up to approximately the Coniacian-Santonian unconformity (middle Late Cretaceous age) have numerous compaction-related faults around sagged areas above apparent dissolution-collapse zones within Lower Cretaceous strata. Bi-directional stratal onlap into the collapsed and sagged zones is only found above the Coniacian-Santonian unconformity. These relationships suggest a regional confined freshwater aquifer system developed within the Lower Cretaceous interval at about Coniacian-Santonian time when meteoric groundwater likely flowed from recharge areas to the north in central Alabama and discharged along the western erosional escarpment of the Lower Cretaceous platform. This meteoric groundwater may have mixed either with seawater that infiltrated the platform from the escarpment edge or with hydrogen-sulfide-rich basinal fluids that migrated to structurally high areas (where the dissolution-collapse zones are found). Alternatively, some combination of these mixing processes may have been responsible for the intense and likely still ongoing dissolution in this area of the Lower Cretaceous carbonate platform.

Iannello, Christine

2001-01-01T23:59:59.000Z

366

Characterization of the 3-D Properties of the Fine-Grained Turbidite 8 Sand Reservoir, Green Canyon 18, Gulf of Mexico  

E-Print Network (OSTI)

Understanding the internal organization of the Lower Pleistocene 8 Sand reservoir in the Green Canyon 18 field, Gulf of Mexico, helps to increase knowledge of the geology and the petrophysical properties, and hence contribute to production management in the area. Interpretation of log data from 29 wells, core and production data served to detail as much as possible a geological model destined for a future reservoir simulation. Core data showed that the main facies resulting from fine-grained turbidity currents is composed of alternating sand and shale layers, whose extension is assumed to be large. They correspond to levee and overbank deposits that are usually associated to channel systems. The high porosity values, coming from unconsolidated sediment, were associated to high horizontal permeability but generally low kv/kh ratio. The location of channel deposits was not obvious but thickness maps suggested that two main systems, with a northwest-southeast direction, contributed to the 8 Sand formation deposition. These two systems were not active at the same time and one of them was probably eroded by overlying formations. Spatial relationships between them remained unclear. Shingled stacking of the channel deposits resulted from lateral migration of narrow, meandering leveed channels in the mid part of the turbidite system. Then salt tectonics tilted turbidite deposits and led to the actual structure of the reservoir. The sedimentary analysis allowed the discrimination of three facies A, B and E, with given porosity and permeability values, that corresponded to channel, levee and overbank deposits. They were used to populate the reservoir model. Well correlation helped figure out the extension of these facies.

Plantevin, Matthieu Francois

2003-05-01T23:59:59.000Z

367

Siting Guide: Site Selection and Evaluation Criteria for an Early Site Permit Application  

Science Conference Proceedings (OSTI)

As part of the Early Site Permit (ESP) Demonstration Program, the "Siting Guide: Site Selection and Evaluation Criteria for an Early Site Permit Application" was initially published in March 1993. It served as a roadmap and tool for applicant use in developing detailed siting plans to support an ESP application. This revision has been prepared to update the site selection process and criteria to reflect current regulatory requirements. The updated Guide also addresses the impact of significant changes in...

2002-03-21T23:59:59.000Z

368

Site Visit Report, Livermore Site Office - February 2011 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report, Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 February 2011 Livermore Site Office Safety Basis Self-Assessment This site visit report documents the collective results of the Office of Health, Safety and Security's (HSS) assessment of National Nuclear Safety Administration (NNSA) Livermore Site Office (LSO) safety basis processes and discusses its scope, objective, results and conclusions. Appendix A provides lists of the documents, interviews, and observations and Appendix B includes the plan for the review. The assessment was sponsored by LSO as a self-assessment and conducted jointly by HSS and LSO staff. It was completed in late 2010 and included site visits from November 29 - December

369

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

370

MEMORANDUM TO: FILE SITE  

Office of Legacy Management (LM)

SITE SITE NAME: /+%&'&&c /-i-QS~,~~-L ALTERNATE ------------ -------------------------- NAME: - -------------------___ C 1 T-f: -~~~~~L--~-----_--___,TATE: '"' y-/ OWNER ('=I B-----Z- Past: L?!lc~i&~~~~-~-~ Cut-rent: - Owner cnntacted q yes q:no; i,f yes, dats-c~~Fact,d------------- TYPE OF OPESATION ---------m-L----- @Research & Develapment & Facility Type 0 Production scale testing 0 Pilot Scale a bnch scale ~~~~~~~ 0 Theoretical Studies G Sample 84 Analysis 0 Production G Disposal/Storage Manufacturing University Research Organization Government Sponsored Facility llther +r.PfTzK-- --------------------- TYPZ OF CONTRACT ~~__----__------ q Prime E SubccntractkrT u&lv.$Ch,ck>b 0 Purchase Order 0 Other information

371

NDB Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site map NDB Home Search Structures Search DNA Search RNA Advanced Search Nucleic acid tools RNA 3D motif atlas Non-redundant lists RNA base triples atlas WebFR3D R3D Align Contact NDB Mailing Address About NDB NDB Members Goal References Publications Site map Tools Software Standards Standard Reference Supplementary Information Ideal Geometries X-PLOR Parameters Valence Geometries RNA Ontology Consortium mmCIF Resources PDBML Resources Education Introduction to Nucleic Acids: DNA Definition of terms RNA Base Pair Families RNA Base-Phosphate Families Base Stacking Interactions Non Redundant list Equivalence classes RNA 3D Motifs Relative Frequency Introduction to Nucleic Acids: RNA Nucleic Acid Highlight (PDB): DNA DNA Polymerase Nucleosome Transfer RNA RNA Polymerase Self-splicing RNA

372

AshtabulaSite.cdr  

Office of Legacy Management (LM)

Ashtabula, Ohio, Site comprises 42.5 acres of Ashtabula, Ohio, Site comprises 42.5 acres of privately owned land adjacent to the city of Ashtabula, about 55 miles east of Cleveland. From 1962 to 1988 Reactive Metals Inc. (RMI) operated a facility on the property that manufactured metallic uranium tubes and rods and experimental quantities of thorium metal for use in the Hanford, Washington; and Savannah River, Georgia, weapons program reactors. The facility operated under contract to the U.S. Atomic Energy Commission and its successor agency the U.S. Department of Energy (DOE). RMI also extruded depleted uranium under a U.S. Nuclear Regulatory Commission (NRC) license and extruded nonradioactive materials, primarily copper-based, for the private sector. RMI once operated a small wastewater evaporation pond near the northern boundary of the plant area for

373

Transmission Siting_071508.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coordinating Interstate Electric Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate The National Council on Electricity Policy 2 DISCLAIMER: The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the authors and may not necessarily agree with the positions of the National Council on Electricity Policy, its committ ee members or the organizations they represent, the National Council funders, or those who commented on the paper during its draft ing. ACKNOWLEDGMENTS Coordinating Interstate Electric Transmission Siting: An Introduction to the Debate was prepared with the fi nancial assistance of a grant from the U.S. Department of Energy (DOE) Offi ce of Electricity Delivery

374

PNNL: Site index  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Index Site Index # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z # # 3-D Body Holographic Scanner # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Alerts - PNNL Staff Information Applied Geology and Geochemistry Applied Process Engineering Laboratory Asymmetric Resilient Cybersecurity (External website) Atmospheric Radiation Measurement (ARM) Program Atmospheric Sciences & Global Change Division Available Technologies Awards Awards - Science and Engineering External Recognition (SEER) Program # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B Battelle Corporate Contributions Battelle Memorial Institute Battelle Offices (addresses) Benefits (Insurance Forms, Savings Plan) Bio-Based Product Research at PNNL Biological & Environmental Research-Proteomics

375

Land Validation web site  

NLE Websites -- All DOE Office Websites (Extended Search)

graphs and more worldwide NPP datasets graphs and more worldwide NPP datasets Graphs of biomass dyanmics and climate data for grassland sites have been added to the global terrestrial Net Primary Production (NPP) reference database at the ORNL DAAC. The NPP database has been compiled by Dick Olson and Jonathan Scurlock under the auspices of the International Geosphere-Biosphere Programme and funding from the Terrestrial Ecology Program of NASA's Office of Earth Science. Browsing through the graphs will help users to select data of interest, and to see relationships between grassland biomass changes and driving climate variables such as rainfall. Graphs are presently available for 14 of the 31 grassland sites. In addition, two more well-known worldwide datasets are available for browsing and downloading from the ORNL DAAC's NPP Web pages. The Osnabruck

376

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

377

Site Operator Program  

DOE Green Energy (OSTI)

Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

Warren, J.F.

1991-12-31T23:59:59.000Z

378

Site Operator Program  

DOE Green Energy (OSTI)

Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

Warren, J.F.

1991-01-01T23:59:59.000Z

379

Site Sustainability Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Legacy Management December 2013 LMS/S07225 This page intentionally left blank This page intentionally left blank U.S. Department of Energy Site Sustainability Plan December 2013 Doc. No. S07225 Page i Contents Abbreviations ................................................................................................................................. iii I. Executive Summary ...............................................................................................................1 II. Performance Review and Plan Narrative ...............................................................................9 1 GHG Reduction and Comprehensive GHG Inventory ...........................................................9

380

1999 SITE ENVIRONMENTAL REPORT  

SciTech Connect

Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Site Map - Energy Innovation Portal  

Energy Innovation Portal. Home. Site Map; ... Solar Thermal; Startup America; ... National Aeronautics and Space Administration;

382

EERE: Clean Cities Mobile Sites  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Mobile Sites Alternative Fueling Station Locator FuelEconomy.gov Truck Stop Electrification Locator...

383

Site Map - EERE Commercialization Office  

Quick Links. Energy Innovation Portal; Site Map Commercialization Home Page. About. Success Stories; Legacy Initiatives

384

Nevada National Security Site - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Nevada National Security Site Review Reports 2013 Independent Oversight Targeted Review of the Safety Significant Blast Door and Special Door Interlock Systems and Review of Federal Assurance Capability at the Nevada National Security Site, December 2013 Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013 Review Reports 2012 Review of the Nevada National Security Site Implementation Verification Review Processes, March 2012 Activity Reports 2012 Nevada National Security Site Operational Awareness Visit, December 2012 Operational Awareness Oversight of the Nevada National Security Site, August 2012 Review Reports 2011 Review of Nevada Site Office and National Security Technologies, LLC, Line Oversight and Contractor Assurance Systems

385

Cleanup Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Sites Cleanup Sites Cleanup Sites Center Map As the largest environmental cleanup program in the world, EM has been charged with the responsibility of cleaning up 107 sites across the country whose area is equal to the combined area of Rhode Island and Delaware. EM has made substantial progress in nearly every area of nuclear waste cleanup and as of September 2012, completed cleanup at 90 of these sites. The "active" sites continue to have ongoing cleanup projects under EM's purview. Use the interactive map above to see states that still have cleanup activities associated with them. The tooltip in the upper-right corner shows site data for each state, and each marker gives site information as well as links to the site fact sheets here on the EM website and each site's full website.

386

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

387

DOE - Office of Legacy Management -- Oxford OH Site - OH 22  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

388

DOE - Office of Legacy Management -- Maywood Site - NJ 10  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

389

DOE - Office of Legacy Management -- Seymour CT Site - CT 02  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

390

DOE - Office of Legacy Management -- Niagara Falls Storage Site...  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

391

Categorical Exclusion Determinations: Brookhaven Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Site Office Categorical Exclusion Determinations: Brookhaven Site Office Categorical Exclusion Determinations issued by Brookhaven Site Office. DOCUMENTS AVAILABLE FOR...

392

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

PacificInstruments PacificInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Tropical Western Pacific [ Installed at 3 facilities ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Installed at 2 facilities ] CSAPR C-Band ARM Precipitation Radar Cloud Properties Browse Data [ Installed at 3 facilities ] CSPHOT Cimel Sunphotometer Aerosols, Radiometric Browse Data [ Single installation ] DISDROMETER Impact Disdrometer Surface Meteorology Browse Plots Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Browse Data [ Installed at 3 facilities ]

393

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Oliktok Point, Oliktok Point, AlaskaInstruments Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator Instruments : Oliktok Point, Alaska [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Not Online [ Single installation ] CSAPR C-Band ARM Precipitation Radar Cloud Properties Not Online [ Single installation ] CSPHOT Cimel Sunphotometer Aerosols Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Not Online [ Single installation ] ECOR Eddy Correlation Flux Measurement System Surface/Subsurface Properties Not Online [ Single installation ]

394

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Central FacilityInstruments Central FacilityInstruments SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility [ Single installation ] ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Data [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Plots Browse Data [ Single installation ] BRS Broadband Radiometer Station Radiometric Browse Plots Browse Data [ Single installation ] BSRN Baseline Solar Radiation Network

395

Argonne Transportation Site Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Site Index General Information About TTRDC Media Center Current News News Archive Photo Archive Transportation Links Awards Contact Us Interesting Links Working with Argonne Research Resources Experts Batteries Engines & Fuels Fuel Cells Management Materials Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Facilities Advanced Powertrain Research Facility Powertrain Test Cell 4-Wheel Drive Chassis Dynamometer Battery Test Facility Engine Research Facility Fuel Cell Test Facility Tribology Laboratory Tribology Laboratory Photo Tour Vehicle Recycling Partnership Plant Publications Searchable Database: patents, technical papers, presentations

396

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

AlaskaInstruments AlaskaInstruments NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts Instruments : North Slope Alaska [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AMC Ameriflux Measurement Component Radiometric, Surface/Subsurface Properties Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Data [ Single installation ] CCN Cloud Condensation Nuclei Particle Counter Aerosols Browse Data [ Single installation ] CLAP Continuous Light Absorption Photometer Aerosols Browse Data [ Single installation ] CPC Condensation Particle Counter Aerosols Browse Data

397

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

PlainsInstruments PlainsInstruments SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Instruments : Southern Great Plains [ Single installation ] ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Data [ Installed at 5 facilities ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Plots Browse Data [ Single installation ] BRS Broadband Radiometer Station Radiometric Browse Plots Browse Data [ Single installation ] BSRN Baseline Solar Radiation Network

398

Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Environmental for the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington September 1992 U.S. Department of Energy Richland, Washington 99352 Contents 1 . 0 Summary . . 2.0 Purpose of and Need for the Proposed Action . . . . . . 3.0 Proposed Action and Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Proposed Action 3.2 Onsite Alternatives . . . . . . . . . . 3.3 Offsite Alternatives . . . . . . . . . 3.4 No Action Alternative ~ ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 Affected Environment . . . . . . . . . . . 5.0 Environmental Impacts . . . . . . . . . . . 5.1 Construction Impacts 5.1.1 Atmospheric Impacts . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Terrestrial Impacts . 5.1.3 Impacts on CERCLA Remedial Actions . 5.1.4 Construction Accidents .

399

1994 Site Environmental Report  

SciTech Connect

The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

NONE

1995-05-01T23:59:59.000Z

400

Site Management Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Site Management Guide Site Management Guide Site Management Guide (Blue Book) (Revision 14, December 2012) Site Management Guide More Documents & Publications...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup...

402

Nevada National Security Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nevada National Security Site Nevada National Security Site | October 2011 Control Point Nevada National Security Site | October 2011 Control Point...

403

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance  

Office of Legacy Management (LM)

Calendar Year 2013 October 2013 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-2nd...

404

2003 SITE ENVIRONMENTAL REPORT  

SciTech Connect

Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.

ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.

2004-10-01T23:59:59.000Z

405

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.  

DOE Green Energy (OSTI)

During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over-fishing practices is limiting the recruitment of white sturgeon into larger size classes (>183 cm). Habitat, food resources, and migration have been severely altered by the impoundment of the Snake River and it appears that the recruitment of young may not be severely affected as recruitment of fish into size classes > 183 cm.

Hoefs, Nancy (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-02-01T23:59:59.000Z

406

Processes Influencing the Diversity of Middle Permian Brachiopods in the Bell Canyon Formation of the Delaware Basin (West Texas, Guadalupe Mountains National Park)  

E-Print Network (OSTI)

A fundamental question of long standing in the study of life on Earth is, Why are there so many species? This question concerns the distribution of and relationships among species in the present day, but also requires an understanding of the history of diversity. Patterns of diversity result from multiple, interconnected ecological processes operating at different spatial scales. The goal of this research is to gain knowledge about processes that control diversity by using fossil data to provide a temporal perspective that is unavailable when studying modern ecological communities. The fossil record provides the only natural historical account of changes in the diversity of ecological communities in Earths past. This research examines the taxonomic composition and diversity of brachiopod paleocommunities in the Delaware Basin of west Texas (Guadalupe Mountains National Park). The study interval is the Bell Canyon Formation, a 5.4-Myr interval of upper Middle Permian (Capitanian) siliciclastic and carbonate rocks deposited on the toe-ofslope of the basin. Silicified brachiopods extracted from the carbonate rocks provide the basis to test two hypotheses: (1) the taxonomic composition of local fossil brachiopod paleocommunities remains uniform, and (2) the changes in diversity of local fossil brachiopod paleocommunities reflects the relative importance of regional processes. Multivariate analyses of clustering analysis and ordination, diversity partitioning, and rank abundance plots are used to evaluate brachiopod taxonomic composition and diversity within an ecological framework. Sequence stratigraphic analysis provides the means to place the results within an environmental context related to sea-level changes. Results indicate that the reorganization of brachiopod paleocommunity structure coincides with major basinal-scale disruptions. Large disruptions allowed rare taxa and invaders from outside the basin to become dominant within paleocommunities. The dynamics within paleocommunities do not appear to prevent the replacement of the incumbent taxa with new taxa. The importance of these findings indicate that paleocommunities are not static through this interval and can be perturbed into configurations with new dominant taxa. Therefore, ecological responses of paleocommunities are resolvable at the geological time scale.

Fall, Leigh Margaret

2010-08-01T23:59:59.000Z

407

NACP Site Data Set Published  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Data Set Published The ORNL DAAC is pleased to announce the release of a data set from the North American Carbon Program (NACP): NACP Site: Tower Meteorology, Flux...

408

Redesigned ORNL DAAC Web Site  

NLE Websites -- All DOE Office Websites (Extended Search)

will be releasing a major revision to its Web site on Thursday, May 27, 2010. To implement this revision, the ORNL DAAC Web Site will be unavialable on May 27, from 10:00 a.m. EDT...

409

Historical Photographs: Nevada Test Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Test Site Small Image 1. A nuclear reactor sitting on a test cell pad prior to preliminary tests at the Nevada Test Site (circa 1968). This Phoebus 2 design was part of...

410

Site Manager Enclosure  

E-Print Network (OSTI)

This radiological release survey for the west property at the Canonsburg UMTRCA Title I disposal site is a precursor for selling the approximately 2.5 acres of land that lie west and outside of the disposal cell fence line. The basic design philosophy underlying this plan was agreed to a conference call with your office in July. We are planning to conduct the survey in late October or early November to allow effective use of a GPS unit after the leaves have fallen in the wooded area of the property. It is requested that you review the attached document and provide your concurrence, or comments, within time for us to meet this schedule. If you have any questions, please contact me at (412) 386-4754 or email me at

Mr. Paul Michalak; Cc W/o Enclosure; R. Ransbottom

2007-01-01T23:59:59.000Z

411

2009 Site Environmental Report  

SciTech Connect

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

Ratel, K.M.; Brookhaven National Laboratory

2010-09-30T23:59:59.000Z

412

2005 SITE ENVIRONMENTAL REPORT  

Science Conference Proceedings (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

BROOKHAVEN NATIONAL LABORATORY

2006-08-29T23:59:59.000Z

413

2002 SITE ENVIRONMENTAL REPORT.  

Science Conference Proceedings (OSTI)

The 2002 Site Environmental Report (SER) is prepared in accordance with DOE Order 231.1, ''Environment, Safety and Health Reporting'', and summarizes the status of Brookhaven National Laboratory's (BNL) environmental programs and performance and restoration efforts, as well as any impacts, both past and present, that Laboratory operations have had on the environment. The document is intended to be technical in nature. A summary of the report is also prepared as a separate document to provide a general overview and includes a CD version of the full report. Operated by Brookhaven Science Associates (BSA) for the Department of Energy (DOE), BNL manages its world-class scientific research with particular sensitivity to environmental and community issues. BNL's motto, ''Exploring Life's Mysteries...Protecting its Future'', reflects BNL's management philosophy to fully integrate environmental stewardship into all facets of its missions, with a health balance between science and the environment.

BROOKHAVEN NATIONAL LABORATORY

2003-10-01T23:59:59.000Z

414

2006 SITE ENVIRONMENTAL REPORT  

Science Conference Proceedings (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

BROOKHAVEN NATIONAL LABORATORY; RATEL,K.

2007-10-01T23:59:59.000Z

415

Atmospheric Corrosion Test Sites  

Science Conference Proceedings (OSTI)

Table 27   Some marine-atmospheric corrosion test sites around the world...Zealand Phia Marine 0.2 0.12 15.8 2.4 ? ? ? ? Greece Rafina Marine 0.2 0.12 13.6 1.0 ? ? ? ? Rhodes Marine 0.2 0.12 14.3 1.5 ? ? ? ? Netherlands Schagen Marine 2.4 1.5 17.0 2.0 ? ? ? ? Spain Almeria ? 0.035 0.022 22.4 1.6 ? ? ? ? Cartagena ? 0.050 0.031 5.2 1.9 ? ? ? ? La Coruña ? 0.160 0.1 26.2 1.4...

416

Site Map - Energy Innovation Portal  

Energy Innovation Portal Technologies. ... Home. Site Map; Printable Version; Share this resource. About; Search; Categories (15) Advanced Materials; Biomass and ...

417

DOE Patents Database - Site Index  

Office of Scientific and Technical Information (OSTI)

Site Index Home Advanced Search About Patent News Recent Inventions Technology Transfer Resources DOE Innovations FAQ Help RSS Contact Us...

418

NNSA Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSA Sites NNSA Sites NNSA Sites Compliance agreements for National Nuclear Security Administration sites are listed here with accompanying summaries. Los Alamos National Laboratory Consent Agreement, December 10, 1993 Los Alamos National Laboratory Consent Agreement, December 10, 1993 Summary Los Alamos National Laboratory Compliance Order, October 4, 1995 Los Alamos National Laboratory Compliance Order, October 4, 1995 Summary South Valley Compliance Agreement South Valley Compliance Agreement Summary Mutual Consent Agreement for Storage of LDR, January 6, 1994 Mutual Consent Agreement for Storage of LDR, January 6, 1994 Summary Nevada Test Site FFCA Consent Order, March 27, 1996 Nevada Test Site FFCA Consent Order, March 27, 1996 Summary Nevada Test Site FFCA Consent Order, May 10, 1996

419

Building & Site Services Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQs FAQs Conference Center and APS Site Activity Coordination Management and/or Coordination of APS Site Work/Services Safety & Emergency Management Database Maintenance Personnel Building and Site Services Coordination "We're at the End of our Pagers" The mission of the Building & Site Services Coordination is to efficiently manage and minimize the impact of APS building and site activities and to provide optimal support to APS staff and users in all 400 buildings and areas. FAQs Conference Center and APS Site Activity Coordination Locations Reservations Setups Visits & Tours Management and/or Coordination of APS Site Work/Services Work Entry Clearances Utility Shutdowns Telephone System Rigging Stockroom Office Furniture Installation Safety & Emergency Management

420

acid  

Office of Legacy Management (LM)

Acid/Pueblo Canyon, New Mexico, Site is Acid/Pueblo Canyon, New Mexico, Site is located near the town of Los Alamos, New Mexico, approximately 25 miles northwest of Santa Fe and 60 miles north-northeast of Albuquerque. The site is accessible from Canyon Road, which runs just south of the former waste treatment plant. The plant was situated on a mesa that forms the south rim of Acid Canyon. Acid Canyon is a small tributary near the head

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

OFF-SITE S  

Office of Legacy Management (LM)

S S e T B ~ I L L ~ C E ACTIVITIES OF THE NATIONAL E N V I R O N M E N T A L R E S E A R C H CENTER from July through December 197C / t i o n a l Environmental Research Centeq U. S. ~ ~ I R O N M E L S T P ~ TR~ECTIQN AGENCY e Unders tancling No. 23 (26-1)-539 for the U. S o ATOMIC ENERGY COlQ4ISSION OFF-SITE SURVEILLANCE ACTIVITIES OF THE NATIONAL E N V I R O N M E N T A L RESEARCH CENTER from July through December 197C by Monitoring Operations Laboratory National Environmental Research Center U. S. ENVIRONMENTAL P R O T E C T I O N AGENCY Las Vegas , Nevada Published February 1974 This work performed under a Memorandum of Understanding No. AT (26-1)-539 for the U . S. A T O M I C ENERGY C O M M I S S I O N ABSTRACT During t h e period J u l y through December 1970, s i x announced underground n u c l e a r tests were conducted a t t h e Nevada T

422

Field Research Challenge Site  

DOE Green Energy (OSTI)

Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.

Kerkhof, L.; Williams, K.H.; Long, P.E.; McGuinness, L.

2011-02-21T23:59:59.000Z

423

2004 SITE ENVIRONMENTAL REPORT  

Science Conference Proceedings (OSTI)

Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The SER is written to inform the public, regulators, Laboratory employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The report summarizes BNL's environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The SER is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/esd/SER.htm. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD version of the full report. The summary supports BNL's educational and community outreach program.

BROOKHAVEN NATIONAL LABORATORY; SER TEAM; ENVIRONMENTAL INFORMATION MANAGEMENT SERVICES GROUP; ENVIROMENTAL AND WASTE MANAGEMENT SERVICES DIVISION FIELD SAMPLING TEAM; (MANY OTHER CONTRIBUTORS)

2005-08-22T23:59:59.000Z

424

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

425

2007 Site Environmental Report  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the-length report.

Ratel,K.

2008-10-01T23:59:59.000Z

426

Snake Hells Canyon Subbasin Assessment  

E-Print Network (OSTI)

....................................................................................... 37 Figure 9. Projected populations of Idaho, Oregon, and Washington (U.S. Census Bureau 2000a). ....................................................................................................................... 38 Figure 10. Per capita income in the United States and in Idaho, Oregon, and Washington in 1999 (U Figure 11. Trend in civilian labor-force percent unemployment as per decade averages in Idaho, Washington

427

Cape Lisburne Barrow Canyon= hydrographic  

E-Print Network (OSTI)

, hydrography, light, nutrients, ice thickness, and zooplankton biomass and size composition. The instruments job adapting to the many challenges during the cruise. Thanks to S. Salo, Wm Floering, and L. De

428

Umatilla Satellite and Release Sites Project : Final Siting Report.  

DOE Green Energy (OSTI)

This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

Montgomery, James M.

1992-04-01T23:59:59.000Z

429

Nevada Test Site Environmental Report 2008 Attachment A: Site Description  

SciTech Connect

This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the sites geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the sites environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy A. Wills

2009-09-01T23:59:59.000Z

430

White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.  

DOE Green Energy (OSTI)

White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates of early life stages by modifying flows in the HCR, reducing mortality imposed by the catch and release fishery, augmenting natural production through translocation or hatchery releases, and assessing detrimental effects of contaminants on reproductive potential. These proposed actions were evaluated by assessing their relative potential to affect population growth rate and by determining the feasibility of their execution, including a realistic timeframe (short-term, mid-term, long-term) for their implementation and evaluation. A multi-pronged approach for management was decided upon whereby various actions will be implemented and evaluated under different timeframes. Priority management actions include: Action I- Produce juvenile white sturgeon in a hatchery and release into the management area; Action G- Collect juvenile white sturgeon from other populations in the Snake or Columbia rivers and release them into the management area; and Action D- Restore white sturgeon passage upriver and downriver at Lower Snake and Idaho Power dams. An integral part of this approach is the continual monitoring of performance measures to assess the progressive response of the population to implemented actions, to evaluate the actions efficacy toward achieving objectives, and to refine and redirect strategies if warranted.

Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-09-01T23:59:59.000Z

431

Redesigned ORNL DAAC Web Site  

NLE Websites -- All DOE Office Websites (Extended Search)

released a major revision to its Web site on Thursday, released a major revision to its Web site on Thursday, May 27, 2010. The new site includes many enhancements aimed at helping users locate and obtain data products and services. The simplified menu bar allows users to navigate quickly to products and services of interest and to access data through a variety of tools. The DAAC's Web site address remains unchanged (http://daac.ornl.gov), and as always, our products and services are available free of charge. Please note that your user account information will work on the new Web site. The Sign-in and Registration pages have a different look and will accept your email address as the User Name and retain your current password. If you have any problems accessing, signing-in, or registering with our new Web site, please contact our User Services Office, at +1 (865) 241-3952, or

432

Moab Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Site Moab Site Moab Site Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab

433

SSA Old Jack Pine Site  

NLE Websites -- All DOE Office Websites (Extended Search)

SSA-OJP) SSA-OJP) View an aerial photo-map of the SSA-OJP site. The road to the OJP site The flux tower and the hut The truss tower connected to the flux tower by cables The flux tower< The canopy access tower The SRC meteorology tower The under-canopy flux station The moss-covered jack pine tree The ground cover at the OJP site Aerial view of the SSA-Old Jack Pine site looking to the northeast. The Flux Tower at SSA-Old Jack Pine site. The Sodar site. The NOAA sodar located near the Old Jack Pine in the SSA. The under-canopy radiation track This is a 14 meter-long metal track in the forest with a mobile radiometer out on an arm on a small motorized cart (visible at the center of the picture) that travels through the forest taking measurements of PAR and net radiation.

434

Closure Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Sites Closure Sites Closure Sites View a list of the compliance agreements for the many EM closure sites, such as Mound and Rocky Flats, below. Associated summaries are also included. Pinellas Remediation Agreement Pinellas Remediation Agreement Summary Maxey Flats Consent Decree -Part 1, April 18, 1996 Maxey Flats Consent Decree -Part 2, April 18, 1996 Maxey Flats Consent Decree April 18, 1996 Summary Monticello Mill site Federal Facility Agreement, December 22, 1988 Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Battelle Columbus Laboratories Director's Final Findings and Orders, October 4, 1995 Summary Fernald Environmental Management Project Consent Agreement and Final Order,

435

HANFORD SITE ASSETS AND ATTRIBUTES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HANFORD SITE ASSETS AND ATTRIBUTES HANFORD SITE ASSETS AND ATTRIBUTES The Hanford Site provides the opportunity for long-term sustainable energy and industry development. The area boasts a specialized workforce that is highly educated and well-established; is rich in resources including land, infrastructure, low-cost energy, and available workforce; more scientists and engineers per capita than any other area in the Pacific Northwest; and is an optimum location for the development of sustainable energy solutions. Land The Hanford Site is one of the largest remaining land mega-sites available in the United States. * The 586-square-mile Hanford Site includes 39,000 acres designated for industrial use (9,000 acres for R&D). * The Comprehensive Land-Use Plan Environmental Impact Statement allows for a planning process

436

2010 Site Environmental Report  

SciTech Connect

Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and national security. BNL manages its world-class scientific research with particular sensitivity to environmental issues and community concerns. The Laboratory's motto, 'Exploring Life's Mysteries...Protecting its Future,' and its Environmental, Safety, Security and Health Policy reflect the commitment of BNL's management to fully integrate environmental stewardship into all facets of its mission and operations.

Ratel, K.; Lee, R; Remien, J; Hooda, B; Green, T; Williams, J; Pohlot, P; Dorsch, W; Paquette, D; Burke, J

2011-10-01T23:59:59.000Z

437

Site Environmental Report for 2001  

E-Print Network (OSTI)

National Laboratory, Mixed Waste Site Treatment Plan, Wastehazardous portion of mixed waste) and underground storageof certain hazardous and mixed wastes at the HWHF. Allowed

Pauer, Ron

2002-01-01T23:59:59.000Z

438

Site environmental report for 2002.  

SciTech Connect

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE, Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2002 was prepared in accordance with DOE Order 231.1. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2002. General site and environmental program information is also included.

Larsen, Barbara L.

2003-06-01T23:59:59.000Z

439

Chernobyls waste site  

Science Conference Proceedings (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

440

Site Map: Artificial Retina Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Index Home About the Project Overview How the Artificial Retina Works Implant Patient Stories Terry Byland Linda M. Kathy B. How to Participate Project Collaborators CRADA...

Note: This page contains sample records for the topic "bayo canyon site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Site Environmental Report for 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

identify site contribution to the DOE sustainability goals defined in its agency-level Strategic Sustainability Performance Plan. 10 In December 2011, Berkeley Lab prepared the...

442

Barro Colorado Site Image #1  

NLE Websites -- All DOE Office Websites (Extended Search)

BRR-1: Discussion of how to measure buttressed trees at the Barro Colorado tropical forest site, Panama. (Dr. Robin Foster with arm raised is showing Bolivian student Marielos...

443

Nevada Test Site Environmental Report 2005, Attachment A - Site Description  

SciTech Connect

This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy A. Wills

2006-10-01T23:59:59.000Z

444

Site Characterization Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Centers Field Sites Power Marketing Administration Other Agencies You are here Home Site Characterization Awards Site Characterization Awards A description of...

445

DOE - Office of Legacy Management -- Mound Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio Mound, Ohio, Site A CERCLA andor RCRA Site MoundMap DOE has completed all remediation activities at the Mound site in accordance with applicable Comprehensive Environmental...

446

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion More...

447

Legacy Management Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legacy Management Sites Legacy Management Sites Alaska Puerto Rico Continental US Click on a site for more information. The Energy Department is committed to managing its...

448

Categorical Exclusion Determinations: SLAC Site Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLAC Site Office Categorical Exclusion Determinations: SLAC Site Office Categorical Exclusion Determinations issued by SLAC Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD May 2,...

449

M & O Contract Recompete Site -- Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Information Pantex Home Page (weblink) Ten Year Site Plan (weblink) Site Fact Sheet (weblink) Pantex Finance Benchmark Redacted Presentation (pdf, 634 KB) Pantex HR Benchmark...

450

Transition of Sites from Environmental Management Memorandum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from...

451

Site Selection Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Selection Process Site Selection Process SiteSelectionProcess.pdf More Documents & Publications dgappendices.pdf REAL ESTATE PROCESS OPAM Policy Acquisition Guides...

452

acid  

NLE Websites -- All DOE Office Websites (Extended Search)

Acid/Pueblo Canyon, New Mexico, Site. Acid/Pueblo Canyon, New Mexico, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Acid/Pueblo Canyon, New Mexico, Site is located near the town of Los Alamos, New Mexico, approximately 25 miles northwest of Santa Fe and 60 miles north-northeast of Albuquerque. The site is accessible from Canyon Road, which runs just south

453

Site environmental report for 1996  

Science Conference Proceedings (OSTI)

To help verify effective protection of public safety and preservation of the environment, Sandia National Laboratories (SNL)/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the