National Library of Energy BETA

Sample records for bay reactor neutrino

  1. Daya Bay Reactor Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are...

  2. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrinos Turn into Muon Neutrinos | U.S. DOE Office of Science (SC) The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F:

  3. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrinos Turn into Muon Neutrinos | U.S. DOE Office of Science (SC) The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  4. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect (OSTI)

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  5. The detector system of the Daya Bay reactor neutrino experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  6. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    SciTech Connect (OSTI)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90% confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.

  7. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  8. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect (OSTI)

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  9. Key Neutrino behavior observed at Daya Bay (The College of William and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mary) | Jefferson Lab Key Neutrino behavior observed at Daya Bay (The College of William and Mary) External Link: http://www.wm.edu/news/stories/2012/key-neutrino-behavior-observed-at-daya-bay-1... By jlab_admin on Thu, 2012-03-08

  10. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect (OSTI)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  11. Researchers Discover a New Kind of Neutrino Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linda Vu, lvu@lbl.gov, +1 510 495 2402 Daya Bay Neutrino Facility in China. Photo by: Roy ... Surprising Results Nuclear reactors of the China Guangdong Nuclear Power Group at Daya Bay ...

  12. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  13. Independent measurement of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaffe, D. E.

    2014-10-03

    A new measurement of the θ13 mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of the θ13 measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GWth reactors, the rate deficit observed at the far hall is interpreted as sin22θ13=0.083±0.018 in the three-flavor oscillationmore » model. When combined with the gadolinium-capture result from Daya Bay, we obtain sin22θ13=0.089±0.008 as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.« less

  14. Independent measurement of the neutrino mixing angle ?13 via neutron capture on hydrogen at Daya Bay

    SciTech Connect (OSTI)

    Jaffe, D. E.

    2014-10-03

    A new measurement of the ?13 mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of the ?13 measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GWth reactors, the rate deficit observed at the far hall is interpreted as sin22?13=0.0830.018 in the three-flavor oscillation model. When combined with the gadolinium-capture result from Daya Bay, we obtain sin22?13=0.0890.008 as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.

  15. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    SciTech Connect (OSTI)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  16. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  17. Breakthrough Prize Honors Neutrino Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Prize Honors Neutrino Research The Daya Bay and Ling Ao nuclear power reactors, pictured here behind Bob McKeown, are located roughly 55 kilometers from Hong Kong. The Daya Bay and Ling Ao nuclear power reactors, pictured here behind Bob McKeown, are located roughly 55 kilometers from Hong Kong. Breakthrough Prize Honors Neutrino Research He missed the 'glitzy Oscars for science,' but that's OK with Bob McKeown. McKeown is the Governor's Distinguished CEBAF Professor in William

  18. Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrinos from the NuMI beamline in the MiniBooNE detector Alexis A. Aguilar-Arevalo for the MiniBooNE and MINOS collaborations Department of Physics, Columbia University 512 West 120th St., New York, NY 10025, USA Abstract. With the startup of the NuMI beamline early in 2005, the MiniBooNE detector has the unique opportunity to be the first user of an off-axis neutrino beam (110 mrad off-axis). MiniBooNE is assembling a rich sample of neutrino interactions from this source. Keywords: Neutrino,

  19. Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino cross section measurements at MiniBooNE H. A. Tanaka a a Department of Physics, Joseph Henry Laboratories Princeton University Princeton, New Jersey 08544, USA MiniBooNE (Booster Neutrino Experiment) is accumulating a large sample of O(1 GeV) ν µ interactions in the neutrino beam produced by the 8 GeV Booster synchrotron at Fermilab. Analyses of ν µ charged current quasi- elastic scattering and neutral current π 0 production, as well as neutral current elastic scattering and

  20. Experimental Neutrino Physics: Final Report

    SciTech Connect (OSTI)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  1. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    SciTech Connect (OSTI)

    Ding Yayun; Zhang Zhiyong

    2010-05-12

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  2. Neutrinos in Nuclear Physics

    SciTech Connect (OSTI)

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  3. Measurement of the reactor antineutrino flux and spectrum at Daya Bay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    D. E. Jaffe; Bishai, M; Diwan, M.; Gill, R.; Hackenburg, R. W.; Hans, S.; Hu, L. M.; Jaffe, D. E.; Kettell, S. H.; Tang, W.; et al

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GWth nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 ± 0.04) × 10–18 cm2/GW/day or (5.92 ± 0.14) × 10–43 cm2/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ± 0.022more » (0.991 ± 0.023) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ~4σ between 4-6 MeV. Furthermore, a reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.« less

  4. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    SciTech Connect (OSTI)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang; Noack, Volker; Baeuerle, Guenther

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted waste monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)

  5. Booster Neutrino Experiment - About Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from major neutrino experiments and important results in neutrino physics. Includes java applets. Janet's Neutrino Oscillation Page More extensive material about neutrino...

  6. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect (OSTI)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-08-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical and acoustic properties. The rock strength values range from 23 to 219 MPa and the Poisson's ratio from 0.1 to 0.38. Potential geologic hazards in the Diablo Canyon area were identified and described to provide an overall picture of processes that may affect tunnel construction activities.

  7. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect (OSTI)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-06-11

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical and acoustic properties. The rock strength values range from 23 to 219 MPa and the Poisson's ratio from 0.1 to 0.38. Potential geologic hazards in the Diablo Canyon area were identified and described to provide an overall picture of processes that may affect tunnel construction activities.

  8. Energy Neutrinos Ever Lisa Gerhardt, LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IceCube and the Highest Energy Neutrinos Ever Lisa Gerhardt, LBNL NUG 2014 February 5, 2014 2 Neutrinos Neutrinos are produced locally in Sun, nuclear reactors, and cosmic ray interactions in atmosphere "Small neutral one" Fundamental particle Three Flavors "Ghost Particle" 3 Why neutrinos? Three particles to observe the universe - Photons, cosmic rays, and neutrinos High energy photons are absorbed by dust, other photons Cosmic rays are bent by magnetic fields -

  9. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Theory Neutrino Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Neutrino Theory solar neutrino Figure 1: Impact of the solar neutrino mass splitting on collective oscillations of supernova neutrinos. Notice that while the strictly vanishing splitting gives the two-flavor result, even a tiny nonzero value qualitatively changes the answer. From [1]. Neutrino physics underwent

  10. neutrinos matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nu0001 PDF full text version nu0001 HTML full text version nu0002 Credits nu0003 Contents nu0004 Introduction nu0005 Neutrinos are Everywhere nu0006 What are neutrinos? nu0007 A new particle? nu0008 Origins nu0009 Making neutrinos nu0010 Seeing neutrinos nu0011 Big detector nu0012 Neutrinos are there nu0013 Loners of the universe nu0014 The neutrino family nu0015 Neutrino tracks nu0016 Do they have mass? nu0017 What if they do? nu0018 Oscillations nu0019 Seeing the invisible nu0020 Neutrinos

  11. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  12. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions, Phys.Lett. B 594, 347 (2004). A. Friedland and C. Lunardini, A Test of tau neutrino interactions with atmospheric neutrinos and K2K, Phys.Rev. D 72, 053009...

  13. Neutrino Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations from the Sudbury Neutrino Observatory A.W.P. Poon 1 Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Abstract. The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D 2 O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar ν e flux and the total flux of all active neutrino

  14. Neutrino factory

    SciTech Connect (OSTI)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  15. Neutrino factory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  16. Neutrinos: an Open Window on Fundamental Physics and the Evolution of the Universe

    SciTech Connect (OSTI)

    Pascoli, Silvia

    2010-08-18

    In the past ten years, a series of experiments has confirmed that neutrinos can oscillate between different types ('flavors') and have mass. These results are the first solid evidence for physics beyond the Standard Model of Particle Physics, with profound implications for the Universe and the laws that govern it. Thanks to a broad experimental program, including accelerator- and reactor-based experiments such as MINOS, MiniBooNE, T2K, Double-CHOOZ, Daya Bay, NOvA, LBNE, and searches for neutrinoless double beta decay, we have just entered the 'precision era' in neutrino physics. I will review the status of experimental results, their implications for our understanding of neutrino properties, and the questions that must be addressed. I will give an overview of the exciting experimental program that is underway and I will discuss how neutrino physics will help in opening a new window on the fundamental laws of Nature, its fundamental constituents, and the evolution of the Universe.

  17. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline ...

  18. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    SciTech Connect (OSTI)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Themann, H.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9105 GWth ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2?13 and |?m2ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2?13=0.0840.005 and |?m2ee|=(2.420.11)103 eV2 in the three-neutrino framework.

  19. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; et al

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×105 GWth ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors.more » Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2θ13 and |Δm2ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2θ13=0.084±0.005 and |Δm2ee|=(2.42±0.11)×10–3 eV2 in the three-neutrino framework.« less

  20. New measurement of θ13 via neutron capture on hydrogen at Daya Bay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    F. P. An

    2016-04-21

    This article reports an improved independent measurement of neutrino mixing angle θ13 at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β-decays with the emitted neutron captured by hydrogen, yielding a data set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resultedmore » in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13 = 0.071 ± 0.011 in the three-neutrino-oscillation framework. As a result, the combination of this result with the gadolinium-capture result is also reported.« less

  1. REACTOR

    DOE Patents [OSTI]

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  2. Fermilab | Science | Particle Physics | Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino experiment, MINOS, which studies the oscillation of muon neutrinos to tau neutrinos. The DONUT experiment at Fermilab made the first ever direct observation of a...

  3. Why study neutrinos?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why study neutrinos? Neutrinos are by far the most abundant particles in the universe. About 100 trillion neutrinos pass through your body every second without interacting with any of the particles in your body. You never notice them. The combination of that ghostly presence and the important role neutrinos play in the universe captivates physicists. Neutrinos play a role in many fundamental aspects of our lives; they are produced in nuclear fusion processes that power the sun and stars, they

  4. REACTORS

    DOE Patents [OSTI]

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  5. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from major neutrino experiments and important results in neutrino physics. Includes java applets. Janet's Neutrino Oscillation Page More extensive material about neutrino...

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    click to enlarge About neutrinos: Neutrinos come in three flavors: electron, muon, and tau. Neutrinos are everywhere - 100 trillion neutrinos pass through our bodies every...

  8. Short Baseline Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decay region is followed by an absorber and 450 m of dirt, beyond which only the neutrino component of the beam survives. e ? The MiniBooNE Neutrino Beam March 10, 2003...

  9. Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of

  10. Neutrino Oscillation Physics

    SciTech Connect (OSTI)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  11. Introduction to Neutrino Physics

    SciTech Connect (OSTI)

    Linares, Edgar Casimiro

    2009-04-30

    I present a basic introduction to the physics of the neutrino, with emphasis on experimental results and developments.

  12. Geo-neutrino Observation

    SciTech Connect (OSTI)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  13. Measuring Neutrino Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Neutrino Interactions with MiniBooNE R. Tayloe for the MiniBooNE collaboration Physics Department, Indiana University Bloomington, IN 47405, USA Abstract. The MiniBooNE neutrino oscillation experiment has collected a large sample of charged- and neutral-current neutrino interaction events. These samples are important to understand the normalization and backgrounds in neutrino oscillation searches. They also reveal insight into the structure of the nucleus and nucleon. The MiniBooNE

  14. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  15. Collective neutrino oscillations in supernovae

    SciTech Connect (OSTI)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  16. MINOS Sterile Neutrino Search

    SciTech Connect (OSTI)

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  17. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project

    Energy Savers [EERE]

    (LBNF-DUNE) | Department of Energy Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Chris Mossey, Deputy Lab Director (Fermi) and Project Director for LBNF-DUNE March 23, 2016 PDF icon Presentation More Documents & Publications EA-1943: Final Environmental Assessment EA-1943: Draft Environmental

  18. Toward reactor monitoring with antineutrinos

    SciTech Connect (OSTI)

    Guillon, Benoit; Cormon, S.; Fallot, M.; Giot, L.; Martino, J.; Cribier, M.; Lasserre, T.

    2007-07-01

    The fundamental knowledge on neutrino properties acquired in recent years as well as the great experimental progress made on neutrino detection open nowadays the possibility of applied neutrino physics. Among it, the International Atomic Energy Agency (IAEA) asked to its member states to study the possibility of nuclear reactor monitoring applications, such as the thermal power measurement or the fuel composition bookkeeping. In this context, we report studies aiming at a better determination of the antineutrino energy spectrum emitted by nuclear power plants, necessary for reactor monitoring applications, but also for experiments studying the ground properties of these particles. (authors)

  19. zeller-neutrino08.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino 08 1 Low Energy Cross Sections Sam Zeller LANL Neutrino 08 May 28, 2008 * review of experimental programs at K2K, MiniBooNE, SciBooNE, and MINERA Sam Zeller, Neutrino...

  20. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    May 27, 2015 EA-1943: Draft Environmental Assessment Long Baseline Neutrino FacilityDeep Underground Neutrino Experiment (LBNFDUNE) at Fermilab, Batavia, Illinois and the...

  1. Muon Neutrino to Electron Neutrino Oscillation in NO$\

    SciTech Connect (OSTI)

    Sachdev, Kanika

    2015-08-01

    NOvA is a long-baseline neutrino oscillation experiment optimized for electron neu- trino ( e) appearance in the NuMI beam, a muon neutrino ( $\

  2. Solar neutrino detection

    SciTech Connect (OSTI)

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  3. Booster Neutrino Experiment - Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back The MiniBooNE Experiment next The Oscillating Neutrino Normal matter is made of atoms. Atoms are also composite objects, made up in turn of protons and neutrons (in the nucleus) and the lightweight and familiar electrons. Electrons belong to a class of particles called leptons, the same family to which neutrinos belong. Neutrinos are the very lightweight (originally thought massless) neutral partners of the electrically charged electron and its more exotic cousins the muon and the tau.

  4. Neutrinos: Nature's Ghosts?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  5. Booster Neutrino Experiment - Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    close The MiniBooNE Experiment next The Oscillating Neutrino The first phase of the Booster Neutrino Experiment (BooNE) at the Fermi National Accelerator Laboratory is a smaller version of the final planned experiment, and has been dubbed "MiniBooNE." The physicists working on MiniBooNE are trying to find out more about the fundamental properties of neutrinos. But, what exactly is a neutrino? To answer that question, we need to look at what's called the Standard Model of particles and

  6. Low Energy Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Energy Neutrino Oscillations Žarko Pavlović Los Alamos National Laboratory APS April Meeting, May 1 2011 Standard Model & Neutrino Oscillations ● 3 neutrinos ● Initially assumed massless ● Mixing matrix: ● Oscillation Probability:   e      =  U e1 U e2 U e3 U 1 U 2 U 3 U  1 U  2 U  3    1  2  3  Neutrino Oscillations ● Lot of experimental evidence ● L/E dependence ● Precise measurement of atmospheric and solar

  7. A prototype station for ARIANNA: a detector for cosmic neutrinos

    SciTech Connect (OSTI)

    Gerhardt, L.; Klein, S.; Stezelberger, T.; Barwick, S.; Dookayka, K.; Hanson, J.; Nichol, R.

    2010-05-27

    The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 1017 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +- 6 m at the deployment site.

  8. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  9. Hooper Bay Efficiency Feasibility Study

    Office of Environmental Management (EM)

    (OUR PEOPLE) Hooper Bay Energy Efficiency Feasibility ... The name Hooper Bay came into common usage after a post ... BAY IS MARITIME. THE MEAN ANNUAL SNOWFALL IS 75 INCHES ...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  11. Total absorption spectroscopy study of ?Rb decay: A major contributor to reactor antineutrino spectrum shape [Total absorption spectroscopy study of ?Rb: A major contributor to reactor antineutrino flux

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermorethe fission of ?,?Pu and ?,?U, and whose beta decay properties might deserve new measurements. Among these nuclei, ?Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ?Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ?Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were consideredless

  12. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  13. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

  15. Neutrino_Lectures_1and2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lectures on Neutrino Physics Lake Louise School February, 2002 Mike Shaevitz Lecture 1: Neutrino Interactions Example: NuTeV sin 2 θ W Measurement Direct Neutrino Mass Measurements Neutrino Oscillation Phenomenology Solar Neutrinos (part 1) Lecture 2: Solar Neutrinos (part 2) Atmospheric and Longbaseline Exps. LSND Region Experiments Summary and Conclusions 2 Introduction to Neutrino Interactions 3 Neutrino Interactions * W exchange gives Charged-Current (CC) events and Z exchange gives

  16. Cosmological and supernova neutrinos

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GS, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  17. Probing Late Neutrino Mass Properties With SupernovaNeutrinos...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Probing Late Neutrino Mass Properties With SupernovaNeutrinos Citation ... DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: ...

  18. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) ... NEUTRINO OSCILLATION; NEUTRINOS; NUCLEONS; SCATTERING; SIMULATION; STATISTICS; TARGETS

  19. No-neutrino double beta decay: more than one neutrino

    SciTech Connect (OSTI)

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  20. Perspectives on neutrino telescopes 2009

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab /Karlsruhe U., TTP

    2009-04-01

    Remarks at the roundtable on plans for the future at the XIII International Workshop on Neutrino Telescopes.

  1. Results from Neutrino Oscillations Experiments

    SciTech Connect (OSTI)

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  2. Are neutrinos their own antiparticles?

    SciTech Connect (OSTI)

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  3. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments [OSTI]

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  4. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleon Elastic Scattering in MiniBooNE D. Christopher Cox for the MiniBooNE Collaboration Indiana University, Bloomington, IN Abstract. Neutrino nucleon elastic scattering ν N → ν N is a fundamental process of the weak interaction, and can be used to study the structure of the nucleon. This is the third largest scattering process in MiniBooNE comprising ∼15% of all neutrino interactions. Analysis of this sample has yielded a neutral current elastic differential cross section as a function

  5. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  6. Neutrino Factory Downstream Systems

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  7. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect (OSTI)

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  9. Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems

    Office of Scientific and Technical Information (OSTI)

    discrepancy. While at Brookhaven, Ray Davis conducted research and experiments in solar neutrinos at Homestake Gold Mine in South Dakota. This research was funded by the...

  10. Solar neutrino experiments: An update

    SciTech Connect (OSTI)

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  11. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  12. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  13. Cosmic Neutrinos Scott Dodelson Fermilab/UChicago

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matter particles with the smallest mass, neutrinos, are also the most abundant in the Universe. Large cosmic surveys can not only detect these neutrinos, produced when the Universe...

  14. Frederick Reines and the Neutrino

    Office of Scientific and Technical Information (OSTI)

    Technical Report, July 1976 The Neutrino: From Poltergeist to Particle; Review of Modern Physics, Vol. 68, Issue 2: 317-327, April 1996 Top Additional Web Pages: Landmarks: ...

  15. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  16. Masatoshi Koshiba and Cosmic Neutrinos

    Office of Scientific and Technical Information (OSTI)

    ... Nobel Lecture by Masatoshi Koshiba, nobelprize.org (video) Masatoshi Koshiba - Detection of Cosmic Neutrinos, vega.org (video) Interview with Riccardo Giacconi, Masatoshi Koshiba ...

  17. Frederick Reines and the Neutrino

    Office of Scientific and Technical Information (OSTI)

    of California Irvine Until Reines's discovery, physicists had only theorized the existence of the neutrino - and physicists believed the tiny particles would never be...

  18. Neutrino Interaction Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making the First Neutrino Interaction Measurements on Argon at Low Energy with MicroBooNE Jason St. John University of Cincinnati 1 The µB Collaboration Brookhaven Lab Hucheng Chen Kai Chen (PD) Susan Duffin Jason Farell Francesco Lanni Yichen Li (PD) David Lissauer George Mahler Don Makowiecki Joseph Mead Veljko Radeka Sergio Rescia Andres Ruga Jack Sondericker Craig Thorn (IB) Bo Yu University of Chicago Will Foreman (GS) Johnny Ho (GS) David Schmitz (IB) University of Cincinnati Ryan Grosso

  19. Birth of Neutrino Astrophysics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  20. Experimental Neutrino Physics

    ScienceCinema (OSTI)

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  1. Chesapeake Bay Test Site | Open Energy Information

    Open Energy Info (EERE)

    Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status...

  2. Total absorption spectroscopy study of ?Rb decay: A major contributor to reactor antineutrino spectrum shape [Total absorption spectroscopy study of ?Rb: A major contributor to reactor antineutrino flux

    SciTech Connect (OSTI)

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ?,?Pu and ?,?U, and whose beta decay properties might deserve new measurements. Among these nuclei, ?Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ?Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ?Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  3. Neutrino flux predictions for cross section measurements (Journal...

    Office of Scientific and Technical Information (OSTI)

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section ...

  4. Prospects for Relic Neutrino Detection at PTOLEMY: Princeton...

    Office of Environmental Management (EM)

    Prospects for Relic Neutrino Detection at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield Prospects for Relic Neutrino Detection at...

  5. ANTARES deep sea neutrino telescope results

    SciTech Connect (OSTI)

    Mangano, Salvatore [IFIC - Instituto de Fsica Corpuscular, Edificio Institutos de Investigatin, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  6. Neutrino Scattering Results from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Supported by the DOE Office of Science Raymond Davis Jr., a chemist at the U.S. Department of Energy's Brookhaven National Laboratory, will be awarded a quarter share of the 2002 Nobel Prize in Physics for detecting solar neutrinos, ghostlike particles produced in nuclear reactions that power the sun. Davis shares the prize with Masatoshi Koshiba of Japan, and Riccardo Giaconni of the U.S. Ray Davis Jr. Ray Davis Jr. December 10, 2002-The award of a share of the 2002 Nobel Prize for

  7. Sterile Neutrinos in Cold Climates

    SciTech Connect (OSTI)

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224≤ 0.02 at m2 ~ 0.3 eV 2, and the LSND and MiniBooNE allowed regions are excluded at >99% confidence level.

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995, the LSND collaboration presented strong evidence for the oscillation of muon anti-neutrinos into electron anti-neutrinos. These results led to mass-squared differences around 1 eV2 -- much larger than those observed by atmospheric and solar neutrino oscillation experiments. The LSND measurement remains to be confirmed.

  9. Recent Neutrino Interaction Measurements Mike Wilking TRIUMF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Interaction Measurements Mike Wilking TRIUMF PIC Conference, 3-Sept-2010 Neutrinos: more than just missing E T ... ! Interactions and Oscillations * Neutrino oscillation experiments have now moved into the realm of precision physics * Cross section uncertainties are now becoming an important factor in interpreting oscillation data * The next generation of accelerator-based neutrino experiments all take place at the ~1 GeV neutrino energy scale * In the last few years, several new cross

  10. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect (OSTI)

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  11. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  12. The Fermilab neutrino beam program

    SciTech Connect (OSTI)

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux The MiniBooNE neutrino flux calculations are described in detail in PRD 79, 072002 (2009) and arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino fluxes π+ production Data sets: M.G. Catanesi et al. [HARP Collaboration], ``Measurement of the production cross-section of positive pions in the collision of 8.9-GeV/c protons on beryllium,'', arXiv:hep-ex/0702024 E910

  14. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  15. Nonequilibrium neutrino statistical mechanics in the expanding...

    Office of Scientific and Technical Information (OSTI)

    We study neutrino decoupling in the early Universe (ital tsimilar tosec,ital Tsimilar toMeV) by integrating the Boltzmann equations that govern the neutrino phase-space ...

  16. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    High-energy Neutrino Beams; Review of Modern Physics, Vol. 61, Issue 3: 533 - 545; July 1989 Top Additional Web Pages: Discovery of the Muon-Neutrino, 1988 The 1988 Nobel Prize in...

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from one of the Fermilab proton accelerators -- the Booster -- are used to generate muon neutrinos, one of the three types of neutrinos presently known. In the first stage of...

  18. Particle physics confronts the solar neutrino problem

    SciTech Connect (OSTI)

    Pal, P.B.

    1991-06-01

    This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future.

  19. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  20. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect (OSTI)

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  1. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments [OSTI]

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  2. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  3. European Strategy for Future Neutrino Physics

    ScienceCinema (OSTI)

    None

    2011-10-06

    A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

  4. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    SciTech Connect (OSTI)

    KamLAND,; O'Donnell, Thomas

    2011-12-12

    This dissertation describes a measurement of the neutrino oscillation parameters #1;{Delta}m{sup 2}{sub 21}, θ{sub 12} and constraints on θ{sub 13} based on a study of reactor antineutrinos at a baseline of ∼ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ? 0.07 ? 10{sup 32} proton-years. For this exposure we expect 2140 ? 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350?88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (N{sub Obs} − N{sub Bkg})/N{sub Exp} = 0.59 ? 0.02(stat) ? 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.19}?10{sup −5}eV{sup 2}, θ{sub 12} = 32.5 ? 2.9 degrees and sin{sup 2} θ{sub 13} = 0.025{sup +0.035}{sub −0.035}, the 95% confidence-level upper limit on sin{sup 2} θ{sub 13} is sin{sup 2} θ{sub 13} < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.20} ? 10{sup −5}eV{sup 2}, θ{sub 12} = 33.5{sup +1.0}{sub −1.1} degrees, and sin{sup 2} θ{sub 13} = 0.013 ? 0.028 or sin{sup 2} θ{sub 13} < 0.06 at the 95% confidence level.

  5. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect (OSTI)

    Duan, Huaiyu; Shalgar, Shashank, E-mail: duan@unm.edu, E-mail: shashankshalgar@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  6. Secretary's Achievement Award | Department of Energy

    Energy Savers [EERE]

    Science Daya Bay reactor Neutrino Detector Project.pdf More Documents & Publications 2012 Awards for Project Management PM Workshop 2012 Awards Recognition - Secretary's Awards Secretary's Achievement Award

  7. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect (OSTI)

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  8. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  9. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect (OSTI)

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  10. Bay Solar Power Design | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Design Jump to: navigation, search Name: Bay Solar Power Design Place: California Product: US-based PV system installer. References: Bay Solar Power Design1 This...

  11. Bay Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  12. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    Open Energy Info (EERE)

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  13. Everything under the sun: A review of solar neutrinos (Journal...

    Office of Scientific and Technical Information (OSTI)

    Everything under the sun: A review of solar neutrinos Citation Details In-Document Search Title: Everything under the sun: A review of solar neutrinos Solar neutrinos offer a...

  14. Double beta decay, Majorana neutrinos, and neutrino mass

    SciTech Connect (OSTI)

    Avignone, Frank T. III; Elliott, Steven R.; Engel, Jonathan [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (United States)

    2008-04-15

    The theoretical and experimental issues relevant to neutrinoless double beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics, and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the nonobservation of neutrinoless double beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

  15. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FTPOBOU 1JPO 1SPEVDUJPO r 3FDFOU .FBTVSFNFOUT . 5[BOPW 6OJWFSTJUZ PG $PMPSBEP Neutrino 2010 Conference, Athens Greece Martin Tzanov University of Colorado Neutrino 2010 3FTPOBOU 1JPO 1SPEVDUJPO r 3FDFOU .FBTVSFNFOUT Introduction. Experiments Review. Recent results. Future experiments. Summary. Martin Tzanov University of Colorado Neutrino 2010 Introduction A new interest in neutrino interactions in the few-GeV region started with the discovery of neutrino oscillations. Neutrino charged-current

  16. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008 Neutrino 2008 Steve Brice (FNAL) 2 Outline * Electron Neutrino Appearance - Oscillation Result - π 0 Rate Measurement - Combining Analyses - Compatibility of High ∆m 2 Measurements - Low Energy Electron Candidate Excess - Data from NuMI Beam * Muon Neutrino Disappearance * Anti-Electron Neutrino Appearance * Summary Neutrino 2008 Steve Brice (FNAL) 3 2 National Laboratories, 14 Universities, 80

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detecting Neutrinos Detectors in high energy physics use a particle's electrical properties to detect and identify it. Neutrinos, or ``little neutral ones,'' are impossible to track directly because, as the term "neutral" implies, they lack any electrical charge. The presence of neutrinos can only be inferred by detecting the charged particles they produce when they collide and interact with matter. By characterizing the resulting product particles (their charge and energy), physicists

  18. Detecting electron neutrinos from solar dark matter annihilation...

    Office of Scientific and Technical Information (OSTI)

    Detecting electron neutrinos from solar dark matter annihilation by JUNO Citation Details In-Document Search Title: Detecting electron neutrinos from solar dark matter annihilation ...

  19. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino ...

  20. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The ...

  1. Forecasting neutrino masses from combining KATRIN and the CMB...

    Office of Scientific and Technical Information (OSTI)

    ... EV RANGE; MONTE CARLO METHOD; NEUTRINO DETECTION; NEUTRINO REACTIONS; PROBABILITY; REST MASS Word Cloud More Like This Full Text Journal Articles DOI: 10.1103...

  2. EA-1943: Construction and Operation of the Long Baseline Neutrino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    43: Construction and Operation of the Long Baseline Neutrino Facility and Deep Underground ... EA-1943: Construction and Operation of the Long Baseline Neutrino Facility and Deep ...

  3. Scintillator yields glimpse of elusive solar neutrinos

    SciTech Connect (OSTI)

    Smart, Ashley G.

    2014-11-01

    The low-energy neutrinos are byproducts of the first reaction in a chain that generates 99% of the Suns energy.

  4. Non-Oscillation Probes of Neutrino Masses

    SciTech Connect (OSTI)

    Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-03-30

    The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

  5. From super beams to neutrino factories

    SciTech Connect (OSTI)

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  6. MicroBooNE First Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino event reconstruction identified. The images are below. collection plane: induction plane 1: induction plane 2: collection plane: induction plane 1: induction plane 2:...

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost...

  9. Fermilab | Science | Questions for the Universe | The Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Neutrino Experiment, Daya Bay, China NOvA (proposed), Fermilab, Batavia, IL ... In the longer-term future, experiments such as Daya Bay in China, Double CHOOZ in France, ...

  10. Neutrino telescopes in the World

    SciTech Connect (OSTI)

    Ernenwein, J.-P.

    2007-01-12

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

  11. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect (OSTI)

    NONE

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeVPeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  12. Evidence for neutrino mass: A decade of discovery

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  13. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  14. The neutrino portal to new physics

    SciTech Connect (OSTI)

    Ma, Ernest

    2014-06-24

    Neutrinos may have interactions beyond those of the standard model. They may be responsible for neutrino mass and provide a link to other fundamental issues of particle physics such as dark matter. A brief incomplete survey of some of the theoretical ideas along this direction is offered.

  15. Neutrino SuperBeams at Fermilab

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2011-08-23

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  16. Light sterile neutrinos in the early universe

    SciTech Connect (OSTI)

    Lunardini, Cecilia

    2014-06-24

    Cosmological and terrestrial data suggests the number of light neutrinos may be greater than 3, motivating a careful reexamination of cosmological bounds on extra light species. Big bang nucleosynthesis constrains the number of relativistic neutrino species present during nucleosynthesis, N{sub eff}{sup BBN}, while measurements of the cosmic microwave background (CMB) angular power spectrum constrain the effective energy density in relativistic neutrinos at the time of matter-radiation equality, N{sub eff}{sup CMB}. We review a scenario with two sterile neutrinos and explore whether partial thermalization of the sterile states can ease the tension between cosmological constraints on N{sub eff}{sup BBN} and terrestrial data. We conclude that, still, two additional light sterile neutrinos species cannot fit all the data at the 95% confidence level.

  17. Dirac neutrino in warped extra dimensions

    SciTech Connect (OSTI)

    Chang, W.-F.; Ng, John N.; Wu, Jackson M. S.

    2009-12-01

    We implement Dirac neutrinos in the minimal custodial Randall-Sundrum setting via the Krauss-Wilczek mechanism. We demonstrate by giving explicit lepton mass matrices that with neutrinos in the normal hierarchy, lepton mass and mixing patterns can be naturally reproduced at the scale set by the constraints from electroweak precision measurements, and at the same time without violating bounds set by lepton flavor violations. Our scenario generically predicts a nonzero neutrino mixing angle {theta}{sub 13}, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which partner the right-handed standard model charged leptons. These relatively light KK neutrinos may be searched for at the LHC.

  18. Investigation of Neutrino Properties with Bolometric Detectors

    SciTech Connect (OSTI)

    Heeger, Karsten M

    2014-11-01

    Neutrino mass and mixing are amongst the major discoveries of the past decade. The particle nature of neutrinos and the hierarchy of mass eigenstates, however, are unknown. Neutrinoless double beta-decay (0νββ) is the only known mechanism to test whether neutrinos are their own antiparticles. The observation of 0νββ would imply lepton number violation and show that neutrinos have Majorana mass. This report describes research activities performed at the University of Wisconsin in 2011-2014 aimed at the search for 0νββ with CUORE-0 and CUORE with the goal of exploring the inverted mass hierarchy region and probing an effective neutrino mass of ~40- 120 meV.

  19. Resolving Standard and Nonstandard CP Violation Phases in Neutrino Oscillations

    SciTech Connect (OSTI)

    Gago, A. M.; Minakata, H.; Uchinami, S.; Nunokawa, H.; Zukanovich Funchal, R.

    2010-03-30

    Neutrino oscillations can exhibit extra CP violation effects, beyond those expected from the standard Kobayashi-Maskawa phase delta, if non-standard neutrino interactions are at play. We show that it is possible to disentangle the two CP violating effects by measuring muon neutrino appearance using a near-far two detector setting in a neutrino factory experiment.

  20. Detecting Neutrinos with the NOvA Detectors (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    PARTICLES AND FIELDS NOVA; NEUTRINO; NEUTRINO DETECTOR; DETECTOR; COSMIC RAY; NEUTRINO INTERACTION Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia...

  1. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  2. A reactor core on-line monitoring program - COMP

    SciTech Connect (OSTI)

    Wang, C.; Wu, H.; Cao, L.

    2012-07-01

    A program named COMP is developed for on-line monitoring PWRs' in-core power distribution in this paper. Harmonics expansion method is used in COMP. The Unit 1 reactor of Daya Bay Nuclear Power Plant (Daya Bay NPP) in China is considered for verification. The numerical results show that the maximum relative error between measurement and reconstruction results from COMP is less than 5%, and the computing time is short, indicating that COMP is capable for online monitoring PWRs. (authors)

  3. Neutrino Cross-Section Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N u F a c t 0 9 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams July 20-25, 2009 - Illinois Institute of Technology - Chicago David Schmitz, Fermilab Outline  Quick Audience Survey  Introduction  Relevant Energies and Targets  Current Cross-Section Experiments  Recent Results and Mysteries  Future Cross-Section Experiments NuFact09 - IIT, Chicago - 07/24/2009 D. Schmitz, Fermilab White Sox Survey D. Schmitz, Fermilab NuFact09 - IIT, Chicago -

  4. Influence of flavor oscillations on neutrino beam instabilities

    SciTech Connect (OSTI)

    Mendona, J. T.; Haas, F.; Bret, A.

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  5. Phenomenological relations for neutrino masses and mixing parameters

    SciTech Connect (OSTI)

    Khruschov, V. V.

    2013-11-15

    Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.

  6. Fermilab | Inquiring Minds | Neutrino | Discovery | Particles and Forces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics at Fermilab main page | accelerators | collider experiments | neutrino physics | technology computing | theory | astrophysics | discoveries at Fermilab Discoveries at Fermilab - The Tau Neutrino Neutrino Symbol An international collaboration of scientists at the Department of Energy's Fermi National Accelerator Laboratory announced on July 21, 2000 the first direct evidence for the subatomic particle called the tau neutrino, the third kind of neutrino known to particle physicists. They

  7. BayWa Group | Open Energy Information

    Open Energy Info (EERE)

    BayWa Group Jump to: navigation, search Name: BayWa Group Place: Munich, Germany Zip: 81925 Sector: Services, Solar Product: Germany-based company with international operations...

  8. Tuscola Bay Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy...

  9. Felton Bay Logistics, LLC | Open Energy Information

    Open Energy Info (EERE)

    Logistics, LLC1 This article is a stub. You can help OpenEI by expanding it. Felton Bay Logistics, LLC is a company based in San Diego, California. Felton Bay offers training,...

  10. Neutrino emission in the jet propagation process

    SciTech Connect (OSTI)

    Xiao, D.; Dai, Z. G.

    2014-07-20

    Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ??r {sup ?} with index ?, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ?PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger ? corresponds to greater neutrino flux at the high-energy end (?PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.

  11. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors

  12. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  13. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections MiniBooNE's neutrino flux (with a mean energy of ~700 MeV) dictates the type of neutrino interactions the experiment sees. At these energies, quasi-elastic (QE) and single pion production processes dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are several cross sections which contribute at these energies. Here is a plot of the charged current (CC) cross section

  15. Deep Secrets of the Neutrino: Physics Underground

    SciTech Connect (OSTI)

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  16. VARIATIONS IN THE SOLAR NEUTRINO FZUX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 VARIATIONS IN THE SOLAR NEUTRINO FZUX a -- i c: R& Davis, Jr., Dept. of Astronomy, University of Pennsyl.vanj.a, Ph b A , B.T. Cleveland, Los Alamos National Laboratory, Los Alamos; J,K. Rowley, Brookhaven National Laboratory, Upton, NY, USA. BNL--39602 Abstract t0dF-h DE87 008376 Observations are reported from the chlorine solar neutrino detector i n the Homestake Gold Mine, South Dakota, USA. They extend from 1970 t o 1985 and yield an average neutrino capture rate of 2,120.3 SNU. The

  17. Short-baseline electron neutrino disappearance, tritium beta decay, and neutrinoless double-beta decay

    SciTech Connect (OSTI)

    Giunti, Carlo; Laveder, Marco [INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Dipartimento di Fisica G. Galilei, Universita di Padova, and INFN, Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)

    2010-09-01

    We consider the interpretation of the MiniBooNE low-energy anomaly and the gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and gallium data are highly compatible, with close best-fit values of the effective oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}. The combined fit gives {Delta}m{sup 2}(greater-or-similar sign)0.1 eV{sup 2} and 0.11(less-or-similar sign)sin{sup 2}2{theta}(less-or-similar sign)0.48 at 2{sigma}. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in {beta} decay obtained in the Mainz and Troitsk tritium experiments. The fit of the data of these experiments limits the value of sin{sup 2}2{theta} below 0.10 at 2{sigma}. Considering the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data as a statistical fluctuation, we perform a combined fit which gives {Delta}m{sup 2}{approx_equal}2 eV and 0.01(less-or-similar sign)sin{sup 2}2{theta}(less-or-similar sign)0.13 at 2{sigma}. Assuming a hierarchy of masses m{sub 1}, m{sub 2}, m{sub 3}<neutrino masses in {beta} decay and neutrinoless double-{beta} decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2{sigma}. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6{sigma} indication of a mixing angle asymmetry.

  18. IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section Knowledge on Oscillation Knowledge on Oscillation Measurements Measurements M. Sorel, IFIC (CSIC and U. of Valencia) IDS-NF, RAL, Jan 16-17 2008 M. Sorel - IFIC (Valencia U. & CSIC) 2 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA M. Sorel - IFIC (Valencia U. & CSIC) 3 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA Beta

  19. Mini Z' Burst from Relic Supernova Neutrinos and Late NeutrinoMasses

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Mini Z' Burst from Relic Supernova Neutrinos and Late NeutrinoMasses Citation Details In-Document Search Title: Mini Z' Burst from Relic Supernova Neutrinos and Late NeutrinoMasses Authors: Goldberg, Haim ; Perez, Gilad ; Sarcevic, Ina Publication Date: 2006-11-26 OSTI Identifier: 933093 Report Number(s): LBNL--57632 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Journal of High Energy Physics;

  20. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE...

    Office of Science (SC) Website

    The success of nuclear-physics calculations of solar energy generation has been ... The confirmation of the solar-neutrino flux predictions resolved a problem that had ...

  1. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect (OSTI)

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun

    2015-05-26

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  2. Neutrinos from Hell: the Dawn of Neutrino Geophysics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Seismic waves have been for long time the only messenger reporting on the conditions deep inside the Earth. While global seismology provides amazing details about the structure of our planet, it is only sensitive to the mechanical properties of rocks and not to their chemical composition. In the last 5 years KamLAND and Borexino have started measuring anti-neutrinos produced by Uranium and Thorium inside the Earth. Such "Geoneutrinos" double the number of tools available to study the Earth's interior, enabling a sort of global chemical analysis of the planet, albeit for two elements only.I will discuss the results of these new measurements and put them in the context of the Earth Sciences."

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  4. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect (OSTI)

    Liu, Qiuguang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.55 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  6. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect (OSTI)

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Results from the MiniBooNE Experiment OpenOffice S. Brice Neutrino08 May 25-31, 2008 Christchurch, New Zealand MiniBooNE Oscillation Serches PowerPoint G.P. Zeller Low Energy ...

  8. The CAPTAIN liquid argon neutrino experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  9. Toroidal Dipole Moment of a Massless Neutrino

    SciTech Connect (OSTI)

    Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes

    2009-04-20

    We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.

  10. Is the Higgs boson composed of neutrinos?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  11. THE BNL SUPER NEUTRINO BEAM PROJECT

    SciTech Connect (OSTI)

    WENG,W-T.; RAPARIA,D.

    2004-12-02

    To determine the neutrino mixing amplitudes and phase accurately, as well as the CP violation parameters, a very long base line super neutrino beam facility is needed. This is possible due to the long distance and wideband nature of the neutrino beam for the observation of several oscillations from one species of the neutrino to the other [1,2]. BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of three major subsystems. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade for the AGS itself for the higher intensity and repetition rate, and finally is target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS form 0.3 Hz to 2.5 Hz, with moderate increase from the intensity [3]. The design consideration to achieve high intensity and low losses for the linac and the AGS will be reviewed. The target horn design for high power operation and easy maintenance will also be presented.

  12. Light sterile neutrinos after BICEP-2

    SciTech Connect (OSTI)

    Archidiacono, Maria; Hannestad, Steen; Fornengo, Nicolao; Gariazzo, Stefano; Giunti, Carlo; Laveder, Marco E-mail: fornengo@to.infn.it E-mail: giunti@to.infn.it E-mail: marco.laveder@pd.infn.it

    2014-06-01

    The recent discovery of B-modes in the polarization pattern of the Cosmic Microwave Background by the BICEP2 experiment has important implications for neutrino physics. We revisit cosmological bounds on light sterile neutrinos and show that they are compatible with all current cosmological data provided that the mass is relatively low. Using CMB data, including BICEP-2, we find an upper bound of m{sub s} < 0.85 eV (2σ Confidence Level). This bound is strengthened to 0.48 eV when HST measurements of H{sub 0} are included. However, the inclusion of SZ cluster data from the Planck mission and weak gravitational measurements from the CFHTLenS project favours a non-zero sterile neutrino mass of 0.44{sup +0.11}{sub −0.16} eV. Short baseline neutrino oscillations, on the other hand, indicate a new mass state around 1.2 eV. This mass is highly incompatible with cosmological data if the sterile neutrino is fully thermalised (Δχ{sup 2} > 10). However, if the sterile neutrino only partly thermalises it can be compatible with all current data, both cosmological and terrestrial.

  13. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    SciTech Connect (OSTI)

    Davis, Jonathan H.

    2015-03-09

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.

  14. The Russian-American Gallium Experiment (SAGE) Cr Neutrino Source Measurement

    SciTech Connect (OSTI)

    Abdurashitov, J.; Gavrin, V.; Girin, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Khairnasov, N.; Knodel, T.; Kornoukhov, V.; Mirmov, I.; Shikhin, A.; Veretenkin, E.; Vermul, V.; Yants, V.; Zatsepin, G.; Bowles, T.; Nico, J.; Teasdale, W.; Wark, D.; Cherry, M.; Karaulov, V.; Levitin, V.; Maev, V.; Nazarenko, P.; Shkolnik, V.; Skorikov, N.; Cleveland, B.; Daily, T.; Davis, R. Jr.; Lande, K.; Lee, C.; Wildenhain, P.; Khomyakov, Y.; Zvonarev, A.; Elliott, S.; Wilkerson, J.

    1996-12-01

    The solar neutrino capture rate measured by SAGE is well below that predicted by solar models. To check the overall experimental efficiency, we exposed 13tonnes of Ga metal to a reactor-produced 517kCi source of {sup 51}Cr. The ratio of the measured production rate to that predicted from the source activity is 0.95{plus_minus}0.11(stat)+0.05/{minus}0.08(syst). This agreement verifies that the experimental efficiency is measured correctly, establishes that there are no unknown systematic errors at the 10{percent} level, and provides considerable evidence for the reliability of the solar neutrino measurement. {copyright} {ital 1996 The American Physical Society.}

  15. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  16. Large N (=3) Neutrinos and Random Matrix Theory (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Large N (3) Neutrinos and Random Matrix Theory Citation Details In-Document Search Title: Large N (3) Neutrinos and Random Matrix Theory You are accessing a ...

  17. Everything under the sun: A review of solar neutrinos (Journal...

    Office of Scientific and Technical Information (OSTI)

    Everything under the sun: A review of solar neutrinos Citation Details In-Document Search Title: Everything under the sun: A review of solar neutrinos You are accessing a...

  18. Melvin Schwartz and the Discovery of the Muon Neutrino

    Office of Scientific and Technical Information (OSTI)

    Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron

  19. Everything under the sun: A review of solar neutrinos

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gann, Gabriel D. Orebi

    2015-07-15

    Solar neutrinos offer a unique opportunity to study the interaction of neutrinos with matter, a sensitive search for potential new physics effects, and a probe of solar structure and solar system formation. This paper describes the broad physics program addressed by solar neutrino studies, presents the current suite of experiments programs, and describes several potential future detectors that could address the open questions in this field. This paper is a summary of a talk presented at the Neutrino 2014 conference in Boston.

  20. CONVECTION REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  1. Keweenaw Bay Indian Community Presentation

    Energy Savers [EERE]

    - Keweenaw Bay Indian Community PRESENTATION Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands DOE Tribal Energy Program Review October 25 29, 2010 Gregg Nominelli, J.D. Economic Developer BACKGROUND INFORMATION  U.S. Department of Justice - Community Capacity Development Office  Alternative & Renewable Energy Committee Established by Tribal Council  Council for Energy Resource Tribes (CERT) - Developed Strategic Energy Plan

  2. EA-389 Greay Bay Energy VI, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order authorizing Great Bay Energy to export electric energy to Canada. PDF icon EA-389 ... Great Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada

  3. Massachusetts Bay Transportation Authority | Open Energy Information

    Open Energy Info (EERE)

    Authority Name: Massachusetts Bay Transportation Authority Address: 10 Park Plaza, Suite 3910 Boston, MA 02116 Zip: 02116 Website: www.mbta.com Coordinates:...

  4. Hooper Bay Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates...

  5. Bay Front Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBayFrontBiomassFacility&oldid397174" Feedback Contact needs updating Image needs updating...

  6. Glacier Bay Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Glacier Bay Inc Place: Oakland, California Zip: 94601 Product: US-based, advanced thermal control, sound reduction, and DC power management technologies...

  7. Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}{nu}{sub {tau}}

    Office of Scientific and Technical Information (OSTI)

    oscillations with extragalactic neutrinos (Journal Article) | SciTech Connect Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations with extragalactic neutrinos Citation Details In-Document Search Title: Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations with extragalactic neutrinos The appearance of high energy tau neutrinos due to {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations of extragalactic neutrinos can be

  8. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  9. Weak interaction processes in nuclei involving neutrinos and CDM candidates

    SciTech Connect (OSTI)

    Kosmas, T. S.; Tsakstara, V. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece); Divari, P. C. [Department of Physical Sciences, Hellenic Army Academy, Vari 16673, Attica (Greece); Sinatkas, J. [Department of Informatics and Computer Technology, TEI of Western Macedonia, GR-52100 Kastoria (Greece)

    2009-11-09

    In this work, we concentrate on the nuclear physics aspects of low-energy neutrinos and in particular on problems related to neutrino detection by terrestrial experiments, neutrino astrophysics and neutrino-nucleus interactions. The detection of low-flux neutrinos, feasible by measuring the energy recoil of the recoiling nucleus with gaseous-detectors having very-low threshold-energy, is carried out in conjunction with direct-detection of cold dark matter events and nonstandard physics searches like the neutrinoless double beta decay.

  10. Matter effects in active-sterile solar neutrino oscillations

    SciTech Connect (OSTI)

    Giunti, C.; Li, Y. F.

    2009-12-01

    The matter effects for solar neutrino oscillations are studied in a general scheme with an arbitrary number of sterile neutrinos, without any constraint on the mixing, assuming only a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results are illustrated with a numerical solution of the evolution equation in three examples of the possible mixing matrix in the simplest case of four-neutrino mixing.

  11. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect (OSTI)

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  12. Neutrino oscillations in a turbulent plasma

    SciTech Connect (OSTI)

    Mendona, J. T.; Haas, F.

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  13. Neutrinoless double beta decay and neutrino masses

    SciTech Connect (OSTI)

    Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2012-07-27

    Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

  14. A. M. Szelc, Neutrino 2014, Boston

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Szelc, Neutrino 2014, Boston 1 6/7/14 Recent Results from ArgoNeuT and Status of MicroBooNE Andrzej Szelc (on behalf of the ArgoNeuT and MicroBooNE collaborations) Yale University A. M. Szelc, Neutrino 2014, Boston 2 6/7/14 Why Liquid Argon? ● Bubble chamber quality of data with added full calorimetry. ● Can produce physics results with a "table-top" size experiment: - Benchmark - "standard candle" results. - Physics enabled by LAr capabilities. - Development towards

  15. San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Estates Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility Facility San Luis Bay...

  16. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  17. Tampa Bay Area Ethanol Consortium | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  18. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic...

    Office of Scientific and Technical Information (OSTI)

    Title: Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates ...

  19. Pedro Bay Village Council (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name: Pedro Bay Village Council Place: Alaska Phone Number: (907) 850-2225 Website: www.swamc.orghtml...

  20. Doe Bay Village Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility...

  1. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  2. Near Fish Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  3. San Francisco Bay Conservation and Development Commission | Open...

    Open Energy Info (EERE)

    Conservation and Development Commission Jump to: navigation, search Logo: San Francisco Bay Conservation and Development Commission Name: San Francisco Bay Conservation and...

  4. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  5. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  6. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

    SciTech Connect (OSTI)

    Aeikens, Elke; Päs, Heinrich; Pakvasa, Sandip; Sicking, Philipp

    2015-10-02

    The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

  7. A new life for sterile neutrinos: resolving inconsistencies using hot dark matter

    SciTech Connect (OSTI)

    Hamann, Jan; Hasenkamp, Jasper E-mail: jasper.hasenkamp@nyu.edu

    2013-10-01

    Within the standard ?CDM model of cosmology, the recent Planck measurements have shown discrepancies with other observations, e.g., measurements of the current expansion rate H{sub 0}, the galaxy shear power spectrum and counts of galaxy clusters. We show that if ?CDM is extended by a hot dark matter component, which could be interpreted as a sterile neutrino, the data sets can be combined consistently. A combination of Planck data, WMAP-9 polarisation data, measurements of the BAO scale, the HST measurement of H{sub 0}, Planck galaxy cluster counts and galaxy shear data from the CFHTLens survey yields ?N{sub eff} = 0.610.30 and m{sub s}{sup eff} = (0.410.13)eV at 1?. The former is driven mainly by the large H{sub 0} of the HST measurement, while the latter is driven by cluster data. CFHTLens galaxy shear data prefer ?N{sub eff}> 0 and a non-zero mass. Taken together, we find hints for the presence of a hot dark matter component at 3?. A sterile neutrino motivated by the reactor and gallium anomalies appears rejected at even higher significance and an accelerator anomaly sterile neutrino is found in tension at 2?.

  8. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  9. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect (OSTI)

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  10. NOvA: Exploring Neutrino Mysteries

    ScienceCinema (OSTI)

    Vahle, Tricia; Messier, Mark

    2014-08-12

    Neutrinos are a mystery to physicists. They exist in three different flavors and mass states and may be able to give hints about the origins of the matter-dominated universe. A new long-baseline experiment led by Fermilab called NOvA may provide some answers.

  11. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect (OSTI)

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  12. The halo model in a massive neutrino cosmology

    SciTech Connect (OSTI)

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ?20% accuracy up to very non-linear scales of k=10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k=0.51 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k<0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of <0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k=1 h/Mpc with ?30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  13. New and Underutilized Technology: High Bay LED Lighting

    Broader source: Energy.gov [DOE]

    The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

  14. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  15. MINER{nu}A, a Neutrino--Nucleus Interaction Experiment

    SciTech Connect (OSTI)

    Solano Salinas, C. J.; Chamorro, A.; Romero, C.

    2007-10-26

    With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

  16. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  17. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  18. REACTOR SHIELD

    DOE Patents [OSTI]

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  19. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  20. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  1. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA)

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  2. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  3. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  4. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE)

    Office of Scientific and Technical Information (OSTI)

    Double Differential Cross Section (Conference) | SciTech Connect First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Citation Details In-Document Search Title: First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup

  5. Neutrino Cross-Section Experiments David Schmitz, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Schmitz, Fermilab WIN '0 9 22nd International Workshop on Weak Interactions and Neutrinos September 13-19, 2009 - Perugia, Italy Outline !! Introduction (motivation and context) !! The relevant neutrino energies and nuclear targets !! Summary of recent results and open questions !! Status and prospects of neutrino cross-section experiments on the horizon 2 WIN 09 - Perugia, Italy - September 14-19, 2009 D. Schmitz, Fermilab Introduction D. Schmitz, Fermilab 3 !! There has been a recent

  6. Neutrino physics (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Neutrino physics Citation Details In-Document Search Title: Neutrino physics The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers. Authors: Haxton, Wick C. [1] ; Holstein, Barry R. [2] ; Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 [3] + Show Author Affiliations Institute for Nuclear Theory,

  7. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of

  8. Forecasting neutrino masses from combining KATRIN and the CMB observations:

    Office of Scientific and Technical Information (OSTI)

    Frequentist and Bayesian analyses (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses Citation Details In-Document Search Title: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological

  9. SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS:

    Office of Scientific and Technical Information (OSTI)

    FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING (Journal Article) | SciTech Connect SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS: FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING Citation Details In-Document Search Title: SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS: FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING We present a new series of supernova neutrino light curves and spectra calculated by numerical simulations for a variety

  10. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  11. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  12. Redshift-space distortions in massive neutrino and evolving dark...

    Office of Scientific and Technical Information (OSTI)

    Redshift-space distortions in massive neutrino and evolving dark energy cosmologies ... This content will become publicly available on March 16, 2017 Title: Redshift-space ...

  13. Physicists in China Nail a Key Neutrino Measurement (Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in China Nail a Key Neutrino Measurement (Science) External Link: http:news.sciencemag.orgsciencenow201203physicists-in-china-nail-a-key.htm... By jlabadmin on Thu, ...

  14. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  15. Cosmology at the frontier of neutrino physics (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Cosmology at the frontier of neutrino ... OSTI Identifier: 22068967 Resource Type: Journal Article Resource Relation: Journal Name: ...

  16. Neutrino self-energy operator in plasmas at ultrahigh energies

    SciTech Connect (OSTI)

    Kuznetsov, A. V. Mikheev, N. V. Shitova, A. M.

    2013-11-15

    A general expression for the neutrino self-energy operator in plasmas was obtained in the limit of ultrahigh energies. Quantitative estimations were performed for the boundaries of the region kinematically allowed for the 'neutrino-spin-light' process. An analysis of the additional neutrino energy in plasmas revealed that, in the cases where neutrino spin light was kinematically allowed, the processes v-bar{sub e} + e{sup -} {yields} W{sup -} and v-bar{sub l} + v{sub l} {yields} Z would be dominant.

  17. Arthur B. McDonald and Oscillating Neutrinos

    Office of Scientific and Technical Information (OSTI)

    detector in Japan. This "metamorphosis" requires that neutrinos have mass.'1 'For particle physics this was a historic discovery. Its Standard Model of the innermost...

  18. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Sponsoring Org: US DOE Office of Science (DOE SC);Laboratory Directed Research and ...

  19. THE BNL SUPER NEUTRINO BEAM PROJECT.

    SciTech Connect (OSTI)

    RAPARIA,D.

    2005-01-26

    BNL plans to create a very long base line super neutrino beam facility by upgrading the AGS from the current 0.14 MW to 1.0 MW and beyond. The proposed facility consists of three major components. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade of the AGS itself for higher intensity and repetition rate, and finally is the target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS from 0.3 Hz to 2.5 Hz, with moderate increase from the intensity. The accelerator design considerations to achieve high intensity and low losses for the new linac and the AGS will be presented. The target and horn design for high power operation and easy maintenance will also be covered.

  20. Dirac neutrinos from a second Higgs doublet

    SciTech Connect (OSTI)

    Davidson, Shainen M.; Logan, Heather E. [Ottawa-Carleton Institute for Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2009-11-01

    We propose a minimal extension of the standard model in which neutrinos are Dirac particles and their tiny masses are explained without requiring tiny Yukawa couplings. A second Higgs doublet with a tiny vacuum expectation value provides neutrino masses while simultaneously improving the naturalness of the model by allowing a heavier standard-model-like Higgs boson consistent with electroweak precision data. The model predicts a {mu}{yields}e{gamma} rate potentially detectable in the current round of experiments, as well as distinctive signatures in the production and decay of the charged Higgs H{sup +} of the second doublet which can be tested at future colliders. Neutrinoless double beta decay is absent.

  1. Dark photons as fractional cosmic neutrino masquerader

    SciTech Connect (OSTI)

    Ng, Kin-Wang; Tu, Huitzu; Yuan, Tzu-Chiang E-mail: huitzu@phys.sinica.edu.tw

    2014-09-01

    Recently, Weinberg proposed a Higgs portal model with a spontaneously broken global U(1) symmetry in which Goldstone bosons may be masquerading as fractional cosmic neutrinos. We extend the model by gauging the U(1) symmetry. This gives rise to the so-called dark photon and dark Higgs. The dark photons can constitute about 0.912 (0.167) to the effective number of light neutrino species if they decouple from the thermal bath before the pions become non-relativistic and after (before) the QCD transition. Restriction on the parameter space of the portal coupling and the dark Higgs mass is obtained from the freeze-out condition of the dark photons. Combining with the collider data constraints on the invisible width of the standard model Higgs requires the dark Higgs mass to be less than a few GeV.

  2. White paper report on using nuclear reactors to search for a value of theta13

    SciTech Connect (OSTI)

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; de Bellefon, A.; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; de Gouvea, Andre; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; von Feilitzsch, F.; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; de Kerret, H.; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; von Toerne, E.; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.

  3. Bay Area | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at ... seen flying at low altitudes around the California Bay Area from September 1 - 6, 2015. ...

  4. SCHEDULE: Bay Area Maker Faire 2016

    Broader source: Energy.gov [DOE]

    Find out where and when to meet some of our top innovators and explore the technologies on display from the Department of Energy at the 11th annual Bay Area Maker Faire.

  5. Keweenaw Bay Indian Community- 2010 Project

    Broader source: Energy.gov [DOE]

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands.

  6. Keweenaw Bay Indian Community- 2010 Wind Project

    Broader source: Energy.gov [DOE]

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands.

  7. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  8. Neutrino-induced nucleosynthesis in supernovae

    SciTech Connect (OSTI)

    Hayakawa, Takehito

    2012-11-12

    The neutrino-induced reactions in supernova explosions produce some rare odd-odd nuclides. We have made a new time-dependent calculation of the supernova production ratio of the long-lived isomeric state of {sup 180}Ta. This time-dependent solution is crucial for understanding the production and survival of this isotope. We find that the explicit time evolution of the synthesis of {sup 180}Ta using the available nuclear data avoids the overproduction relative to {sup 138}La for a {nu}-process neutrino temperature of 4 MeV. An unstable isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 Multiplication-Sign 10{sup 7} years. We have proposed the {nu}-process origin for {sup 92}Nb. We calculate key neutrino-induced reactions and supernova {nu}-process. Our calculated result shows that the abundance of {sup 92}Nb can be explained by the {nu}-process.

  9. Keeping comets and asteroids at bay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keeping Comets And Asteroids At Bay Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Keeping comets and asteroids at bay Every two years, experts from around the globe convene at the Planetary Defense Conference. August 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Every two years, experts from around the globe convene at

  10. Really Off the Grid: Hooper Bay, AK

    Energy Savers [EERE]

    Really Off the Grid - Hooper Bay, AK Old Housing - Energy Efficiency Vintage Hooper Bay Renewable Energy - Before & After DOE Tribal Energy Grant * $200,000 - Energy Efficiency Feasibility Study * Hire & train 2-5 local energy assessors * Energy audits of 24 homes with blower doors, etc. - Reduce energy consumption from air leakage - Moisture/mold issues - Reduce drafts * $7/gallon heating fuel * ~ $0.55/kWh - electricity (over half of households behind on utility payments) Is your house

  11. CP-phase effects on the effective neutrino mass m{sub ee} in the case of quasidegenerate neutrinos

    SciTech Connect (OSTI)

    Maalampi, J. [Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland); Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Riittinen, J. [Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland)

    2010-02-01

    We study the possibility that the three mass states of the ordinary active neutrinos actually split into pairs of quasidegenerate states, with {Delta}m{sub kk}{sup '2{approx}}10{sup -12} eV{sup 2} or less, as a result of mixing of active neutrinos with sterile neutrinos. While in laboratory experiments these quasidegenerate pairs will look identical to single active states, the CP phase factors associated with active-sterile mixing might cause cancellations in the effective electron neutrino mass m{sub ee} measured in the neutrinoless double beta decay experiments thereby revealing the split nature of states.

  12. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    SciTech Connect (OSTI)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  13. PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos

    SciTech Connect (OSTI)

    Park, Wan-Il

    2014-06-01

    We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.

  14. Neutrino-Nucleon Neutrino-Nucleon Neutral Current Elastic Neutral Current Elastic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino-Nucleon Neutral Current Elastic Neutral Current Elastic Interactions in MiniBooNE Interactions in MiniBooNE Denis Perevalov Denis Perevalov University of Alabama University of Alabama for the MiniBooNE collaboration for the MiniBooNE collaboration presented by: Rex Tayloe, Indiana University Nuint '09 2 Neutrino-Nucleon NC Elastic Scattering    p , n    p , n   Z p,n p,n   - The most fundamental NC probe of the nucleus/nucleon. - Unlike CC

  15. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  16. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  17. POWER REACTOR

    DOE Patents [OSTI]

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  18. REACTOR CONTROL

    DOE Patents [OSTI]

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  19. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  20. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  1. The Era of Kilometer-Scale Neutrino Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halzen, Francis; Katz, Uli

    2013-01-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galacticmore » and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.« less

  2. Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation

    SciTech Connect (OSTI)

    Mattingly, David M.; Maccione, Luca; Galaverni, Matteo; Liberati, Stefano; Sigl, Günter E-mail: luca.maccione@desy.de E-mail: liberati@sissa.it

    2010-02-01

    We study, within an effective field theory framework, O(E{sup 2}M{sub Pl}{sup 2}) Planck-scale suppressed Lorentz invariance violation (LV) effects in the neutrino sector, whose size we parameterize by a dimensionless parameter η{sub ν}. We find deviations from predictions of Lorentz invariant physics in the cosmogenic neutrino spectrum. For positive O(1) coefficients no neutrino will survive above 10{sup 19}eV. The existence of this cutoff generates a bump in the neutrino spectrum at energies of 10{sup 17}eV. Although at present no constraint can be cast, as current experiments do not have enough sensitivity to detect ultra-high-energy neutrinos, we show that experiments in construction or being planned have the potential to cast limits as strong as η{sub ν}∼<10{sup −4} on the neutrino LV parameter, depending on how LV is distributed among neutrino mass states. Constraints on η{sub ν} < 0 can in principle be obtained with this strategy, but they require a more detailed modeling of how LV affects the neutrino sector.

  3. NOvA: Building a Next Generation Neutrino Experiment

    ScienceCinema (OSTI)

    Perko, John; Williams, Ron; Miller, Bill;

    2014-05-30

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  4. Study of muon neutrino and muon antineutrino disappearance with the NOvA neutrino oscillation experiment

    SciTech Connect (OSTI)

    Pawloski, Gregory

    2014-06-30

    The primary goal of this working group is to study the disappearance rate of νμ charged current events in order to measure the mixing angle θ23 and the magnitude of the neutrino mass square splitting Δm 232.

  5. Testing neutrino spectra formation in collapsing stars with the diffuse supernova neutrino flux

    SciTech Connect (OSTI)

    Lunardini, Cecilia

    2007-04-01

    I address the question of what can be learned from the observation of the diffuse supernova neutrino flux in the precision phase, at next generation detectors of Megaton scale. An analytical study of the spectrum of the diffuse flux shows that, above realistic detection thresholds of 10 MeV or higher, the spectrum essentially reflects the exponential-times-polynomial structure of the original neutrino spectrum at the emission point. There is only a weak (tens of percent) dependence on the power {beta} describing the growth of the supernova rate with the redshift. Different original neutrino spectra correspond to large differences in the observed spectrum of events at a water Cherenkov detector: for typical supernova rates, the ratio of the numbers of events in the first and second energy bins (of 5 MeV width) varies in the interval 1.5-4.3 for pure water (energy threshold 18 MeV) and in the range 1-2.5 for water with gadolinium (10 MeV threshold). In the first case, discrimination would be difficult due to the large errors associated with background. With gadolinium, instead, the reduction of the total error down to the 10%-20% level would allow spectral sensitivity, with a dramatic improvement of precision with respect to the SN1987A data. Even in this latter case, for typical neutrino luminosity the dependence on {beta} is below sensitivity, so that it can be safely neglected in data analysis.

  6. Majorana equations and the rest mass of neutrinos

    SciTech Connect (OSTI)

    von Borzeszkowski, H.; Treder, H.

    1985-02-01

    As is well known, the law of parity conservation does not hold in weak interactions. This type of asymmetry created a number of theoretical problems which were solved, first of all, by a new understanding of the features of neutrinos and their role in weak interactions. These solutions were based, however, essentially on the handedness (chirality) of neutrinos which is closely related to their vanishing rest mass. The thesis of neutrinos with nonvanishing rest mass, newly considered in the literature, therefore requires a rediscussion of the early arguments concerning the relation between the neutrino theory and some weak interaction essentials. When one does this, as in the present paper, it is noted that neutrinos with rest mass lead to some difficulties, in particular to a violation of T invariance.

  7. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect (OSTI)

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  8. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  9. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  10. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  11. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  12. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  13. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  14. Small Modular Reactors (SMRs)

    Broader source: Energy.gov [DOE]

    Information on Small Modular Reactors, and the Department of Energy Small Modular Reactor Licensing Technical Support (SMR-LTS) Program

  15. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples You are accessing a document from ...

  16. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples A series of ...

  17. Galveston Bay Biodiesel LP GBB | Open Energy Information

    Open Energy Info (EERE)

    Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name: Galveston Bay Biodiesel LP (GBB) Place: Houston, Texas Product: Developer of a 75.8m litre per year biodiesel...

  18. Bay County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in Bay County, Michigan Dow Chemical Co Dow Kokam Places in Bay County,...

  19. Bay Mills Indian Community Energy Reduction Feasibility Study

    Energy Savers [EERE]

    Tribal Council of Michigan, Inc. Environmental Services Division Chris Kushman Bay Mills Indian Community Energy Reduction Feasibility Study *DOE Tribal Energy Program *Tribal Energy Program Review presenters *Bay Mills Indian Community Thank You * Great relationship between ITCMI and Bay Mills * Proactive in exploring renewable energy alternatives - Bay Mills Community College Alternative Energy Curriculum - Biofuels and the crops to support biofuels - Wind resource data collection * Upper

  20. Risk Management for Sodium Fast Reactors.

    SciTech Connect (OSTI)

    Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  1. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  2. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  3. REACTOR MONITORING

    DOE Patents [OSTI]

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  4. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  5. Neutronic reactor

    DOE Patents [OSTI]

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  6. Neutrinoless double beta decay and future neutrino oscillation precision experiments

    SciTech Connect (OSTI)

    Choubey, Sandhya [Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Rodejohann, Werner [Physik-Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)

    2005-08-01

    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the {delta}m{sup 2} corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter {theta}{sub 12} will govern a large part of the uncertainty. We focus, in particular, on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improved limit on) neutrinoless double beta decay can help to identify the neutrino mass matrix if more precise values of the relevant parameters are known.

  7. DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-04-01

    The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

  8. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect (OSTI)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  9. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    SciTech Connect (OSTI)

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

    2015-10-06

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

  10. Bristol Bay Native Corporation- 2003 Project

    Broader source: Energy.gov [DOE]

    Bristol Bay Native Corporation (BBNC), through its subsidiary, Bristol Environmental and Engineering Services Corporation, will assess renewable energy opportunities within the BBNC region of southwest Alaska. The goals of this initiative are to encourage tribal self-sufficiency, create jobs, improve environmental quality, and help make our nation more secure through the development of clean, affordable, and reliable renewable energy technologies. The study will identify technologies or systems that could potentially reduce the cost or improve the sustainability of electricity within the Bristol Bay region.

  11. REACTOR CONTROL

    DOE Patents [OSTI]

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  12. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  13. Self-gravity in neutrino-dominated accretion disks

    SciTech Connect (OSTI)

    Liu, Tong; Yu, Xiao-Fei; Gu, Wei-Min; Lu, Ju-Fu

    2014-08-10

    We present the effects of self-gravity on the vertical structure and neutrino luminosity of the neutrino-dominated accretion disks in cylindrical coordinates. It is found that significant changes of the structure appear in the outer region of the disk, especially for high accretion rates (e.g., ? 1 M{sub ?} s{sup 1}), and thus cause the slight increase in the neutrino luminosity. Furthermore, the gravitational instability of the disk is reviewed by the vertical distribution of the Toomre parameter, which may account for the late-time flares in gamma-ray bursts and the extended emission in short-duration gamma-ray bursts.

  14. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect (OSTI)

    Ochoa Ricoux, Juan Pedro; /Caltech

    2009-10-01

    We perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, a process which would manifest a nonzero value of the {theta}{sub 13} mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of {nu}{sub e} charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in {theta}{sub 13}. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  15. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-10-27

    The authors report the results of a search for νe appearance in νμ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (θ23 sin2 (θ13) < 0.12 (0.20) at 90% confidence level for δ = 0 and the normal (inverted) neutrino mass hierarchy, with a best fit of 2 sin2θ23) sin 2 (2θ13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The θ13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  16. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect (OSTI)

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  17. Search for neutrino oscillations by detecting UNK-1 600-GeV neutrino beams at Gran Sasso (Italy)

    SciTech Connect (OSTI)

    Vasil`ev, P.S.; Kuznetsov, A.E.; Kuznetsov, E.P.

    1995-12-01

    The possibility of formation of neutrino beams from the 600-GeV UNK-1 accelerator toward Gran Sasso (Italy) and of study neutrino oscillations with the ICARUS detector is demonstrated. The proposed experiment is sensitive to {Delta}m{sup 2} values down to 10{sup -3} eV{sup 2} at maximum neutrino mixing and to sin{sup 2}2{theta} values down to 6 x 10{sup -3} at {Delta}m{sup 2} {approximately} 2 x 10{sup -2} eV{sup 2}. 21 refs., 6 figs., 3 tabs.

  18. Reconnaissance survey of eight bays in Puget Sound

    SciTech Connect (OSTI)

    Strand, J.A.; Crecelius, E.A.; Pearson, W.H.; Fellingham, G.W.; Elston, R.E.

    1988-03-01

    From 1983 to 1985, Battelle/Marine Research Laboratory conducted reconnaissance-level field and laboratory studies to better characterize toxic contamination problems occurring in selected urban-industrialized bays (Bellingham Bay, Port Gardner - Everett Harbor, Fourmile Rock - Elliot Bay dump site vicinity, Sinclair Inlet) of Puget Sound. It was envisioned that this goal was best achieved by simultaneously determining levels of contamination in selected baseline or 'reference bays' (Samish Bay, Case Inlet, Dabob Bay, Sequim Bay). Two major tasks composed this effort. The first was conducted in 1983 and consisted of preliminary or screening surveys to collect and analyze sediment samples from 101 stations distributed in the four urban-industrialized bays (Figure 1), and at 80 stations distributed in the four baseline bays (Figure 2). The second task was undertaken in 1984 and involved detailed surveys and analyses of the same bays, but at a limited number of stations (32 in urban embayments, 16 in baseline bays). The stations to be resampled in 1984 were the ''cleanest'' of the clean and the ''dirtiest'' of the dirty as determined by the 1983 sediment chemical analyses, and within restrictions imposed by sediment type.

  19. Nuclear reactor

    DOE Patents [OSTI]

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  20. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  1. Photocatalytic reactor

    DOE Patents [OSTI]

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  2. Charm Production by Neutrinos (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Charm Production by Neutrinos Citation Details In-Document Search Title: Charm Production ... Publication Date: 1978-01-01 OSTI Identifier: 1128238 Report Number(s): FERMILAB-PUB-78-20

  3. Search for Electron Neutrino Appearance in MINOS (Conference...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Search for Electron Neutrino Appearance in MINOS The MINOS Collaboration continues its search for nusub e appearance in the NuMI ...

  4. Neutrino scattering off the stable even-even Mo isotopes

    SciTech Connect (OSTI)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece)

    2009-11-09

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo{sup 92}, Mo{sup 94}, Mo{sup 96}, Mo{sup 98} and Mo{sup 100}. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III)

  5. Renormalization of a two-loop neutrino mass model

    SciTech Connect (OSTI)

    Babu, K. S.; Julio, J.

    2014-01-01

    We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as μ→eγ, μ→3e and μ – e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.

  6. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND e (1993-2001) 2. MiniBooNE ...

  7. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy...

  8. One-pion production in neutrino-nucleus collisions

    SciTech Connect (OSTI)

    Hernndez, E.; Nieves, J.; Vicente-Vacas, J. M.

    2015-05-15

    We use our model for neutrino pion production on the nucleon to study pion production on a nucleus. The model is conveniently modified to include in-medium corrections and its validity is extended up to 2 GeV neutrino energies by the inclusion of new resonant contributions in the production process. Our results are compared with recent MiniBooNE data measured in mineral oil. Our total cross sections are below data for neutrino energies above ? 1 GeV. As with other theoretical calculations, the agreement with data improves if we neglect pion final state interaction. This is also the case for differential cross sections convoluted over the neutrino flux.

  9. Neutrinos' Instant Identity Changes Could Mean Big Things for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... will analyze the phenomena in more detail to discover more about the tiny masses that neutrinos have, which will help them better understand the evolution of the early universe. ...

  10. Arthur B. McDonald and Oscillating Neutrinos

    Office of Scientific and Technical Information (OSTI)

    Arthur B. McDonald and Oscillating Neutrinos Resources with Additional Information Arthur B. McDonald Courtesy of Queen's University 'Queen's University professor emeritus Arthur McDonald is the co-winner of the 2015 Nobel Prize in physics. ... Dr. McDonald won the award, along with Takaaki Kajita of the University of Tokyo, "for their key contributions to the experiments which demonstrated that neutrinos change identities."... The findings solved a puzzle that physicists had wrestled

  11. Library Event Matching event classification algorithm for electron neutrino

    Office of Scientific and Technical Information (OSTI)

    interactions in the NOνA detectors (Journal Article) | SciTech Connect Library Event Matching event classification algorithm for electron neutrino interactions in the NOνA detectors Citation Details In-Document Search This content will become publicly available on April 12, 2017 Title: Library Event Matching event classification algorithm for electron neutrino interactions in the NOνA detectors Authors: Backhouse, C. ; Patterson, R. B. Publication Date: 2015-04-01 OSTI Identifier: 1245665

  12. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodn; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zrich, Winterthurerstrasse 190, Zrich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 230 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  13. Los Alamos scientists recognized with breakthrough prize for neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Breakthrough prize for neutrinos research Los Alamos scientists recognized with breakthrough prize for neutrinos research More than 1,300 scientists-including 35 from Los Alamos National Laboratory-were awarded the 2016 Breakthrough Prize in Fundamental Physics. November 12, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  14. Technology Development for a Neutrino AstrophysicalObservatory

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-02-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  15. Technology development for a neutrino astrophysical observatory. Letter of intent

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.

    1996-02-01

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  16. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema (OSTI)

    None

    2011-04-25

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  17. Neutrino flavor instabilities in a time-dependent supernova model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbar, Sajad; Duan, Huaiyu

    2015-10-19

    In this study, a dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collectivemore »neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.« less

  18. Neutrino oscillations with IceCube DeepCore and PINGU

    SciTech Connect (OSTI)

    DeYoung, T.; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    The IceCube neutrino telescope was augmented with the DeepCore infill array, completed in the 2010/11 austral summer, to enhance its response to neutrinos below 100 GeV. At these energies, neutrino oscillation effects are visible in the flux of atmospheric neutrinos traversing path lengths comparable to the Earth's diameter. Initial measurements of muon neutrino disappearance parameters using data from DeepCore are presented, as well as an estimate of potential future precision. In addition, plans for a Precision IceCube Next Generation Upgrade (PINGU), which could permit determination of the neutrino mass hierarchy within the coming decade, are discussed.

  19. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    SciTech Connect (OSTI)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  20. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  1. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    SciTech Connect (OSTI)

    Mller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ?}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ?-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ? 10 M {sub ?} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of ?E{sub ?-bar{sub e}}? with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ?10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  2. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  3. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  4. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  5. Thorne Bay School - A Model in Sustainability

    Energy Savers [EERE]

    Thorne Bay School - A Model in Sustainability 1 2 Community Supported Wood Supply Innovative Operations Plan 3 Embracing the Benefits 4 Beyond an Energy Vision 5 Alaska's Process  Regional Planning  Outreach  Statements of Interest  Pre-feasibility Studies  Sustainable Fuel Supply  Technology Options  Economics  Community Education  Community Decision 6 7 Devany Plentovich dplentovich@aidea.oprg AKEnergyAuthority.org 8

  6. Reactor and method of operation

    DOE Patents [OSTI]

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  7. Constraining mass spectra with sterile neutrinos from neutrinoless double beta decay, tritium beta decay, and cosmology

    SciTech Connect (OSTI)

    Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Physik-Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany); Rodejohann, Werner [Physik-Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)

    2006-06-01

    We analyze the constraints on neutrino mass spectra with extra sterile neutrinos as implied by the LSND experiment. The various mass related observables in neutrinoless double beta decay, tritium beta decay and cosmology are discussed. Both neutrino oscillation results as well as recent cosmological neutrino mass bounds are taken into account. We find that some of the allowed mass patterns are severely restricted by the current constraints, in particular, by the cosmological constraints on the total sum of neutrino masses and by the nonmaximality of the solar neutrino mixing angle. Furthermore, we estimate the form of the four neutrino mass matrices and also comment on the situation in scenarios with two additional sterile neutrinos.

  8. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect (OSTI)

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  9. Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}...

    Office of Scientific and Technical Information (OSTI)

    above 10--100 TeV initiated by the extragalactic neutrinos. We show that the tau neutrinos from point sources also have the potential for discovery above a 1 TeV threshold. ...

  10. Overview of proton drivers for neutrino super beams and neutrino factories

    SciTech Connect (OSTI)

    Chou, W.; /Fermilab

    2006-06-01

    There has been a world-wide interest in Proton Drivers in the past decade. Numerous design proposals have been presented in Asia, Europe and North America, ranging from low energy rapid cycling synchrotrons, normal or superconducting linacs to high energy slow cycling synchrotrons and FFAGs. One thing in common is that all these machines provide MW beam power and are used primarily for neutrino experiments. This paper gives an overview of these activities. In the last section the author expresses his personal opinion on the future of this field.

  11. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical

    Office of Scientific and Technical Information (OSTI)

    Modelling Approach (Journal Article) | SciTech Connect Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach Citation Details In-Document Search Title: Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the

  12. Covered Product Category: Industrial Luminaires (High/Low Bay) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Industrial Luminaires (High/Low Bay) Covered Product Category: Industrial Luminaires (High/Low Bay) The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Industrial

  13. Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Muon Neutrino and Antineutrino Induced Single Neutral Pion Production Cross Sections Colin E. Anderson 2011 Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the ef- forts of physics experiment. As neutrino oscillation searches seek an increasingly elusive sig- nal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understand- ing.

  14. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  15. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  16. Bay Harbor Islands, Florida: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Bay Harbor Islands is a town in Miami-Dade County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  17. MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  18. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  19. U.S. Naval Station, Guantanamo Bay, Cuba

    Broader source: Energy.gov [DOE]

    Fact sheet describes the Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the U.S. Naval Station at Guantanamo Bay, Cuba.

  20. Computing Sciences Staff Help East Bay High Schoolers Upgrade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT fields, the Laney College Computer Information Systems Department offered its Upgrade: Computer Science Program. Thirty-eight students from 10 East Bay high schools registered...

  1. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project...

    Broader source: Energy.gov (indexed) [DOE]

    gas from existing pipeline systems to the LNG terminal facilities. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project Public Comment Opportunities No public ...

  2. Kawela Bay, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kawela Bay, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.7033333, -158.01 Show Map Loading map... "minzoom":false,"mappingservice...

  3. Bristol Bay Borough, Alaska: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    as an ASHRAE 169-2006 Climate Zone Number 7. Places in Bristol Bay Borough, Alaska King Salmon, Alaska Naknek, Alaska South Naknek, Alaska Retrieved from "http:...

  4. Promising Technology: High Bay Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    High bay LEDs offer several advantages over conventional high intensity discharge (HID) luminaires including longer lifetimes, reduced maintenance costs, and lower energy consumption.

  5. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  6. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

  7. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after havingmore » traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  8. Neutrino Flux Prediction for the NuMI Beamline

    SciTech Connect (OSTI)

    Aliaga Soplin, Leonidas

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.

  9. Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy

    Energy Savers [EERE]

    VI, LLC | Department of Energy 89 Great Bay Energy VI, LLC Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy VI, LLC Application from Great Bay Energy to export electric energy to Canada. PDF icon EA-389 Great Bay Energy VI, (CN).pdf More Documents & Publications EA-389 Greay Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC Application to Export Electric Energy OE Docket No. EA-327-A DC Energy,

  10. Neutrino Factory and Muon Collider Fellow

    SciTech Connect (OSTI)

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  11. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  12. Big Bang Day: 5 Particles - 4. The Neutrino

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

  13. Neutrinoless double {beta}-decay and neutrino mass hierarchies

    SciTech Connect (OSTI)

    Bilenky, S. M. [Scuola Internazionale Superiore di Studi Avanzati, I-34014 Trieste (Italy); Faessler, Amand; Gutsche, Thomas; Simkovic, Fedor [Institute fuer Theoretische Physik der Universitaet Tuebingen, D-72076 Tuebingen (Germany)

    2005-09-01

    In the framework of the seesaw mechanism the normal hierarchy is favorable for the neutrino mass spectrum. For this spectrum we present a detailed calculation of the half-lives of neutrinoless double {beta}-decay for several nuclei of experimental interest. The half-lives are evaluated by considering the most comprehensive nuclear matrix elements, which were obtained within the renormalized quasiparticle random phase approximation by the Bratislava-Caltech-Tuebingen group. The dependence of the half-lives on sin{sup 2}{theta}{sub 13} and the lightest neutrino mass is studied. We present also the results of the calculations of the half-lives of neutrinoless double {beta}-decay in the case of the inverted hierarchy of neutrino masses.

  14. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-10-06

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  15. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  16. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  17. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    SciTech Connect (OSTI)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  18. MiniBooNE Anti-Neutrino CCQE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section", arXiv:1301.7067 [hep-ex] The following MiniBooNE information from the anti-neutrino CCQE cross section paper is made available to the public: νμ CCQE data: MiniBooNE flux table of MiniBooNE anti-neutrino mode flux by neutrino species (Figure 1 and Tables XI-XII). Note that, based on the constraints of the in situ measurements, the muon neutrino flux spectrum given here should be scaled by 0.77. flux-integrated

  19. SHORT-BASELINE NEUTRINO PHYSICS AT FERMILAB WESLEY KETCHUM LOS ALAMOS NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEUTRINO PHYSICS AT FERMILAB WESLEY KETCHUM LOS ALAMOS NATIONAL LABORATORY 7/4/14 ICHEP 2014, Valencia, Spain 1 LIQUID ARGON TPCS ON THE BOOSTER NEUTRINO BEAMLINE TO EXPLORE NEW PHYSICS Phys. Rev. D79, 072002 (2009) THE BOOSTER NEUTRINO BEAMLINE (BNB) * 8 GeV protons hit Be target * Magnetic horn focuses (defocuses) neutrino (antineutrino) parents * Muon neutrino energy peaks ~700 MeV * Previous experiments on BNB: MiniBooNE & SciBooNE 7/4/14 ICHEP 2014, Valencia, Spain 2 Detector(s)

  20. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  1. Muon neutrino charged current inclusive charged pion (CC?{sup }) production in MINER?A

    SciTech Connect (OSTI)

    Eberly, B.

    2015-05-15

    The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINER?A experiment is working towards releasing the worlds first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINER?As CC?{sup } analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.

  2. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  3. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  4. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details In-Document Search Title: Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Authors: Strigari, Louis E. ; /KIPAC, Menlo Park ; , Publication Date: 2013-10-24 OSTI Identifier: 1097427 Report Number(s): SLAC-PUB-15817 arXiv:0903.3630 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: New J.Phys.11:105011,2009 Research

  5. Dark matter signals at neutrino telescopes in effective theories

    SciTech Connect (OSTI)

    Catena, Riccardo

    2015-04-29

    We constrain the effective theory of one-body dark matter-nucleon interactions using neutrino telescope observations. We derive exclusion limits on the 28 coupling constants of the theory, exploring interaction operators previously considered in dark matter direct detection only, and using new nuclear response functions recently derived through nuclear structure calculations. We determine for what interactions neutrino telescopes are superior to current direct detection experiments, and show that Hydrogen is not the most important element in the exclusion limit calculation for the majority of the spin-dependent operators.

  6. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    SciTech Connect (OSTI)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ???? (nnvv, ppvv, and npvv) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ???? emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ???? cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv, ppvv, and npvv.

  7. NERSC, PDSF, Neutrino Oscillations and the 2015 Physics Nobel Prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blogs » Richard Gerber » Neutrino Oscillations and the 2015 Physics Nobel Prize NERSC, PDSF, Neutrino Oscillations and the 2015 Physics Nobel Prize October 8, 2015 by Richard Gerber Perhaps the most rewarding aspect of working at NERSC is sharing in the scientific enterprise, working day-to-day with the best scientists in the world seeking to answer the most interesting questions ever posed. How does the nanoworld work? Where did our universe come from and where is it going? How are we

  8. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  9. Implications of Fermi-LAT observations on the origin of IceCube neutrinos

    SciTech Connect (OSTI)

    Wang, Bin; Li, Zhuo [Department of Astronomy, School of Physics, Peking University, Beijing (China); Zhao, Xiaohong, E-mail: wang_b@pku.edu.cn, E-mail: zhaoxh@ynao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming (China)

    2014-11-01

    The IceCube (IC) collaboration recently reported the detection of TeV-PeV extraterrestrial neutrinos whose origin is yet unknown. By the photon-neutrino connection in pp and p? interactions, we use the Fermi-LAT observations to constrain the origin of the IC detected neutrinos. We find that Galactic origins, i.e., the diffuse Galactic neutrinos due to cosmic ray (CR) propagation in the Milky Way, and the neutrinos from the Galactic point sources, may not produce the IC neutrino flux, thus these neutrinos should be of extragalactic origin. Moreover, the extragalactic gamma-ray bursts (GRBs) may not account for the IC neutrino flux, the jets of active galactic nuclei may not produce the IC neutrino spectrum, but the starburst galaxies (SBGs) may be promising sources. As suggested by the consistency between the IC detected neutrino flux and the Waxman-Bahcall bound, GRBs in SBGs may be the sources of both the ultrahigh energy, ?> 10{sup 19}eV, CRs and the 1100 PeV CRs that produce the IC detected TeV-PeV neutrinos.

  10. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    SciTech Connect (OSTI)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. Combining the recent experimental constraints on ?{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  11. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  12. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  13. H Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  14. C Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  15. N Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  16. F Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  17. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  18. NEUTRONIC REACTOR POWER PLANT

    DOE Patents [OSTI]

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  19. 7Be Solar Neutrino Measurement with KamLAND

    SciTech Connect (OSTI)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2014-05-26

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV {sup 7}Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582{+-}90 (kton#1;day){sup -1}, which corresponds to a 862 keV {sup 7}Be solar neutrino flux of (3.26{+-}0.50) #2;x 10{sup 9} cm{sup -2}s{sup -1}, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a #23;e survival probability of 0.66{+-}0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total {sup 7}Be solar neutrino flux of (5.82{+-}0.98) x 10{sup 9} cm{sup -2}s{sup -1}, which is consistent with the standard solar model predictions.

  20. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  1. CPT conservation and atmospheric neutrinos in the MINOS far detector

    SciTech Connect (OSTI)

    Becker, Bernard Raymond

    2006-02-01

    The MINOS Far Detector is a 5400 ton iron calorimeter located at the Soudan state park in Soudan Minnesota. The MINOS far detector can observe atmospheric neutrinos and separate charge current {nu}{sub {mu}} and {bar {nu}}{sub {mu}} interactions by using a 1.4 T magnetic field to identify the charge of the produced muon. The CPT theorem requires that neutrinos and anti-neutrinos oscillate in the same way. In a fiducial exposure of 5.0 kilo-ton years a total of 41 candidate neutrino events are observed with an expectation of 53.1 {+-} 7.6(system.) {+-} 7.2(stat.) unoscillated events or 31.6 {+-} 4.7(system.) {+-} 5.6(stat.) events with {Delta}m{sup 2} = 2.4 x 10{sup -3} eV{sup 2}, sin{sup 2}(2{theta}) = 1.0 as oscillation parameters. These include 28 events which can have there charge identified with high confidence. These 28 events consist of 18 events consistent with being produced by {nu}{sub {mu}} and 10 events being consistent with being produced by {bar {nu}}{sub {mu}}. No evidence of CPT violation is observed.

  2. Probing the Dark Matter mass and nature with neutrinos

    SciTech Connect (OSTI)

    Blennow, Mattias; Carrigan, Marcus; Martinez, Enrique Fernandez E-mail: carri@kth.se

    2013-06-01

    We study the possible indirect neutrino signal from dark matter annihilations inside the Sun's core for relatively light dark matter masses in the O(10) GeV range. Due to their excellent energy reconstruction capabilities, we focus on the detection of this flux in liquid argon or magnetized iron calorimeter detectors, proposed for the next generation of far detectors of neutrino oscillation experiments and neutrino telescopes. The aim of the study is to probe the ability of these detectors to determine fundamental properties of the dark matter nature such as its mass or its relative annihilation branching fractions to different channels. We find that these detectors will be able to accurately measure the dark matter mass as long as the dark matter annihilations have a significant branching into the neutrino or at least the τ channel. We have also discovered degeneracies between different dark matter masses and annihilation channels, where a hard τ channel spectrum for a lower dark matter mass may mimic that of a softer quark channel spectrum for a larger dark matter mass. Finally, we discuss the sensitivity of the detectors to the different branching ratios and find that it is between one and two orders of magnitude better than the current bounds from those coming from analysis of Super-Kamiokande data.

  3. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  4. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  5. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  6. NEUTRONIC REACTOR SHIELDING

    DOE Patents [OSTI]

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  7. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  8. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  9. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  10. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect (OSTI)

    Crsico, A.H.; Althaus, L.G.; Garca-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (?{sub ?}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of ?{sub ?}?<10{sup -11}?{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  11. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  12. Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach

    SciTech Connect (OSTI)

    Blennow, Mattias; Ohlsson, Tommy; Edsjoe, Joakim E-mail: edsjo@physto.se

    2008-01-15

    Weakly interacting massive particles (WIMPs) are one of the main candidates for making up the dark matter in the Universe. If these particles make up the dark matter, then they can be captured by the Sun or the Earth, sink to the respective cores, annihilate, and produce neutrinos. Thus, these neutrinos can be a striking dark matter signature at neutrino telescopes looking towards the Sun and/or the Earth. Here, we improve previous analyses on computing the neutrino yields from WIMP annihilations in several respects. We include neutrino oscillations in a full three-flavor framework as well as all effects from neutrino interactions on the way through the Sun (absorption, energy loss, and regeneration from tau decays). In addition, we study the effects of non-zero values of the mixing angle {theta}{sub 13} as well as the normal and inverted neutrino mass hierarchies. Our study is performed in an event-based setting which makes these results very useful both for theoretical analyses and for building a neutrino telescope Monte Carlo code. All our results for the neutrino yields, as well as our Monte Carlo code, are publicly available. We find that the yield of muon-type neutrinos from WIMP annihilations in the Sun is enhanced or suppressed, depending on the dominant WIMP annihilation channel. This effect is due to an effective flavor mixing caused by neutrino oscillations. For WIMP annihilations inside the Earth, the distance from source to detector is too small to allow for any significant amount of oscillations at the neutrino energies relevant for neutrino telescopes.

  13. Nuclear reactor overflow line

    DOE Patents [OSTI]

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  14. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  15. Bay Area Maker Faire 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bay Area Maker Faire 2016 Bay Area Maker Faire 2016 May 20, 2016 12:00PM PDT to May 22, 2016 6:00PM PDT San Mateo County Event Center 1346 Saratoga Dr. San Mateo, CA 94403 Think. Make. Innovate. That's what the U.S. Department of Energy (DOE) and its national laboratories do every day. By doing so, they help change the world! DOE and its "Makers," including those at nine national labs will be exhibiting at the 11th annual Bay Area Maker Faire, dubbed the "Greatest Show (and Tell)

  16. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  17. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  18. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  19. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  20. EA-1943: Construction and Operation of the Long Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab, Batavia, Illinois, and Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  1. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  2. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  3. Revising the solution of the neutrino oscillation parameter degeneracies at neutrino factories

    SciTech Connect (OSTI)

    Gago, A. M.; Jones Perez, J.

    2007-02-01

    In the context of neutrino factories, we review the solution of the degeneracies in the neutrino oscillation parameters. In particular, we have set limits to sin{sup 2}2{theta}{sub 13} in order to accomplish the unambiguous determination of {theta}{sub 23} and {delta}. We have performed two different analysis. In the first, at a baseline of 3000 km, we simulate a measurement of the channels {nu}{sub e}{yields}{nu}{sub {mu}}, {nu}{sub e}{yields}{nu}{sub {tau}}, and {nu}{sub {mu}}{yields}{nu}{sub {mu}}, combined with their respective conjugate ones, with a muon energy of 50 GeV and a running time of five years. In the second, we merge the simulated data obtained at L=3000 km with the measurement of {nu}{sub e}{yields}{nu}{sub {mu}} channel at 7250 km, the so-called 'magic baseline.' In both cases, we have studied the impact of varying the {nu}{sub {tau}} detector efficiency-mass product ({epsilon}{sub {nu}{tau}xM{tau}}), at 3000 km, keeping unchanged the {nu}{sub {mu}} detector mass and its efficiency. At L=3000 km, we found the existence of degenerate zones, that correspond to values of {theta}{sub 13}, which are equal or almost equal to the true ones. These zones are extremely difficult to discard, even when we increase the number of events. However, in the second scenario, this difficulty is overcome, demonstrating the relevance of the 'magic baseline'. From this scenario, the best limits of sin{sup 2}2{theta}{sub 13}, reached at 3{sigma}, for sin{sup 2}2{theta}{sub 23}=0.95, 0.975, and 0.99 are: 0.008, 0.015, and 0.045, respectively, obtained at {delta}=0, and considering ({epsilon}{sub {nu}{tau}xM{tau}}){approx_equal}125, which is 5 times the initial efficiency-mass combination.

  4. Oscillation of neutrinos produced by the annihilation of dark matter inside the Sun

    SciTech Connect (OSTI)

    Esmaili, Arman; Farzan, Yasaman

    2010-06-01

    The annihilation of dark matter particles captured by the Sun can lead to a neutrino flux observable in neutrino detectors. Considering the fact that these dark matter particles are nonrelativistic, if a pair of dark matter annihilates to a neutrino pair, the spectrum of neutrinos will be monochromatic. We show that in this case, even after averaging over the production point inside the Sun, the oscillatory terms of the oscillation probability do not average to zero. This leads to interesting observable features in the annual variation of the number of muon track events. We show that smearing of the spectrum due to thermal distribution of dark matter inside the Sun is too small to wash out this variation. We point out the possibility of studying the initial flavor composition of neutrinos produced by the annihilation of dark matter particles via measuring the annual variation of the number of {mu}-track events in neutrino telescopes.

  5. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect (OSTI)

    Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  6. North Bay Village, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    it. North Bay Village is a city in Miami-Dade County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  7. Morro Bay, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Morro Bay is a city in San Luis Obispo County, California. It falls under California's 23rd congressional...

  8. Cross-media approach to saving the Chesapeake Bay

    SciTech Connect (OSTI)

    Appleton, E.L.

    1995-12-01

    A project EPA began in August will investigate the possibility of cross-media emissions trading as a new approach to reducing nitrogen loadings to the Chesapeake Bay. Working with the Environmental Defense Fund (EDF), the Agency hopes to device a NO{sub x} trading framework along the lines of existing sulfur dioxide trading plans to control acid rain. The Chesapeake Air Project will examine the feasibility of using emissions trading between and water sources, including trading credits between power plants and mobile sources, to reduce the atmospheric deposition of nitrogen to the bay. The progress of the Bay Program nutrient reduction goals is up for reevaluation in 1997, and Knopes and EDF economist Brian Morton have high hopes that the trading plan, which would place a cap on the mass of emissions and rate of deposition allowed by all sources, will become the atmospheric deposition portion of the Chesapeake Bay Program`s Nutrient Reduction Strategy. 6 refs.

  9. Nassau Bay, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Nassau Bay is a city in Harris County, Texas. It falls under Texas's 22nd congressional district.12 References...

  10. Keweenaw Bay Indian Community- 2010 Energy Efficiency Project

    Broader source: Energy.gov [DOE]

    The goal of the project is to build the staff capacity to enable the Keweenaw Bay Indian Community (KBIC) to establish a tribal weatherization program that promotes energy sufficiency throughout the tribal community.

  11. Project Reports for Keweenaw Bay Indian Community- 2010 Project

    Broader source: Energy.gov [DOE]

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands.

  12. BayWa Sunways JV | Open Energy Information

    Open Energy Info (EERE)

    JV that specialises in developing, planning and realizing medium-sized to large photovoltaic systems and solar plants. References: BayWa & Sunways JV1 This article is a stub....

  13. Huntington Bay, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Huntington Bay is a village in Suffolk County, New York. It falls under New York's 2nd...

  14. City of Larsen Bay, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Larsen Bay Place: Alaska Phone Number: (907)847-2211 Website: www.swamc.orghtmlsouthwest-a Outage Hotline: (907)847-2211 References: EIA Form EIA-861 Final Data File...

  15. West Bay Shore, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Bay Shore is a census-designated place in Suffolk County, New York.1 References ...

  16. The ecology of Tampa Bay, Florida: An estuarine profile

    SciTech Connect (OSTI)

    Lewis, R.R. III; Estevez, E.D.

    1988-09-01

    Tampa Bay is Florida's largest open-water estuary and one of the most highly urbanized. This report summarizes and synthesizes many years of scientific investigation into Tampa Bay's geology, hydrology and hydrography, water chemistry, and biotic components. The estuary is a phytoplankton-based system, with mangroves being the second most important primary producer. Benthic organisms are abundant and diverse, although in parts of the bay the benthos consists of a relatively few opportunistic and pollution indicator species. The estuary provides habitat for the juveniles and adults of a number of commercial and recreational fishery species. Significant changes occurring as a result of urbanization and industrialization include significant declines in intertidal wetlands and seagrass meadows, changes in circulation and flushing, and degradation of water quality. Important management issues include dredge and fill operations, restoration of fisheries, increasing freshwater flow to the bay, and eutrophication. 257 refs., 85 figs., 27 tabs.

  17. Project Reports for Keweenaw Bay Indian Community- 2010 Project

    Broader source: Energy.gov [DOE]

    The goal of the project is to build the staff capacity to enable the Keweenaw Bay Indian Community (KBIC) to establish a tribal weatherization program that promotes energy sufficiency throughout the tribal community.

  18. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF ...

  19. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 ...

  20. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 ...

  1. NERSC Global Filesystem Played a Key Role in Discovery of the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daya Bay Neutrino Facility in China. Photo by Roy Kaltschmidt, Lawrence Berkeley National ... after the Daya Bay Neutrino Experiment's first detectors went online in southeast China. ...

  2. A Nobel for Neutrinos: Super-Kamiokande | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights » 2015 » A Nobel for Neutrinos: Super-Kamiokande High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » 11.01.15 A Nobel for Neutrinos: Super-Kamiokande Discovery of neutrino

  3. SHORT-BASELINE NEUTRINO PHYSICS AT MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS (Technical Report) | SciTech Connect SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS Citation Details In-Document Search Title: SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of

  4. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    SciTech Connect (OSTI)

    Adamson, P.

    2015-09-17

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. Furthermore, the fractional difference between the neutrino speed and the speed of light is determined to be (v/c-1)=(1.0±1.1)×10-6, consistent with relativistic neutrinos.

  5. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2015-09-17

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. Furthermore, the fractional difference between the neutrino speed and the speed of light is determined to be (v/c-1)=(1.0±1.1)×10-6, consistent with relativistic neutrinos.

  6. NREL: Wind Research - Building 251 and High Bay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 251 and High Bay Photo of an aerial shot of a large blue and grey building with parking lot and cars in the foreground. Building 251 at the NWTC houses administrative and research support offices and well as a high bay for testing wind turbine components. Building 251 is the hub of the National Wind Technology Center. In addition to housing administrative and research support offices, the facility's conference rooms enable NREL to host international wind power specialists, conferences,

  7. San Francisco Bay Area Aerial Radiation Assessment Survey | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration San Francisco Bay Area Aerial Radiation Assessment Survey January 27, 2016 (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear Security Administration (NNSA) announced that the radiation assessment will cover a

  8. The Solar Neutrino Problem R. Davis Jr., J . C. Evans, and B. T. Cleveland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4629 The Solar Neutrino Problem R. Davis Jr., J . C. Evans, and B. T. Cleveland Brookhaven National Laboratory Upton, NY 11973 Abstract A summary of the results o f the Brookhaven solar neutrino experi- ment is given and discussed i n relation t o solar model calcula- tions. neutrino detectors t h a t have been proposed. A review is given o f the merits o f various new solar I NTRODU CT I ON W e would like t o review the present status of the solar neutrino problem. First will be a report on the

  9. Triviality and vacuum stability bounds in the three-loop neutrino...

    Office of Scientific and Technical Information (OSTI)

    Title: Triviality and vacuum stability bounds in the three-loop neutrino mass model We study theoretical constraints on the parameter space under the conditions from vacuum ...

  10. Project X ICD-2 and its upgrades for Neutrino Factory or Muon Collider

    SciTech Connect (OSTI)

    Lebedev, Valeri; Nagaitsev, Sergei; /Fermilab

    2009-10-01

    This paper reviews the Initial Configuration Document for Fermilab's Project X and considers its possible upgrades for neutrino factory or muon collider.

  11. Double Beta Decay in Xenon-136: Measuring the Neutrino-Emitting...

    Office of Scientific and Technical Information (OSTI)

    Title: Double Beta Decay in Xenon-136: Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes Authors: Herrin, Steven ; Stanford U., Phys. Dept. SLAC ...

  12. Majorana phases, CP violation, sterile neutrinos and neutrinoless double-beta decay

    SciTech Connect (OSTI)

    Babi?, Andrej; imkovic, Fedor

    2013-12-30

    CP violation plays a crucial role in the generation of the baryon asymmetry in the Universe. Within this context we investigate the possibility of CP violation in the lepton sector caused by Majorana neutrino mixing. Focus is put on the model including 1 sterile neutrino. Both cases of normal and inverted neutrino mass spectrum are considered. We address the question whether the Majorana phases can be measured in the neutrinoless double-beta decay experiments with sensitivity to the effective Majorana neutrino mass of the order of 10{sup ?2} eV.

  13. Leon Lederman, the K-meson, the Muon Neutrino, and the Bottom...

    Office of Scientific and Technical Information (OSTI)

    the Muon Neutrino, and the Bottom Quark His Honors His Involvement in Science Education His Wisdom and Humor Resources with Additional Information Leon Lederman started...

  14. Neutrino properties deduced from the study of lepton number violating processes at low and high energies

    SciTech Connect (OSTI)

    Stoica, Sabin

    2012-11-20

    There is nowadays a significant progress in understanding the neutrino properties. The results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and oscillate, in contradiction with the Standard Model (SM) assumptions, and these are the first evidences of beyond SM physics. However, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?), their mass hierarchy, the number of neutrino flavors, etc., still remain unknown. In this context there is an increased interest in the study of the lepton number violating (LNV) processes, since they could complete our understanding on the neutrino properties. Since recently, the neutrinoless double beta decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments makes feasible the search of LNV processes at high energy as well. In this lecture I will make a brief review on our present knowledge of the neutrino properties, on the present status of the double-beta decay studies and on the first attempts to search LNV processes at LHC.

  15. Dirac or inverse seesaw neutrino masses with B L gauge symmetry and S? flavor symmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Ernest; Srivastava, Rahul

    2015-02-01

    Many studies have been made on extensions of the standard model with B L gauge symmetry. The addition of three singlet (right-handed) neutrinos renders it anomaly-free. It has always been assumed that the spontaneous breaking of B L is accomplished by a singlet scalar field carrying two units of B L charge. This results in a very natural implementation of the Majorana seesaw mechanism for neutrinos. However, there exists in fact another simple anomaly-free solution which allows Dirac or inverse seesaw neutrino masses. We show for the first time these new possibilities and discuss an application tomoreneutrino mixing with S? flavor symmetry.less

  16. Nuclear Effects in Neutrino Interactions at Low Momentum Transfer

    SciTech Connect (OSTI)

    Miltenberger, Ethan Ryan

    2015-05-01

    This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.

  17. Superconducting solenoids for muon-cooling in the neutrino factory

    SciTech Connect (OSTI)

    Green, M.A.; Miller, J.R.; Prestemon, S.

    2001-05-12

    The cooling channel for a neutrino factory consists of a series of alternating field solenoidal cells. The first section of the bunching cooling channel consists of 41 cells that are 2.75-m long. The second section of the cooling channel consists of 44 cells that are 1.65-m long. Each cell consists of a single large solenoid with an average diameter of 1.5 m and a pair of flux reversal solenoids that have an average diameter of 0.7 to 0.9 meters. The magnetic induction on axis reaches a peak value of about 5 T at the end of the second section of the cooling channel. The peak on axis field gradients in flux reversal section approaches 33 T/m. This report describes the two types of superconducting solenoid magnet sections for the muon-cooling channel of the proposed neutrino factory.

  18. Spectrum of supernova neutrinos in ultra-pure scintillators

    SciTech Connect (OSTI)

    Lujan-Peschard, C.; Pagliaroli, G.; Vissani, F., E-mail: carolup@fisica.ugto.mx, E-mail: giulia.pagliaroli@lngs.infn.it, E-mail: francesco.vissani@lngs.infn.it [Laboratori Nazionali del Gran Sasso, INFN, Assergi (AQ) (Italy)

    2014-07-01

    There is a great interest in measuring the non-electronic component of neutrinos from core collapse supernovae by observing, for the first time, also neutral-current reactions. In order to assess the physics potential of the ultra-pure scintillators in this respect, we study the entire expected energy spectrum in the Borexino, KamLAND and SNO+ detectors. We examine the various sources of uncertainties in the expectations, and in particular, those due to specific detector features and to the relevant cross sections. We discuss the possibility to identify the different neutrino flavors, and we quantify the effect of confusion, due to other components of the energy spectrum, overlapped with the neutral-current reactions of interest.

  19. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  20. Simple and compact expressions for neutrino oscillation probabilities in matter

    SciTech Connect (OSTI)

    Minakata, Hisakazu; Parke, Stephen J.

    2015-05-07

    We reformulate perturbation theory for neutrino oscillations in matter with an expansion parameter related to the ratio of the solar to the atmospheric ?m2 scales. Unlike previous works, use a renormalized basis in which certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we derive extremely compact expressions for the neutrino oscillations probabilities in matter. We find, for example, that the ?e disappearance probability at this order is of a simple two flavor form with an appropriately identified mixing angle and ?m2. Furthermore, despite exceptional simplicity in their forms they accommodate all order effects ?13 and the matter potential.

  1. NEUTRONIC REACTOR SYSTEM

    DOE Patents [OSTI]

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  2. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  3. Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"

    SciTech Connect (OSTI)

    Allahverdi, Rouzbeh

    2015-09-18

    This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.

  4. A MEASUREMENT OF THE MUON NEUTRINO CHARGED CURRENT QUASIELASTIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MUON NEUTRINO CHARGED CURRENT QUASIELASTIC INTERACTION AND A TEST OF LORENTZ VIOLATION WITH THE MINIBOONE EXPERIMENT Teppei Katori Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Physics, Indiana University December 2008 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee Rex Tayloe,

  5. LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT OF THE CCPIP TO CCQE CROSS SECTION RATIO A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics And Astronomy by Serge Ouedraogo B.S. in Physics, University of Arkansas at Little Rock, 2001 M.S., Louisiana State University, 2004 December 2008 In loving memory

  6. Partial Quark-Lepton Universality and Neutrino CP Violation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-01-01

    We smore » tudy a model with partial quark-lepton universality that can naturally arise in grand unified theories. We find that constraints on the model can be reduced to a single condition on the Dirac CP phase δ in the neutrino sector. Using our current knowledge of the CKM and PMNS mixing matrices, we predict - 32 . 4 ° ≤ δ ≤ 32 . 0 ° at 2 σ .« less

  7. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smr Small Modular Reactors The Savannah River National Laboratory (SRNL) has announced several partnerships to bring refrigerator-sized modular nuclear reactors, known as Small Modular Reactors or SMRs, to the Savannah River Site facility and jump start development of the U.S. Energy Freedom CenterTM. Currently, all large commercial power reactors in the United States and most in the rest of the world are based on "light water" designs - that is, they use uranium fuel and ordinary

  8. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  9. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  10. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  11. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  12. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect (OSTI)

    Faessler, A. [University of Tuebingen, Institute of Theoretical Physics (Germany)], E-mail: amand.faessler@uni-tuebingen.de

    2006-12-15

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  13. Cathodic Protection of the Yaquina Bay Bridge

    SciTech Connect (OSTI)

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

    2001-02-01

    The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

  14. Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...

    National Nuclear Security Administration (NNSA)

    Foreign Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River ... Mike Dunsmuir, FRRDRR Receipt Coordinator with Savannah River Nuclear Solutions (SRNS) ...

  15. REFLECTOR FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  16. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOE Patents [OSTI]

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  17. Some Aspects of Reactor Theory

    DOE R&D Accomplishments [OSTI]

    Weinberg, Alvin M.

    1952-10-10

    Some general remarks are made on reactor theory, particularly the asymptotic theory and multigroup methods. Unsolved reactor problems are also briefly discussed. (B.J.H.)

  18. W&M, JLab Host International Neutrino Workshop (William & Mary News &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events) | Jefferson Lab W&M, JLab Host International Neutrino Workshop (William & Mary News & Events) External Link: http://www.wm.edu/news/stories/2012/william--mary-hosts-international-neutrino-w... By jlab_admin on Thu, 2012-07-19

  19. Neutrino decay and neutrinoless double beta decay in a 3-3-1 model

    SciTech Connect (OSTI)

    Dias, Alex G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66.318, 05315-970, Sao Paulo-SP (Brazil); Doff, A. [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sao Paulo-SP (Brazil); Pires, C.A. de S; Rodrigues da Silva, P.S. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970, Joao Pessoa-PB (Brazil)

    2005-08-01

    In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with Majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

  20. Enhanced sensitivity to dark matter self-annihilations in the Sun using neutrino spectral information

    SciTech Connect (OSTI)

    Rott, C.; Tanaka, T.; Itow, Y. E-mail: ttanaka@stelab.nagoya-u.ac.jp

    2011-09-01

    Self-annihilating dark matter gravitationally captured by the Sun could yield observable neutrino signals at current and next generation neutrino detectors. By exploiting such signals, neutrino detectors can probe the spin-dependent scattering of weakly interacting massive particles (WIMPs) with nucleons in the Sun. We describe a method how to convert constraints on neutrino fluxes to a limit on the WIMP-nucleon scattering cross section. In this method all neutrino flavors can be treated in a very similar way. We study the sensitivity of neutrino telescopes for Solar WIMP signals using vertex contained events and find that this detection channel is of particular importance in the search for low mass WIMPs. We obtain highly competitive sensitivities with all neutrino flavor channels for a Megaton sized detector through the application of basic spectral selection criteria. Best results are obtained with the electron neutrino channel. We discuss associated uncertainties and provide a procedure how to treat them for analyses in a consistent way.

  1. DETECTING GRAVITY MODES IN THE SOLAR {sup 8} B NEUTRINO FLUX

    SciTech Connect (OSTI)

    Lopes, Ildio; Turck-Chize, Sylvaine E-mail: ilopes@uevora.pt

    2014-09-10

    The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the {sup 8} B neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order 2, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than 5.8 10{sup 4}. This study clearly shows that due to their high sensitivity to the temperature, the {sup 8} B neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the {sup 8} B neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

  2. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  3. 2010 Sambamurti Lecture: ?Expecting the Unexpected: Neutrino Physics at MiniBooNE?

    ScienceCinema (OSTI)

    Geralyn ?Sam? Zeller

    2010-09-01

    For more than 50 years, neutrinos have surprised researchers, not only by their mere presence, but also by the recent revelation that these ghostlike particles can oscillate from one type to another. This discovery has opened up a host of new questions about neutrinos and their properties ? questions that scientists are currently in a global race to answer.

  4. DOE - Office of Legacy Management -- W R Grace Co - Curtis Bay...

    Office of Legacy Management (LM)

    Davison Chemical Division Curtis Bay Plant MD.01-2 MD.01-3 Location: Curtis Bay, Baltimore, Maryland MD.01-2 Historical Operations: Conducted developmental research and thorium ...

  5. Plots and Figures from the Main Injector Neutrino Oscillation Search (MINOS) at Fermilab

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MINOS, or Main Injector Neutrino Oscillation Search, is an experiment at Fermilab designed to study the phenomena known as neutrino oscillations. It uses a beam of neutrino particles produced by the NuMI beamline facility - Neutrinos at the Main Injector. The beam of neutrinos is sent through the two MINOS detectors, one at Fermilab and one in the Soudan Mine in northern Minnesota. The Minos for Scientists page provides a link to the data plots that are available to the public and also provides explanations for some of the recent results of the experiment. Another links leads to a long listing of MINOS publications in refereed journals. Photo galleries are found by checking the links on the left menu.

  6. Measurable neutrino mass scale in A{sub 4}xSU(5)

    SciTech Connect (OSTI)

    Antusch, S.; Spinrath, M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Muenchen (Germany); King, Stephen F. [School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton (United Kingdom)

    2011-01-01

    We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

  7. FERMI LIMIT ON THE NEUTRINO FLUX FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Li Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing (China); Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming (China)

    2013-06-20

    If gamma-ray bursts (GRBs) produce high-energy cosmic rays, neutrinos are expected to be generated in GRBs via photo-pion productions. However, we stress that the same process also generates electromagnetic (EM) emission induced by the secondary electrons and photons, and that the EM emission is expected to be correlated with neutrino flux. Using Fermi/Large Area Telescope results on gamma-ray flux from GRBs, the GRB neutrino emission is limited to be <20 GeV m{sup -2} per GRB event on average, which is independent of the unknown GRB proton luminosity. This neutrino limit suggests that IceCube, operating at full scale, requires stacking of more than 130 GRBs in order to detect one GRB muon neutrino.

  8. Active-sterile neutrino oscillations in the early Universe with full collision terms

    SciTech Connect (OSTI)

    Hannestad, Steen; Hansen, Rasmus Sloth; Tram, Thomas; Wong, Yvonne Y.Y.

    2015-08-11

    Sterile neutrinos are thermalised in the early Universe via oscillations with the active neutrinos for certain mixing parameters. The most detailed calculation of this thermalisation process involves the solution of the momentum-dependent quantum kinetic equations, which track the evolution of the neutrino phase space distributions. Until now the collision terms in the quantum kinetic equations have always been approximated using equilibrium distributions, but this approximation has never been checked numerically. In this work we revisit the sterile neutrino thermalisation calculation using the full collision term, and compare the results with various existing approximations in the literature. We find a better agreement than would naively be expected, but also identify some issues with these approximations that have not been appreciated previously. These include an unphysical production of neutrinos via scattering and the importance of redistributing momentum through scattering, as well as details of Pauli blocking. Finally, we devise a new approximation scheme, which improves upon some of the shortcomings of previous schemes.

  9. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    SciTech Connect (OSTI)

    Adrin-Martnez, S.; Ardid, M.; Bou-Cabo, M. [Institut d'Investigaci per a la Gesti Integrada de les Zones Costaneres (IGIC), Universitat Politcnica de Valncia, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); Andr, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposici, Vilanova i la Geltr, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universitt Erlangen-Nrnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Universit, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Universit Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cit, 10, rue Alice Domon et Lonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Mart, J. [IFIC - Instituto de Fsica Corpuscular, Edificios Investigacin de Paterna, CSIC - Universitat de Valncia, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d'Astrophysique de Marseille, Ple de l'toile Site de Chteau-Gombert, rue Frdric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, M?gurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08נ10{sup 46}ergs{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  10. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  11. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  13. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  14. MULTI-DIMENSIONAL FEATURES OF NEUTRINO TRANSFER IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect (OSTI)

    Sumiyoshi, K. [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Takiwaki, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Matsufuru, H. [Computing Research Center, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamada, S., E-mail: sumi@numazu-ct.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: hideo.matsufuru@kek.jp, E-mail: shoichi@heap.phys.waseda.ac.jp [Science and Engineering and Advanced Research Institute for Science and Engineering, Waseda University, Okubo, 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2015-01-01

    We study the multi-dimensional properties of neutrino transfer inside supernova cores by solving the Boltzmann equations for neutrino distribution functions in genuinely six-dimensional phase space. Adopting representative snapshots of the post-bounce core from other supernova simulations in three dimensions, we solve the temporal evolution to stationary states of neutrino distribution functions using our Boltzmann solver. Taking advantage of the multi-angle and multi-energy feature realized by the S {sub n} method in our code, we reveal the genuine characteristics of spatially three-dimensional neutrino transfer, such as nonradial fluxes and nondiagonal Eddington tensors. In addition, we assess the ray-by-ray approximation, turning off the lateral-transport terms in our code. We demonstrate that the ray-by-ray approximation tends to propagate fluctuations in thermodynamical states around the neutrino sphere along each radial ray and overestimate the variations between the neutrino distributions on different radial rays. We find that the difference in the densities and fluxes of neutrinos between the ray-by-ray approximation and the full Boltzmann transport becomes ?20%, which is also the case for the local heating rate, whereas the volume-integrated heating rate in the Boltzmann transport is found to be only slightly larger (?2%) than the counterpart in the ray-by-ray approximation due to cancellation among different rays. These results suggest that we should carefully assess the possible influences of various approximations in the neutrino transfer employed in current simulations of supernova dynamics. Detailed information on the angle and energy moments of neutrino distribution functions will be profitable for the future development of numerical methods in neutrino-radiation hydrodynamics.

  15. Load test of the 272W Building high bay roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-28

    This reports the results of the Load Test of the 272W Building High Bay Roof Deck and Support Structure.

  16. Tampa Bay Designated as the Newest Clean Cities Coalition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tampa Bay Designated as the Newest Clean Cities Coalition Tampa Bay Designated as the Newest Clean Cities Coalition November 21, 2014 - 1:36pm Addthis Dr. Judy Genshaft, the University of South Florida's president, welcomes attendees to the Tampa Bay Clean Cities Ceremony. | Photo courtesy of the Clean Cities Coalition. Dr. Judy Genshaft, the University of South Florida's president, welcomes attendees to the Tampa Bay Clean Cities Ceremony. | Photo courtesy of the Clean Cities

  17. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  18. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  19. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  20. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.