Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Flushing Model of Onslow Bay, North Carolina, Based on Intrusion Volumes  

Science Conference Proceedings (OSTI)

Onslow Bay, North Carolina, is repeatedly flushed by intrusions of Gulf Stream water. An exponential dilution model based on intrusion models indicates 20–60 days are required for 50% dilution of Bay waters.

Larry P. Atkinson; Leonard J. Pietrafesa

1980-03-01T23:59:59.000Z

2

Great Bend, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota: Energy Resources North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473°, -96.8020228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.1538473,"lon":-96.8020228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Microsoft Word - CX-NorthBendWoodPoles_FY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Bend District Wood Pole Replacement Projects North Bend District Wood Pole Replacement Projects PP&A Project No.: 2658 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Various transmission lines located in Douglas, Linn, and Lane counties, Oregon. Refer to Project Location Attachment for transmission lines and corresponding structure locations. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace deteriorating wood poles and associated structural/electrical components (e.g. cross arms, insulators, guy anchors, etc.) along the subject transmission lines. Replacement will be in-kind and will utilize the existing holes to minimize ground disturbance. If necessary, an auger will be used to remove any loose soil from

4

A Latent-and Sensible-Heat Polynya Model for the North Water, Northern Baffin Bay  

Science Conference Proceedings (OSTI)

The Pease latent-heat polynya model is coupled to a reduced-gravity, coastal upwelling model in order to simulate the formation and maintenance of the North Water (NOW), the Arctic's largest polynya, located in northern Beffin Bay. In this region,...

Lawrence A. Mysak; Fengting Huang

1992-06-01T23:59:59.000Z

5

Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances commonly have been regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic, including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is a really extensive beneath most of the coastal plain province and has thicknesses greater than 1000 m in the Prudhoe Bay area. Gas hydrates have been inferred to occur in 50 North Slope exploratory and production wells on the basis of well-log responses calibrated to the response of an interval in a well where gas hydrates were recovered in a core by ARCO and Exxon. Most North Slope gas hydrates occur in six laterally continuous lower Tertiary sandstones and conglomerates; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River oil field and the western part of the Prudhoe Bay oil field. The volume of gas within these gas hydrates is estimated to be about 1.0 [times] 10[sup 12] to 1.2 [times] 10[sup 12] m[sup 3] (37 to 44 tcf), or about twice the volume of conventional gas in the Prudhoe Bay field. 52 refs., 13 figs., 2 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-05-01T23:59:59.000Z

6

A Nonlinear Steady-State Model of the North Water Polynya, Baffin Bay  

Science Conference Proceedings (OSTI)

A nonlinear, steady-state model of the North Water (NOW), the Arctic's largest polynya, is presented. The model follows in the spirit of the recently developed latent and sensible heat polynya model of Mysak and Huang, but extends it in several ...

M. S. Darby; A. J. Willmott; L. A. Mysak

1994-05-01T23:59:59.000Z

7

The Golden Gate Textile Barrier: Preserving California Bay of San Francisco from a Rising North Pacific Ocean  

E-Print Network (OSTI)

Climate change in California may require construction of a barrier separating the Pacific Ocean from San Francisco Bay and the Sacramento River-San Joaquin River Delta simply because Southern California is remarkably dependent on freshwater exported from the Delta. We offer a new kind of salt barrier, a macroproject built of impermeable textile materials stretched across the Golden Gate beneath the famous bridge. We anticipate it might eventually substitute for a recently proposed San Francisco In-Stream Tidal Power Plant harnessing a 1.7 m tide at the Bay entrance if future climate conditions Statewide is conducive. First-glance physics underpin our macroproject.

Richart B. Cathcart; Alexander A. Bolonkin

2007-02-04T23:59:59.000Z

8

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

9

RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA  

SciTech Connect

Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

2003-06-02T23:59:59.000Z

10

San Diego Bay Bibliography  

E-Print Network (OSTI)

SDGE power plant; bay ABSTRACT: The marine organisms ofMarine Research KEYWORDS: San Diego Bay; programs; bay South Bay PowerMarine Organisms of South San Diego Bay and the Ecological Effects of Power

Brueggeman, Peter

1994-01-01T23:59:59.000Z

11

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

12

Microsoft Word - Kokanee Bend CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2013 0, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Kokanee Bend South Conservation Easement funding Fish and Wildlife Project No. and Contract No.: 2008-800-00, BPA-006863 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 30 North, Range 20 West, Section 30, Flathead County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA intends to fund Montana Fish, Wildlife, and Parks (MFWP) for the purchase of a conservation easement, on approximately 70 acres of property,

13

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

14

Method for uniformly bending conduits  

DOE Patents (OSTI)

The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

Dekanich, S.J.

1984-04-27T23:59:59.000Z

15

OBSERVATION REPORT BendKing Pipe Bending Machine.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BENDKING PIPE BENDING MACHI\NE BENDKING PIPE BENDING MACHI\NE DEMONSTRATION Field Observation Report for December 3 - 4, 2001 Date Published: March 2002 Brian Meindinger, RMOTC PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. POPLAR, SUITE 150 CASPER, WY 82601 1-888-599-2200 Approval: RMOTC Manager_____________________________ Date:______________ Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any

16

Bend ductility of tungsten heavy alloys  

SciTech Connect

A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

1992-11-01T23:59:59.000Z

17

A Dynamic Reversal Bending Fatigue Testing System  

A bending fatigue system has been proposed and developed in this disclosure to test various structural materials in general.

18

North Bend, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

525576°, -84.7480038° 525576°, -84.7480038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1525576,"lon":-84.7480038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

North Bend, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4956579°, -121.7867775° 4956579°, -121.7867775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4956579,"lon":-121.7867775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Structural basis for DNA bending  

Science Conference Proceedings (OSTI)

The authors report proton NMR studies on DNA oligonucleotides that contain A tracts of lengths known to produce various degrees of bending. Spectra of duplexes in the series 5{prime}-(GGCA{sub n}CGG){center dot}(CCGT{sub n}GCC) (n = 3,4,5,7,9) reveal substantial structural changes within the A{sub n}{center dot}T{sub n} tract as its length is increased. Chemical-shift comparisons show that A tracts with fewer than about seven members do not contain regions of uniform structure. Throughout the series, there is a striking monotonic relationship between the location of an A{center dot}T pair in the A tract and the relative position of its ThyH3 resonance. The direction of this chemical-shift dispersion is opposite to that expected from consideration of ring-current effects alone. This model features a substantial negative base-pair tilt, which has been suggested previously as the source of A-tract bending. In contrast, the nuclear Overhauser effect distances are inconsistent with at least one known crystallographic A-tract structure which lacks appreciable base-pair tilt.

Nadeau, J.G.; Crothers, D.M. (Yale Univ., New Haven, CT (USA))

1989-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Bending of Wood With Steam.  

E-Print Network (OSTI)

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First… (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

22

Big Bend Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

icon Twitter icon Big Bend Electric Coop, Inc Jump to: navigation, search Name Big Bend Electric Coop, Inc Place Washington Utility Id 1723 Utility Location Yes...

23

Horseshoe Bend Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Horseshoe Bend Wind Farm Horseshoe Bend Wind Farm Jump to: navigation, search Name Horseshoe Bend Wind Farm Facility Horseshoe Bend Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner United Materials Developer Exergy Development Group Energy Purchaser Idaho Power Location West of Great Falls MT Coordinates 47.497516°, -111.432567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.497516,"lon":-111.432567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

North Slope action holds West Coast spotlight  

Science Conference Proceedings (OSTI)

The first oil from a North Slope reservoir outside Prudhoe Bay will begin flowing next year at rate of 80,000 bpd from Kuparuk field now under development by Atlantic Richfield Co. west of Prudhoe Bay. Just north of the Kuparuk development, Conoco Inc. has found a commercial reservoir in the Milne Point unit and will be drilling confirmation and delineation wells later this year and in 1982. Another area which very likely will be developed for production is located northeast of Prudhoe Bay, where Sohio Alaska Petroleum Co. has announced discoveries in 2 Sag Delta wells. In California's San Joaquin Valley, 3 Kern County fields - South Belridge, Elk Hills, and Lost Hills - are the sites of intensive drilling. Seven rigs are working in the Santa Barbara Channel, 3 of them developing known fields from permanent platforms.

Wilson, H.M.

1981-05-25T23:59:59.000Z

25

Production, development outlook bright on Alaska North Slope  

SciTech Connect

Alaskan North Slope operators continue to press efforts to bolster oil flow from currently producing fields in the province, notably giants Prudhoe Bay and Kuparuk River. This is occurring against a backdrop of an improving political climate at the federal and state levels for the future of North Slope production. North Slope operators also have programs aimed at developing marginal fields and sustaining exploration. The paper discusses Prudhoe Bay developments, efforts to improve oil recovery, the Kuparuk River field, ARCO gas prospects, changing politics, and royalty changes.

NONE

1995-06-26T23:59:59.000Z

26

Bay Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Bay Biodiesel LLC Place Martinez, California Zip 94553 Product Biodiesel producers in Martinez, California. References Bay Biodiesel LLC1...

27

Steam Generator Management Program: Generic Elements of U-Bend Tube Vibration Induced Fatigue Analysis for Westinghouse Model F Steam Generators  

Science Conference Proceedings (OSTI)

U-bend tube ruptures due to metal fatigue have been experienced by several utilities worldwide. The first fatigue-related tube rupture occurred at North Anna Unit 1 in 1987. The knowledge gained from this event provides the basis for estimating the potential for a fatigue failure in other plants. This report provides the generic information for a Westinghouse Model F steam generator, and defines the information required to complete a plant-specific u-bend analysis to determine susceptibility to ...

2013-12-02T23:59:59.000Z

28

Bend, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Bend, OR) (Redirected from Bend, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0581728°, -121.3153096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Nuclear fuels accounting interface: River Bend experience  

SciTech Connect

This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.

Barry, J.E.

1986-01-01T23:59:59.000Z

30

Vermilion Bay | Open Energy Information  

Open Energy Info (EERE)

Vermilion Bay Vermilion Bay Jump to: navigation, search Name Vermilion Bay Facility Vermilion Bay Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico LA Coordinates 29.741°, -92.057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.741,"lon":-92.057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Coos County, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, Oregon Coquille, Oregon Lakeside, Oregon Myrtle Point, Oregon North Bend, Oregon Powers, Oregon Retrieved from "http:en.openei.orgwindex.php?titleCoosCounty,Oregon&old...

32

North Bay Village, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8462074°, -80.1539351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8462074,"lon":-80.1539351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

North Bay Shore, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

59024°, -73.260978° 59024°, -73.260978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.759024,"lon":-73.260978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Light-bending tests of Lorentz invariance  

E-Print Network (OSTI)

Classical light bending is investigated for weak gravitational fields in the presence of hypothetical local Lorentz violation. Using an effective field theory framework that describes general deviations from local Lorentz invariance, we derive a modified deflection angle for light passing near a massive body. The results include anisotropic effects not present for spherical sources in General Relativity as well as Weak Equivalence Principle violation. We develop an expression for the relative deflection of two distant stars that can be used to analyze data in past and future solar-system observations. The measurement sensitivities of such tests to coefficients for Lorentz violation are discussed.

Rhondale Tso; Quentin G. Bailey

2011-08-10T23:59:59.000Z

35

St.Margarets Bay Halifax Harbour  

E-Print Network (OSTI)

St.Margarets Bay Queensland Beach Bayers Lake Bedford Basin Halifax Harbour Crystal Crescent Beach Mushaboom Harbour Ship Harbour Taylor Head ATLANTIC OCEAN Dollar Lake Musquodoboit River Lake Charlotte Shad Bay Whites Lake Terence Bay Prospect Pennant Pt Herring Cove Purcells Cove 349 306 Fall River

Beaumont, Christopher

36

Tension and Flex Bending Fatigue of Superelastic Nitinol  

Science Conference Proceedings (OSTI)

Symposium, Shape Memory Alloys. Presentation Title, Tension and Flex Bending Fatigue of Superelastic Nitinol. Author(s), John R Lewandowski, Brian Benini, ...

37

The Research on Controlling the Pre-Bending Deformation before ...  

Science Conference Proceedings (OSTI)

The straightness and residual stresses of the rail after straightening are affected by the bending deformation during cooling before straightening. By analyzing ...

38

Big Bend, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigBend,California&oldid227746" Categories: Places Stubs Cities What links here Related...

39

Warm Bending Magnesium Sheet for Automotive Closure Panels  

Science Conference Proceedings (OSTI)

For automotive production, hemming equipment would be augmented with a rapid heating technology to locally heat the bend region, complete the hem and ...

40

DISTRIBUTION OF THE SYNCHROTRON RADIATION FROM BENDING MAGNETS  

NLE Websites -- All DOE Office Websites (Extended Search)

DISTRIBUTION OF THE SYNCHROTRON RADIATION FROM BENDING MAGNETS LS-91 S. Kim November 1988 NO DISTRIBUTION REFERENCE ONLY This note describes the distribution of the synchrotron...

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SRI CAT Section 1 bending magnet beamline description  

SciTech Connect

This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule.

Srajer, G.; Rodricks, B.; Assoufid, L.; Mills, D.M.

1994-03-10T23:59:59.000Z

42

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co Îł-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required Îł-ray Irradiation Results and Analysis of Îł-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

43

Bend, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Bend, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0581728°, -121.3153096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0581728,"lon":-121.3153096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Daya Bay Reactor Neutrino Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Daya Bay Reactor Neutrino Daya Bay Reactor Neutrino Experiment Daya Bay Reactor Neutrino Experiment Daya Bay is an international neutrino-oscillation experiment designed to determine the last unknown neutrino mixing angle θ13 using anti-neutrinos produced by the Daya Bay and Ling Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are located. Data collection is now scheduled to start in in 2011. On the PDSF cluster at NERSC, Daya Bay performs simulations of the detectors, reactors, and surrounding mountains to help design and anticipate detector properties and behavior. Once real data are available, Daya Bay will be using NERSC to analyze data and NERSC HPSS will be the central U.S. repository for all raw

45

Cathodic Protection of the Yaquina Bay Bridge  

SciTech Connect

The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

2001-02-01T23:59:59.000Z

46

Berkeley Lab / Richmond Bay Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Campus Second Campus Long Range Development Plan Environmental Docs Department of Energy NEPA Environmental Documents Frequently Asked Questions (FAQ) Timeline Community Meetings Selection Process Contacts The Science The University of California, Berkeley and the University of California at the Lawrence Berkeley National Laboratory propose to establish a new research campus - the Richmond Bay Campus - in Richmond, California. The purpose of the proposed campus is to build upon the University of California's record of accomplishment in providing long-term societal benefits through discovery and the advancement of knowledge. UC Berkeley and Lawrence Berkeley National Laboratory's goals for the Richmond Bay Campus are: Advance LBNL and UC Berkeley's tradition of world class science by

47

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

48

Project Aids Development of Legacy Oilfield on Alaska's North Slope |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Aids Development of Legacy Oilfield on Alaska's North Project Aids Development of Legacy Oilfield on Alaska's North Slope Project Aids Development of Legacy Oilfield on Alaska's North Slope October 18, 2013 - 11:52am Addthis Project Aids Development of Legacy Oilfield on Alaska’s North Slope Quick Facts The National Petroleum Reserve was created by President Warren G, Harding in 1923 when the U.S. Navy was converting from coal to oil. The reserve spans 22 million acres across the western North Slope of Alaska-the largest single unit of public lands in the nation. The 800-mile-long trans-Alaska pipeline carries oil from Prudhoe Bay, on Alaska's North Slope, to Valdez, Alaska, the nearest ice-free port. More than 16 million barrels of oil have traveled through the pipeline since the first barrel flowed in 1977.

49

Using Bayes' Theorem for Free Energy Calculations.  

E-Print Network (OSTI)

??Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scaleevents. Although Bayes’ theorem has generally been recognized as providing key guiding principals for setup… (more)

Rogers, David M.

2009-01-01T23:59:59.000Z

50

EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon Summary This EA evaluates the...

51

Toledo Bend Project Joint Oper | Open Energy Information  

Open Energy Info (EERE)

Bend Project Joint Oper Bend Project Joint Oper Jump to: navigation, search Name Toledo Bend Project Joint Oper Place Texas Utility Id 19048 Utility Location Yes Ownership S NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Toledo_Bend_Project_Joint_Oper&oldid=411678"

52

Microsoft Word - BigBendSootblowerPPA_Final_061306.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

34 Big Bend Power Station Neural Network-Sootblower Optimization A DOE Assessment June 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory...

53

The Diffraction of Kelvin Waves and Bores at Coastal Bends  

Science Conference Proceedings (OSTI)

Bends in coastal mountain ranges may diffract propagating atmospheric Kelvin waves and trapped coastal currents. Analytic solutions exist for the diffraction of both linear Kelvin waves and linear nonrotating gravity waves. Within the context of ...

William C. Skamarock; Joseph B. Klemp; Richard Rotunno

1996-05-01T23:59:59.000Z

54

Changes related to "Chesapeake Bay Test Site" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Chesapeake Bay Test Site" Chesapeake Bay Test Site Jump to: navigation, search This is a list of...

55

Tampa Bay Area Ethanol Consortium | Open Energy Information  

Open Energy Info (EERE)

Tampa Bay Area Ethanol Consortium Jump to: navigation, search Name Tampa Bay Area Ethanol Consortium Place Tampa, Florida Sector Biomass Product Consortium researching ethanol from...

56

Status of the Daya Bay Reactor Neutrino Oscillation Experiment  

E-Print Network (OSTI)

Status of the Daya Bay Reactor Neutrino OscillationCheng-Ju Lin The Daya Bay reactor neutrino experiment [1] isneutrinos from the nuclear reactors at different baselines.

Lin, Cheng-Ju Stephen

2011-01-01T23:59:59.000Z

57

Category:Green Bay, WI | Open Energy Information  

Open Energy Info (EERE)

WI WI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Green Bay, WI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Green Bay WI Wisconsin Electric Power Co.png SVFullServiceRestauran... 79 KB SVQuickServiceRestaurant Green Bay WI Wisconsin Electric Power Co.png SVQuickServiceRestaura... 79 KB SVHospital Green Bay WI Wisconsin Electric Power Co.png SVHospital Green Bay W... 79 KB SVLargeHotel Green Bay WI Wisconsin Electric Power Co.png SVLargeHotel Green Bay... 78 KB SVLargeOffice Green Bay WI Wisconsin Electric Power Co.png SVLargeOffice Green Ba... 90 KB SVMediumOffice Green Bay WI Wisconsin Electric Power Co.png SVMediumOffice Green B... 78 KB SVMidriseApartment Green Bay WI Wisconsin Electric Power Co.png

58

Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Preventorium Greenhouse Low Temperature Geothermal Facility Preventorium Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend Preventorium Sector Geothermal energy Type Greenhouse Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

59

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Carolina North Carolina October 16, 2013 Wind Energy Permitting Standards (North Carolina) North Carolina has statewide permitting requirements for wind energy facilities....

60

MHK Projects/Vicksburg Bend | Open Energy Information  

Open Energy Info (EERE)

Vicksburg Bend Vicksburg Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

62

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

63

Tuscola Bay Wind | Open Energy Information  

Open Energy Info (EERE)

Tuscola Bay Wind Tuscola Bay Wind Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Detroit Edison Location Fairgrove MI Coordinates 43.52596°, -83.653106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.52596,"lon":-83.653106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Chesapeake Bay Test Site | Open Energy Information  

Open Energy Info (EERE)

Chesapeake Bay Test Site Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Gamesa and Newport News Energy Developer Gamesa and Newport News Energy Location Atlantic Ocean VA Coordinates 37.243°, -76.062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.243,"lon":-76.062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Felton Bay Logistics, LLC | Open Energy Information  

Open Energy Info (EERE)

Felton Bay Logistics, LLC Felton Bay Logistics, LLC Jump to: navigation, search Logo: Felton Bay Logistics, LLC Name Felton Bay Logistics, LLC Place San Diego Zip 92115 Sector Services Product Strategies for Sustainability Year founded 2010 Number of employees 1-10 Website http://www.feltonbay.com Coordinates 32.7612759°, -117.0735241° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7612759,"lon":-117.0735241,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Wakasa Bay: An AMSR Precipitation Validation Campaign  

Science Conference Proceedings (OSTI)

The “Wakasa Bay Experiment” was conducted in order to refine error models for oceanic precipitation from the Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E) measurements and to develop algorithms for snowfall. The NASA P-3 ...

Elena S. Lobl; Kazumasa Aonashi; Masataka Murakami; Brian Griffith; Christian Kummerow; Guosheng Liu; Thomas Wilheit

2007-04-01T23:59:59.000Z

67

Climate Change and Bay Area Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change and Bay Area Transportation Speaker(s): Bruce Riordan Date: April 5, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Marcia Beck Bruce Riordan is a...

68

Deep Currents in the Bay of Campeche  

Science Conference Proceedings (OSTI)

Data from five moorings deployed in the Bay of Campeche during November 2007–July 2008 are used to analyze subinertial motions of waters below 1000-m depth. To the authors’ knowledge, this is the first time such a comprehensive observational ...

Nicolas Kolodziejczyk; José Ochoa; Julio Candela; Julio Sheinbaum

2011-10-01T23:59:59.000Z

69

Flexpad: highly flexible bending interactions for projected handheld displays  

Science Conference Proceedings (OSTI)

Flexpad is an interactive system that combines a depth camera and a projector to transform sheets of plain paper or foam into flexible, highly deformable, and spatially aware handheld displays. We present a novel approach for tracking deformed surfaces ... Keywords: bending, deformation, depth camera, flexible display, handheld display, projection, tracking, volumetric data

Jürgen Steimle; Andreas Jordt; Pattie Maes

2013-04-01T23:59:59.000Z

70

EIA Report 8/10/06 - Alaska's Prudhoe Bay Crude Oil Pipeline Shutdown  

Gasoline and Diesel Fuel Update (EIA)

Alaska Prudhoe Bay Crude Oil Shut-in Alaska Prudhoe Bay Crude Oil Shut-in Facts and Impacts on the U.S. Oil Markets As of Thursday, August 10, 10:00 am Background on Alaska Crude Production and Transport Alaska ranks second, after Texas, among the States in crude oil reserves. On December 31, 2004, Alaska's proved reserves totaled 4,327 million barrels. Although Alaska's production declined from 2 million barrels per day (bbl/d) in 1988 to 864,000 bbl/d in 2005, it is still the second largest oil producing State when Federal offshore production is excluded. Alaskan Production Graph of US Crude Oil Production figure data The Trans-Alaska Pipeline Systems (TAPS) connects the North Slope oil fields with the Port of Valdez in southern Alaska. From Valdez, crude oil is shipped primarily to refineries located on the U.S. West Coast.

71

Cargill Corn Milling North America  

Science Conference Proceedings (OSTI)

... Manufacturing. Cargill Corn Milling North America. Cargill employees (Photo courtesy of Cargill Corn Milling North America). ...

2010-11-23T23:59:59.000Z

72

North Dakota State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

North Dakota North Dakota State Regulations: North Dakota State of North Dakota The North Dakota Industrial Commission (NDIC), through its Oil and Gas Division (OGD), is the regulatory agency for oil and gas exploration and production activities in North Dakota. The North Dakota Department of Health (NDDH) Environmental Health Section (EHS) has the responsibility to safeguard the quality of North Dakota's air, land, and water resources. Contact North Dakota Industrial Commission Oil and Gas Division 600 East Boulevard Avenue, Dept. 405 Bismarck, ND 58505-0840 (701) 328-8020 (phone) (701) 328-8022 (fax) North Dakota Department of Health Environmental Health Section 1200 Missouri Avenue P.O. Box 5520 Bismarck, ND 58506-5520 (701) 328-5150 (phone) (701) 328-5200 (fax) Disposal Practices and Applicable Regulations

73

Could Gila Bend, Arizona, Become the Solar Capital of the World? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Gila Bend, Arizona, Become the Solar Capital of the World? Could Gila Bend, Arizona, Become the Solar Capital of the World? Could Gila Bend, Arizona, Become the Solar Capital of the World? November 15, 2011 - 9:57am Addthis Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona. | Photo courtesy of the town of Gila Bend, Arizona. Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona. | Photo courtesy of the town of Gila Bend, Arizona. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs "Gila Bend had essentially been economically stagnant for the last two

74

The influence of return bends on the downstream pressure drop and condensation heat transfer in tubes  

E-Print Network (OSTI)

The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...

Traviss, Donald P.

1971-01-01T23:59:59.000Z

75

Hooper Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hooper Bay Wind Farm Hooper Bay Wind Farm Jump to: navigation, search Name Hooper Bay Wind Farm Facility Hooper Bay Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates 61.53572°, -166.097182° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.53572,"lon":-166.097182,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Cleveland Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cleveland Bay Wind Farm Cleveland Bay Wind Farm Jump to: navigation, search Name Cleveland Bay Wind Farm Facility Cleveland Bay Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation / Great Lakes Ohio Wind / Great Lakes Energy Wind LLC / Freshwater Wind LLC / Cavallo Great Lakes Ohio Wind LLC Location Cleveland Bay OH Coordinates 41.608°, -81.809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.608,"lon":-81.809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Where the Sky Is the Right Color: Scale and Air Pollution in the Big Bend Region  

E-Print Network (OSTI)

sources implicated in Big Bend haze, namely coal-fired power plants; eliminating those plants or powering them through alternate

Donez, Francisco Juan

2010-01-01T23:59:59.000Z

78

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

79

Aerial survey of Bay Area continues through Saturday | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey of Bay Area continues through Saturday Aerial survey of Bay Area continues...

80

Education Program for Improved Water Quality in Copano Bay Final Report  

E-Print Network (OSTI)

The Copano Bay watershed covers approximately 1.4 million acres encompassing portions of Karnes, Bee, Goliad, Refugio, San Patricio and Aransas counties. Copano Bay and its main tributaries, the Mission and Aransas rivers, were placed on the Texas Commission on Environmental Quality (TCEQ) 303(d) list in 1998 due to levels of bacteria that exceed water quality standards established to protect oyster waters use. A Total Maximum Daily Load (TMDL) program was initiated in September 2003 to identify and assess sources of these bacteria. The Center for Research in Water Resources at the University of Texas at Austin (UT CRWR) was funded by TCEQ to conduct computer-based modeling to determine the bacterial loading and reductions necessary to attain water quality standards. Subsequently Texas A&M University-Corpus Christi (TAMU-CC) conducted bacterial source tracking (BST) with funding from Texas General Land Office (TGLO) and the Coastal Bend Bays and Estuaries Program (CBBEP) to determine actual sources of bacteria. Due to the findings of the initial efforts of the TMDL and concerns voiced by stakeholders in the watershed, Texas AgriLife Extension Service was awarded a Clean Water Act § 319(h) Nonpoint Source Grant from the Texas State Soil and Water Conservation Board (TSSWCB) and the U.S. Environmental Protection Agency. The overall goal of this project was to improve water quality in Copano Bay and its tributaries by increasing awareness of water quality issues throughout the watershed. This increased awareness was to be accomplished by providing education and demonstrations for land and livestock owners in the watershed on best management practices (BMPs) to decrease or prevent bacteria from entering waterways. Through creation of a project website, 52 educational programs, and nine one-on-one consultations over the span of the project, we have reached 5,408 residents in and around the Copano Bay watershed. Additionally, through this project all data collected for the initial TMDL efforts was re-evaluated and findings were presented in the “Task 2 Report.” Project members developed a curriculum for horse owners, “A Guide to Good Horsekeeping” that addressed BMPs specific to horse operations. Land and livestock owners who had already implemented BMPs or were interested in implementing BMPs were given a participation certificate.

Berthold, A.; Moench, E.; Wagner, K.; Paschal, J.

2012-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Glacier Bay Inc | Open Energy Information  

Open Energy Info (EERE)

Glacier Bay Inc Glacier Bay Inc Jump to: navigation, search Name Glacier Bay Inc Place Oakland, California Zip 94601 Product US-based, advanced thermal control, sound reduction, and DC power management technologies developer. Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

MHK Projects/Bar Field Bend | Open Energy Information  

Open Energy Info (EERE)

Bar Field Bend Bar Field Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.8967,"lon":-89.6897,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

83

MHK Projects/Avondale Bend Project | Open Energy Information  

Open Energy Info (EERE)

Avondale Bend Project Avondale Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9301,"lon":-90.2215,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

84

MHK Projects/New Madrid Bend Project | Open Energy Information  

Open Energy Info (EERE)

Madrid Bend Project Madrid Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5515,"lon":-89.4613,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

85

MHK Projects/Kempe Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kempe Bend Project Kempe Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8622,"lon":-91.3073,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

86

South Bend, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Indiana: Energy Resources Bend, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6833813°, -86.2500066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6833813,"lon":-86.2500066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

MHK Projects/Milliken Bend Project | Open Energy Information  

Open Energy Info (EERE)

Milliken Bend Project Milliken Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5594,"lon":-91.1119,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

88

Big Bend, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Wisconsin: Energy Resources Bend, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8814034°, -88.2067573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8814034,"lon":-88.2067573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

MHK Projects/Cow Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0269,"lon":-90.2792,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

90

MHK Projects/Greenville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Greenville Bend Project Greenville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9231,"lon":-90.1433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

91

MHK Projects/Old Town Bend | Open Energy Information  

Open Energy Info (EERE)

Old Town Bend Old Town Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3713,"lon":-90.7493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

92

MHK Projects/Springfield Bend | Open Energy Information  

Open Energy Info (EERE)

Springfield Bend Springfield Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5654,"lon":-91.2603,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

93

MHK Projects/Georgetown Bend | Open Energy Information  

Open Energy Info (EERE)

Georgetown Bend Georgetown Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.5735,"lon":-91.1986,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

94

MHK Projects/Davis Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1299,"lon":-91.0636,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

95

MHK Projects/Little Prairie Bend Project | Open Energy Information  

Open Energy Info (EERE)

Little Prairie Bend Project Little Prairie Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2522,"lon":-89.657,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

96

MHK Projects/Matthews Bend | Open Energy Information  

Open Energy Info (EERE)

Matthews Bend Matthews Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1201,"lon":-91.1208,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

97

City of West Bend, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bend Bend Place Iowa Utility Id 20364 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rates Commercial Commercial Electric Rates (3 Phase) Commercial Industrial Electric Rates Industrial Residential Electric Rates Residential Rural Electric Rates (3 Phase) Commercial Rural Electric Rates (Single Phase) Commercial Average Rates Residential: $0.0755/kWh Commercial: $0.0716/kWh Industrial: $0.0795/kWh References

98

Post Oak Bend City, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oak Bend City, Texas: Energy Resources Oak Bend City, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6320777°, -96.3135917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.6320777,"lon":-96.3135917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

MHK Projects/Carrolton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Carrolton Bend Project Carrolton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.95,"lon":-90.1551,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

100

MHK Projects/Gouldsboro Bend Project | Open Energy Information  

Open Energy Info (EERE)

Gouldsboro Bend Project Gouldsboro Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9177,"lon":-90.0673,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Projects/Scotlandville Bend Project | Open Energy Information  

Open Energy Info (EERE)

Scotlandville Bend Project Scotlandville Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5166,"lon":-91.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

102

MHK Projects/Walker Bend Project | Open Energy Information  

Open Energy Info (EERE)

Walker Bend Project Walker Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3678,"lon":-91.1315,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

103

MHK Projects/Hickman Bend Project | Open Energy Information  

Open Energy Info (EERE)

Hickman Bend Project Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6007,"lon":-89.21,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

104

Fort Bend County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend County, Texas: Energy Resources Bend County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5692614°, -95.8142885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5692614,"lon":-95.8142885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

MHK Projects/Island 14 Bend | Open Energy Information  

Open Energy Info (EERE)

Island 14 Bend Island 14 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2837,"lon":-89.576,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

106

MHK Projects/Fitler Bend | Open Energy Information  

Open Energy Info (EERE)

Fitler Bend Fitler Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8007,"lon":-91.1586,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

107

MHK Projects/Newton Bend Project | Open Energy Information  

Open Energy Info (EERE)

Newton Bend Project Newton Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.218,"lon":-90.9891,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

108

MHK Projects/Morgan Bend Crossing Project | Open Energy Information  

Open Energy Info (EERE)

Morgan Bend Crossing Project Morgan Bend Crossing Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7879,"lon":-91.5469,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

109

MHK Projects/Sara Bend Project | Open Energy Information  

Open Energy Info (EERE)

Sara Bend Project Sara Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.751,"lon":-91.3999,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

110

MHK Projects/Kenner Bend Project | Open Energy Information  

Open Energy Info (EERE)

Kenner Bend Project Kenner Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9596,"lon":-90.2868,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

111

MHK Projects/Slough Bend | Open Energy Information  

Open Energy Info (EERE)

Slough Bend Slough Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4778,"lon":-89.4436,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

112

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

MHK Projects/Island 35 Bend MHK Projects/Island 35 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5435,"lon":-89.9079,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

113

MHK Projects/St Rose Bend | Open Energy Information  

Open Energy Info (EERE)

Rose Bend Rose Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9309,"lon":-90.3433,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

114

MHK Projects/Miller Bend Project | Open Energy Information  

Open Energy Info (EERE)

Miller Bend Project Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4887,"lon":-91.1612,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

115

MHK Projects/Little Cypress Bend | Open Energy Information  

Open Energy Info (EERE)

Cypress Bend Cypress Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.3482,"lon":-89.5892,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

116

Gila Bend, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend, Arizona: Energy Resources Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236°, -112.7168305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9478236,"lon":-112.7168305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

MHK Projects/Saint Catherine Bend | Open Energy Information  

Open Energy Info (EERE)

Saint Catherine Bend Saint Catherine Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4111,"lon":-91.4953,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

118

MHK Projects/Remy Bend Project | Open Energy Information  

Open Energy Info (EERE)

Remy Bend Project Remy Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0121,"lon":-90.754,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

119

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bessemer Bend, Wyoming: Energy Resources Bessemer Bend, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7580196°, -106.5203123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7580196,"lon":-106.5203123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

MHK Projects/Linwood Bend | Open Energy Information  

Open Energy Info (EERE)

Linwood Bend Linwood Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1676,"lon":-89.6216,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Big Bend Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Big Bend Hot Springs Geothermal Area Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0217,"lon":-121.9183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Bending free toroidal shells for tokamak fusion reactors  

SciTech Connect

Several authors have suggested a novel shape for the toroidal field (TF) coils of a tokamak fusion reactor. Collectively, these magnet shapes have become referred to as the ''Princeton D-coil.'' This coil shape can be derived by assuming that for a thin conductor to be in a state of ''pure tension,'' its radius of curvature must be proportional to the toroidal radius. A principal disadvantage of this derivation is that out-of-plane support, a necessary feature in the design of a tokamak fusion reactor, is neglected. A derivation of a bending free toroidal shell for a tokamak fusion reactor is presented. The out-of-plane structure is considered to be an integral part of the fusion reactor and therefore its shape is optimized to produce a bending free stress distribution. This shape, which is nearly circular for aspect ratios greater than 2.5, is derived by solving the equilibrium, constitutive, and kinematic relationships for a uniform toroidal membrane. This membrane is subjected to a magnetic pressure which is inversely proportional to the square of the toroidal radius. A comparison between this bending free shape and the D-shape is presented.

Gray, W.H.; Stoddart, W.C.T.; Akin, J.E.

1977-01-01T23:59:59.000Z

123

OCEANOGRAPHIC OBSERVATIONS IN BRISTOL BAY AND THE BERING SEA  

E-Print Network (OSTI)

381 OCEANOGRAPHIC OBSERVATIONS IN BRISTOL BAY AND THE BERING SEA 1939-41, USCGT Redwing L. o OCEANOGRAPHIC OBSERVATSONS IN BRBSTOL BAY AND THE BERING SEA 1939-41 (USCGT Redwing) by Felix Favorite, John W OBSERVATIONS IN BRISTOL BAY AND THE BERING SEA 1939-41 (USCGT Redwing) by Felix Favorite, John W. Schantz

124

SF Bay Cores Uncovering Our Dirty Past  

E-Print Network (OSTI)

1956 1931 1898 #12;Dating: Radioisotopes (USC Hammond) · 137Cs in atom bomb ­ Post ~1950 ­ Max ~1960 reservoir · Much of SF Bay eroding · Ticking TIME BOMB?!!! Hornberger 1999 #12;· Need baywide inventory reviewed. Do not cite or quote. PCBs represents the sums of individual congeners reported by the RMP

125

BRISTOL BAY OCEANOGRAPHY AUGUST-SEPTEMBER, 1938  

E-Print Network (OSTI)

Chichagof 7 111 #12;U. S. Coast Guard Tug Redwing IV #12;BRISTOL BAY OCEANOGRAPHY, AUGUST-SEPTEMBER 1938 logs of the U. S. Coast Gucird Tug Redwing present values of temperature, salinity, density, dynamicÂŁird Tug Redwing equipped to make hydrographic casts, measure currents, and obtain bottom samples. Grateful

126

Prudhoe Bay Oil Production Optimization: Using Virtual  

E-Print Network (OSTI)

total field oil production by optimizing the gas discharge rates and pressures at the separation1 Prudhoe Bay Oil Production Optimization: Using Virtual Intelligence Techniques, Stage One: Neural Model Building Shahab D. Mohaghegh, West Virginia University Lynda A. Hutchins, BP Exploration (Alaska

Mohaghegh, Shahab

127

Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.  

Science Conference Proceedings (OSTI)

Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

Ledvina, Joseph A.

2008-05-01T23:59:59.000Z

128

Sonar imaging of bay bottom sediments and anthropogenic impacts in Galveston Bay, Texas  

E-Print Network (OSTI)

Knowledge of surface sediment distribution in Galveston Bay is important because it allows us to better understand how the bay works and how human activities impact the bay and its ecosystems. In this project, six areas of bay bottom were surveyed using acoustic techniques to make maps of bay bottom types and to investigate the types and extent of anthropogenic impacts. A total of 31 km2 was surveyed in six areas, one in Bolivar Roads (6.1 km2), one near Redfish Bar (3.1 km2), two in East Bay (12 km2), one southeast of the Clear Lake entrance (5.3 km2), and one in Trinity Bay (4.3 km2). Sidescan sonars (100 kHz and 600 kHz) were used to image the bay bottom, and a chirp sonar (2-12 kHz) was used to image subsurface sediment layers and bottom topography. In the side-scan records, objects as small as a few meters in extent were visible, whereas the chirp sonar records show a vertical resolution of a few tens of centimeters. The sidescan images display strong backscatter in some areas due to coarse sediments in addition to weak backscatter in areas of fine sediment. The bay bottom was classified using three levels of sonar backscatter ranging from high to low. Areas of differing sonar backscatter intensity were sampled with cores and grab-samples. High backscatter corresponded to coarse shell debris and oyster reefs, medium backscatter corresponded to a sand-silt-shell mixture, and low backscatter corresponded to silty loam. Chirp sonar records were classified as one of nine different bottom reflection types based on changes in amplitude and stratigraphy. Parallel, layered sediments are seen filling the bay valley and resting atop a sharp contact at which the acoustic signal fades out. Along the flanks of the valley fill the acoustic response revealed an absent or weakly laminated stratigraphy, whereas areas of high oyster productivity produced mounds, strong surface returns, and strong, shallow subsurface reflectors surrounding current oyster reefs. Anthropogenic features imaged with the sonar included sediment disruptions, such as the ship channels, dredge holes, gouges, and trawl marks, as well as debris, such as submerged boats, pipes, and unidentified objects.

Maddox, Donald Shea

2005-12-01T23:59:59.000Z

129

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay  

E-Print Network (OSTI)

Swan Lake is a sub-bay of the Galveston Bay system. The area received runoff from a tin smelter via the Wah Chang Ditch which ran through it in the past but the ditch is now cut off by a hurricane protection levee. An industrial waste disposal facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster, mussel, snail, crab, fish, shrimp, and spartina) in the area. Sediments and organisms were analyzed for total Ag, Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, and Zn. Water samples were analyzed for Cd, Cu, Fe, Mn, and Sn. The variabilities and geographic trends in sediment trace metals indicated that waste disposal and airborne inputs from facilities located at the Tex Tin site were likely sources for metal pollution found in the sediments. Sediments in the study area showed elevated trace metals relative to Galveston Bay and other Texas bay sediments. Three different samplings of the Wah Chang Ditch showed no temporal patterns in metal distribution in the sediments. Lead especially was uniformly high on the three different trips, respectively averaging 1250 (Trip 1), 893 (Trip H), and 1350 ppm (Trip V). Metal enrichments at depth in the sediment column indicated that the Swan Lake area has recently received less input of metal contaminated sediment than in the past. Anthropogenic inputs did not greatly influence the natural concentrations of Fe, Al, and Ni in sediments either in the past or at present. Most organisms showed very small spatial variations. However, the oysters in Swan Lake are enriched in most metals relative to Galveston Bay and other U. S. Gulf of Mexico oysters. The mussels in this study do not reflect the unusually elevated environmental metal concentration in the sediments from which they were taken. Iron and Pb concentrations in oysters seemed to be directly related to sediment concentrations at each location. Oysters show higher concentrations in most metals than those in mussels. The Zn level was II 3 times higher in oysters. For organisms collected from the Swan Lake area trace metal concentrations were generally in the order oysters > snail > crab > shrimp > fish. Metal concentrations in Wah Chang Ditch water were very elevated relative to those of the Brazos River and Galveston Bay and closely reflect those in sediments of the Wah Chang Ditch.

Park, Junesoo

1995-01-01T23:59:59.000Z

130

Real-time resilient focusing through a bending multimode fiber  

E-Print Network (OSTI)

We introduce a system capable of focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micromirror device and a field programmable gate array controller. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

Caravaca-Aguirre, Antonio M; Conkey, Donald B; Piestun, Rafael

2013-01-01T23:59:59.000Z

131

North Carolina Capital Access Program (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The North Carolina Capital Access Program provides matching reserve funds for business loans that are beyond the traditional lending means of a lender’s usual standards. The average CAP loan is ...

132

Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation  

SciTech Connect

The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

Railsback, Justin [North Carolina State University; Singh, Abhishek [North Carolina State University; Pearce, Ryan [North Carolina State University; McKnight, Timothy E [ORNL; Collazo, Ramon [North Carolina State University; Sitar, Zlatko [ORNL; Yingling, Yaroslava [North Carolina State University; Melechko, Anatoli Vasilievich [ORNL

2012-01-01T23:59:59.000Z

133

Bay Front Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Front Biomass Facility Front Biomass Facility Jump to: navigation, search Name Bay Front Biomass Facility Facility Bay Front Sector Biomass Location Ashland County, Wisconsin Coordinates 46.9794969°, -90.4824892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9794969,"lon":-90.4824892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

BayWa Group | Open Energy Information  

Open Energy Info (EERE)

BayWa Group BayWa Group Jump to: navigation, search Name BayWa Group Place Munich, Germany Zip 81925 Sector Services, Solar Product Germany-based company with international operations specialised in wholesale and retail and in providing services. The company is also active in the biofuel and solar sectors. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

North Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

136

Shear and Bending Fatigue Failure of Lead Free Solder Joint and ...  

Science Conference Proceedings (OSTI)

Among many mechanisms leading to solder joint failure, the fracture by cyclic bending, shear, and shock load is particularly concerned. Conventionally, those ...

137

Strain-rate Sensitivity in the Bending Strength of a Forged ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The strain rate sensitivity of bending strength is analyzed for a forged turbostratic-carbon fiber, reinforced epoxy-resin composite (FTCFC).

138

A Study on Bending Deformation Behavior of Ni -Based DS and SC ...  

Science Conference Proceedings (OSTI)

based superalloys used for gas turbine components because bending stresses are often observed in some critical portions of gas turbine blades and vanes.

139

Bending of metal-filled carbon nanotube under electron beam irradiation  

Science Conference Proceedings (OSTI)

Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

Misra, Abha [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka, 560012 (India)

2012-03-15T23:59:59.000Z

140

Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend  

SciTech Connect

Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

2013-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New and Underutilized Technology: High Bay LED Lighting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Bay LED Lighting High Bay LED Lighting New and Underutilized Technology: High Bay LED Lighting October 7, 2013 - 8:55am Addthis The following information outlines key deployment considerations for high bay LED lighting within the Federal sector. Benefits LED light sources offer several potential benefits compared to metal halide or fluorescent lighting, including reduced energy consumption due to the ability to provide a more precise light distribution; longer operating life and lower maintenance requirements; less heat introduced into the space; and greater controllability for dimming and on/off control. Relevant to the cold storage application, LED performance improves in colder temperatures. Application High bay LED lighting is applicable for facilities containing high bay

142

Renaissance Zones (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

Renaissance Zones allow qualifying businesses and individuals to claim one or more tax incentives for purchasing, leasing, or making improvements to real property located in a North Dakota...

143

North Central Texas Council of Governments North Central Texas  

E-Print Network (OSTI)

North Central Texas Council of Governments North Central Texas Thinking Ahead Donna Coggeshall North Central Texas Council of Governments #12;North Central Texas Council of Governments Thinking Ahead are for the 12-county MPA #12;North Central Texas Council of Governments Thinking Ahead Development Form #12

Texas at Arlington, University of

144

California South/West Bay Area Regional Middle School Science...  

Office of Science (SC) Website

California SouthWest Bay Area Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School...

145

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition...

146

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

and vertical turbulence with no indications of significant stratification (Quoddy Bay LNG 2006). Mixing cools the surface waters in the summer, and limits the freezing...

147

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

148

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

149

Big Bay, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigBay,Michigan&oldid227742" Categories: Places Stubs Cities What links here Related...

150

Linking public health and the health of the Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay has a profound impact on the lives of all who reside in the 64,000 square miles of its watershed. From crab cakes to sailboats, drinking water to naval ships, the Bay touches virtually every aspect of life in the region. The Bay has inspired literature, driven the regional economy, and shaped political decision making and development patterns for homes, industry, agriculture, and transportation. As population demands increase and urban boundaries expand into pristine landscapes, the sustainability of the Chesapeake Bay and its resources face unprecedented pressures. Consequently, the public's health also is vulnerable to Bay pollution and other stresses stemming from development activities and widespread growth occurring throughout the Chesapeake Bay watershed. This paper will examine the linkages between the environmental quality of the Bay and the population health status, recommend ways to bridge ecological and human health concerns in the context of the Bay, and finally present a framework for developing a public health report card for the Bay.

Burke, T.A.; Litt, J.S.; Fox, M.A.

2000-02-01T23:59:59.000Z

151

Green Bay, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Bay, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

152

Modeling nitrogen cycling in forested watersheds of Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

1995-03-01T23:59:59.000Z

153

Primary causes of wetland loss at Madison Bay, Terrebonne ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Primary causes of wetland loss at Madison Bay, Terrebonne Parish, Louisiana. [Robert A Morton; Ginger Tiling; Nicholas F ...

154

Microsoft Word - BigBendSootblowerPPA_Final_061306.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

6/1234 6/1234 Big Bend Power Station Neural Network-Sootblower Optimization A DOE Assessment June 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

155

North America: Regulation of International Electricity Trade...  

NLE Websites -- All DOE Office Websites (Extended Search)

North America: Regulation of International Electricity Trade North America: Regulation of International Electricity Trade North America: Regulation of International Electricity...

156

North Slope of Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesNorth Slope of Alaska govSitesNorth Slope of Alaska NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts North Slope of Alaska Barrow: 71° 19' 23.73" N, 156° 36' 56.70" W Atqasuk: 70° 28' 19.11" N, 157° 24' 28.99" W The North Slope of Alaska (NSA) site is providing data about cloud and radiative processes at high latitudes. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. The principal instrumented facility was installed near Barrow in 1997,

157

Pages that link to "Chesapeake Bay Test Site" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Chesapeake Bay Test Site" Chesapeake Bay Test Site Jump to: navigation, search What links here Page:...

158

Effects of supercritical carbon dioxide treatment on bending properties of micro-sized SU-8 Specimens  

Science Conference Proceedings (OSTI)

The bending properties of micro-sized photoresist patterns are quantitatively evaluated using micro-sized SU-8 cantilever type test specimens to clarify the effects of supercritical carbon dioxide-treatment (ScCO"2-treatment). The SU-8 specimens were ... Keywords: Bending strength, Degree of crosslinking, Micro-sized materials, Photoresist, SU-8, Supercritical carbon dioxide

Chiemi Ishiyama; Tso-Fu Mark Chang; Masato Sone

2011-08-01T23:59:59.000Z

159

Bending Burning Matches and Crumpling Burning Paper Texas A&M University  

E-Print Network (OSTI)

Bending Burning Matches and Crumpling Burning Paper Zeki Melek Texas A&M University Department burning. Specifically, we can simulate the bending of burning matches, and the folding of burning paper interactively. 1 Introduction We present a simple method to increase the realism of the simu- lation of burning

Keyser, John

160

North America Energy Efficiency Standards and Labeling  

NLE Websites -- All DOE Office Websites (Extended Search)

North American Energy Efficiency Standards and Labeling North American Energy Working Group NORTH AMERICAN ENERGY WORKING GROUP The North American Energy Working Group (NAEWG) was...

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

North Central Texas Council of Governments’ North Central...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Central Texas Council of Governments&8217; North Central Texas Alternative Fuel and Advanced Technology Investments initiative is one of 25 Area of Interest 4 Selections...

162

Intention Recognition via Causal Bayes Networks Plus Plan Generation  

Science Conference Proceedings (OSTI)

In this paper, we describe a novel approach to tackle intention recognition, by combining dynamically configurable and situation-sensitive Causal Bayes Networks plus plan generation techniques. Given some situation, such networks enable recognizing agent ... Keywords: ASCP, Causal Bayes Networks, Intention recognition, Logic Programming, P-log, Plan generation

Luís Moniz Pereira; Han The Anh

2009-10-01T23:59:59.000Z

163

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on  

E-Print Network (OSTI)

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on Molting Tanner Crabs, Chionoecetes bairdi JOHN F bairdi , from Alaska walers were exposed 10 Prudhoe Bay crude oil in sIalic bioassays ill Ih e laboralory. Crabs in bOlh slages were similarly susceplible 10 crude oil; Ihe eSlimaled 48-hour TLIIl (Illedian

164

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

165

Application of fuzzy logic for autonomous bay parking of automobiles  

Science Conference Proceedings (OSTI)

In this paper, we investigate the control problem of autonomous bay parking system. We choose a referenced parking lot and define a suitable parking spot based on some measurements at various places. A kinetic model is set up for the convenience of analysis ... Keywords: Fuzzy logic, autonomous vehicle control, bay parking, kinetic model, simulation

Zhao-Jian Wang; Jian-Wei Zhang; Ying-Ling Huang; Hui Zhang; Aryan Saadat Mehr

2011-11-01T23:59:59.000Z

166

Prudhoe Bay western peripheral development using three-dimensional seismic  

Science Conference Proceedings (OSTI)

The western periphery of the Prudhoe Bay field, known as the West End or Eileen area, is characterized by a relatively gentle southwestern regional dip cut by numerous normal faults with up to 500 ft of throw. These faults displace the Permian-Triassic reservoir sandstones against Jurassic shales. A detailed structural map was interpreted from three-dimensional seismic data acquired in 1984 and 1985. Three distinct and coherent trends of faulting are evident from the data: north-south, northwest-southeast, and east-west. These faults were aliased by the earlier two-dimensional data grid and could not be connected in a coherent manner consistent with suppositions of the stress directions. The added detail to the structural maps will allow development of narrow, oil-filled horst blocks and should prevent drilling of dry holes in narrow grabens as has occurred prior to the three-dimensional data acquisition. Seventy-two 80-ac wells and up to four horizontal gas injectors are planned for the area, with drilling commencing from new surface facilities in 1988. Upon the successful completion of a horizontal and an 88/sup 0/ highangle well from existing facilities, the utility and shortcomings of the data interpretations were illuminated. The high-angle well encountered only 40% of the prognosed oil column, which is believed to be a consequence of an unpredicted permafrost thickening. Thus, as with two-dimensional data, the uncertainty in the estimate of the velocity field is the dominant factor in estimating subsurface structure.

Guderjahn, C.G.

1988-01-01T23:59:59.000Z

167

Department of Energy - North Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

89 en Wind Energy Permitting Standards (North Carolina) http:energy.govsavingswind-energy-permitting-standards-north-carolina

168

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Conversion Facility Privilege Tax Exemptions (North Dakota) Coal Conversion Facility Privilege Tax Exemptions are granted under a variety of conditions through the North...

169

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

170

Chesapeake Bay Preservation Programs (Multiple States) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chesapeake Bay Preservation Programs (Multiple States) Chesapeake Bay Preservation Programs (Multiple States) Chesapeake Bay Preservation Programs (Multiple States) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Chesapeake Bay Program The Chesapeake Bay Program is a unique regional partnership that has led

171

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Bay Clean Cities (Oakland) Coalition Bay Clean Cities (Oakland) Coalition The East Bay Clean Cities (Oakland) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Bay Clean Cities (Oakland) coalition Contact Information Richard Battersby 530-752-9666 rebattersby@ucdavis.edu Chris Ferrara 925-459-8062 caf3@pge.com Coalition Website Clean Cities Coordinators Coord Richard Battersby Coord Coord Chris Ferrara Coord Photo of Richard Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition since 2003. Battersby has over 25 years of experience in the fleet industry and has written and participated in numerous local, state, and federal grant-funded

172

EIS-0479: North-of-the-Delta Offstream Storage Project, Sacramento-San  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: North-of-the-Delta Offstream Storage Project, 9: North-of-the-Delta Offstream Storage Project, Sacramento-San Joaquin Delta, California EIS-0479: North-of-the-Delta Offstream Storage Project, Sacramento-San Joaquin Delta, California SUMMARY The North-of-the-Delta Offstream Storage (NODOS) Investigation is a Feasibility Study being performed by the California Department of Water Resources and the Bureau of Reclamation, pursuant to the CALFED Bay-Delta Program Programmatic EIS/EIR Record of Decision. The NODOS Investigation is evaluating potential offstream surface water storage projects in the upper Sacramento River Basin that could improve water supply for agricultural, municipal, and industrial, and environmental uses. If the project is implemented, DOE's Western Area Power Administration, a cooperating

173

Natural gas hydrates on the North Slope of Alaska  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

Collett, T.S.

1991-01-01T23:59:59.000Z

174

Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings  

E-Print Network (OSTI)

The effects of bend-twist coupling on typical commercial airplane wings are evaluated. An analytical formulation of the orthotropic box beam bending stiffness matrix is derived by combining Euler-Bernoulli beam theory and ...

Gauthier Perron, Sébastien

2012-01-01T23:59:59.000Z

175

North | OpenEI  

Open Energy Info (EERE)

North North Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 114, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA North Renewable Energy Generation Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool / North- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

176

Dam Safety (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

177

East North Central Pa  

Gasoline and Diesel Fuel Update (EIA)

East East North Central Pa cif ic Contiguous Mountain West North Central West South Central Pacific Noncontiguous East South Central Sout h At lant ic Middle Atlantic New England 35. Average Price of Natural Gas Delivered to Consumers by Census Division, 1995-1996 (Dollars per Thousand Cubic Feet) Table Census Division Residential Commercial 1995 1996 1995 1996 New England ........................................................... 9.06 9.03 6.78 6.96 Middle Atlantic ......................................................... 7.75 8.00 6.04 6.57 East North Central ................................................... 5.05 5.44 4.57 4.94 West North Central .................................................. 4.97 5.54 4.08 4.71 South Atlantic........................................................... 6.89 7.50 5.33 6.14 East South Central...................................................

178

Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report  

Science Conference Proceedings (OSTI)

During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

Not Available

1981-05-01T23:59:59.000Z

179

Highlighting High Performance: The Philip Merrill Environmental Center; Chesapeake Bay Foundation, Annapolis, Maryland  

SciTech Connect

Case study on high performance building features of the Chesapeake Bay Foundation's Philip Merrill Environmental Center.

Not Available

2002-04-01T23:59:59.000Z

180

Chesapeake Bay Program Water Quality Database | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Chesapeake Bay Program Water Quality Database Chesapeake Bay Program Water Quality Database Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data Chesapeake Bay Program Water Quality Database Dataset Summary Description The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Downscaling Future Climate Projections to the Watershed Scale: A North San Francisco Bay Case Study  

E-Print Network (OSTI)

and simulation characteristics. Journal of Climate FlintLE, Flint AL. 2007. Regional analysis of ground- water2 Fs10584-007-9377-6. Flint LE, Flint AL. 2012a. Simulation

Micheli, Elisabeth; Flint, Lorraine; Flint, Alan; Weiss, Stuart; Kennedy, Morgan

2012-01-01T23:59:59.000Z

182

TEC Rail TG Summary_Green Bay  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 13-14, 2006 September 13-14, 2006 Green Bay, WI RAIL TOPIC GROUP Mr. Jay Jones began the meeting with a welcome and introduction of the topic members, other participants, and support staff. A brief overview was given of the topic group's activities since the last TEC meeting. This meeting focused on the Topic Group's subgroup activities. Key comments and discussions are summarized below. Status Update of the Rail Topic Group Mr. Jones mentioned the planned creation of a new topic group to be called the Routing Topic Group. The Rail Topic Group would still exist as a topic group. However, since the emphasis would be in developing routing criteria and ultimately a national suite of routes over the next year or so, this separate Routing Topic Group would be created to address

183

Massachusetts Bay Trans Auth | Open Energy Information  

Open Energy Info (EERE)

Auth Auth Jump to: navigation, search Name Massachusetts Bay Trans Auth Place Massachusetts Utility Id 49848 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0896/kWh Transportation: $0.1250/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

184

Prospects For Precision Measurements with Reactor Antineutrinos at Daya Bay  

E-Print Network (OSTI)

In 2012 the Daya Bay experiment made an unambiguous observation of reactor antineutrino disappearance over kilometer-long baselines and determined that the neutrino mixing angle $\\theta_{13}$ is non-zero. The measurements of Daya Bay have provided the most precise determination of $\\theta_{13}$ to date. This whitepaper outlines the prospects for precision studies of reactor antineutrinos at Daya Bay in the coming years. This includes precision measurements of sin$^2 2\\theta_{13}$ and $\\Delta m^2_{ee}$ to $reactor flux and spectrum, and non-standard physics searches.

The Daya Bay Collaboration

2013-09-30T23:59:59.000Z

185

EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: AltaRock's Newberry Volcano EGS Demonstration near Bend, 7: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon Summary This EA evaluates the environmental impacts of a proposal to create an Enhanced Geothermal Systems (EGS) Demonstration Project involving new technology, techniques, and advanced monitoring protocols for the purpose of testing the feasibility and viability of EGS for renewable energy production. BLM is the lead agency for this EA and DOE is a cooperating agency. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 5, 2012 EA-1897: Finding of No Significant Impact AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon April 5, 2012 EA-1897: Final Environmental Assessment

186

Theoretical and experimental analyses of titanium sheet metal bending by nd:YAG laser.  

E-Print Network (OSTI)

??Laser Bending is a new non-contact method of forming sheet-metal components which does not require any special tools. This process is highly accurate and can… (more)

Shidid, D

2011-01-01T23:59:59.000Z

187

Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress  

Science Conference Proceedings (OSTI)

Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

P.E. Klingsporn

2011-08-01T23:59:59.000Z

188

CE North America, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CE North America, LLC CE North America, LLC (freezers) BEFORE THE. U.S. DEPAR'tMENT OJT ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2013-SE-1429 COMPROMISE AGREEMENT The U.S. Department of Energy ("DOE 1 » Office of the General Counsel, Office of Enforcement, initiated this action against CE North America, LLC ("CE" or "Respondent") pursuant to 10 C.F~9.122 by Notice of Proposed Civil Penalty. DOE alleged thatllll freezer basic model - , which Respondent imported and distributed in commerce in the United States as models CE64731 and PS72731, failed to meet the applicable standard for maxinrnm energy use. See 10 C.F.R. § 430.32(a). Respondent, on behalf of itself and any parent, subsidiary, division or other related entity, and DOE, by their authorized representatives, hereby enter into this

189

East Bay Municipal Util Dist | Open Energy Information  

Open Energy Info (EERE)

Bay Municipal Util Dist Bay Municipal Util Dist Jump to: navigation, search Name East Bay Municipal Util Dist Place California Utility Id 5571 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=East_Bay_Municipal_Util_Dist&oldid=41061

190

JAMAICA BAY TASK FORCE MEETING Tuesday April 6, 2010  

E-Print Network (OSTI)

Len Houston, U.S. Army Corps of Engineers (USACE) 7:30 Liquefied Natural Gas (LNG) Update Dan Mundy Jr., Jamaica Bay EcoWatchers 7:50 Recent Nitrogen Agreement with NYC Brad Sewell, Natural Resources Defense

Columbia University

191

Pedro Bay Village Council (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pedro Bay Village Council (Utility Company) Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name Pedro Bay Village Council Place Alaska Utility Id 14633 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Residential School Commercial Average Rates Residential: $0.9080/kWh Commercial: $0.8510/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pedro_Bay_Village_Council_(Utility_Company)&oldid=411345

192

City of Larsen Bay, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Larsen Bay, Alaska (Utility Company) Larsen Bay, Alaska (Utility Company) Jump to: navigation, search Name City of Larsen Bay Place Alaska Utility Id 10716 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.3910/kWh Commercial: $0.3340/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Larsen_Bay,_Alaska_(Utility_Company)&oldid=40983

193

BayWa Sunways JV | Open Energy Information  

Open Energy Info (EERE)

JV that specialises in developing, planning and realizing medium-sized to large photovoltaic systems and solar plants. References BayWa & Sunways JV1 LinkedIn Connections...

194

Assembly and Installation of the Daya Bay Antineutrino Detectors  

E-Print Network (OSTI)

The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle theta13, and recently made the definitive discovery of its nonzero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of 300 - 2000m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors.

H. R. Band; R. L. Brown; R. Carr; X. C. Chen; X. H. Chen; J. J. Cherwinka; M. C. Chu; E. Draeger; D. A. Dwyer; W. R. Edwards; R. Gill; J. Goett; L. S. Greenler; W. Q. Gu; W. S. He; K. M. Heeger; Y. K. Heng; P. Hinrichs; T. H. Ho; M. Hoff; Y. B. Hsiung; Y. Jin; L. Kang; S. H. Kettell; M. Kramer; K. K. Kwan; M. W. Kwok; C. A. Lewis; G. S. Li; N. Li; S. F. Li; X. N. Li; C. J. Lin; B. R. Littlejohn; J. L. Liu; K. B. Luk; X. L. Luo; X. Y. Ma; M. C. McFarlane; R. D. McKeown; Y. Nakajima; J. P. Ochoa-Ricoux; A. Pagac; X. Qian; B. Seilhan; K. Shih; H. Steiner; X. Tang; H. Themann; K. V. Tsang; R. H. M. Tsang; S. Virostek; L. Wang; W. Wang; Z. M. Wang; D. M. Webber; Y. D. Wei; L. J. Wen; D. L. Wenman; J. Wilhelmi; M. Wingert; T. Wise; H. L. H. Wong; F. F. Wu; Q. Xiao; L. Yang; Z. J. Zhang; W. L. Zhong; H. L. Zhuang

2013-09-06T23:59:59.000Z

195

Turbulence, Acoustic Backscatter, and Pelagic Nekton in Monterey Bay  

Science Conference Proceedings (OSTI)

During August 2006 aggregations of nekton, most likely small fish, intersected microstructure survey lines in Monterey Bay, California, providing an opportunity to examine biologically generated mixing. Some aggregations filled the water column, ...

Michael C. Gregg; John K. Horne

2009-05-01T23:59:59.000Z

196

Core Structure of a Bay of Bengal Monsoon Depression  

Science Conference Proceedings (OSTI)

Summer MONEX aircraft flight level and dropwindsonde data have been used to examine the central core structure of a mature Bay of Bengal monsoon depression on 7 July 1979. Continuous aircraft data including cloud photographs were obtained at ...

Charles Warner

1984-01-01T23:59:59.000Z

197

Aerial survey of Bay Area continues through Saturday | National Nuclear  

National Nuclear Security Administration (NNSA)

of Bay Area continues through Saturday | National Nuclear of Bay Area continues through Saturday | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey of Bay Area continues through Saturday Aerial survey of Bay Area continues through Saturday Posted By Office of Public Affairs NNSA Blog This week, a NNSA helicopter has been flying at a low-level altitude over

198

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Space Conditioning Technology Options for High-Bay Facilities  

Science Conference Proceedings (OSTI)

High-bay facility owners are considering the addition of space conditioning systems and technologies to improve their operations. This trend creates an opportunity for utility representatives to provide sound guidance on space conditioning system selection alternatives and other energy efficiency options to cost-effectively meet the owner’s requirements. This report describes the common heating and cooling technologies applicable to high-bay facilities and analyzes the strengths and weaknesses of each in...

2007-12-18T23:59:59.000Z

200

One North Carolina Fund (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One North Carolina Fund (North Carolina) One North Carolina Fund (North Carolina) One North Carolina Fund (North Carolina) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Grant Program Provider Department of Commerce The One North Carolina Fund, directed by the Commerce Finance Center, helps recruit and expand jobs in high-value industries deemed vital to the state. State appropriations replenish the Fund and local governments must provide a match to the company, either in cash, services, or in-kind contributions. Companies seeking to expand or relocate to the state can receive grant funding for the purchase or installation of equipment, facility repairs, or

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of the Pass Cavallo shipwreck assemblage, Matagorda Bay, Texas  

E-Print Network (OSTI)

A survey conducted in February of 1998 located an anomaly originally believed to be the remains of L'Aimable. L'Aimable was one of four ships utilized by Rene-Robert Cavelier, Sieur de La Salle, for his voyage to colonize the Gulf Coast in 1684. The anomaly, a wrecked vessel with a heavy iron signature, was located outside the entrance to the historic pass into Matagorda Bay, Texas. Artifacts were extracted from the wreck site to aid in the identification of the vessel, which was subsequently determined to be more recent in origin. A preliminary examination of the artifacts indicates that the shipwreck dates to the first half of the 19th century. The survey recovered over two hundred artifacts. The assemblage of artifacts includes over 80 lead shot, over 40 examples of brass firearm furniture, over 15 firearm fragments, several pieces of copper sheathing, and iron bar stock. Almost two-thirds of the material is associated with small arms. The majority of the identifiable firearms are military arms of three patterns: the British Short Land Pattern, the British India Pattern, and the 1757 Spanish musket. Historical research has determined that these arms were circulating in Texas, New Orleans, and Mexico, as early as 1815. The British Pattern arms were both purchased for the Mexican army in the 1820s, and used by the British Infantry in the Battle of New Orleans in 1815. The 1757 Spanish musket was used chiefly by Spanish expeditionary forces in North America in the late 18th century. Evidence garnered from the artifacts suggest that the firearms were shipboard cargo onboard a small, wood-hulled sailing vessel that wrecked between the years 1815 and 1845. Archival and historical research isolated nine wreck candidates for this period. Historical research and artifact analysis suggest the Hannah Elizabeth as the primary candidate for this wreck site. The Hannah Elizabeth was a small merchant schooner from New Orleans laden with a munitions cargo for Texas troops stationed at Goliad. The vessel wrecked at the entrance of the historic Pass Cavallo while evading capture from a Mexican brig-of-war in November of 1835.

Borgens, Amy Anne

2005-05-01T23:59:59.000Z

202

Stora Enso, North America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Association North America Conference North America: Regulation of International Electricity Trade EA-339 Shell Energy North America (US), L.P. What We Do For You Month by...

203

Fossil-Fuel CO2 Emissions from North America  

NLE Websites -- All DOE Office Websites (Extended Search)

North America Fossil-Fuel CO2 Emissions from North America Graph graphic Graphics Data graphic Data What countries constitute North America? North America map Trends North America,...

204

Gas-liquid two phase flow through a vertical 90 elbow bend  

SciTech Connect

Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)

Spedding, P.L.; Benard, E. [School of Aeronautical Engineering, Queen's University Belfast, BT9 5AH (United Kingdom)

2007-07-15T23:59:59.000Z

205

Gas-liquid pressure drop in vertical internally wavy 90 bend  

SciTech Connect

Experiments of air water two-phase flow pressure drop in vertical internally wavy 90 bend have been carried out. The tested bends are flexible and made of stainless steel with inner diameter of 50 mm and various curvature radiuses of 200, 300, 400 and 500 mm. The experiments were performed under the following conditions of two-phase parameters; mass flux from 350 to 750 kg/m{sup 2} s. Gas quality from 1% to 50% and system pressure from 4 to 7.5 bar. The results demonstrate that the effect of the above-mentioned parameters is very significant at high ranges of mass flow quality. Due to the increasing of two-phase flow resistance, energy dissipations, friction losses and interaction of the two-phases in the vertical internally wavy 90 bend the total pressure drops are perceptible about 2-5 times grater than that in smooth bends. Based on the mass and energy balance as well as the presented experimental results, new empirical correlation has been developed to calculate the two-phase pressure drop and hence the two-phase friction factor of the tested bends. The correlation includes the relevant primary parameter, fit the data well, and is sufficiency accurate for engineering purposes. (author)

Benbella, Shannak [Department of Mechanical Engineering, Al-Balqa Applied University, Al-Huson University College, P.O. Box 50, Al-Huson (Jordan); Al-Shannag, Mohammad; Al-Anber, Zaid A. [Department of Chemical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, P.O. Box 15008, Marka 11134, Amman (Jordan)

2009-01-15T23:59:59.000Z

206

Stora Enso, North America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stora Enso North America Stora Enso North America Corporate Headquarters: Wisconsin Rapids, WI Global Headquarters: Helsinki, Finland Proposed Facility Location: Wisconsin Rapids, WI Description: The project will construct and operate a thermal gasification and gas-to-liquids plant at Wisconsin Rapids Mill and produce liquid biofuels that will ultimately be converted into renewable diesel. CEO or Equivalent: Mark A. Suwyn, Chairman and CEO Participants: TRI; Syntroleum; DOE's Oak Ridge National Laboratory; and the Alabama Center for Paper and Bioresource Engineering at Auburn University Production: * 370 barrels per day (approximately under 5,500,000 gallons per year) of Fischer-Tropsch liquids Technology and Feedstocks: * 497 bone dry tons per day of woody biomass comprised of mill residues and

207

NORTH AMERICAN WATER OFFICE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NORTH AMERICAN WATER OFFICE NORTH AMERICAN WATER OFFICE P.O. Box 174 Lake Elmo, MN 55042 Phone: (612) 770-3861 Fax: (612) 770-3976 January 30, 1998 US Department of Energy Office of General Council GC-52 1000 Independence Ave. SW Washington DC 20585 RE: Preparation of Report to Congress on Price-Anderson Act Dear Office of General Council: The Price Anderson Act should be eliminated. The Price Anderson Act assumes that the encouragement and growth of the commercial nuclear industry is in the public interest. It is not. Rational evaluation of the commercial nuclear industry forces the conclusion that the Price Anderson Act simply shields the commercial nuclear industry from costs that it would otherwise, in a fair market setting, be forced to internalize and pay. Price Anderson amounts to

208

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Big Bend Power Station Neural Network-Intelligent Sootblower (NN-ISB) Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Bend Power Station neural network- Big Bend Power Station neural network- intelligent SootBlower (nn-iSB) oPtimization (comPleted) Project Description The overall goal of this project was to develop a Neural Network-Intelligent Sootblowing (NN-ISB) system on the 445 MW Tampa Electric Big Bend Unit #2 to initiate sootblowing in response to real-time events or conditions within the boiler rather than relying on general rule-based protocols. Other goals were to increase unit efficiency, reduce NO X , and improve stack opacity. In a coal-fired boiler, the buildup of ash and soot on the boiler tubes can lead to a reduction in boiler efficiency. Thus, one of the most important boiler auxiliary operations is the cleaning of heat-absorbing surfaces. Ash and soot deposits are removed by a process known as sootblowing, which uses mechanical devices for on-line cleaning

210

EA-1880: Big Bend to Witten Transmission Line Project, South Dakota |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

80: Big Bend to Witten Transmission Line Project, South Dakota 80: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary The USDA Rural Utilities Service, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct a 70-mile long 230-kV single-circuit transmission line, a new Western Area Power Administration substation, an addition to the existing substation, and approximately 2 miles of 230-kV double-circuit transmission line, all in South Dakota. Proposed action is related to the Keystone XL project (see DOE/EIS-0433-S1). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 12, 2011

211

A note on the effect of the cosmological constant on the bending of light  

E-Print Network (OSTI)

We take another look at the equations behind the description of light bending in a Universe with a cosmological constant. We show that even within the impact parameter entering into the photon's differential equation, and which is defined here with exclusive reference to the beam of light as it bends around the central mass, lies the contribution of the cosmological constant. The latter is shown to enter in a novel way into the equation. When the latter is solved our approach implies, beyond the first two orders in the mass-term and the lowest-order in the cosmological constant, a slightly different expression for the bending angle from what is previously found in the literature.

Fayçal Hammad

2013-09-01T23:59:59.000Z

212

Effect of couple-stress on the pure bending of a prismatic bar  

SciTech Connect

An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite.

Tzung, F.; Kao, B.; Ho, F.; Tang, P.

1981-02-01T23:59:59.000Z

213

Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bay County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bay County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

214

Energy Secretary Steven Chu to Travel to Bay Area to Highlight...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the...

215

Damping and Phase Advance of the Tide in Western Hudson Bay by the Annual Ice Cover  

Science Conference Proceedings (OSTI)

Admittance analysts of yearlong current meter records and tidal height data shows that the annual ice cover affects the tidal currents and heights in Hudson Bay. Along the west coast of the bay, the semidiurnal tidal current and height are ...

S. J. Prinsenberg

1988-11-01T23:59:59.000Z

216

Scaling up Secondary Unit Production in the East Bay: Impacts and Policy Implications  

E-Print Network (OSTI)

of  Oakland’s  housing  units.    The   neighborhoods  05 Scaling up Secondary Unit Production in the East Bay:S CALING  UP  SECONDARY  UNIT  PRODUCTION  IN  THE   E AST  

Wegmann, Jake; Nemirow, Alison; Chapple, Karen

2012-01-01T23:59:59.000Z

217

DOE - Office of Legacy Management -- W R Grace Co - Curtis Bay...  

Office of Legacy Management (LM)

Curtis Bay Plant Waste Disposal Area; October 5, 1978 MD.01-5 - ECT Follow-Up Report; An Aerial Radiological Survey of the Curtis Bay Facility of the W. R. Grace Company; November...

218

Recent Sediments of Bolinas Bay, California: Part C -- Interpretation and Summary of Results  

E-Print Network (OSTI)

Bay indicates a source in the Franciscan rocks bordering themetamorphic rock of minerals to represent sources. of rock (rock enters the bay, indicating significant contributions of sediment from these sources.

Wilde, Pat; Isselhardt, C.; Osuch, L.; Yancey, T.

1969-01-01T23:59:59.000Z

219

TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY  

SciTech Connect

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study is to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

220

Bay Resource Management Center Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Center Biomass Facility Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass Facility Type Municipal Solid Waste Location Bay County, Florida Coordinates 30.1805306°, -85.684578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1805306,"lon":-85.684578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Galveston Bay Biodiesel LP GBB | Open Energy Information  

Open Energy Info (EERE)

Galveston Bay Biodiesel LP GBB Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name Galveston Bay Biodiesel LP (GBB) Place Houston, Texas Product Developer of a 75.8m litre per year biodiesel facility on the Galveston Bulk Terminal site, located on Galveston Island. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Chesapeake Bay Restoration Act (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restoration Act (Maryland) Restoration Act (Maryland) Chesapeake Bay Restoration Act (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment This legislation sets limits on development near Chesapeake Bay as well as on dredging and the deposition of dredged material into the bay. The legislation establishes the Cox Creek Citizens Oversight Committee (now mostly defunct); the Hart-Miller-Pleasure Island Oversight Committee, which provides oversight and monitoring of the future development, use, and

223

EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, 4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities. PUBLIC COMMENT OPPORTUNITIES None at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 2013 EIS-0494: Notice of Intent to Prepare an Environmental Impact Statement

224

Winchester Bay, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winchester Bay, Oregon: Energy Resources Winchester Bay, Oregon: Energy Resources (Redirected from Winchester Bay, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770608°, -124.1748369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770608,"lon":-124.1748369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

City of Sturgeon Bay, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Sturgeon Bay, Wisconsin (Utility Company) Sturgeon Bay, Wisconsin (Utility Company) Jump to: navigation, search Name Sturgeon Bay City of Place Wisconsin Utility Id 18249 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service TOU - 7am - 7pm Commercial General Service TOU - 8am - 8pm Commercial General Service TOU - 9am - 9pm Commercial General Service Three-phase Commercial General Service Three-phase TOU - 7am - 7pm Commercial

226

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

227

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed  

E-Print Network (OSTI)

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

228

EIS-0479: North-of-the-Delta Offstream Storage Project, Sacramento-San Joaquin Delta, California  

Energy.gov (U.S. Department of Energy (DOE))

The North-of-the-Delta Offstream Storage (NODOS) Investigation is a Feasibility Study being performed by the California Department of Water Resources and the Bureau of Reclamation, pursuant to the CALFED Bay-Delta Program Programmatic EIS/EIR Record of Decision. The NODOS Investigation is evaluating potential offstream surface water storage projects in the upper Sacramento River Basin that could improve water supply for agricultural, municipal, and industrial, and environmental uses. If the project is implemented, DOE’s Western Area Power Administration, a cooperating agency, could provide power to project facilities and could market hydropower generated by the project.

229

Design, Manufacture and Testing of A Bend-Twist D-Spar  

DOE Green Energy (OSTI)

Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

Ong, Cheng-Huat; Tsai, Stephen W.

1999-06-01T23:59:59.000Z

230

Theoretical solution for light transmission of a bended hollow light guide  

SciTech Connect

Hollow light guides with very high reflective inner surfaces are novel daylight systems that collect sunlight and skylight available on the roof of buildings transporting it into deep or windowless interiors in building cores. Thus the better utilization of daylight can result in energy savings and wellbeing in these enclosed indoor spaces. An analytical complex solution of a straight tube system was solved in the HOLIGILM method with a user-friendly tool available on the http://www.holigilm.info. An even more difficult light flow transport is to be determined in bended tubes usually placed on sloped roofs where a bend is necessary to adjust the vertical pass through the ceilings. This paper presents the theoretical derivation of the model with its graphical representation and coordinate system respecting backward ray-tracing bend distortions. To imagine the resulting illuminance on the horizontal plane element in the interior, the virtual ray (i.e. luminance in an elementary solid angle) has to pass the ceiling diffuser interface, the inner mirror like tube with a bend, through a roof cupola attachment to the element of the sky and sun light source. Due to this complexity and the lengthy derivation and explanations more practical applications will be published later in a separate contribution. (author)

Kocifaj, Miroslav; Darula, Stanislav; Kittler, Richard [ICA, Slovak Academy of Sciences, 9, Dubravska Road, 845 03 Bratislava (Slovakia); Kundracik, Frantisek [Department of Experimental Physics, FMPI, Comenius University, Mlynska dolina, 842 48 Bratislava (Slovakia)

2010-08-15T23:59:59.000Z

231

Optimization Case Study of CSP Temperature Cycle and Board Bending Reliability  

E-Print Network (OSTI)

RE1-3 1 Optimization Case Study of CSP Temperature Cycle and Board Bending Reliability Ian R attach, CSP, chip scale package, solder joint reliability, fatigue cracking, board flex sensitivity of our CSP products because of a tensile sensitivity that was not characterized by a controlled test

Harvey, Ian R.

232

POWER SUPPLIES FOR THE BENDING MAGNETS OF THE BEP AND VEPP-2000 STORAGE RING  

E-Print Network (OSTI)

transformer (2) are located closely to the BEP ring. The power part of each thyristor module (Fig.2) consistsPOWER SUPPLIES FOR THE BENDING MAGNETS OF THE BEP AND VEPP-2000 STORAGE RING S.S. Vasichev, V of the collider. The beam energy change lead to the necessity to develop new power supplies for the main field

Kozak, Victor R.

233

Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films  

SciTech Connect

Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

Cheng Liang; Torres, Yanira; Oates, William S. [Florida Center for Advanced Aero Propulsion (FCAAP), Department of Mechanical Engineering, Florida A and M and Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way B-651 St. 1, Wright Patterson Air Force Base, Ohio 45433-7750 (United States)

2012-07-01T23:59:59.000Z

234

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators  

E-Print Network (OSTI)

Damping of bending waves in truss beams by electrical transmission lines with PZT actuators F. dell of the truss beam with an electrical transmission line by a line distribution of PZT actuators. It has been modular beams by coupling them with fourth-order electric transmission lines and adding PZT actu- ators

Paris-Sud XI, Université de

235

Response of the Summer Marine Layer Flow to an Extreme California Coastal Bend  

Science Conference Proceedings (OSTI)

A summer wind speed maximum extending more than 200 km occurs over water around Point Conception, California, the most extreme bend along the U.S. West Coast. The following several causes were investigated for this wind speed maximum: 1) synoptic ...

Clive E. Dorman; Darko Kora?in

2008-08-01T23:59:59.000Z

236

Multiyear Subinertial and Seasonal Eulerian Current Observations near the Florida Big Bend Coast  

Science Conference Proceedings (OSTI)

Multiyear in situ Eulerian acoustic Doppler current profiler measurements were obtained at 5-, 10-, and 19-m depths off the Big Bend coast, and in 19 m off the Florida Peninsula to the south. Analysis on subinertial time scales, dominated by ...

Ekaterina V. Maksimova; Allan J. Clarke

2013-08-01T23:59:59.000Z

237

The West Bend, Wisconsin Storm of 4 April 1981:A Problem in Operational Meteorology  

Science Conference Proceedings (OSTI)

This paper presents an analysis of a thunderstorm system that spawned a downburst and an F4 anticyclonictornado in the West Bend, Wisconsin area in the early morning of 4 April 1981. The tornado caused threefatalities and was one of the strongest ...

Roger M. Wakimoto

1983-01-01T23:59:59.000Z

238

Evaluation of the Effect of LOCA Testing on Polyimide Insulated Wire Subjected to Bending: Volume 2  

Science Conference Proceedings (OSTI)

Due in part to mishandling and improper installation, polyimide insulated wire has exhibited degradation in some military aircraft and power plant applications. This report presents the results of a Rochester Gas & Electric (RG&E) test program to determine the effects of bending on aged polyimide lead wire and subsequent performance of this wire during a nuclear plant design basis accident.

1998-05-19T23:59:59.000Z

239

Research on Vortex Unstablity Caused by Bending Deformation of Drilling Bar in BTA Deep Hole Machining  

Science Conference Proceedings (OSTI)

Vortex and unstability of bending boring bar caused by cutting fluid force are researched, with Timoshenko beam model and mated vibration model, based on which machining quality of BTA deep hole drilling and tools life can be promoted in practice. Linear ... Keywords: deep hole boring, boring bar, Timoshenko beam, mating vibration, vortex motion stability

Zhanqi Hu; Wu Zhao

2009-04-01T23:59:59.000Z

240

Fluid flow through a vertical to horizontal 90 elbow bend III three phase flow  

SciTech Connect

Three phase water/oil/air flow was studied around a vertical upward to horizontal 90 elbow bend of R/d = 0.654. The results were more complex than corresponding two phase data. The pressure drop recorded for the two tangent legs sometimes showed significant variations to the straight pipe data. In most cases this variation was caused by differences in the flow regimes between the two systems. The elbow bend tended to constrict the flow presented by the vertical inlet tangent leg while sometimes acting as a wave and droplet generator for the horizontal outlet tangent leg. It could be argued that the inclusion of the elbow bend altered the flow regime map transitional boundaries but it also is possible that insufficient settling length was provided in the apparatus design. The elbow bend pressure drop was best presented as l{sub e}/d the equivalent length to diameter ratio using the actual total pressure drop in the vertical inlet tangent leg. Generally l{sub e}/d values rose with gas rate, but exhibited an increasingly complex relation with f{sub o} the oil to liquid volumetric ratio as liquid rate was increased. A significant maximum in l{sub e}/d was in evidence around the inversion from water dominated to oil dominated flows. Several models are presented to predict the data. (author)

Spedding, P.L.; Benard, E.; Crawford, N.M. [School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Belfast BT9 5AH (United Kingdom)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy in North Carolina, offers production payments for grid-tied electricity generated by solar, wind, small hydro (10 megawatts or less) and biomass resources. Payment...

242

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updating the Improved Guidelines for Solving Ash Deposition Problems in Utility Boilers Report CX(s) Applied: A9 Date: 08112010 Location(s): Grand Forks, North Dakota...

243

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Carolina March 31, 2010 CX-001561: Categorical Exclusion Determination Solar Light-Emitting Diode Street Lights for Phase 1A Downtown Greenway- American Recovery and...

244

Hurricane Fran North Carolina 1996  

Science Conference Proceedings (OSTI)

... 4,000 power poles were snapped off in North Carolina and 1,600 km of electrical distribution lines were down. The resulting outages affected more ...

2011-08-12T23:59:59.000Z

245

Virginia Nuclear Profile - North Anna  

U.S. Energy Information Administration (EIA) Indexed Site

North Anna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

246

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 8, 2011 CX-007402: Categorical Exclusion Determination Carolinas Offshore Wind Integration Case Study CX(s) Applied: A9 Date: 12082011 Location(s): North Carolina, South...

247

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

construction and demolition waste, land-clearing waste, scrap tires, medical waste, compost, and septage. July 12, 2013 Solar Rights Cities and counties in North Carolina...

248

North Dakota State Energy Profile  

U.S. Energy Information Administration (EIA)

Although North Dakota’s total energy consumption is among the lowest in the Nation due to its small population, the State’s consumption per capita ... ...

249

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Mining Reclamation (North Dakota) The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation....

250

,"North Dakota Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

251

,"North Carolina Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

252

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conditions of sale that restrict or prohibit the use, installation or maintenance of solar-collection devices. This ordinance was adopted prior to North Carolina's http:...

253

Mechanical Bending Technique for Determining CSP Design and Assembly Mark R. Larsen, Ian R. Harvey Ph.D.,  

E-Print Network (OSTI)

S34-3-1 Mechanical Bending Technique for Determining CSP Design and Assembly Weaknesses Mark R at the Chip Size Package (CSP) solder fillet. Mechanically stressing the package serves as a valuable tool bending results compare different CSP architectures thus demonstrating the utility of the test technique

Harvey, Ian R.

254

North Bar Lake South Bar Lake  

E-Print Network (OSTI)

Traverse Lake Lime Lake Crystal River Sh alda Cr GOOD HARBOR BAY SLEEPING BEAR BAY PLATTE BA Y LAKE South Bar Lake Otter Lake Loon Lake Long Lake Rush Lake Platte Lake Little Platte Lake CRYSTAL LAKE MICHIGAN LAKE MICHIGAN Lake Elevation 580ft (177m) MANITOU PAS S A G E Ott er C reek Pl atte River Platt e

255

ENSO modulated cyclogenesis over the Bay of Bengal  

Science Conference Proceedings (OSTI)

The role of El Nińo Southern Oscillation (ENSO) on the modulation of tropical cyclone activity over the Bay of Bengal (BoB) for the 1979-2011 period is examined. It is shown that Nińo3.4 sea surface temperature (SST) anomalies are negatively ...

Clifford S. Felton; Bulusu Subrahmanyam; V. S. N. Murty

256

North Dakota O  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- North Dakota O f f i c e o f t h e G o v e r n o r John Hoeven Governor February 27,2009 The Honorable Steven Chu Secretary US Department of Energy 1000 Independence Ave SW Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condtion of receiving our State's share of the $3.1 bdhon fundmg for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. l)(ARR4), I am providmg the following assurances. I have written to our public u d t y commission and requested that they consider addtional actions to promote energy efficiency, consistent with the Federal statutory la'nghage coh&ed in h.R. 1 and their obhgations to maintain just and reasonable rates, wlde'protecting'the public. I havedso written to the State Legislature and requested that they

257

1710 Sixth Avenue North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attorneys and Counselors Attorneys and Counselors 1710 Sixth Avenue North P.O. Box 306 (35201-0306) Birmingham, AL 35203 (205) 251-8100 (205) 226-8798 Fax www.balch.com Andrew W. Tunnell (205) 226-3439 (205) 488-5858 (direct fax) atunnell@balch.com January 31, 2012 By Electronic Submission Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Congestionstudy2012@hq.doe.gov Re: Re Preparation of the 2012 Transmission Congestion Study Comments of Southern Company Services, Inc. Southern Company Services, Inc. (-SCS‖), as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company and Mississippi Power Company (collectively, -Southern Companies‖), appreciates this opportunity to provide these comments to the

258

NORTH ATLANTIC TUNA EXPLORATIONS  

E-Print Network (OSTI)

Schuck applied the first stamped and numbered hooks to giant bluefin tuna (Thunnus thynnus) slamming past the island of Bimini, they had no way of knowing the impact their modest experiment would have on fisheries science. In the fall of that year, Schuck took a phone call from a Nova Scotia tuna trap owner, learning that the first of the Biminitagged giants with a numbered hook in its jaw had been landed. In his own words, he and Mather went “through the roof ” with astonishment (Shuck, 2000). For nearly 50 years, their simple identification tag was the principal tool of bluefin research, but the migration paths of giant bluefin on the high seas remained shrouded in mystery. The last exploratory U.S. research longline expeditions targeting tunas in the Central North Atlantic were the U.S. Bureau of Commercial Fisheries MV Delaware and

North Atlantic; Molly Lutcavage

1952-01-01T23:59:59.000Z

259

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050ND3","N3010ND3","N3020ND3","N3035ND3","N3045ND3" "Date","Natural Gas Citygate Price in North Dakota (Dollars per Thousand Cubic Feet)","North Dakota...

260

Effect of Hurricane Hugo on molluscan skeletal distributions, Salt River Bay, St. Croix, US Virgin Islands  

SciTech Connect

Just prior to the passage of Hurricane Hugo over St. Croix, U.S. Virgin Islands, 35 molluscan skeletal samples were collected at 30 m intervals along a sampling transect in Salt River Bay, on the north-central coast. Three months after the hurricane, the transect was resampled to permit direct assessment of storm effects on skeletal distributions. Results indicate that spatial zonation of molluscan accumulations, associated with environmental transitions along the transect, was maintained in the wake of the hurricane. However, limited transport was diagnosed by comparing the compositions of prestorm and poststorm samples from the deepest, mud-rich subenvironment on the transect. In aggregate, the species richness of samples from the southern half of this zone increased from 16 to 40, and the abundance of species that were not among the characteristic molluscs of this subenvironment increased from 11% to 26%. These storm effects could probably not have been recognized, and attributed directly to Hugo, had there been no prestorm samples with which to compare directly the poststorm samples.

Miller, A.I.; Llewellyn, G. (Univ. of Cincinnati, OH (United States)); Cummins, H.; Boardman, M.R. (Miami Univ., Oxford, OH (United States)); Greenstein, B.J. (Smith College, Northampton, MA (United States)); Jacobs, D.K. (Univ. of California, Berkeley (United States)); Parsons, K.M.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

North Carolina/Incentives | Open Energy Information  

Open Energy Info (EERE)

North Carolina/Incentives North Carolina/Incentives < North Carolina Jump to: navigation, search Contents 1 Financial Incentive Programs for North Carolina 2 Rules, Regulations and Policies for North Carolina Download All Financial Incentives and Policies for North Carolina CSV (rows 1 - 149) Financial Incentive Programs for North Carolina Download Financial Incentives for North Carolina CSV (rows 1 - 96) Incentive Incentive Type Active Active Solar Heating and Cooling Systems Exemption (North Carolina) Property Tax Incentive Yes Blue Ridge EMC - Residential Solar Water Heating Rebate Program (North Carolina) Utility Rebate Program No Blue Ridge Mountain EMC - Residential Energy Efficiency Rebate Program (North Carolina) Utility Rebate Program No Blue Ridge Mountain EMC - Residential Heat Pump Loan Program (North Carolina) Utility Loan Program No

262

North Dakota/Incentives | Open Energy Information  

Open Energy Info (EERE)

North Dakota/Incentives North Dakota/Incentives < North Dakota Jump to: navigation, search Contents 1 Financial Incentive Programs for North Dakota 2 Rules, Regulations and Policies for North Dakota Download All Financial Incentives and Policies for North Dakota CSV (rows 1 - 72) Financial Incentive Programs for North Dakota Download Financial Incentives for North Dakota CSV (rows 1 - 23) Incentive Incentive Type Active Biodiesel Production Equipment Tax Credits (North Dakota) Corporate Tax Credit No Business Energy Efficiency Rebates (Offered by 5 Utilities) (North Dakota) Utility Rebate Program Yes Cass County Electric Cooperative - Residential Energy-Efficiency Loan Program (North Dakota) Utility Loan Program No Ethanol Production Incentive (North Dakota) Performance-Based Incentive No

263

Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends  

E-Print Network (OSTI)

In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...

Li, Rui

2014-01-01T23:59:59.000Z

264

North American EV show  

Science Conference Proceedings (OSTI)

The hit of the North American EV and Infrastructure Conference held in Phoenix, AZ in December, was without a doubt, the new hybrid vehicle from Toyota known as the Prius. The Prius has both an internal combustion engine and an electric motor. As ordinary as it may appear, there`s a critical difference between the Prius and the other electric vehicles that were being demonstrated in Phoenix. Prius is an electric vehicle that never needs to be recharged. Range is not an issue, nor is battery replacement. This is the first mass-produced car with hybrid power providing the benefits of low emissions and high gasoline mileage in a real-world vehicle that can be driven anywhere. Many other alternative fueled vehicles were on display from other manufacturers as well. GM`s EV1, Nissan`s Altra station wagon, Ford`s electric Ranger pickup, DaimlerChrysler`s EPIC van as well as small, short-range ``neighborhood vehicles`` from Bombardier and Global Electric Motor-Cars were available for inspection and test drives.

Pfleeger, D.

1999-01-01T23:59:59.000Z

265

North American Electric Reliability Corporation (NERC): Ensuring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Electric Reliability Corporation (NERC): Ensuring a Reliable Bulk Electric System North American Electric Reliability Corporation (NERC): Ensuring a Reliable Bulk...

266

Nuclear Power Plant Construction Support (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Language in the North Carolina Renewable Energy and Energy Efficiency Portfolio Standard allows a utility to have incurred costs reviewed by the North Carolina Utilities Commission (NCUC)...

267

North Dakota Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

268

Alternative Fuels Data Center: North Carolina Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Carolina Carolina Information to someone by E-mail Share Alternative Fuels Data Center: North Carolina Information on Facebook Tweet about Alternative Fuels Data Center: North Carolina Information on Twitter Bookmark Alternative Fuels Data Center: North Carolina Information on Google Bookmark Alternative Fuels Data Center: North Carolina Information on Delicious Rank Alternative Fuels Data Center: North Carolina Information on Digg Find More places to share Alternative Fuels Data Center: North Carolina Information on AddThis.com... North Carolina Information This state page compiles information related to alternative fuels and advanced vehicles in North Carolina and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites,

269

Sanyo North America Co | Open Energy Information  

Open Energy Info (EERE)

manufacture Sanyo, overseas and supports the North American market, including Canada, The United States and Mexico. References Sanyo North America Co1 LinkedIn...

270

BWR Fuel Deposit Sample Evaluation: River Bend Cycle 11 Crud Flakes (Part 1)  

Science Conference Proceedings (OSTI)

The River Bend boiling water reactor (BWR) experienced fuel defects due to heavy crud deposition during Cycle 11. This report describes the use of a new analytical methodology to examine crud samples from failed rods from this plant. The methodology uses a special scraping tool to obtain clearly defined flake samples that can then be examined by traditional analytical techniques. This new analytical methodology can provide preliminary data for root cause assessment in a matter of months rather than the y...

2004-09-24T23:59:59.000Z

271

Modeling Analysis of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study  

Science Conference Proceedings (OSTI)

Particulate sulfate compounds account for approximately half of the particulate matter (PM) during periods of poor visibility at Big Bend National Park (BBNP). Poor visibility is associated with two distinct meteorological regimes -- one dominated by flow from Mexico during spring and summer months and another characterized by transport from regions northeast of BBNP during fall months. Accordingly, the monitoring component of BRAVO took place from July to October 1999. More than 30 sites were establishe...

2004-02-24T23:59:59.000Z

272

Construction of bending magnet beamline at the APS for environmental studies. 1998 annual progress report  

SciTech Connect

'Design and construction of a bending magnet beamline at the Advanced Photon Source (APS) by the Pacific Northwest Consortium-Collaborative Access Team (PNC-CAT). The beamline will be optimized for x-ray absorption spectroscopy (XAS) studies with a major focus on environmental issues. The beamline will share the experimental facilities under development at the neighboring undulator based insertion device beamline. It will utilize these facilities for XAS of both bulk and surface samples, with spatial and elemental imaging, on toxic and radioactive samples. It will help meet the rapidly growing need for the application of these techniques to environmental problems. This report summarizes progress after 1-1/2 years of a 3-year project. The original scope of the project was to build a basic bending magnet beamline. Since the start of the project the authors have obtained addition funding from DOE-BES for the PNC-CAT activities. This has allowed us to expand the scope of the original proposed bending magnet beamline. Additional items now planned include a full sized experimental enclosure separate from the first optical enclosure (FOE), a white beam vertically collimating/focusing mirror providing improved flux and focusing, and enhanced experimental capabilities. Construction of the FOE and new experimental enclosure are complete along with full sector utilities, and the FOE is currently undergoing validation for its radiation integrity. The major beamline components are still being funded by the original EMSP project, and their status is described'

Stern, E.A.

1998-06-01T23:59:59.000Z

273

Tonka Bay, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tonka Bay, Minnesota: Energy Resources Tonka Bay, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9085741°, -93.5930133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9085741,"lon":-93.5930133,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Hampton Bays, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampton Bays, New York: Energy Resources Hampton Bays, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8689892°, -72.5175893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8689892,"lon":-72.5175893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

South Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, Florida: Energy Resources Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6639559°, -80.7161701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6639559,"lon":-80.7161701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Nassau Bay, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nassau Bay, Texas: Energy Resources Nassau Bay, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5446753°, -95.0910413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5446753,"lon":-95.0910413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Microsoft Word - Green Bay Notes - FINAL.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) TRANSPORTATION EXTERNAL COORDINATION (TEC) WORKING GROUP MEETING September 13-14, 2006 Green Bay, WI Welcome and Meeting Overview The U.S. Department of Energy (DOE), Transportation External Coordination Working Group (TEC) held its 26 th meeting on September 13-14, 2006, in Green Bay, WI. One- hundred thirty-two participants, representing national, State, Tribal, and local government; industry; professional organizations; and other interested parties, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved coordination between DOE,

278

An Improved Measurement of Electron Antineutrino Disappearance at Daya Bay  

E-Print Network (OSTI)

The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared differences. The solar mixing angle, {\\theta}_12, and the atmospheric mixing angle, {\\theta}_23, have been well measured, but until recently the neutrino mixing angle {\\theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assumin...

Webber, David M

2012-01-01T23:59:59.000Z

279

Lakes by the Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

the Bay, Florida: Energy Resources the Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5723287°, -80.3253308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5723287,"lon":-80.3253308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Suttons Bay, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Suttons Bay, Michigan: Energy Resources Suttons Bay, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9766663°, -85.6506387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9766663,"lon":-85.6506387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Half Moon Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, California: Energy Resources Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4635519°, -122.4285862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4635519,"lon":-122.4285862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

MHK Projects/Whiskey Bay | Open Energy Information  

Open Energy Info (EERE)

Whiskey Bay Whiskey Bay < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.4014,"lon":-91.6961,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

283

Discovery Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Discovery Bay, California: Energy Resources Discovery Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9085357°, -121.6002291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9085357,"lon":-121.6002291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Morro Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Morro Bay, California: Energy Resources Morro Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3658075°, -120.8499013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3658075,"lon":-120.8499013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights » 2013 Science Highlights » 2013 » The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » June 2013 The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Surprisingly large effect greatly increases the probability that new neutrino experiments will be able to see the differences between matter and

286

Kawela Bay, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kawela Bay, Hawaii: Energy Resources Kawela Bay, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.7033333°, -158.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.7033333,"lon":-158.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Put-in-Bay, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Put-in-Bay, Ohio: Energy Resources Put-in-Bay, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6542158°, -82.8207429° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6542158,"lon":-82.8207429,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Cutler Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cutler Bay, Florida: Energy Resources Cutler Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5783°, -80.3377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5783,"lon":-80.3377,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

MHK Projects/Swansea Bay | Open Energy Information  

Open Energy Info (EERE)

Swansea Bay Swansea Bay < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5818,"lon":-3.89843,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

290

Runaway Bay, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Runaway Bay, Texas: Energy Resources Runaway Bay, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1678941°, -97.8783696° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1678941,"lon":-97.8783696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Buzzards Bay, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Buzzards Bay, Massachusetts: Energy Resources Buzzards Bay, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7453829°, -70.618087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7453829,"lon":-70.618087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project-FERC Project No. 12711-005 (DOE/EA1916) Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 January 2012 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

293

Climate Action Plan (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The North Carolina Department of Environmental and Natural Resources (DENR) has established a priority in the 2009 - 2013 Strategic Plan to respond to climate change using both mitigation and...

294

Common Pipeline Carriers (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

295

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 CX-005166: Categorical Exclusion Determination 6716 Six Forks Road Electric Vehicle Charging Station CX(s) Applied: B5.1 Date: 02082011 Location(s): Raleigh, North...

296

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capitalizing on Carbon Dioxide Storage in Lignite Coal: Biological In Situ Methane Production CX(s) Applied: B3.6 Date: 06022010 Location(s): Grand Forks, North...

297

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-005165: Categorical Exclusion Determination 215 West Cabarrus Street Electric Vehicle Charging Station CX(s) Applied: B5.1 Date: 02082011 Location(s): Raleigh, North Carolina...

298

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to waste management. October 16, 2013 Solar Easements North Dakota's solar easement law is similar to those established by many other U.S. states. The law allows a property...

299

Authropogenic Warming in North Alaska?  

Science Conference Proceedings (OSTI)

Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°–4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for ...

Patrick J. Michaels; David E. Sappington; David E. Stooksbury

1988-09-01T23:59:59.000Z

300

Cold Bay Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cold Bay Hot Spring Geothermal Area Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.2217,"lon":-162.412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Bailey Bay Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bailey Bay Hot Springs Geothermal Area Bailey Bay Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bailey Bay Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.982,"lon":-131.6622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Near Fish Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Near Fish Bay Geothermal Area Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.3509833,"lon":-135.4106696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Weighting and Bayes Nets for Rollup of Surveillance Metrics  

SciTech Connect

The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

304

Hot Springs Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Bay Geothermal Area Hot Springs Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.166666,"lon":-165.82,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

North American LNG Project Sourcebook  

SciTech Connect

The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

NONE

2007-06-15T23:59:59.000Z

306

A Beamline for High-Pressure Studies at the Advanced Light Source with a Superconducting Bending Magnet as the Source  

E-Print Network (OSTI)

The Advanced Light Source (ALS) is a relatively low-energy (keV. The beam size in the ALS is small, due to the smallCompared to the prototype ALS superconducting bend magnet

2005-01-01T23:59:59.000Z

307

North Dakota 1995 Vintage Gas Well History  

U.S. Energy Information Administration (EIA)

North Dakota 1995 Vintage Gas Well History. Energy Information Administration (U.S. Dept. of Energy)

308

North Dakota 1995 Vintage Oil Well History  

U.S. Energy Information Administration (EIA)

North Dakota 1995 Vintage Oil Well History. Energy Information Administration (U.S. Dept. of Energy)

309

FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stewardship and Cost Savings These photographs chronicle the installation of the wind turbines at John Paul Jones Hill, Guantanamo Bay. The four wind turbine towers are...

310

Current Perspectives on the Physical and Biological Processes of Humboldt Bay  

E-Print Network (OSTI)

northern Alaska; Cosmopolitan ( Hartman 1969). Humboldt Bay,canyon depths in silty mud; Cosmopolitan (Hartman 1969). New1996). Distribution: Cosmopolitan, in intertidal sand flats

Schlosser, S. C.; Rasmussen, R.

2007-01-01T23:59:59.000Z

311

The hunt for theta13 at the Daya Bay nuclear power plant  

E-Print Network (OSTI)

The Daya Bay reactor neutrino experiment is located at the Daya Bay nuclear power plant in Shenzhen, China. The experiment deploys eight "identical" antineutrino detectors to measure antineutrino fluxes from six 2.9 GW_{th} reactor cores in three underground experimental halls at different distances. The target zone of the Daya Bay detector is filled with 20 t 0.1% Gd doped LAB liquid scintillator. The baseline uncorrelated detector uncertainty is ~0.38% using current experimental techniques. Daya Bay can reach a sensitivity of <0.01 to $sin^2 2theta_{13}$ with baseline uncertainties after 3 years of data taking.

Wei Wang; for the Daya Bay collaboration

2009-10-23T23:59:59.000Z

312

The hunt for theta13 at the Daya Bay nuclear power plant  

E-Print Network (OSTI)

The Daya Bay reactor neutrino experiment is located at the Daya Bay nuclear power plant in Shenzhen, China. The experiment deploys eight "identical" antineutrino detectors to measure antineutrino fluxes from six 2.9 GW_{th} reactor cores in three underground experimental halls at different distances. The target zone of the Daya Bay detector is filled with 20 t 0.1% Gd doped LAB liquid scintillator. The baseline uncorrelated detector uncertainty is ~0.38% using current experimental techniques. Daya Bay can reach a sensitivity of <0.01 to $sin^2 2theta_{13}$ with baseline uncertainties after 3 years of data taking.

Wang, Wei

2009-01-01T23:59:59.000Z

313

Investigation of the North Brazil Current retroflection and North Equatorial Countercurrent variability  

E-Print Network (OSTI)

Investigation of the North Brazil Current retroflection and North Equatorial Countercurrent to investigate the temporal and spatial variability of the North Brazil Current (NBC) retroflection and the North Brazil Current retroflection and North Equatorial Countercurrent variability, Geophys. Res. Lett., 31, L

314

Degree of mixing downstream of rectangular bends and design of an inlet for ambient aerosol  

E-Print Network (OSTI)

Tests were conducted to characterize mixing in a square and a rectangular duct with respect to suitability for single point sampling of contaminants. Several configurations, such as a straight duct with unidirectional flow at the entrance section and straight ducts preceded by mixing elements (a 90° mitred bend, double 90° bends in S- and U-type configurations) were tested. For a straight duct of square cross section, the COV of tracer gas concentration at 19 duct diameters downstream of the gas release location is 143% (Center release). COVs of velocity and tracer gas concentration downstream of each mixing element in square duct setups were verified throughout this study. In the case of a rectangular duct with a 3:1 (width to height) aspect ratio, COVs of velocity and tracer gas concentration only downstream of a 90° mitred bend were verified. Tests were conducted to develop improved inlets for a Battelle bioaerosol sampling system. New inlets have been developed called the All Weather Inlets (AWI), which are designed to prevent entry of precipitation while maintaining aerosol penetration. The AWI has two inlets - one that samples at a flow rate of 780 L/min and the other one that is operated at a flow rate of 90 L/min. The initial version of the AWI-780 L/min unit featured an internal cone, which was removed because the penetration of the AWI-780 without the bottom chamber was higher than that of the Battelle inlet � 81% with the cone while 86% without the cone for around 9.5 µm AD at 2 km/h. The best bug-screen configuration was verified and a cutpoint management process was performed. The inlets were tested with different wind speeds from 2 to 24 km/h to verify the wind sensitivity of those inlets.

Seo, Youngjin

2004-12-01T23:59:59.000Z

315

Where the Sky Is the Right Color: Scale and Air Pollution in the Big Bend Region  

E-Print Network (OSTI)

in Your Eyes - Mexican Power Plant Threatens Texas’s Air. ”Atten. North American Power Plant Air Emissions. Montréal (to two large coal-fired power plants in the city of Piedras

Donez, Francisco Juan

2010-01-01T23:59:59.000Z

316

A 1.5 GeV compact light source with superconducting bending magnets  

Science Conference Proceedings (OSTI)

This paper describes the design of a compact electron synchrotron light source for producing X-rays for medical imaging, protein crystallography, nano-machining and other uses up to 35 keV. The source will provide synchrotron light from six 6.9 tesla superconducting 60{degree} bending magnet stations. In addition the ring, contains conventional quadrupoles and sextupoles. The light source has a circumference of 26 meters, which permits it to be located in a variety of industrial and medical facilities.

Garren, A.A. [Particle Beam Lasers, Inc., Northridge, CA (United States)]|[Univ. of California, Los Angeles, CA (United States). Center for Advanced Accelerators]|[Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.; Cline, D.B.; Kolonko, J.J. [Particle Beam Lasers, Inc., Northridge, CA (United States)]|[Univ. of California, Los Angeles, CA (United States). Center for Advanced Accelerators; Green, M.A. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.; Johnson, D.E. [Particle Beam Lasers, Inc., Northridge, CA (United States); Leung, E.M.; Madura, D.D. [Martin Marietta Technologies, Inc., Rancho Bernardo, CA (United States)

1995-05-01T23:59:59.000Z

317

Highland North | Open Energy Information  

Open Energy Info (EERE)

Highland North Highland North Facility Highland North Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EverPower Developer EverPower Energy Purchaser Merchant Location Sidman PA Coordinates 40.31669182°, -78.66893291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.31669182,"lon":-78.66893291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Meter-baseline tests of sterile neutrinos at Daya Bay  

E-Print Network (OSTI)

We explore the sensitivity of an experiment at the Daya Bay site, with a point radioactive source and a few meter baseline, to neutrino oscillations involving one or more eV mass sterile neutrinos. We find that within a year, the entire 3+2 and 1+3+1 parameter space preferred by global fits can be excluded at the 3\\sigma level, and if an oscillation signal is found, the 3+1 and 3+2 scenarios can be distinguished from each other at more than the 3\\sigma level provided one of the sterile neutrinos is lighter than 0.5 eV.

Y. Gao; D. Marfatia

2013-02-22T23:59:59.000Z

319

Numerical Simulation of a Satellite-Observed Calm Zone in Montetey Bay, California  

Science Conference Proceedings (OSTI)

Satellite imagery from 18 April 1978 suggests the presence of a semicircular zone of calm or new-calm seas in Monterey Bay, California. It is hypothesized that sea breeze circulations account for the calm zone in the bay, although a lack of in ...

Rolf H. Langland; Paul M. Tag; Robert W. Fett

1987-12-01T23:59:59.000Z

320

Comparing Bayes model averaging and stacking when model approximation error cannot be ignored  

Science Conference Proceedings (OSTI)

We compare Bayes Model Averaging, BMA, to a non-Bayes form of model averaging called stacking. In stacking, the weights are no longer posterior probabilities of models; they are obtained by a technique based on cross-validation. When the correct data ...

Bertrand Clarke

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Modelling the Mean Barotropic Circulation in the Bay of Fundy and Gulf of Maine  

Science Conference Proceedings (OSTI)

Two dimensional, nonlinear numerical models are used to study the residual barotropic circulation generated by tides and steady winds in the Bay of Fundy and Gulf of Maine. The first a multi-grid model, is used to examine the Bay of Fundy with a ...

David A. Greenberg

1983-05-01T23:59:59.000Z

322

Characteristics and Trends of River Discharge into Hudson, James, and Ungava Bays, 1964–2000  

Science Conference Proceedings (OSTI)

The characteristics and trends of observed river discharge into the Hudson, James, and Ungava Bays (HJUBs) for the period 1964–2000 are investigated. Forty-two rivers with outlets into these bays contribute on average 714 km3 yr?1 [= 0.023 Sv (1 ...

Stephen J. Déry; Marc Stieglitz; Edward C. McKenna; Eric F. Wood

2005-07-01T23:59:59.000Z

323

A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments  

E-Print Network (OSTI)

A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments Franco Marcantonio a,*, Andrew Zimmerman b,1 , Yingfeng Xu a , Elizabeth Canuel b a Department of Geology, Institute analyzed sediments from three sites in the mesohaline portion of Chesapeake Bay (CB) for Pb isotopes

324

Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

Not Available

2010-07-01T23:59:59.000Z

325

Observations of Shallow-Water Transport and Shear in Western Florida Bay  

Science Conference Proceedings (OSTI)

Acoustic Doppler profiler (ADP) data are used to describe depth-integrated transport and vertical shear at two study sites along the open western boundary of Florida Bay. During a 404-day study period, transport was into the bay at the northern ...

Ned P. Smith

2000-07-01T23:59:59.000Z

326

Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One: Neural Model Building  

E-Print Network (OSTI)

SPE 77659 Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One Exploration (Alaska) and Carl D. Sisk SPE, BP Exploration Copyright 2002, Society of Petroleum Engineers Inc, TX 75083-3836, U.S.A., fax 01-972-952-9435. Abstract Field data from the Prudhoe Bay oil field

Mohaghegh, Shahab

327

Statistical Thermodynamics of Membrane Bending-Mediated Protein–Protein Attractions  

E-Print Network (OSTI)

ABSTRACT Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal’s, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to a few times their typical radii. These forces can be attractive or repulsive, depending on the proteins ’ shape, height, contact angle with the bilayer, and a pre-existing local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular proteins. For flat membranes, bending rigidities of ?100k BT, moderate ellipticities, and large contact angle proteins, we find thermally averaged attractive interactions of order k BT. These interactions may play an important role in the intermediate stages of protein aggregation. Numerous biological processes where membrane bending-mediated interactions may be relevant are cited, and possible experiments are discussed.

Tom Chou; Ken S. Kim; George Oster

2001-01-01T23:59:59.000Z

328

Tennessee Valley Authority Eagle Bend 161-kV delivery point environmental assessment  

Science Conference Proceedings (OSTI)

Eagle Bend is an area located in a bend of the Clinch River about one mile southeast of Clinton, Tennessee, in Anderson County. This area, including an industrial park, is supplied electric power by the Clinton Utilities Board (UB) through its 69-kV system, which is in turn supplied by TVA over a 69-kV transmission line from Norris Hydro Plant. Studies of the power supply in the area indicate that there will likely be significant load growth both in the Clinton area in general and the industrial park in particular. Studies further show that if this new load is supplied at 69-kV, the TVA transformer at Norris Hydro which supplies this load will be overloaded by the summer of 1993 and no feasible alternate source which would maintain the quality and reliability of the power delivered to the Clinton system exists to accept this load. Clinton UB also needs to transfer load from its Clinton substation in the same time period to prevent overloading. Additional studies and consultation between TVA and Clinton UB have indicated that the best solution to this problem is to supply this load at 161-kV at a new delivery point for Clinton UB. This would require the construction of a new 161/13-kV substation by Clinton UB and the construction by TVA of a new 161-kV transmission line to connect this substation to the existing TVA 161-kV transmission system.

Not Available

1993-02-05T23:59:59.000Z

329

Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method  

SciTech Connect

To ensure comfort and healthy conditions in interior spaces the thermal, acoustics and daylight factors of the environment have to be considered in the building design. Due to effective energy performance in buildings the new technology and applications also in daylight engineering are sought such as tubular light guides. These allow the transport of natural light into the building core reducing energy consumption. A lot of installations with various geometrical and optical properties can be applied in real buildings. The simplest set of tubular light guide consists of a transparent cupola, direct tube with high reflected inner surface and a ceiling cover or diffuser redistributing light into the interior. Such vertical tubular guide is often used on flat roofs. When the roof construction is inclined a bend in the light guide system has to be installed. In this case the cupola is set on the sloped roof which collects sunlight and skylight from the seen part of the sky hemisphere as well as that reflected from the ground and opposite facades. In comparison with the vertical tube some additional light losses and distortions of the propagated light have to be expected in bended tubular light guides. Recently the theoretical model of light propagation was already published and its applications are presented in this study solving illuminance distributions on the ceiling cover interface and further illuminance distribution on the working plane in the interior. (author)

Darula, Stanislav; Kocifaj, Miroslav; Kittler, Richard [ICA, Slovak Academy of Sciences, Bratislava (Slovakia); Kundracik, Frantisek [Department of Experimental Physics, FMPI, Comenius University, Bratislava (Slovakia)

2010-12-15T23:59:59.000Z

330

Photo of the Week: The Daya Bay Antineutrino Detector | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector September 7, 2012 - 3:07pm Addthis While they might look like drops of water or soap bubbles, these colorful figures are actually photomultiplier tubes that line the walls of the Daya Bay neutrino detector. Neutrinos and antineutrinos are neutral particles produced in nuclear beta decay when neutrons turn into protons. This experiment aims to measure the final unknown mixing angle that describes how neutrinos oscillate. The tubes are designed to amplify and record the faint flashes of light that signify an antineutrino interaction. Lawrence Berkeley and Brookhaven National Labs and a number of physicists at U.S. universities played leading roles in the Daya Bay experiment, from designing the detectors all the way through to analyzing the data gathered. | Photo by Roy Kaltschmidt, LBNL.

331

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

332

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Researchers at Oak Ridge National Lab have a developed "fingerprints" to match the results of experiments with data from supercomputer

333

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.24.2011]: Dynamical Fingerprints and Daya Bay 2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Researchers at Oak Ridge National Lab have a developed "fingerprints" to match the results of experiments with data from supercomputer

334

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

335

Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint  

DOE Green Energy (OSTI)

This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

Guo, Y.; Keller, J.; LaCava, W.

2012-09-01T23:59:59.000Z

336

Finite element analysis of bending in a threaded connector for a 5 1/2-in. Marine riser  

Science Conference Proceedings (OSTI)

This paper describes the development of a new finite element modelling technique for performing nonlinear bending analysis of tubulars and its application to a threaded connector for a 5-1/2 inch production tubing marine riser. A finite element technique has been developed for analyzing bending loads applied to an axisymmetric geometry. The method uses a Fourier series solution. The first two terms of the series are solved simultaneously, allowing nonlinearities to be included since the method does not use superposition, which normally requires linearity. Existing methods of analysis require either a linear elastic assumption, and axisymmetric approximation of bending loads, or a full three dimensional analysis. The new technique includes nonlinearities in mechanical properties, gapping, and friction. It is more accurate than the method where axisymmetric loads are applied so that pipe OD stresses are the same as those that would result from bending. The model is considerably less complicated to use than a three dimensional model and is also considerably less expensive. The method described above is applied to a 5-1/2 inch threaded connector. The connector is analyzed under make-up, tension, pressure, bending, and shear loads. Predictions include average and reversing stresses in the pin and box wall and at stress concentrations. These predictions can be used to evaluate the fatigue life of the connector.

Allen, M.B.; Eichberger, L.C.

1984-05-01T23:59:59.000Z

337

Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice  

SciTech Connect

The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

2013-02-07T23:59:59.000Z

338

SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing  

SciTech Connect

The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

2013-09-01T23:59:59.000Z

339

Wind powering America: North Dakota  

DOE Green Energy (OSTI)

This fact sheet contains a description of North Dakota's wind energy resources, the state's efforts to development wind energy production, and its green power and net metering programs. The fact sheet includes a list of contacts for those interested in obtaining more information.

NREL

2000-04-10T23:59:59.000Z

340

Mercury in mussels of Bellingham Bay, Washington, (USA)  

SciTech Connect

Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

Roesijadi, G.; Drum, A.S.; Bridge, J.R.

1978-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Improved Measurement of Electron Antineutrino Disappearance at Daya Bay  

E-Print Network (OSTI)

The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared differences. The solar mixing angle, {\\theta}_12, and the atmospheric mixing angle, {\\theta}_23, have been well measured, but until recently the neutrino mixing angle {\\theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assuming no neutrino oscillation is 0.944 +/- 0.007(stat) +/- 0.003(syst). A fit for {\\theta}_13 in the three-neutrino framework yields sin^2 2{\\theta}_13 = 0.089 +/- 0.010(stat) +/- 0.005(syst).

David M. Webber; for the Daya Bay Collaboration

2012-11-07T23:59:59.000Z

342

North Dakota Energy Conversion and Transmission Facility Siting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility...

343

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network (OSTI)

in Alaskan North Slope Oil Facilities Kathleen E. Duncan,in Alaskan North Slope oil production facilities. Title:in Alaskan North Slope Oil Facilities Authors: Kathleen E.

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

344

Biofuels Center of North Carolina | Open Energy Information  

Open Energy Info (EERE)

Biofuels Center of North Carolina Jump to: navigation, search Name Biofuels Center of North Carolina Place Oxford, North Carolina Zip 27565 Sector Biofuels Product State-funded,...

345

PP-67 North Central Electric Cooperative, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 North Central Electric Cooperative, Inc. PP-67 North Central Electric Cooperative, Inc. Presidential Permit authorizing North Central Electric Cooperative, Inc. to construct,...

346

Eastern North Pacific Hurricane Season of 2008  

Science Conference Proceedings (OSTI)

The hurricane season of 2008 in the eastern North Pacific basin is summarized, and the individual tropical cyclones are described. Official track and intensity forecasts of these cyclones are also evaluated. The 2008 eastern North Pacific season ...

Eric S. Blake; Richard J. Pasch

2010-03-01T23:59:59.000Z

347

Climate Modulation of North Atlantic Hurricane Tracks  

Science Conference Proceedings (OSTI)

The variability of North Atlantic tropical storm and hurricane tracks, and its relationship to climate variability, is explored. Tracks from the North Atlantic hurricane database for the period 1950–2007 are objectively separated into four groups ...

James P. Kossin; Suzana J. Camargo; Matthew Sitkowski

2010-06-01T23:59:59.000Z

348

Alternative Fuels Data Center: North Dakota Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dakota Dakota Information to someone by E-mail Share Alternative Fuels Data Center: North Dakota Information on Facebook Tweet about Alternative Fuels Data Center: North Dakota Information on Twitter Bookmark Alternative Fuels Data Center: North Dakota Information on Google Bookmark Alternative Fuels Data Center: North Dakota Information on Delicious Rank Alternative Fuels Data Center: North Dakota Information on Digg Find More places to share Alternative Fuels Data Center: North Dakota Information on AddThis.com... North Dakota Information This state page compiles information related to alternative fuels and advanced vehicles in North Dakota and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

349

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

350

North River, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota: Energy Resources North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9507977°, -96.8025805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9507977,"lon":-96.8025805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

North Carolina Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Alternative Fuels and Advanced Vehicle Data Center - Federal and State Incentives and Laws; North Carolina Energy Policy Council ...

352

North Carolina Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

North Carolina Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

353

Microsoft PowerPoint - EastBend_NETL Meeting_Nov 18_ 2009 MK_rev2.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

II CO II CO 2 Sequestration Test Cincinnati Arch MRCSP Site for: Regional Carbon Sequestration Partnerships Annual Review November 16-19, 2009 by: Mark E. Kelley, P.G. (Battelle) 2 Acknowledgements - Traci Rodosta, DOE/NETL Program Mgr - Darlene Radcliffe, Duke Energy, Director, Environmental Technology & Fuel Policy - Brian Weisker, Plant Manger for Duke Energy East Bend Station - Joe Clark, Technical Manager, Duke Energy East Bend Station - Kentucky Geological Survey (Steve Greb and others) - Indiana Geological Survey (John Rupp and others) - Ohio Geological Survey (Larry Wickstrom and others) - Bill Rike Consulting Geologist - Sarah Wade, AJW Incorporated - Battelle Staff - Dave Ball (Program Manager), Neeraj Gupta (Technical Advisor), Matt Place (Field Lead), Linc Remmert,

354

Thermo-Mechanical Bending Testing and Analysis for Public Service Electric and Gas Company Field-Aged Cables  

Science Conference Proceedings (OSTI)

High-pressure fluid-filled, pipe-type cables have been in operation since the mid-1930s, and they are acknowledged to be very reliable. However, some 230-kV and 345-kV cables, primarily those installed in the 1960s and 1970s, have experienced a failure mechanism known as thermo-mechanical bending (TMB). Cable expansion with an increase in loading causes the cables to form a series of bends. The cables tend to straighten as they cool when loads are reduced. In most cases, this movement can occur daily for...

2009-10-28T23:59:59.000Z

355

Utility Experience of In-Pipe Thermo-Mechanical Bending (TMB) Events on Pipe-Type Cables  

Science Conference Proceedings (OSTI)

High-pressure fluid-filled, pipe-type cables are quite reliable. However, some 230-kV and 345-kV cables, primarily those installed in the 1960s and 1970s, have experienced a failure mechanism known as thermomechanical bending (TMB). Cable expansion with an increase in loading causes the cables to form a series of bends. The cables tend to straighten as they cool when loads are reduced. In most cases, this movement can occur daily for many decades without incident. In some cases, however, this TMB motion ...

2008-12-11T23:59:59.000Z

356

The perihelion of Mercury advance and the light bending calculated in (enhanced) Newton's theory  

E-Print Network (OSTI)

We show that results of a simple dynamical gedanken experiment interpreted according to standard Newton's gravitational theory, may reveal that three-dimensional space is curved. The experiment may be used to reconstruct the curved geometry of space, i.e. its non-Euclidean metric. The perihelion of Mercury advance and the light bending calculated from the Poisson equation and the equation of motion in the curved geometry have the correct (observed) values. Independently, we also show that Newtonian gravity theory may be enhanced to incorporate the curvature of three dimensional space by adding an extra equation which links the Ricci scalar with the density of matter. Like in Einstein's general relativity, matter is the source of curvature. In the spherically symmetric (vacuum) case, the metric of space 3gik that follows from this extra equation agrees, to the expected accuracy, with the metric measured by the Newtonian gedanken experiment mentioned above.

M. A. Abramowicz; G. F. R. Ellis J. Horak; M. Wielgus

2013-03-21T23:59:59.000Z

357

Bending Fuchsian representations of fundamental groups of cusped surfaces in PU(2,1)  

E-Print Network (OSTI)

We describe a family of representations of $\\pi_1(\\Sigma)$ in PU(2,1), where $\\Sigma$ is a hyperbolic Riemann surface with at least one deleted point. This family is obtained by a bending process associated to an ideal triangulation of $\\Sigma$. We give an explicit description of this family by describing a coordinates system in the spirit of shear coordinates on the Teichm\\"uller space. We identify within this family new examples of discrete, faithful and type-preserving representations of $\\pi_1(\\Sigma)$. In turn, we obtain a 1-parameter family of embeddings of the Teichm\\"uller space of $\\Sigma$ in the PU(2,1)-representation variety of $\\pi_1(\\Sigma)$. These results generalise to arbitrary $\\Sigma$ the results obtained in a previous paper for the 1-punctured torus.

Will, Pierre

2011-01-01T23:59:59.000Z

358

North Dome decision expected soon  

Science Conference Proceedings (OSTI)

Decisions soon will be made which will set in motion the development of Qatar's huge North Dome gas field. The government and state company, Qatar General Petroleum Corp. (QGPC) is studying the results of 2 feasibility studies on the economics of LNG export, although initially North Dome exploitation will be aimed at the domestic market. Decisions on the nature and timing of the North Dome development are the most important that have had to be faced in the short 10-yr history of the small Gulf state. The country's oil production is currently running at approximately 500,000 bpd, with 270,000 bpd originating from 3 offshore fields. Output is expected to decline through 1990, and it generally is accepted that there is little likelihood of further major crude discoveries. Therefore, Qatar has to begin an adjustment from an economy based on oil to one based on gas, while adhering to the underlying tenets of long-term conservation and industrial diversification.

Not Available

1981-08-01T23:59:59.000Z

359

North American Synchrophasor Initiative (NASPI) Program Information |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Synchrophasor Initiative (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information Summary of the Transmission Reliability program's North American Synchrophasor Initiative (NASPI) activity area. NASPI supports industry adoption of next-generation monitoring equipment to increase reliability and reduce costs for consumers through the development of secure, highspeed, time-synchronized data about bulk power system conditions. North American Synchrophasor Initiative (NASPI) Program Factsheet.pdf More Documents & Publications Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations

360

Nature Preserves (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nature Preserves (North Dakota) Nature Preserves (North Dakota) Nature Preserves (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting The Parks and Recreation Department is responsible for managing and acquiring designated nature areas in the state of North Dakota. New

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Radiation (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation (North Dakota) Radiation (North Dakota) Radiation (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Environmental Regulations The Department of Health is the designated agency to receive registration applications and issue certificates necessary for the production, storage, processing, and disposal of radioactive wastes. The Industrial Commission of North Dakota is tasked with monitoring and enforcing provisions related

362

City of Bay City, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Michigan (Utility Company) City, Michigan (Utility Company) Jump to: navigation, search Name City of Bay City Place Michigan Utility Id 1366 Utility Location Yes Ownership M NERC Location ECAR NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 100 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 150 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 250 WATTS) Lighting

363

Coos Bay, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon: Energy Resources Oregon: Energy Resources (Redirected from Coos Bay, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3665007°, -124.2178903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3665007,"lon":-124.2178903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Multi-AUV control and adaptive sampling in Monterey Bay  

E-Print Network (OSTI)

Abstract—Operations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project. Index Terms—Adaptive sampling, autonomous underwater vehicles (AUVs), cooperative control, formations, gradient climbing, underwater gliders. I.

Edward Fiorelli; Naomi Ehrich Leonard; Senior Member; Pradeep Bhatta; Derek A. Paley; Student Member; Ralf Bachmayer; David M. Fratantoni

2004-01-01T23:59:59.000Z

365

Manual Calibration System for Daya Bay Reactor Neutrino Experiment  

E-Print Network (OSTI)

The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {\\theta}13, to be non-zero at the 7.7{\\sigma} level. This is the most precise measurement to {\\theta}13 to date. To further enhance the understanding of the response of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 20 mm in Z axis and 0.5{\\deg} in {\\Phi} direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run.

Hanxiong Huang; Xichao Ruan; Jie Ren; Chengjun Fan; Yannan Chen; Yinglong Lv; Zhaohui Wang; Zuying Zhou; Long Hou; Biao Xin; Chaoju Yu; Jiawen Zhang; Yinghong Zhang; Jingzhi Bai; Honglin Zhuang; Wei He; Jianglai Liu; Elizabeth Worcester; Harry Themann; Jeff Cherwinka; David M. Webber

2013-05-10T23:59:59.000Z

366

Forecasting the Bayes factor of a future observation  

E-Print Network (OSTI)

I present a new procedure to forecast the Bayes factor of a future observation by computing the Predictive Posterior Odds Distribution (PPOD). This can assess the power of future experiments to answer model selection questions and the probability of the outcome, and can be helpful in the context of experiment design. As an illustration, I consider a central quantity for our understanding of the cosmological concordance model, namely the scalar spectral index of primordial perturbations, n_S. I show that the Planck satellite has over 90% probability of gathering strong evidence against n_S = 1, thus conclusively disproving a scale-invariant spectrum. This result is robust with respect to a wide range of choices for the prior on n_S.

Roberto Trotta

2007-03-05T23:59:59.000Z

367

Design and implementation of four enhanced recovery projects in bay fields of south Louisiana  

SciTech Connect

This paper reviews the design and implementation of four enhanced recovery projects that were initiated in the shallow-water environment of two bay fields located along the coastline of South Louisiana. These four projects are a caustic augmented waterflood, a miscible carbon dioxide waterflood, both in Quarantine Bay Field, and two polymer augmented waterfloods in the West Bay Field. The paper focuses on the design modifications required for the projects due to the hostile overwater environment and the logistics problems associated with the locations of the projects.

Boardman, R.S.; Moore, L.J.; Julian, M.H.; Bilbrey, D.G.; Moore, J.S.

1982-01-01T23:59:59.000Z

368

Design and implementation of four enhanced recovery projects in bay fields of South Louisiana  

SciTech Connect

This paper reviews the design and implementation of four enhanced recovery projects that were initiated in the shallow-water environment of two bay fields located along the coastline of South Louisiana. These four projects are a caustic augmented waterflood, a miscible carbon dioxide waterflood, both in Quarantine Bay Field, and two polymer augmented waterfloods in the West Bay Field. The paper focuses on the design modifications required for the projects due to the hostile overwater environment and the logistics problems associated with the locations of the projects. 4 refs.

Boardman, R.S.; Moore, L.J.; Julian, M.H.; Bilbrey, D.G.; Moore, J.S.

1982-01-01T23:59:59.000Z

369

North America Energy Efficiency Standards and Labeling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Energy Efficiency North American Energy Efficiency Standards and Labeling North American Energy Working Group NORTH AMERICAN ENERGY WORKING GROUP The North American Energy Working Group (NAEWG) was established in spring of 2001 by the Canadian Minister of Natural Resources, the Mexican Secretary of Energy and the U.S. Secretary of Energy, to enhance North American energy cooperation. The Group is led by officials from Natural Resources Canada, the Mexican Secretariat of Energy, and the U.S. Department of Energy. The goals of the NAEWG are to foster communication and cooperation among the governments and energy sectors of the three countries on energy-related matters of common interest, and to enhance North American energy trade and interconnections

370

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

371

Eileen west end development, Prudhoe Bay field, Alaska  

SciTech Connect

The western periphery of Prudhoe Bay field is made of small faulted structures referred to as the Eileen West End area. Development plans for Eileen West End consist of drilling approximately 90 production wells on 80-ac spacing, two nonconventional (> 85{degree}) gas injectors, and one to two conventional gas injectors from two gravel pads (W and Z pads). The confirmation sequence of 20 wells was prioritized to provide information about the structure, fluid contacts, reservoir rock quality, and shale extent in the areas of the nonconventional gas injectors and to maximize, broad initial offtake. Drilling began with two rigs in February 1988, and production started up from Eileen West End in June 1988. In October 1989, 46 wells produced 50,000 BOPD. Peak capacity of 60,000 BOPD is expected by May 1990. Gas cap gas injection was initiated in the West End along with production. Two nonconventional gas injectors currently inject 90 MMCFD. A final injection rate for the West End is targeted at 130 MMCFD. Initiating injection concurrently with production will forestall additional pressure depletion from offtake in the Main field of Prudhoe Bay. Integration of geologic reservoir description and engineering data is crucial to optimize, reservoir development. Current effort include mud logging, sidewall core sampling, formation pressure testing, and fluid contact monitoring with open-hole and cased-hole logs. These data are interpreted to identify areas of gas or water influx and gas breakthrough to define the extent of permeability barriers, to evaluate pressure support requirements, and to effectively plan the remaining conventional and nonconventional producers.

Cooke, A. (BP Exploration, Anchorage, AK (USA))

1990-05-01T23:59:59.000Z

372

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

Gasoline and Diesel Fuel Update (EIA)

San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin...

373

A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal  

E-Print Network (OSTI)

or fluctuating strains at nominal stresses below (and often much less than) the yield strength of the material (Bannantine et al. 1989, ASM Interna- tional 1996). The material will succumb to propagat- ing fatigue­cracks) and are subjected to harsh working (corrosive) condi- tions under a combination of torsional and bending moments

Zheng, Yufeng

374

Design Parameters for a 7.2 Tesla Bending Magnet for a 1.5 GeV Compact Light Source  

E-Print Network (OSTI)

a Central Induction of 7 tesla [l] D. B. Cline A. A. Gmen.Design Parameters for a 7.2 Tesla Bending Magnet for a 1.5Design Parameters for a 7.2 Tesla Bending Magnet for a 1.5

Green, M.A.

2011-01-01T23:59:59.000Z

375

Modeling Air–Land–Sea Interactions Using the Integrated Regional Model System in Monterey Bay, California  

Science Conference Proceedings (OSTI)

The air–land–sea interaction in the vicinity of Monterey Bay, California, is simulated and investigated using a new Integrated Regional Model System (I-RMS). This new model realistically resolves coastal processes and submesoscale features that ...

Yu-Heng Tseng; Shou-Hung Chien; Jiming Jin; Norman L. Miller

2012-04-01T23:59:59.000Z

376

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Facility Doe Bay Village Resort Sector Geothermal energy Type Pool and Spa Location Olga, Washington Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

377

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A  

Open Energy Info (EERE)

Waters Along The Konocti Bay Fault Zone, Lake County, California- A Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Details Activities (3) Areas (1) Regions (0) Abstract: The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200°C, the spring temperatures and fluid

378

Aspects of the ecology and behaviour of bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay, California  

E-Print Network (OSTI)

D.L. 1999. Inshore and offshore bottlenose dolphin (Tursiopsin deeper waters further offshore (>0.5km). No correlationsschools observed inshore and offshore in the bay, with the

Bearzi, Maddalena

2004-01-01T23:59:59.000Z

379

Mesoscale Organization and Cloud Microphysics in a Bay of Bengal Depression  

Science Conference Proceedings (OSTI)

Airborne radar and cloud microphysical data were obtained throughout a monsoon depression observed over the Bay of Bengal on 3–8 July 1979 during the Summer Monsoon Experiment of the Global Atmospheric Research Programme. The precipitation in the ...

Robert A. Houze Jr.; Dean D. Churchill

1987-07-01T23:59:59.000Z

380

Climate Change, Justice, and Adaptation among African American Communities in the Chesapeake Bay Region  

Science Conference Proceedings (OSTI)

In this paper, the authors present results from a study of climate change and community adaptation, focusing on two African American communities on the Eastern Shore of the Chesapeake Bay. These two communities are representative of small, ...

Michael Paolisso; Ellen Douglas; Ashley Enrici; Paul Kirshen; Chris Watson; Matthias Ruth

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

382

Structure, Propagation, and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii  

Science Conference Proceedings (OSTI)

Large semidiurnal vertical displacements (?100 m) and strong baroclinic currents (?0.5 m s?1; several times as large as barotropic currents) dominate motions in Mamala Bay, outside the mouth of Pearl Harbor, Hawaii. During September 2002, the ...

Matthew H. Alford; Michael C. Gregg; Mark A. Merrifield

2006-06-01T23:59:59.000Z

383

Energetics of Barotropic and Baroclinic Tides in the Monterey Bay Area  

Science Conference Proceedings (OSTI)

A detailed energy analysis of the barotropic and baroclinic M2 tides in the Monterey Bay area is performed. The authors first derive a theoretical framework for analyzing internal tide energetics based on the complete form of the barotropic and ...

Dujuan Kang; Oliver Fringer

2012-02-01T23:59:59.000Z

384

Multiscale Processes and Nonlinear Dynamics of the Circulation and Upwelling Events off Monterey Bay  

Science Conference Proceedings (OSTI)

The nonlinear multiscale dynamics of the Monterey Bay circulation during the Second Autonomous Ocean Sampling Network (AOSN-II) Experiment (August 2003) is investigated in an attempt to understand the complex processes underlying the highly ...

X. San Liang; Allan R. Robinson

2009-02-01T23:59:59.000Z

385

Scale-dependent dispersion within the stratified interior on the shelf of northern Monterey Bay  

Science Conference Proceedings (OSTI)

Autonomous underwater vehicle measurements are used to quantify lateral dispersion of a continuously released Rhodamine WT dye plume within the stratified interior of shelf waters in northern Monterey Bay, CA. The along-shelf evolution of the ...

Ryan J. Moniz; Derek A. Fong; C. Brock Woodson; Susan K. Willis; Mark T. Stacey; Stephen G. Monismith

386

Present Wave Climate in the Bay of Biscay: Spatiotemporal Variability and Trends from 1958 to 2001  

Science Conference Proceedings (OSTI)

Climate change impacts on wave conditions can increase the risk of offshore and coastal hazards. The present paper investigates wave climate multidecadal trends and interannual variability in the Bay of Biscay during the past decades (1958–2001). ...

Elodie Charles; Déborah Idier; Jérôme Thiébot; Gonéri Le Cozannet; Rodrigo Pedreros; Fabrice Ardhuin; Serge Planton

2012-03-01T23:59:59.000Z

387

Functional Empirical Bayes Methods for Identifying Genes with Different Time-course Expression Profiles  

E-Print Network (OSTI)

a mixed-e?ects model with B-splines. Bioinformatics, 19:474-Bayes, Gibbs-sampler, B-spline, False discovery rate, geneand propose to use cubic B-splines (De Boor, 1978) to

Hong, Fangxin; Li, Hongzhe

2004-01-01T23:59:59.000Z

388

Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay  

E-Print Network (OSTI)

Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay J. A. Robbins,1 between the maximum atmospheric radionuclide fallout and peaks in sediment temporal records of 137 Cs

389

Minimum bayes risk decoding with enlarged hypothesis space in system combination  

Science Conference Proceedings (OSTI)

This paper describes a new system combination strategy in Statistical Machine Translation. Tromble et al. (2008) introduced the evidence space into Minimum Bayes Risk decoding in order to quantify the relative performance within lattice or n-best output ...

Tsuyoshi Okita; Josef van Genabith

2012-03-01T23:59:59.000Z

390

An Advanced Data Assimilation System for the Chesapeake Bay: Performance Evaluation  

Science Conference Proceedings (OSTI)

An advanced data assimilation system, the local ensemble transform Kalman filter (LETKF), has been interfaced with a Regional Ocean Modeling System (ROMS) implementation on the Chesapeake Bay (ChesROMS) as a first step toward a reanalysis and ...

Matthew J. Hoffman; Takemasa Miyoshi; Thomas W. N. Haine; Kayo Ide; Christopher W. Brown; Raghu Murtugudde

2012-10-01T23:59:59.000Z

391

A study of on-line quasi-Bayes adaptation for CDHMM-based speech recognition  

Science Conference Proceedings (OSTI)

We present a framework of quasi-Bayes (QB) learning of the parameters of the continuous density hidden Markov model (CDHMM) with Gaussian mixture state observation densities. Based on the theory of recursive Bayesian inference, the QB algorithm is designed ...

Qiang Huo; Chin-Hui Lee

1996-05-01T23:59:59.000Z

392

Dynamics of Willapa Bay, Washington: A Highly Unsteady, Partially Mixed Estuary  

Science Conference Proceedings (OSTI)

Results from 3 yr of hydrographic time series are shown for Willapa Bay, Washington, a macrotidal, partially mixed estuary whose river and ocean end members are both highly variable. Fluctuating ocean conditions— alternations between wind-driven ...

N. S. Banas; B. M. Hickey; P. MacCready; J. A. Newton

2004-11-01T23:59:59.000Z

393

Abyssal Penetration and Bottom Reflection of Internal Tidal Energy in the Bay of Biscay  

Science Conference Proceedings (OSTI)

This paper describes field observations in the Bay of Biscay, and presents convincing evidence for the existence of a broad beam of internal tidal energy propagating downward from a source region on the upper continental slopes, which, after ...

R. D. Pingree; A. L. New

1991-01-01T23:59:59.000Z

394

Multiyear Observations of Cloud Lines Associated with the Chesapeake and Delaware Bays  

Science Conference Proceedings (OSTI)

Satellite and corresponding near-surface in situ observations have been made of single- and dual-band cloud events [dubbed anomalous cloud lines (ACLs)] associated with the Chesapeake and Delaware Bays. A previous study developed the basis for ...

Todd D. Sikora; David M. Halverson

2002-08-01T23:59:59.000Z

395

Summer Cumulus Cloud Seeding Experiments near Yellowknife and Thunder Bay, Canada  

Science Conference Proceedings (OSTI)

A summer (June and July) cumulus cloud seeding experiment was conducted in Canada near Yellowknife in 1975 and 1976, and Thunder Bay in 1977 and 1978. Microphysical and dynamical measurements were made with three instrumented aircraft, flying in ...

G. A. Isaac; J. W. Strapp; R. S. Schemenauer; J. I. Macpherson

1982-09-01T23:59:59.000Z

396

Dynamics and Ecosystem threats of Bidirectional Cordgrass Hybridization in San Francisco Bay  

E-Print Network (OSTI)

CALEPPC), October 2002, Sacramento, CA Sloop CM, Ayres DR,Delta Science Meeting, Sacramento, CA. Hall RJ , HastingsBay Delta Science Meeting, Sacramento, CA Sloop C, Ayres DR,

Strong, Donald R.; Ayres, D R

2005-01-01T23:59:59.000Z

397

North American Natural Gas Markets  

Science Conference Proceedings (OSTI)

This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

Not Available

1989-02-01T23:59:59.000Z

398

Metalliferous lignite in North Dakota  

SciTech Connect

Thin, impure, lignite beds in a belt across portions of North Dakota and South Dakota are highly enriched in U, Mo, and As. These beds contained on the order of 0.25% U/sub 3/O/sub 8/, and equal amounts of Mo. The metals were leached from overlying volcanic ash, and infiltrated through the lignites with the ground water, where they were precipitated on formed metallo-organic complexes. The belt of metalliferous lignites concides with a major surface drainage divide, where water moves generally downward and laterally.

Noble, E.A.

1972-01-01T23:59:59.000Z

399

Evaluation of 1991-1992 Brood Overwinter-Reared Coho Released from Net Pens in Youngs Bay, Oregon : Final Completion Report Youngs Bay Terminal Fishery Project.  

DOE Green Energy (OSTI)

Funding from Bonneville Power Administration was provided to the Oregon Department of Fish and Wildlife and the Clatsop County Economic Development Council`s Fisheries Project to identify and develop terminal fishing opportunities. The 1991 and 1992 brood fingerling coho from Oregon Department of Fish and Wildlife hatcheries were successfully reared during the winter period to smolt stage in Youngs Bay utilizing floating net pens. Based on coded-wire-tag recoveries during 1991--93 from 2-week net-pen acclimation releases, total accountability of coho adults averaged 40,540 fish, with the Youngs Bay commercial harvest accounting for 39%. With reduced ocean harvest impacts during 1994 and 1995, 92% of 51,640 coho in 1994 and 68% of 23,599 coho in 1995 (based on coded-wire-tag recoveries) were accounted for in the Youngs Bay commercial fishery for combined 2-week and overwinter acclimation net-pen releases. Overwinter net-pen acclimation coho accounted for 35,063 and 15,775 coho adults in 1994 and 1995 with 93% and 68% accountable in the Youngs Bay commercial harvest. Based on coded-wire-tag recoveries, less than 1% of the adults resulting from releases at Youngs Bay net pens strayed to hatcheries, while none were recovered on spawning ground surveys during 1991--95. The highest survival rates were observed for 1991 and 1992 brood overwinter coho released in early May. Time of release, not rearing strategy, appears to be the determining factor affecting survival in Youngs Bay.

Hirose, Paul S.

1997-01-01T23:59:59.000Z

400

Depositional setting and reservoir geology of Kuparuk River oil field, North Slope, Alaska  

SciTech Connect

The Kuparuk River field is located approximately 20 mi (32 km) west of the Prudhoe Bay field and produces from the Lower Cretaceous Kuparuk River formation. The lower member of the Kuparuk is a sequence of interbedded sandstone, siltstone, and mudstone. Individual sandstone beds in the lower member are up to 5 ft (1.5 m) thick and consist of fine-grained, well-sorted quartzarenite. The basal part of the lower member contains five sandstone-rich cycles that prograde to the southeast. Each individual cycle strikes northeast-southwest and is up to 80 ft (254 m) thick, 40 mi (64 km) long, and 15 mi (25 km) wide. The lower member sandstones are interpreted to be storm deposits derived from a northerly source and deposited on a broad marine shelf. The upper member was deposited on an erosional unconformity and contains two sandstone intervals. These sandstone intervals are quartzose, glauconitic, very fine to coarse grained, poorly to moderately sorted, and intensely bioturbated. Both upper member sandstones are interpreted to have been deposited as subtidal sand bodies. The upper and lower member sandstones have similar average porosities (23%), but the average permeability of upper member sandstone is considerably higher than the average permeability of the lower member. Natural fractures in siderite-demented zones enhance the permeability of the upper member sandstone. Reservoir performance indicates that permeability is greatest in a north-south direction in upper member sandstones, and that a north-south directional permeability may also exist in lower member sandstone. North-south-oriented line-drive waterflood patterns will be utilized in areas where a north-south directional permeability is suspected.

Paris, C.E.; Masterson, D.W.

1985-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation  

SciTech Connect

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

402

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

403

Clean Cities: North Dakota Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Dakota Clean Cities Coalition North Dakota Clean Cities Coalition The North Dakota Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. North Dakota Clean Cities coalition Contact Information Joey Roberson-Kitzman 701-223-5613 joey.roberson-kitzman@lungnd.org Ajaleigh Williams 204-986-7879 awilliams@winnipeg.ca Coalition Website Clean Cities Coordinators Coord Joey Roberson-Kitzman Coord Coord Ajaleigh Williams Coord Photo of Joey Roberson-Kitzman Joey Roberson-Kitzman began serving as coordinator for North Dakota Clean Cities in 2011. Hosted by the American Lung Association in North Dakota (ALAND), Joey's responsibilities include educating motorists and fleets about the air quality and health benefits of using cleaner alternatives to

404

North American Monsoon Paleoclimatology From Tree Rings .  

E-Print Network (OSTI)

??The North American monsoon is central to Southwestern climate and is a research focus in climatology. Of the various monsoon paleoclimate proxies, precisely dated and… (more)

Griffin, Richard Daniel

2013-01-01T23:59:59.000Z

405

North Shore Gas- Residential Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

'''Contact North Shore Gas for information on limited-time bonus incentive offerings. Bonus incentives of $250 - $450 are available for eligible purchases made before May 31, 2013.'''

406

Comments of North American Electric Reliability Corporation ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation...

407

Gila to North Gila Transmission Line Rebuild  

NLE Websites -- All DOE Office Websites (Extended Search)

Western proposes to rebuild and upgrade two, parallel, 4.8-mile-long transmission lines located between Gila and North Gila Substations and take land actions...

408

Environmental Radioactivity in the North Atlantic Region.  

E-Print Network (OSTI)

Radioactivity, Monaco Abstract. Measurements of fallout radioactivity in the North Atlantic region including ISLANDS; FOOD CHAINS; GLOBAL FALLOUT GREENLAND; LEAD 210; MAN; MILK; MOLLUSCS; POLONIUM 210; PLANTS

409

Stormwater Management (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(North Carolina) (North Carolina) Stormwater Management (North Carolina) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting Provider Department of Environment and Natural Resources The rules in this Section set forth the requirements for application and issuance of permits for stormwater management systems. These requirements to control pollutants associated with stormwater runoff apply to development of land for residential, commercial, industrial, or institutional use but do not apply to land management activities associated with agriculture. To ensure the protection of surface waters of the, a

410

North Dakota Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

Michigan Mississippi Montana Nebraska New Mexico North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee Texas Utah West Virginia Wyoming Period: Annual Download Series...

411

Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.  

DOE Green Energy (OSTI)

Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

Christian, Joshua M.; Ho, Clifford Kuofei

2010-04-01T23:59:59.000Z

412

Economics of Alaska North Slope gas utilization options  

SciTech Connect

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

413

Decadal Climate Variability over the North Pacific and North America: Dynamics and Predictability  

Science Conference Proceedings (OSTI)

The dynamics and predictability of decadal climate variability over the North Pacific and North America are investigated by analyzing various observational datasets and the output of a state of the art coupled ocean–atmosphere general circulation ...

M. Latif; T. P. Barnett

1996-10-01T23:59:59.000Z

414

Intraseasonal Teleconnection between North American and Western North Pacific Monsoons with 20-Day Time Scale  

Science Conference Proceedings (OSTI)

Based on a recently released, high-resolution reanalysis dataset for the North American region, the intraseasonal variability (ISV; with a time scale of about 20 days) of the North American monsoon (NAM) is examined. The rainfall signals ...

Xianan Jiang; Ngar-Cheung Lau

2008-06-01T23:59:59.000Z

415

Seasonal Climatic Anomaly Types for the North Pacific Sector and Western North America  

Science Conference Proceedings (OSTI)

Recurrent patterns of seasonal sea level pressure anomaly over the North Pacific sector and western North America are objectively identified using correlation coefficients between anomaly maps as a pattern recognition device. Five major anomaly ...

T. J. Blasing; G. R. Lofgren

1980-06-01T23:59:59.000Z

416

HOOPER BAY HOUSING ANALYSIS AND ENERGY FEASIBILITY REPORT  

Science Conference Proceedings (OSTI)

Sea Lion applied for and received a grant from the Department of Energy (DOE) towards this end titled â??Energy Efficiency Development and Deployment in Indian Countryâ?ť. The initial objectives of the Hooper Bay Energy Efficiency Feasibility Study were to demonstrate a 30% reduction in residential/commercial energy usage and identify the economic benefits of implementing energy efficiency measures to the Tribe through: (1) partnering with Whitney Construction and Solutions for Healthy Breathing in the training and hire of 2 local energy assessors to conduct energy audits of 9 representative housing models and 2 commercial units in the community. These homes are representative of 52 homes constructed across different eras. (2) partnering with Cold Climate Housing Research Center to document current electrical and heating energy consumption and analyze data for a final feasibility report (3) assessing the economics of electricity & heating fuel usage; (4) projecting energy savings or fossil fuel reduction by modeling of improvement scenarios and cost feasibility The following two objectives will be completed after the publication of this report: (5) the development of materials lists for energy efficiency improvements (6) identifying financing options for the follow-up energy efficiency implementation phase.

SEA LION CORPORATION; COLD CLIMATE HOUSING RESEARCH CENTER; SOLUTIONS FOR HEALTHY BREATHING; WHITNEY CONSTRUCTION

2012-12-30T23:59:59.000Z

417

Proceedings of the North Aleutian Basin information status and research planning meeting.  

Science Conference Proceedings (OSTI)

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis and summary of the literature; and (3) identification and prioritization of information needs. To assist in gathering this information, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting, held in Anchorage, Alaska, from November 28 through December 1, 2006; this report presents a summary of that meeting. The meeting was the primary method used to gather input from stakeholders and identify information needs and priorities for future inventory, monitoring, and research related to potential leasing and oil and gas developments in the North Aleutian Basin.

LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L.; Environmental Science Division

2007-10-26T23:59:59.000Z

418

North American Electric Reliability Corporation  

E-Print Network (OSTI)

Compliance filing regarding consistency of Western Electricity Coordinating Council (WECC) regional reliability Standard WECC-TOP-STD-007-0 with NERC reliability standard Dear Ms. Michael: On July 9, 2007, the North American Electric Reliability Corporation (NERC) filed an explanation regarding the consistency of WECC’s regional reliability standard WECC-TOP-STD-007-0 with respect to NERC Reliability Standard IRO-005-1. Notice of this filing was issued on July 12, 2007 with comments, protests or motions to intervene due on or before August 8, 2007. Notices of intervention and unopposed timely filed motions to intervene are granted pursuant to the operation of Rule 214 of the Commission’s Rules of Practice and Procedure (18 C.F.R. § 385.214). Any opposed or untimely filed motion to intervene is governed by the provisions of Rule 214. No protests or adverse comments were filed.

Docket No. Rr

2007-01-01T23:59:59.000Z

419

The Superconducting Horizontal Bend Magnet for the Jefferson Lab's 11 GeV/c Super High Momentum Spectrometer  

SciTech Connect

A collaboration between NSCL and Jlab has developed the reference design and coil winding for Jlab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet. A warm iron ??C?? type superferric dipole magnet will bend the 12 GeV/c particles horizontally by 3?? to allow the SHMS to reach angles as low as 5.5??. This requires an integral field strength of up to 2.1 T.m. The major challenges are the tight geometry, high and unbalanced forces and a required low fringe field in primary beam path. A coil design based on flattened SSC Rutherford cable that provides a large current margin and commercially available fiberglass prepreg epoxy tape has been developed. A complete test coil has been wound and will be cold tested. This paper present the modified magnet design includes coil forces, coil restraint system and fringe field. In addition, coil properties, quench calculations and the full mechanical details are also presented.

S. Chouhan, J. DeKamp, A. Zeller, P. Brindza, S. Lassiter, M. Fowler, E. Sun

2010-06-01T23:59:59.000Z

420

A new bend magnet beam line for scanning transmission x-ray microscopy at the Advanced Light Source  

Science Conference Proceedings (OSTI)

The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend magnet source. A simple, dedicated beam line has been built covering the range of photon energy from 250 eV to 600 eV. Ease of use and operational availability are radically improved compared to previous installations using undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz.

Warwick, Tony; Ade, Harald; Kilcoyne, A.L. David; Kritscher, Michael; Tylisczcak, Tolek; Fakra, Sirine; Hitchcock, Adam P.; Hitchcock, Peter; Padmore, Howard A.

2001-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

422

Material management: experience on the Alaska North Slope Project. [Kuparuk River Project  

SciTech Connect

The Kuparuk River Unit Project started in 1978, with the first major production facility sea lifted to the construction site on the North Slope of Alaska in the summer of 1981. The oil production field is located approximately 25 miles west of the Prudhoe Bay facility and 250 miles north of the Arctic Circle. The size of the Kuparuk site is 215 square miles, overlaying a projected recoverable reservoir of 1.2 billion barrels of oil. The present plan calls for approximately 50 drillsite pads, with the possibility of up to 32 wells on each pad. Modular construction was the most cost-effective method to use. The need for intensive material management on the Kuparuk River Unit Project became evident as the scope of engineering effort increased, shortening the amount of time available for acquisition of purchased materials and for the construction of the modules to meet the annual six-week sea-lift delivery period. The logistics of the Kuparuk construction site, the timeframe required to do the modular construction, the support facilities necessary, and several contractors and types of contracts, required Stearns Catalytic Corporation to consider a sophisticated material control system to identify the various areas of concern. The computerized system set up to solve the problems is discussed here generically.

Humphreys, R.B.

1985-08-01T23:59:59.000Z

423

Bending of Light Near a Star and Gravitational Red/Blue Shift : Alternative Explanation Based on Refraction of Light  

E-Print Network (OSTI)

Many of the general-relativity-tests such as bending of light near a star and gravitational red/blue shift are explained without general-relativity and without Newtonian-approach. The author first casts doubts on both, the Newtonian and the relativistic approach; and proposes a novel alternative-explanation. The new alternative-explanation is based on refraction-phenomenon of optics. It predicts that as the ray passes through/near the stars atmospheric-medium, it bends due to refraction-phenomenon towards star-core, like a ray bends while passing through a prism or water-drop. A semi-empirical estimation of the atmospheric-height and its refractive-index are made to find the refraction-results. The refraction-based theory also suggests new explanation for gravitational red/blue shift; it tells that frequency remains constant (as it is so in refraction-phenomenon) and the red/blue shift is due to change in wavelength due to change in velocity of light in the medium . Estimated results for bending of light and the red/blue shift etc. with the new approach though agree well with known values, but important thing is that the physics is quite different. The proposed refraction-based theory proposes a new-look on black-hole, suggesting that black-hole formation is critically due to total-internal-reflection within atmosphere and subsequent absorption into the star-core. Gravitational-lensing is explained as real refraction-lensing. The present paper also suggests a possible-alternative and meaning to the curved geometry of space-time, and indicates that the fabric of space-time which warps(curves) around the mass is not the empty-vacuum but the atmospheric-medium.

Dr. R. C. Gupta

2004-09-24T23:59:59.000Z

424

Microsoft Word - north_dakota.doc  

U.S. Energy Information Administration (EIA) Indexed Site

North Dakota North Dakota NERC Region(s) ....................................................................................................... MRO Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 6,188 40 Electric Utilities ...................................................................................................... 4,912 34 Independent Power Producers & Combined Heat and Power ................................ 1,276 40 Net Generation (megawatthours) ........................................................................... 34,739,542 39

425

Microsoft Word - north_dakota.doc  

Gasoline and Diesel Fuel Update (EIA)

North Dakota North Dakota NERC Region(s) ....................................................................................................... MRO Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 6,188 40 Electric Utilities ...................................................................................................... 4,912 34 Independent Power Producers & Combined Heat and Power ................................ 1,276 40 Net Generation (megawatthours) ........................................................................... 34,739,542 39

426

Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single U-bend pipes are adopted only for their simplicity in design and construction instead of high efficiency and less operation cost of the whole system. In this paper, we make a comparison between single and double U-bend pipe heat exchangers in their heat exchange rate per depth, the number of boreholes needed for the same amount of cooling load, total lengths of pipes for the two different types of heat exchangers, and seasonal overall energy efficiency of the two GSHP systems. An economic analysis method is also presented. Finally, conclusions are made for the selection of single or double U-bend pipe heat exchangers in a GSHP system after a case study using TRNSYS simulation software is carried out.

Shu, H.; Duanmu, L.; Hua, R.

2006-01-01T23:59:59.000Z

427

SouthSouthNorth | Open Energy Information  

Open Energy Info (EERE)

SouthSouthNorth SouthSouthNorth Jump to: navigation, search Logo: SouthSouthNorth Name SouthSouthNorth Address 138 Waterkant Street Greenpoint Place Cape Town, South Africa Zip 8001 Website http://www.southsouthnorth.org References http://www.southsouthnorth.org/ No information has been entered for this organization. Add Organization "SouthSouthNorth (SSN) is a network-based non-profit organisation sharing two decades of experience in the fields of climate change and social development. We directly pursue structural poverty reduction in Sub Saharan Africa, Asia and Latin America by building Southern capacity and delivering community based mitigation and adaptation projects. The former mitigate climate change by reducing global greenhouse gas emissions and the latter

428

Experimental and analytical assessment of circumferential through-wall cracked pipes under pure bending  

SciTech Connect

This study was performed to assess the validity of various techniques to predict crack initiation loads and maximum loads for circumferentially through-wall-cracked pipes under pure bending. Experimental data were developed for both carbon steel and stainless steel pipes. Predictions of crack initiation and maximum loads were made using the net-section-collapse method, three different J-estimation schemes, and the British R6 method. The net-section-collapse method gave good maximum-load predictions for certain types of pipe; however, for large diameter and/or low toughness pipe this analysis method tended to overpredict the experimental maximum load. A plastic-zone screening criterion was developed to show when this method was valid and when elastic-plastic fracture mechanics should be used. In the J-estimation scheme analyses, sensitivity studies were conducted to assess the fit of the Ramberg-Osgood coefficients, as well as the use of deformation J and modified J (J/sub M/) crack growth resistance curves. The results showed that the GE/EPRI estimation scheme underpredicted the experimental loads by the greatest amount. The LBB.NRC and Paris methods gave more accurate predictions. The GE/EPRI method was also found to be more sensitive to the fit of the stress-strain curve than the LBB.NRC method. The R6 method underpredicted the failure loads for all cases. For maximum load predictions, the GE/EPRI method still underpredicted the experimental load when the J/sub M/ resistance curve was used. The other methods occasionally overpredicted the maximum load using J/sub M/-resistance curve.

Scott, P.; Brust, F.

1986-09-01T23:59:59.000Z

429

How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes  

E-Print Network (OSTI)

Hydrodynamics can be consistently formulated on surfaces of arbitrary co-dimension in a background space-time, providing the effective theory describing long-wavelength perturbations of black branes. When the co-dimension is non-zero, the system acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying an effective action approach, the most general form of the free energy quadratic in the extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations is constructed to second order in a derivative expansion. This construction generalizes the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to the case in which the fluid is rotating. It is found that stationary fluid brane configurations are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover, the elastic degrees of freedom present in the system are coupled to the hydrodynamic degrees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-extremal brane effective actions can be accounted for by a multipole expansion of the stress-energy tensor, therefore establishing a relation between the different formalisms of Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective description of stationary fluid branes. Finally, it is shown that the Young modulus found in the literature for black branes falls into the class predicted by this approach - a relation which is then used to make a proposal for the second order effective action of stationary blackfolds and to find the corrected horizon angular velocity of thin black rings.

Jay Armas

2013-04-29T23:59:59.000Z

430

March 13, 1968: Oil discovered on Alaska's North Slope | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The...

431

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network (OSTI)

Synergistetes North Sea oil well sp. clone TCB169x (isolated from a North Sea oil well and described as a memberlienii Synergistes North Sea oil well Cas60314 (DQ071273)

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

432

North Carolina's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Research Institutions in North Carolina's 2nd congressional district 3 Registered Policy Organizations in North Carolina's 2nd congressional district 4 Registered Energy Companies in North Carolina's 2nd congressional district US Recovery Act Smart Grid Projects in North Carolina's 2nd congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 2nd congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 2nd congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 2nd congressional district Advanced Vehicle Research Center of North Carolina Agri Ethanol Products LLC AEPNC

433

Lumbee River EMC - Solar Water Heating Loan Program (North Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (North Carolina) Lumbee River EMC - Solar Water Heating Loan Program (North Carolina) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water...

434

Lumbee River EMC - Solar Water Heating Rebate Program (North...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program (North Carolina) Lumbee River EMC - Solar Water Heating Rebate Program (North Carolina) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water...

435

North Carolina's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

4th congressional district 4th congressional district 2 Registered Research Institutions in North Carolina's 4th congressional district 3 Registered Policy Organizations in North Carolina's 4th congressional district 4 Registered Energy Companies in North Carolina's 4th congressional district 5 Registered Financial Organizations in North Carolina's 4th congressional district US Recovery Act Smart Grid Projects in North Carolina's 4th congressional district Progress Energy Service Company, LLC Smart Grid Project Registered Research Institutions in North Carolina's 4th congressional district N.C. Solar Center Registered Policy Organizations in North Carolina's 4th congressional district NC Sustainable Energy Association Registered Energy Companies in North Carolina's 4th congressional district

436

North Dakota Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com North Dakota Gas Prices (Ciudades Selectas) - GasBuddy.com North Dakota Gas Prices (Organizado por Condado) -...

437

North Carolina Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com North Carolina Gas Prices (Ciudades Selectas) - GasBuddy.com North Carolina Gas Prices (Organizado por Condado)...

438

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

439

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

440

Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

History Facebook icon Twitter icon Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaufort County, North...

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

442

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bertie County, North Carolina ASHRAE Standard ASHRAE 169-2006...

443

Expanded North Carolina Lithium Facility Opens, Boosting U.S...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of...

444

Energy Crossroads: Utility Energy Efficiency Programs North Dakota...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information for Businesses Nebraska Municipal Power Pool (North Dakota) Information for Businesses Xcel Energy (North Dakota) Information for Businesses Otter Tail Power Company...

445

Pages that link to "Coal Severance Tax (North Dakota)" | Open...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Severance Tax (North Dakota)" Coal Severance Tax (North Dakota) Jump to:...

446

Pages that link to "Coal Mining Reclamation (North Dakota)" ...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Mining Reclamation (North Dakota)" Coal Mining Reclamation (North Dakota) Jump to:...

447

Changes related to "Coal Severance Tax (North Dakota)" | Open...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Severance Tax (North Dakota)" Coal Severance Tax (North Dakota) Jump to:...

448

Changes related to "Coal Mining Reclamation (North Dakota)" ...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Mining Reclamation (North Dakota)" Coal Mining Reclamation (North Dakota) Jump to:...

449

Summer maintenance affects North Sea crude oil production and ...  

U.S. Energy Information Administration (EIA)

Wind › Geothermal › ... Each summer, maintenance on offshore production platforms and pipelines in the North Sea temporarily reduces the supply of North Sea crude ...

450

Pages that link to "Boardman, North Carolina" | Open Energy Informatio...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Boardman, North Carolina" Boardman, North Carolina Jump to: navigation, search What links...

451

Changes related to "Boardman, North Carolina" | Open Energy Informatio...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Boardman, North Carolina" Boardman, North Carolina Jump to: navigation, search This is a...

452

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

453

Louisiana--North Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

454

Louisiana--North Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

455

North Dakota Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

456

Presentation to the Plastics Developers Association North America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developers Association North America Conference More Documents & Publications Fossil Energy Today - Third Quarter, 2012 Presentation to the Plastics Developers Association North...

457

North Carolina's 6th congressional district: Energy Resources...  

Open Energy Info (EERE)

North Carolina. Registered Energy Companies in North Carolina's 6th congressional district Outer Banks Ocean Energy Corporation RF Micro Devices RF Micro Devices Inc RFMD Soleil...

458

North American Standard Level VI Inspection Program Update: Ensuring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material North American Standard Level VI Inspection Program Update:...

459

North Dakota - Compare - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin...

460

North Dakota - Rankings - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin...

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

North Dakota Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Dakota Natural Gas % of Total Residential - Sales (Percent) North Dakota Natural Gas % of Total Residential - Sales...

462

North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet)...

463

North Carolina Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Carolina Natural Gas % of Total Residential - Sales (Percent) North Carolina Natural Gas % of Total Residential - Sales...

464

Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bay Area to Highlight Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy January 31, 2012 - 7:38pm Addthis Washington, D.C. - As part of the Energy Department's ongoing efforts to highlight President Obama's State of the Union address and discuss the Obama Administration's commitment to American energy resources and innovation, tomorrow, Wednesday, February 1, U.S. Energy Secretary Steven Chu will headline a groundbreaking ceremony for Lawrence Berkeley National Laboratory's new Computational Research and Theory Facility, a cutting-edge supercomputing facility. Secretary Chu will also host a State of the Union Town Hall and take questions from students and faculty

465

A Precision Measurement of the Neutrino Mixing Angle theta_13 using Reactor Antineutrinos at Daya Bay  

E-Print Network (OSTI)

A reactor-neutrino experiment, Daya Bay, has been proposed to determine the least-known neutrino mixing angle theta_13 using electron antineutrinos produced at the Daya Bay nuclear power complex in China. Daya Bay is an international collaboration with institutions from China, the United States, the Czech Republic, Hong Kong, Russia, and Taiwan. The experiment will use eight identical detectors deployed at three different locations optimized for monitoring the antineutrino rates from the six reactors and for detecting any rate deficit and spectral distortion near the first oscillation maximum. The overburden of the under ground experimental halls, connected with tunnels, ranges from about 250 to 900 meters-water-equivalent so that the cosmogenic background is small compared to the number of observed antineutrino events. Civil construction of tunnels and experimental facilities is planned to start in 2007, with detector construction beginning in 2008. The experiment will begin collecting data in 2010. By compa...

Guo, Xinheng

2007-01-01T23:59:59.000Z

466

North American Electric Reliability Corporation (NERC): Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporation (NERC): Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid. NERC develops and enforces Reliability Standards; assesses adequacy annually via a ten-year forcast and winter and summer forecasts; monitors the bulk power systems; and educates, trains, and certifies industry personnel. North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid More Documents & Publications Re: DOE Request for Information - Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to

467

NorthStar Medical Technologies LLC  

National Nuclear Security Administration (NNSA)

Environmental Assessment for Environmental Assessment for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Molybdenum-99 (DOE/EA-1929) Prepared for U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation/ Global Threat Reduction Initiative August 2012 EA for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Mo-99 i COVER SHEET ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL DOMESTIC PRODUCTION OF THE MEDICAL ISOTOPE MOLYBDENUM-99 Proposed Action: The Department of Energy (DOE) National Nuclear Security Administration (NNSA) proposes to provide funding to NorthStar to accelerate the establishment of the commercial production of

468

North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota: Energy Resources North Dakota: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5514926,"lon":-101.0020119,"alt":0,"address":"North

469

North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Carolina: Energy Resources North Carolina: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7595731,"lon":-79.0192997,"alt":0,"address":"North

470

Energy Information Administration - Energy Efficiency, Table 6b-End Uses of  

Gasoline and Diesel Fuel Update (EIA)

and 2002 > Table 6b and 2002 > Table 6b Table 6b. End Uses of Energy per Ton of Steel, 1998, 2002, and 2006 (thousand Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total3 16,957 15,884 17,796 Net Electricity 4 1,602 2,009 4,673 Natural Gas 4,625 4,236 5,969 Coal 487 393 214 Boiler Fuel -- -- -- Coal 81 W 10 Residual Fuel Oil 101 W 266 Natural Gas 527 426 276 Process Heating -- -- -- Net Electricity 751 862 830 Residual Fuel Oil 193 W 112 Natural Gas 3,742 3,592 2,776 Machine Drive -- -- -- Net Electricity 690 939 786 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

471

Justification for the development of a bending magnet beamline at sector 10 at the APS.  

SciTech Connect

The long-planned and much-needed merger of EnviroCAT into the Materials Research Collaborative Access Team (MR-CAT) will provide dedicated state-of-the-art facilities that are critical to research on a broad range of issues in environmental sciences. These CATs will focus on developing a bending magnet (BM) beamline for x-ray absorption fine structure (XAFS) and micro x-ray analysis of environmental samples through integration with existing insertion device (ID) capabilities in XAFS, micro x-ray analysis, and x-ray scattering. In addition, the expanded MR-CAT will serve as the hub of personnel and laboratory infrastructure support for molecular environmental science and biogeochemical science at the Advanced Photon Source (APS). In conjunction with the merger of EnviroCAT into MR-CAT, the US Environmental Protection Agency (EPA) will become a member institution of MR-CAT, joining the present members (University of Notre Dame, Illinois Institute of Technology, University of Florida, British Petroleum, and Argonne's Chemical Engineering and Biosciences Division). The motivation for blending capabilities meeting the needs of EnviroCAT users into the MR-CAT facilities is the explosion of synchrotron-radiation-based research in the field known as molecular environmental science (MES). This research is driven largely by the need to remediate contaminated environmental materials and to understand the scientific foundations that govern contaminant transport in the environment. Synchrotron radiation is playing a crucial role in solving environmental science problems by offering x-ray-based analytical techniques for detailed molecular- and atomic-level studies of these systems. This document focuses on the scientific justification for developing a specific type of BM beamline capability at Sector 10 for XAFS and micro x-ray analysis to support the growing MES community. However, the modification of Sector 10 will meet other future needs by providing (1) an existing undulator beamline with an experimental station for bulk XAFS applications and x-ray microbeam applications (XRF, XAFS, and XRD) and (2) a BM beamline with an experimental station for large-sample XAFS spectroscopy and XRF elemental mapping on submillimeter to centimeter length scales.

Kemner, K. M.; Biosciences Division

2006-09-18T23:59:59.000Z

472

Ecosystem health at the texas coastal bend: a spatial analysis of exposure and response  

E-Print Network (OSTI)

This dissertation investigated locational risks to ecosystem health associated with proximity to industrial complexes. The study was performed at the behest of ranchers and citizens living and working down-prevailing wind from the Formosa Plastics, Inc. and ALCOA facilities located in Calhoun County, Texas. Concerns expressed were for potential genotoxicity resulting from exposure to complex chemical mixtures released by the facilities. Exposure assessment of the marine environment was performed with sediments and oysters from Lavaca Bay being analyzed. Numerous chemicals were found to be present at concentrations considered likely to result in adverse responses in exposed populations. Bayesian geostatistical analysis was performed to determine if the concentrations were affected by a spatial process. Mercury and polycyclic aromatic hydrocarbons were the most notable of the chemicals found to be present at elevated concentrations and affected by a spatial process. Evaluation of maps generated from spatial modeling revealed that proximity to ALCOA resulted in elevated risks for exposure to harmful concentrations of pollutants. Genotoxicity was measured in two sentinel species. Oysters (Crassostrea virginica) were utilized for evaluation of the marine environment and cattle (Bos taurus and Bos taurus crossbred cattle) were chosen for evaluation of the terrestrial environment. Chromosomal aberration analysis was performed on oyster hematocytes. Analysis of the results failed to demonstrate the presence of an important generalized spatial process but some specific locations close to the ALCOA plant had elevations in this measure of genotoxicity. Stress as measured by the lysosomal destabilization assay was also performed on oyster hematocytes. These results were found to be affected by a significant spatial process with the highest degree of destabilization occurring in close proximity to ALCOA. Genotoxicity in cattle was evaluated with the single cell gel electrophoresis assay and chromosomal aberration analysis. Bayesian geostatistical analyis revealed the presence of important spatial processes. DNA-protein cross-linkage was the most notable with a strong indication of increased damage down-prevailing wind from the industrial complexes. Results indicated that proximity to industrial facilities increased the risk for harmful exposures, genotoxicity, and lysosomal destabilization.

Bissett, Wesley Thurlow, Jr.

2007-12-01T23:59:59.000Z

473

Ecosystem health at the Texas coastal bend: a spatial analysis of exposure and response  

E-Print Network (OSTI)

This dissertation investigated locational risks to ecosystem health associated with proximity to industrial complexes. The study was performed at the behest of ranchers and citizens living and working down-prevailing wind from the Formosa Plastics, Inc. and ALCOA facilities located in Calhoun County, Texas. Concerns expressed were for potential genotoxicity resulting from exposure to complex chemical mixtures released by the facilities. Exposure assessment of the marine environment was performed with sediments and oysters from Lavaca Bay being analyzed. Numerous chemicals were found to be present at concentrations considered likely to result in adverse responses in exposed populations. Bayesian geostatistical analysis was performed to determine if the concentrations were affected by a spatial process. Mercury and polycyclic aromatic hydrocarbons were the most notable of the chemicals found to be present at elevated concentrations and affected by a spatial process. Evaluation of maps generated from spatial modeling revealed that proximity to ALCOA resulted in elevated risks for exposure to harmful concentrations of pollutants. Genotoxicity was measured in two sentinel species. Oysters (Crassostrea virginica) were utilized for evaluation of the marine environment and cattle (Bos taurus and Bos taurus crossbred cattle) were chosen for evaluation of the terrestrial environment. Chromosomal aberration analysis was performed on oyster hematocytes. Analysis of the results failed to demonstrate the presence of an important generalized spatial process but some specific locations close to the ALCOA plant had elevations in this measure of genotoxicity. Stress as measured by the lysosomal destabilization assay was also performed on oyster hematocytes. These results were found to be affected by a significant spatial process with the highest degree of destabilization occurring in close proximity to ALCOA. Genotoxicity in cattle was evaluated with the single cell gel electrophoresis assay and chromosomal aberration analysis. Bayesian geostatistical analyis revealed the presence of important spatial processes. DNA-protein cross-linkage was the most notable with a strong indication of increased damage down-prevailing wind from the industrial complexes. Results indicated that proximity to industrial facilities increased the risk for harmful exposures, genotoxicity, and lysosomal destabilization.

Bissett, Wesley Thurlow, Jr.

2007-12-01T23:59:59.000Z

474

Bay Controls & Ford Teaming Profile | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bay Controls & Ford Teaming Profile Bay Controls & Ford Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

475

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

DOE Green Energy (OSTI)

DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

2011-11-01T23:59:59.000Z

476

Shepherds Flat North | Open Energy Information  

Open Energy Info (EERE)

North North Jump to: navigation, search Name Shepherds Flat North Facility Shepherds Flat North Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer Caithness Energy Purchaser Southern California Edison Co Location Gilliam County OR Coordinates 45.73°, -120.056° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.73,"lon":-120.056,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

MATCH Program (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MATCH Program (North Dakota) MATCH Program (North Dakota) MATCH Program (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Loan Program The MATCH Program supports the funding needs of a borrower whose financial capacity is very strong. The borrower must have a long-term credit rating

478

'Fun with Science' travels north to Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

312science 12132012 'Fun with Science' travels north to Alaska Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov Printer-friendly Students in Noorvik, Alaska...

479

Wind Energy Permitting Standards (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

North Carolina has statewide permitting requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a half mile of each other with a collective rated...

480

Temperature Inversions in the Subarctic North Pacific  

Science Conference Proceedings (OSTI)

Hydrographic data from the World Ocean Database 2001 and Argo profiling floats were analyzed to study temperature inversions in the subarctic North Pacific Ocean. The frequency distribution of temperature inversions [F(t-inv)] at a resolution of ...

Hiromichi Ueno; Ichiro Yasuda

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "bay north bend" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

DECLINING MOUNTAIN SNOWPACK IN WESTERN NORTH AMERICA*  

Science Conference Proceedings (OSTI)

In western North America, snow provides crucial storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. Manual and telemetered measurements of spring snow-pack, ...

Philip W. Mote; Alan F. Hamlet; Martyn P. Clark; Dennis P. Lettenmaier

2005-01-01T23:59:59.000Z

482

Martinsdale Colony North | Open Energy Information  

Open Energy Info (EERE)

Martinsdale Colony North Martinsdale Colony North Jump to: navigation, search Name Martinsdale Colony North Facility Martinsdale Colony North Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.52°, -110.28° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.52,"lon":-110.28,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

North Allegheny Wind Farm | Open Energy Information  

Open Energy Info (EERE)

North Allegheny Wind Farm North Allegheny Wind Farm Jump to: navigation, search Name North Allegheny Wind Farm Facility North Allegheny Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Carolinas LLC Developer Duke Energy Carolinas LLC Energy Purchaser FirstEnergy Location Juniata Township PA Coordinates 40.39355°, -78.549095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.39355,"lon":-78.549095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

North Carolina Geological Survey | Open Energy Information  

Open Energy Info (EERE)

State North Carolina State North Carolina Name North Carolina Geological Survey Address 1612 Mail Service Center City, State Raleigh, North Carolina Zip 27699-1612 Website http://www.geology.enr.state.n Coordinates 35.67°, -78.66° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.67,"lon":-78.66,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

North Shaokatan Wind Farm | Open Energy Information  

Open Energy Info (EERE)

North Shaokatan Wind Farm North Shaokatan Wind Farm Facility North Shaokatan Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NAE/Enel North America Developer Northern Alternative Energy Energy Purchaser Xcel Energy Location Lincoln County MN Coordinates 44.393089°, -96.425042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.393089,"lon":-96.425042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Which MJO Events Affect North American Temperatures?  

Science Conference Proceedings (OSTI)

Tropical convection from the Madden–Julian Oscillation (MJO) excites and amplifies extratropical Rossby waves around the globe. This forcing is reflected in teleconnection patterns like the Pacific–North American (PNA) pattern, and it can ...

Carl J. Schreck III; Jason M. Cordeira; David Margolin

487

Categorical Exclusion Determinations: North Dakota | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.6 Date: 11222010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory November 19, 2010 CX-004507: Categorical...

488

Seasonal Shifts in the North American Monsoon  

Science Conference Proceedings (OSTI)

Analysis is performed on the spatiotemporal attributes of North American monsoon system (NAMS) rainfall in the southwestern United States. Trends in the timing and amount of monsoon rainfall for the period 1948–2004 are examined. The timing of ...

Katrina Grantz; Balaji Rajagopalan; Martyn Clark; Edith Zagona

2007-05-01T23:59:59.000Z

489

Eastern North Pacific Hurricane Season of 1996  

Science Conference Proceedings (OSTI)

The National Hurricane Center (a component of the Tropical Prediction Center) tracked nine tropical storms, five of which became hurricanes, during the 1996 eastern North Pacific hurricane season. Five tropical storms or hurricanes made landfall ...

Max Mayfield; Edward N. Rappaport

1998-12-01T23:59:59.000Z

490

Eastern North Pacific Hurricane Season of 1993  

Science Conference Proceedings (OSTI)

The National Hurricane Center tracked 14 tropical storms, 10 of which became hurricanes, during the 1993 eastern North Pacific hurricane season. Four named tropical cyclones and one tropical depression made landfall in Mexico. A general overview ...

Lixion A. Avila; Max Mayfield

1995-03-01T23:59:59.000Z

491

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

Task 222.01.01 Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOENETL-20071279 Full Report August 2007 Disclaimer This report was prepared as an account...

492

Eastern North Pacific Hurricane Season of 1997  

Science Conference Proceedings (OSTI)

The hurricane season of the eastern North Pacific basin is summarized and individual tropical cyclones are described. The number of tropical cyclones was near normal. Hurricane Pauline’s rainfall flooding killed more than 200 people in the ...

Miles B. Lawrence

1999-10-01T23:59:59.000Z

493

Eastern North Pacific Hurricane Season of 2009  

Science Conference Proceedings (OSTI)

The 2009 eastern North Pacific hurricane season had near normal activity, with a total of 17 named storms, of which seven became hurricanes and four became major hurricanes. One hurricane and one tropical storm made landfall in Mexico, directly ...

Todd B. Kimberlain; Michael J. Brennan

2011-06-01T23:59:59.000Z

494

Western North Pacific Monsoon Depression Formation  

Science Conference Proceedings (OSTI)

Relatively few studies have been carried out as to the conditions leading to the formation of monsoon depressions in the western North Pacific. Two monsoon depression formations during July 2007 were analyzed using ECMWF analyses and satellite ...

Jodi C. Beattie; Russell L. Elsberry

2012-12-01T23:59:59.000Z

495

Eastern North Pacific Hurricane Season of 2011  

Science Conference Proceedings (OSTI)

Overall activity during the 2011 eastern North Pacific hurricane season was near average. Of the 11 tropical storms that formed, 10 became hurricanes and 6 reached major hurricane strength (category 3 or stronger on the Saffir–Simpson hurricane ...

Eric S. Blake; Todd B. Kimberlain

2013-05-01T23:59:59.000Z

496

Eastern North Pacific Hurricane Season of 2006  

Science Conference Proceedings (OSTI)

The hurricane season of 2006 in the eastern North Pacific basin is summarized, and the individual tropical cyclones are described. Also, the official track and intensity forecasts of these cyclones are verified and evaluated. The 2006 eastern ...

Richard J. Pasch; Eric S. Blake; Lixion A. Avila; John L. Beven; Daniel P. Brown; James L. Franklin; Richard D. Knabb; Michelle M. Mainelli; Jamie R. Rhome; Stacy R. Stewart

2009-01-01T23:59:59.000Z

497

Eastern North Pacific Hurricane Season of 2010  

Science Conference Proceedings (OSTI)

The 2010 eastern North Pacific hurricane season was one of the least active seasons on record. Only seven named storms developed, which is the lowest number observed at least since routine satellite coverage of that basin began in 1966. ...

Stacy R. Stewart; John P. Cangialosi

2012-09-01T23:59:59.000Z

498

Is the North Atlantic in Sverdrup Balance?  

Science Conference Proceedings (OSTI)

Evidence for the widespread assumption that Sverdrup balance describes the dynamics of the North Atlantic subtropical gyre is reviewed critically. If the balance were to hold up to the edge of the Gulf Stream system, then there is a serious ...

Carl Wunsch; Dean Roemmich

1985-12-01T23:59:59.000Z

499

Specification of Wintertime North American Surface Temperature  

Science Conference Proceedings (OSTI)

The extent to which wintertime North American surface temperature can be specified based on simultaneous sea surface temperature (SST) is quantified for the period 1982–98. The term specification indicates that the predictor and predictands are ...

Timothy DelSole; J. Shukla

2006-06-01T23:59:59.000Z