National Library of Energy BETA

Sample records for bay area ethanol

  1. Tampa Bay Area Ethanol Consortium | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  2. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  3. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  4. Bay Area | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Bay Area San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear... NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of

  5. Pacific Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Pacific Ethanol Address: 400 Capitol Mall, Suite 2060 Place: Sacramento, California Zip: 95814 Region: Bay Area Sector: Biofuels Product: Ethanol production Website:...

  6. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  7. Near Fish Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  8. SCHEDULE: Bay Area Maker Faire 2016

    Broader source: Energy.gov [DOE]

    Find out where and when to meet some of our top innovators and explore the technologies on display from the Department of Energy at the 11th annual Bay Area Maker Faire.

  9. San Francisco Bay Area Aerial Radiation Assessment Survey | National...

    National Nuclear Security Administration (NNSA)

    Visit www.nnsa.energy.gov for more information. Related Topics Bay Area California ... business leaders dedicate Livermore Solar Center Sandia's California site invites ...

  10. 9 Cool Technologies at the Bay Area Maker Faire

    Broader source: Energy.gov [DOE]

    Get a glimpse of some of the technologies from our National Labs in the Make | ENERGY Pavilion at the Bay Area Maker Faire. You can look AND touch.

  11. San Francisco Bay Area Aerial Radiation Assessment Survey | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) San Francisco Bay Area Aerial Radiation Assessment Survey January 27, 2016 (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear Security Administration (NNSA) announced that the radiation assessment will cover

  12. Energy @ Bay Area Maker Faire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy @ Bay Area Maker Faire Energy @ Bay Area Maker Faire It's dubbed the "Greatest Show (and Tell) on Earth." Of course we'll be there! From satellites to a 3D-printed Jeep to remote controlled robots to carbon capture microbeads, we'll be displaying some of the coolest technologies from across the Energy Department. We also want to meet innovators like you! Representatives from the Department of Energy's National Labs, the Office of Energy Efficiency and Renewable Energy (EERE),

  13. Bay Area national labs team to tackle long-standing automotive...

    National Nuclear Security Administration (NNSA)

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge ... Light Source facility, is leading the Hydrogen Materials - Advanced Research Consortium ...

  14. Make Energy at the Bay Area Maker Faire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Make Energy at the Bay Area Maker Faire Make Energy at the Bay Area Maker Faire June 20, 2016 - 12:10pm Addthis Make Energy at the Bay Area Maker Faire Video from the Department of Energy, published June 17, 2016. This past May, nine Department of Energy (DOE) national labs and three DOE program offices hosted the first Make|ENERGY Pavilion at the Bay Area Maker Faire in San Mateo, California. It featured a number of smart and exciting hands-on displays for kids and adults to explore, and

  15. Make Energy at The Bay Area Maker Faire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Make Energy at The Bay Area Maker Faire Make Energy at The Bay Area Maker Faire Addthis Representatives from the Department of Energy's National Labs, the Office of Energy Efficiency and Renewable Energy (EERE), the Advanced Research Projects Agency (ARPA-E) and the Office of Technology Transitions (OTT) were on hand at the first-ever Make | ENERGY Pavilion at the Bay Area Maker Faire May 20-22, 2016, at the San Mateo County Event Center. Watch this video to learn more

  16. Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Union Address, Commitment to Clean Energy | Department of Energy Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy January 31, 2012 - 7:38pm Addthis Washington, D.C. - As part of the Energy Department's ongoing efforts to highlight President Obama's State of the Union address and discuss the Obama Administration's commitment to American energy

  17. 9 Cool Technologies at the Bay Area Maker Faire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Cool Technologies at the Bay Area Maker Faire 9 Cool Technologies at the Bay Area Maker Faire May 12, 2016 - 10:14am Addthis PARTS FROM THE WORLD’S LARGEST LASER 1 of 9 PARTS FROM THE WORLD'S LARGEST LASER You're looking at the inside of the world's largest and most powerful laser. It focuses the intense energy of 192 giant laser beams on a BB-sized target in experiments to create nuclear fusion. Examples of the optics that focus the lasers and targets at which they're aimed will be on

  18. Bay-Area National Labs Team to Tackle Long-Standing Automotive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen-Storage Challenge Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering

  19. Bay Area national labs team to tackle long-standing automotive hydrogen

    National Nuclear Security Administration (NNSA)

    storage challenge | National Nuclear Security Administration | (NNSA) Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Thursday, October 15, 2015 - 1:34pm Sandia National Laboratories chemist Mark Allendorf Sandia National Laboratories chemist Mark Allendorf, shown here at Berkeley Lab's Advanced Light Source facility, is leading the Hydrogen Materials - Advanced Research Consortium (HyMARC) to advance solid-state materials for onboard hydrogen

  20. California South/West Bay Area Regional Middle School Science Bowl

    Office of Science (SC) Website

    California South/West Bay Area Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals California

  1. Evaluation of CALPUFF nitrogen deposition modeling in the Chesapeake Bay Watershed Area using NADP data

    SciTech Connect (OSTI)

    Garrison, M.; Mayes, P.; Sherwell, J.

    1998-12-31

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. This paper discusses the results of an evaluation of predicted nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland, Wye and White Rock. Underprediction of wet deposition rates is investigated through the use of sensitivity and diagnostic evaluations of model performance. A suggested change to the calculation of NO{sub x} transformation rates involving an alternative specification of minimum NO{sub x} concentrations was made to CALPUFF and the performance evaluation was re-done. Results of the new evaluation show significantly improved model performance, and therefore the modification is tentatively proposed for use in further applications of CALPUFF to the assessment of nitrogen deposition in the Chesapeake Bay watershed.

  2. A fuel-based motor vehicle emission inventory for the San Francisco Bay area

    SciTech Connect (OSTI)

    Black, D.R.; Singer, B.C.; Harley, R.A.; Martien, P.T.; Fanai, A.K.

    1997-12-31

    Traditionally, regional motor vehicle emission inventories (MVEI) have been estimated by combining travel demand model and emission factor model predictions. The accuracy of traditional MVEIs is frequently challenged, and development of independent methods for estimating vehicle emissions has been identified as a high priority for air quality research. In this study, an alternative fuel-based MVEI was developed for the San Francisco Bay Area using data from 1990--1992. To estimate CO emissions from motor vehicles in the Bay Area, estimates of gasoline sales were combined with infrared remote sensing measurements of CO and CO{sub 2} exhaust concentrations from over 10,000 light-duty vehicles in summer 1991. Once absolute estimates of CO emissions have been computed, it is possible to use ambient NO{sub x}/CO and NMOC/CO ratios from high traffic areas to estimate emissions for NO{sub x} and NMOC (excluding some resting loss and diurnal evaporative emissions). Ambient ratios were generated from special-study measurements of NMOC and CO in 1990 and 1992, and from routine sampling of NO{sub x} and CO in 1991. All pollutant concentrations were measured on summer mornings at Bay Area monitoring sites in areas with high levels of vehicle traffic and no other significant sources nearby. Stabilized CO emissions calculated by the fuel-based method for cars and light-duty trucks were 1720{+-}420 tons/day. This value is close to California`s MVEI 7G model estimates. Total on-road vehicle emissions of CO in the Bay Area were estimated to be 2900{+-}800 tons/day. Emissions of NMOC were estimated to be 570{+-}200 tons/day, which is 1.6{+-}0.6 times the value predicted by MVEI 7G. In the present study, emissions of NO{sub x} from on-road vehicles were estimated to be 250{+-}90 tons/day, which is 0.6{+-}0.2 times the value predicted by MVEI 7G.

  3. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2011-08-01

    This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

  4. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew

    2015-07-02

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.

  5. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-05-01

    This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

  6. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2012-07-01

    This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

  7. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Qualitymore » Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.« less

  8. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    SciTech Connect (OSTI)

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Quality Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.

  9. Confirmatory Survey of the Fuel Oil Tank Area - Humboldt Bay Power Plant, Eureka, California

    SciTech Connect (OSTI)

    ADAMS, WADE C

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  10. Measuring the effectiveness of the episodic control program Spare the Air in the San Francisco Bay Area

    SciTech Connect (OSTI)

    Lee, T.G.; Hinman, T.T.

    1997-12-31

    Episodic control programs that ask the public to voluntarily reduce activities that pollute on days when ozone excesses are predicted are now operating in many parts of the country. The activities include driving, using consumer products that contain reactive organic compounds and lawn and garden equipment with small gasoline engines like lawn mowers and leaf blowers. The effectiveness of these programs as public education tools, their impact in changing behavior and their potential as control tools needs to be assessed. In the nine-county San Francisco Bay Area the Spare the Air program has been operating for five years. The program has a strong employer component as well as a program directed at the general public. During the 1996 ozone season, the Bay Area AQMD, in cooperation with the business community, used several methods to assess awareness and behavior change on Spare the Air days. This included telephone public opinion surveys, a pilot program that offered free transit for employees at 8 companies with measurement feedback from the companies, a telecommuting web page that measured participation, a special carpool matching program and a broad based Capture the Credit initiative by business. This paper describes these initiatives, their results and the next steps anticipated for the 1997 program.

  11. Establishment of the United States Navy Mine Warfare Center of Excellence in the Corpus Christi Bay Area, Texas

    SciTech Connect (OSTI)

    Kosclski, J.L.; Boyer, R.; Sloger, W.

    1997-08-01

    The proposed establishment of the US Navy Mine Warfare Center of Excellence (MWCE) in the Corpus Christi Bay Area, Texas, involved the collocation of the Navy`s Mine Warfare and Mine Counter Measures assets in proximity to each other at Naval Station (NAVSTA) Ingleside and Naval Air Station (NAS) Corpus Christi, Texas. Collocation of these Navy forces would provide significant advantages in meeting mission and operational requirements. This action would improve the operational training and readiness of the forces. In addition to new construction or modifications at NAVSTA Ingleside, NAS Corpus Christi, and off-base; the establishment of offshore training and operating areas was required. When the project was first proposed in 1993, considerable concern was expressed by environmental interests, shrimpers, and state and federal resource agencies regarding the impact of the proposed training activities within Gulf waters. The Navy and Turner Collie and Braden, Inc., under contract to the Navy, conducted several technical studies and extensive coordination with concerned interests during the environmental impact statement process to identify and document the potential intensity, magnitude, and duration of impact from each proposed training activity.

  12. Daya Bay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bay Daya Bay Basics The basics of Daya Bay computing at PDSF. Read More » Data Management All Daya Bay raw data is transferred to PDSF. Read More » File Systems Daya Bay has space on 2 elizas: 6TB on /eliza7 and 35TB on /eliza16. Read More » Running on Carver The Daya Bay software is installed on PDSF on /common so is therefore unavailable on Carver. At this point there has been no effort to port the code to /project for use on... Read More » Last edited: 2016-04-29 11:35:01

  13. Bay Area Industrial Partners

    Office of Energy Efficiency and Renewable Energy (EERE)

    Michael Bauer, President, Chief Product Officer and Founder, Sentient Energy; Lloyd Hackel, Vice President for Advanced Technologies, Metal Improvement Corporation; and Charlie Hotz, Vice President of Research and Development, Nanosys, Inc. each presented on partnership with the National Labs.

  14. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  15. EA-1924: Consolidation and Relocation of Lawrence Berkeley National Laboratory (LBNL) OffSite Research Programs to a New Off-Site Location that also Allows for Future Growth, San Francisco East Bay Area, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to consolidate and relocate LBNL research programs that are currently in leased off-site buildings at various locations around the San Francisco East Bay Area in California, to a new single location that also provides room for future growth of LBNL research programs.

  16. Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ohio Ethanol LLC GO Ethanol Jump to: navigation, search Name: Greater Ohio Ethanol, LLC (GO Ethanol) Place: Lima, Ohio Zip: OH 45804 Product: GO Ethanol is a pure play ethanol...

  17. Experiences from Introduction of Ethanol Buses and Ethanol Fuel...

    Open Energy Info (EERE)

    of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency...

  18. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  19. Bay Area Maker Faire 2016

    Broader source: Energy.gov [DOE]

    Think. Make. Innovate. That’s what the U.S. Department of Energy (DOE) and its national laboratories do every day. By doing so, they help change the world!

  20. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle

  1. Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Add description and move this content to a more appropriate page name (like "List of ethanol incentives") List of Ethanol Incentives E85 Standards Retrieved from "http:...

  2. Pacific Ethanol, Inc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc. Corporate HQ: Sacramento, CA Proposed Facility Location: Boardman, OR Description: The team will design and build a demonstration cellulosic ethanol plant in ...

  3. BlueFire Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. Corporate HQ: Irvine, California Proposed Facility Location: Mecca, ... or Southern California Materials Recovery Facilities to ethanol and other products. ...

  4. Cellulosic Ethanol Cost Target

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary Talk May 21, 2013 Cellulosic Ethanol Cost Target 2 | Biomass Program ... "Our goal is to make cellulosic ethanol practical and cost competitive within 6 ...

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  6. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 KB) More Documents & Publications Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc

  7. Hooper Bay Efficiency Feasibility Study

    Office of Environmental Management (EM)

    (OUR PEOPLE) Hooper Bay Energy Efficiency Feasibility ... The name Hooper Bay came into common usage after a post ... BAY IS MARITIME. THE MEAN ANNUAL SNOWFALL IS 75 INCHES ...

  8. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  9. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 30,319 28,678 30,812 28,059 30,228 30,258 1981-2016 East Coast (PADD 1) 641 698 804 725 734

  10. Southridge Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Southridge Ethanol Place: Dallas, Texas Zip: 75219 Sector: Renewable Energy Product: Southridge Ethanol is a renewable energy company...

  11. Diversified Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Diversified Ethanol Place: Northbrook, Illinois Zip: 60062 Product: A division of OTCBB-traded ONYI that is building an ethanol plant in...

  12. Ace Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Ace Ethanol Place: Stanley, Wisconsin Zip: 54768 Product: Producer of corn-based ethanol in Wisconsin. Coordinates: 44.958844,...

  13. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  14. Cellulosic ethanol | Open Energy Information

    Open Energy Info (EERE)

    Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural...

  15. Enabling High Efficiency Ethanol Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Ethanol Engines (VSSP 12) Presented by Robert Wagner Oak Ridge National ... advantage of the unique properties of ethanol and ethanol-gasoline blends.. 3 Managed ...

  16. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF ...

  17. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 ...

  18. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 ...

  19. Byone Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Byone Ethanol Jump to: navigation, search Name: Byone Ethanol Place: Brazil Product: Ethanol Producer References: Byone Ethanol1 This article is a stub. You can help OpenEI by...

  20. Highwater Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Highwater Ethanol Jump to: navigation, search Name: Highwater Ethanol Place: Lamberton, Minnesota Zip: MN 56152 Product: Highwater Ethanol LLC is the SPV behind the 195mLpa ethanol...

  1. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  2. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  3. Ethanol annual report FY 1990

    SciTech Connect (OSTI)

    Texeira, R.H.; Goodman, B.J.

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  4. Sioux River Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol is...

  5. Cardinal Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Cardinal Ethanol LLC Place: Winchester, Indiana Zip: 47394 Product: Cardinal Ethanol is in the process of building an ethanol plant in...

  6. Phelps County Ethanol | Open Energy Information

    Open Energy Info (EERE)

    County Ethanol Jump to: navigation, search Name: Phelps County Ethanol Place: Nebraska Product: Focused on ethanol production. References: Phelps County Ethanol1 This article is...

  7. Fermentation method producing ethanol

    DOE Patents [OSTI]

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  8. Mississippi Ethanol Gasification Project

    SciTech Connect (OSTI)

    2006-08-01

    This is a Congressionally-mandated effort to develop and demonstrate technologies for the conversion of biomass to ethanol in the State of Mississippi.

  9. Bushmills Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Bushmills Ethanol Jump to: navigation, search Name: Bushmills Ethanol Place: Atwater, Minnesota Zip: 56209 Product: A group of local agricultural producers and investors working to...

  10. Northstar Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Northstar Ethanol Jump to: navigation, search Name: Northstar Ethanol Place: Lake Crystal, Minnesota Zip: 56055 Product: Corn-base bioethanol producer in Minnesotta References:...

  11. Sunnyside Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Sunnyside Ethanol Place: Pittsburgh, Pennsylvania Zip: PA 15237 Product: Pennsylvania based company created for the specific purpose of...

  12. Ethanol India | Open Energy Information

    Open Energy Info (EERE)

    India Jump to: navigation, search Name: Ethanol India Place: Kolhapur, Maharashtra, India Sector: Biofuels Product: Maharashtra-based biofuels consultancy firm. References: Ethanol...

  13. Bioenergy Impacts … Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ethanol biorefinery. Farmers earned additional revenue from selling their leftover corn husks, stalks, and leaves to the POET-DSM biorefinery for production of cellulosic ethanol-a ...

  14. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54 KB) More Documents & Publications Major DOE Biofuels Project Locations Pacific Ethanol, Inc Pacific Ethanol, Inc

  15. Chesapeake Bay Test Site | Open Energy Information

    Open Energy Info (EERE)

    Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status...

  16. Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Basics Ethanol is a widely used, domesti- cally produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Fuel ethanol contains the same chemical compound as beverage alcohol, but it is denatured with a small amount of gasoline or other chemicals during the production process, making it unsafe for human consumption. Ethanol's primary market drivers are the Federal Renewable Fuel Standard requiring its use and

  17. Four Cellulosic Ethanol Breakthroughs

    Broader source: Energy.gov [DOE]

    Today, the nation's first ever commercial-scale cellulosic ethanol biorefinery to use corn waste as a feedstock officially opened for business in Emmetsburg, Iowa. POET-DSM’s Project LIBERTY is the second of two Energy Department-funded cellulosic ethanol biorefineries to come on line within the past year. Learn more about how the Energy Department is helping the nation reduce its dependence on foreign oil and move the clean energy economy forward.

  18. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  19. Module bay with directed flow

    DOE Patents [OSTI]

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  20. Millennium Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900 South Dakotan...

  1. East Coast Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: East Coast Ethanol Place: Columbia, South Carolina Zip: 29202 Product: East Coast Ethanol was formed in August 2007 through a merger...

  2. Marysville Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Marysville Ethanol LLC Jump to: navigation, search Name: Marysville Ethanol LLC Place: Marysville, Michigan Zip: 48040 Product: Developing a 50m gallon ethanol plant in Marysville,...

  3. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  4. Central Indiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in Marion,...

  5. SRSL Ethanol Limited | Open Energy Information

    Open Energy Info (EERE)

    SRSL Ethanol Limited Jump to: navigation, search Name: SRSL Ethanol Limited Place: Mumbai, Maharashtra, India Product: Mumbai-based ethanol subsidiary of Shree Renuka Sugars...

  6. Kansas Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Kansas Ethanol LLC Place: Lyons, Kansas Zip: 67554 Product: Constructing a 55m gallon ethanol plant in Rice County, Kansas...

  7. Chief Ethanol Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuels Inc Jump to: navigation, search Name: Chief Ethanol Fuels Inc Place: Hastings, Nebraska Product: Ethanol producer and supplier References: Chief Ethanol Fuels Inc1 This...

  8. Heartland Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Heartland Ethanol LLC Place: Knoxville, Tennessee Zip: 37929 Product: Knoxville, TN based ethanol developer. Coordinates: 35.960495,...

  9. Standard Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Standard Ethanol LLC Place: Nebraska Product: Nebraska based ethanol producer that operates two plants References: Standard Ethanol LLC1 This article is a stub. You can help...

  10. Ethanol Capital Funding | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Capital Funding Jump to: navigation, search Name: Ethanol Capital Funding Place: Atlanta, Georgia Zip: 30328 Product: Provides funding for ethanol and biodiesel plants....

  11. Michigan Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Michigan Ethanol LLC Place: Caro, Michigan Zip: 48723-8804 Product: Ethanol productor in Caro, Michigan. Coordinates: 43.488705,...

  12. Siouxland Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Siouxland Ethanol LLC Place: Jackson, Nebraska Zip: 68743 Product: Startup hoping to build a USD 80m ethanol manufacturing plant near...

  13. Platinum Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  14. Nedak Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Nedak Ethanol LLC Jump to: navigation, search Name: Nedak Ethanol LLC Place: Atkinson, Nebraska Zip: 68713 Product: NEDAK Ethanol, LLC is a Nebraska limited liability company,...

  15. North Country Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  16. South Louisiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  17. Show Me Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Show Me Ethanol LLC Jump to: navigation, search Name: Show Me Ethanol, LLC Place: Carrollton, Missouri Zip: 64633 Product: Developing an ethanol project in Carrollton, Missouri....

  18. Western Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Company LLC Jump to: navigation, search Name: Western Ethanol Company LLC Place: Placentia, California Zip: 92871 Product: California-based fuel ethanol distribution and...

  19. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc Pacific Ethanol, Inc Design and build a demonstration cellulosic ethanol plant in Boardman. pacificethanolfactsheet040308.pdf (10.79 KB) More Documents & ...

  20. Vehicle Technologies Office: Intermediate Ethanol Blends Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intermediate Ethanol Blends Research and Testing Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing Ethanol can be combined with gasoline in blends ...

  1. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect (OSTI)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small moleculesilica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (?hads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 3.1 kJ/mol water) and ethanol (-78.0 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing watersilica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  2. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect (OSTI)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  3. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  4. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    Report identifies and documents plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017 as a guide for setting government policy and targeting government investment to areas with greatest potential impact.

  5. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  6. Ethanol 2000 | Open Energy Information

    Open Energy Info (EERE)

    Ethanol 2000 Place: Bingham lake, Minnesota Zip: 56118 Product: Farmer-owned bioethanol producer References: Ethanol 20001 This article is a stub. You can help OpenEI by...

  7. Orion Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Orion Ethanol Place: Pratt, Kansas Zip: 67124 Product: A Kansas-based ethanol producer. Coordinates: 38.209925, -81.383804 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Ozark Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ozark Ethanol Place: Missouri Zip: 64762 Product: Missouri-based bioethanol producer planning to develop a 204m-litre per year ethanol plant in Vernon County. References: Ozark...

  9. Bristol Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Well Name: Location: Depth: Initial Flow Rate: "b" is not declared as a valid unit of measurement for this property. The given value was not understood. Flow Test Comment:...

  10. Alternative Fuels Data Center: Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15

  11. Ethanol Myths Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  12. Pacific Ethanol, Inc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verenium Biofuels Corporation Corporate HQ: Cambridge, Massachusetts Proposed Facility Location: Jennings, Louisiana Description: Operation and maintenance of a demonstration-scale facility in Jennings, Louisiana with some capital additions. CEO or Equivalent: Carlos A. Riva, President, Chief Executive Officer and Director Participants: Only Verenium Biofuels Corporation Production: * Capacity of 1.5 million gallons per year of cellulosic ethanol biofuel Technology and Feedstocks: *

  13. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called “dedicated bioenergy crops” including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy

  14. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  15. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE

  16. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000 - 10,000 MMCF 10,000 - 100,000 MMCF > 100,000 MMCF

  17. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  18. National Ethanol Conference

    Broader source: Energy.gov [DOE]

    The National Ethanol Conference was held Feb. 15—17 in New Orleans, Louisiana. Bioenergy Technologies Office Technology Manager Alicia Lindauer was in attendance to help communicate the goals of the Energy Department’s Co-Optimization of Fuels & Engines (Co-Optima) initiative. She participated in a panel titled "A Conversation About the Future of U.S. Biofuels Policy," where she discussed the environmental and economic benefits of the initiative.

  19. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle

  20. Alternative Fuels Data Center: Ethanol Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find

  1. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect (OSTI)

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  2. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    Open Energy Info (EERE)

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  3. Bay Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  4. Bay Solar Power Design | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Design Jump to: navigation, search Name: Bay Solar Power Design Place: California Product: US-based PV system installer. References: Bay Solar Power Design1 This...

  5. Northern Lights Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Lights Ethanol LLC Jump to: navigation, search Name: Northern Lights Ethanol LLC Place: Big Stone City, South Dakota Zip: 57216 Product: 75mmgy (283.9m litresy) ethanol producer....

  6. Prairie Creek Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Prairie Creek Ethanol LLC Place: Goldfield, Iowa Zip: 50542 Product: Prairie Creek Ethanol, LLC had planned to build a 55m gallon...

  7. Tharaldson Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tharaldson Ethanol LLC Jump to: navigation, search Name: Tharaldson Ethanol LLC Place: Casselton, North Dakota Zip: 58012 Product: Owner of a USD 200m 120m-gallon ethanol plant in...

  8. United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    United Ethanol LLC Place: Wisconsin Product: Developed a 43m gallon ethanol plant in Milton, Wisconsin. References: United Ethanol LLC1 This article is a stub. You can help...

  9. Horizon Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Horizon Ethanol LLC Place: Jewell, Iowa Zip: 50130 Product: 60mmgy (227.1m litrey) ethanol producers in Jewell, Iowa. Coordinates:...

  10. First United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: First United Ethanol LLC Place: Camilla, Georgia Zip: 31730 Product: First United Ethanol LLC (FUEL) was formed to construct a 100 MGY...

  11. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  12. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  13. Alternative Fuels Data Center: Ethanol Feedstocks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section...

  14. Alternative Fuels Data Center: Ethanol Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section...

  15. Thermophilic microbes in ethanol production

    SciTech Connect (OSTI)

    Slapack, G.E.; Russell, I.; Stewart, G.G.

    1987-01-01

    General and specific properties of thermophilic ethanol-producing bacteria are reviewed and their relative merits in ethanol production assessed. The studies examine the use of bacteria in mono- and co-culture fermentations for ethanol production from cellulosics; in particular, the cellulase system of Clostridium thermocellum is considered. Thermotolerant yeasts and physiological factors influencing their growth and fermentation at high temperatures are discussed. Emphasis is placed on multidisciplinary approaches to develop economical processes for ethanol production at high temperatures. Relevant topics considered include: adaptation, nutrition, heat shock, ethanol tolerance, metabolic control, genetic improvement, and fermentation/process design. General aspects of thermophily for both bacteria and yeasts (definitions, ecological aspects, merits and limitations, other industrial uses, thermostability of cellular components, and consequences of thermophilic fermentation) are discussed and the volume references over 1100 relevant articles.

  16. Center Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Center Ethanol Company LLC Place: Illinois Product: Illinois based company building a 54m gallon ethanol plant in Sauget, IL. References:...

  17. US Ethanol Vehicle Coalition | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  18. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  19. Ethanol Capital Management | Open Energy Information

    Open Energy Info (EERE)

    Management Jump to: navigation, search Name: Ethanol Capital Management Place: Tucson, Arizona Zip: 85711 Product: Manages funds investing in Ethanol plants in the US Coordinates:...

  20. Blue Flint Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Flint Ethanol Jump to: navigation, search Name: Blue Flint Ethanol Place: Underwood, North Dakota Zip: ND 58576 Product: Joint Venture bentween Great River Energy and Headwaters...

  1. Prairie Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Prairie Ethanol LLC Place: Loomis, South Dakota Product: Farmer owned bioethanol project development and managment team. Coordinates:...

  2. Great Plains Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Great Plains Ethanol Place: Chancellor, South Dakota Zip: 57015 Product: Limited liability company owned by its 500 members which owns and...

  3. Chief Ethanol Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: Chief Ethanol Fuels Place: Hastings, NE Website: www.chiefethanolfuels.com References: Chief Ethanol Fuels1 Information About Partnership...

  4. Evergreen Securities formerly Ethanol Investments | Open Energy...

    Open Energy Info (EERE)

    Securities formerly Ethanol Investments Jump to: navigation, search Name: Evergreen Securities (formerly Ethanol Investments) Place: London, England, United Kingdom Zip: EC2V 5DE...

  5. Missouri Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Missouri Ethanol LLC Place: Laddonia, Missouri Product: 45mmgy (170.3m litresy) ethanol producer. Coordinates: 39.24073, -91.645599 Show Map Loading map......

  6. BlueFire Ethanol | Open Energy Information

    Open Energy Info (EERE)

    BlueFire Ethanol Jump to: navigation, search Name: BlueFire Ethanol Place: Irvine, California Zip: 92618 Sector: Hydro Product: US biofuel producer that utilises a patented...

  7. Badger State Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    State Ethanol LLC Jump to: navigation, search Name: Badger State Ethanol LLC Place: Monroe, Wisconsin Zip: 53566 Product: Dry-mill bioethanol producer References: Badger State...

  8. Iowa Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Iowa Ethanol LLC Place: Hanlontown, Iowa Zip: 50451 Product: Corn-base bioethanol producer in Iowa Coordinates: 43.28456,...

  9. James Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    James Valley Ethanol LLC Place: Gronton, South Dakota Zip: 57445 Product: Farmers owned cooperative that built and operates an ethanol production facility. Coordinates: 29.72369,...

  10. Algodyne Ethanol Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Algodyne Ethanol Energy Inc Jump to: navigation, search Name: Algodyne Ethanol Energy Inc Place: Las Vegas, Nevada Zip: 89145 Sector: Biofuels Product: Holds proprietary...

  11. Tall Corn Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  12. Frontier Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Frontier Ethanol LLC Place: Gowrie, Iowa Product: Owner and operator of a bioethanol plant near Gowrie, Iowa. Coordinates: 42.28227,...

  13. Ethanol Management Company | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Management Company Place: Colorado Product: Biofuel blender located in Denver, Colorado. References: Ethanol Management Company1 This article is a stub. You can help...

  14. Ethanol Grain Processors LLC | Open Energy Information

    Open Energy Info (EERE)

    Processors LLC Jump to: navigation, search Name: Ethanol Grain Processors, LLC Place: Obion, Tennessee Zip: TN 38240 Product: Tennessee-based ethanol producer. Coordinates:...

  15. Kaapa Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Kaapa Ethanol LLC Jump to: navigation, search Name: Kaapa Ethanol LLC Place: Minden, Nebraska Zip: 68959 Product: Bioethanol producer using corn as feedstock Coordinates:...

  16. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    Gulf Ethanol Corp Jump to: navigation, search Name: Gulf Ethanol Corp Place: Houston, Texas Zip: 77055 Sector: Biomass Product: Focused on developing biomass preprocessing...

  17. Didion Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Didion Ethanol LLC Jump to: navigation, search Name: Didion Ethanol LLC Place: Cambria, Wisconsin Zip: 53923 Product: Also Didion Milling LLC, Grand River Distribution LLC....

  18. Atlantic Ethanol Capital | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Capital Jump to: navigation, search Name: Atlantic Ethanol Capital Place: Washington, Washington, DC Product: Biofuel Investor in Caribbean and Central American region....

  19. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  20. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    02 KB) More Documents & Publications Pacific Ethanol, Inc Pacific Ethanol, Inc RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC)

  1. Ethanol production in non-recombinant hosts

    DOE Patents [OSTI]

    Kim, Youngnyun; Shanmugam, Keelnatham; Ingram, Lonnie O.

    2013-06-18

    Non-recombinant bacteria that produce ethanol as the primary fermentation product, associated nucleic acids and polypeptides, methods for producing ethanol using the bacteria, and kits are disclosed.

  2. Innovative Breakthrough Demonstrated for Biological Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Breakthrough Demonstrated for Biological Ethanol Production Innovative Breakthrough Demonstrated for Biological Ethanol Production June 30, 2015 - 11:43am Addthis ...

  3. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media ...

  4. BlueFire Ethanol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol BlueFire Ethanol Construct and operate a facility that converts green waste and lignocellulosic fractions diverted from landfills or Southern California Materials ...

  5. Ethanol Plant Production of Fuel Ethanol

    Gasoline and Diesel Fuel Update (EIA)

    Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History U.S. 998 1,004 1,018 1,029 1,028 1,023 2010-2016 PADD 1 W W W W W W 2010-2016 PADD 2 911 916 931 947 939 934 2010-2016 PADD 3 W W W W W W 2010-2016 PADD 4 W W W W W W 2010-2016 PADD 5 W W W W W W

  6. Ethanol Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Ventures Place: London, England, United Kingdom Zip: W1D 3SQ Product: Company aims to deliver at least 378 million litres a year of bioethanol from two Facilities in...

  7. New Guinea schedules ethanol plants

    SciTech Connect (OSTI)

    Not Available

    1981-01-28

    It is reported that the Government of Papua New Guinea plans to build nine ethanol plants based on cassava to meet half the nation's transport fuel needs by 1990.

  8. Chedabucto Bay 1992 shoreline oil conditions survey: Long-term fate of bunker C oil from the arrow spill in Chedabucto Bay, Nova Scotia

    SciTech Connect (OSTI)

    Owens, E.H.; McGuire, B.E.; Humphrey, B.

    1994-03-01

    The report presents a description of the activities related to and a summary of the information generated by a field survey carried out in Chedabucto Bay, Nova Scotia, for Environment Canada from June to September 1992. The objective of the survey was to locate and document any residual oil on the shores of Chedabucto Bay. The grounding of the tanker Arrow in February 1970 resulted in the release of more than 11 million liters of Bunker C fuel oil. This oil was stranded over an estimated 305 km of shoreline in the Chedabucto Bay area.

  9. EffectsIntermediateEthanolBlends.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EffectsIntermediateEthanolBlends.pdf EffectsIntermediateEthanolBlends.pdf EffectsIntermediateEthanolBlends.pdf EffectsIntermediateEthanolBlends.pdf (1.43 MB) More Documents & Publications Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009 Mid-Level Ethanol Blends Test Program Mid-Level Ethanol Blends

  10. EA-389 Greay Bay Energy VI, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order authorizing Great Bay Energy to export electric energy to Canada. EA-389 Great Bay ... Great Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada

  11. California Ethanol Power CE P | Open Energy Information

    Open Energy Info (EERE)

    Power CE P Jump to: navigation, search Name: California Ethanol & Power (CE+P) Place: Florida Product: US ethanol project developer. References: California Ethanol & Power...

  12. Conesul Sugar and Ethanol Plant | Open Energy Information

    Open Energy Info (EERE)

    Conesul Sugar and Ethanol Plant Jump to: navigation, search Name: Conesul Sugar and Ethanol Plant Place: Brazil Product: Brazilian ethanol producer References: Conesul Sugar and...

  13. Agri Ethanol Products LLC AEPNC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Products LLC AEPNC Jump to: navigation, search Name: Agri-Ethanol Products LLC (AEPNC) Place: Raleigh, North Carolina Zip: 27615 Product: Ethanol producer and project...

  14. Grupo Maris Capital ethanol refinery | Open Energy Information

    Open Energy Info (EERE)

    Maris Capital ethanol refinery Jump to: navigation, search Name: Grupo Maris (Capital ethanol refinery) Place: Nuporanga, Brazil Product: 32,000 m3 ethanol refinery owner...

  15. Midwest Ethanol Producers Inc MEPI | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Producers Inc MEPI Jump to: navigation, search Name: Midwest Ethanol Producers Inc (MEPI) Place: O'Neill, Nebraska Zip: 68763 Product: Focused on ethanol production....

  16. Baicheng Tingfeng Ethanol Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tingfeng Ethanol Co Ltd Jump to: navigation, search Name: Baicheng Tingfeng Ethanol Co Ltd Place: Baicheng, Jilin Province, China Zip: 137000 Product: The company is a ethanol...

  17. DuPont Danisco Cellulosic Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Danisco Cellulosic Ethanol Jump to: navigation, search Name: DuPont Danisco Cellulosic Ethanol Place: Itasca, Illinois Zip: 60143 Product: DuPont Danisco Cellulosic Ethanol is a...

  18. National Ethanol Vehicle Coalition NEVC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name: National Ethanol Vehicle Coalition (NEVC) Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol...

  19. NOx Aftertreatment Using Ethanol as Reductant | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Using Ethanol as Reductant NOx Aftertreatment Using Ethanol as Reductant The hydrocarbon-SCR that was developed using ethanol and E85 as the reductant showed high ...

  20. BayWa Group | Open Energy Information

    Open Energy Info (EERE)

    BayWa Group Jump to: navigation, search Name: BayWa Group Place: Munich, Germany Zip: 81925 Sector: Services, Solar Product: Germany-based company with international operations...

  1. Felton Bay Logistics, LLC | Open Energy Information

    Open Energy Info (EERE)

    Logistics, LLC1 This article is a stub. You can help OpenEI by expanding it. Felton Bay Logistics, LLC is a company based in San Diego, California. Felton Bay offers training,...

  2. Tuscola Bay Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy...

  3. Ethanol: farm and fuel issues

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The current U.S. and world grain situations are described as well as adjustments which would be likely for fuel production of 1, 2 and 4 billion gallons of ethanol annually in the 1985-86 period. Predicted acreage shifts in corn, soybeans, wheat and the total of seven major crops are shown. The most likely effects on the feed grains markets both here and abroad are discussed. The value of corn for fuel both with and without the gasoline tax exemption is compared to the actual farm price expected if in the base case (1 billion gallons) real corn prices do not rise. In the higher 2 and 4 billion gallon cases, increases in the real cost of corn and its impact on food prices and the CPI are estimated. A theoretical maximum level of ethanol production recognizing market factors is discussed in terms of acreage, yield, corn production and the fuel ethanol available. Agricultural and other policy frameworks are discussed.

  4. Ethanol production method and system

    DOE Patents [OSTI]

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  5. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  6. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  7. Weekly Ethanol Production

    Gasoline and Diesel Fuel Update (EIA)

    Area: U.S. Lower 48 (Crude Oil Production) PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma (Crude Oil Stocks) PADD 3 PADD 4 PADD 5 Alaska (Crude Oil Production) PADD's 4 & 5 Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History Crude Oil Production Domestic Production 8,515 8,460

  8. US Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Vancouver, Washington State Zip: 98660 Product: Ethanol producer in the north-west. References: US Ethanol LLC1 This article is a stub. You can help OpenEI by...

  9. Elkhorn Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Elkhorn Valley Ethanol LLC Place: Norfolk, Nebraska Zip: 68701 Product: Operates a 40m gallon ethanol plant in Norfolk, Nebraska. Coordinates: 36.846825, -76.285069 Show Map...

  10. Brazil Ethanol Inc | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Inc Jump to: navigation, search Name: Brazil Ethanol Inc. Place: New York, New York Zip: 10021 Product: A New York City-based firm that had raised USD 10.4m as of 1 May...

  11. JH Kelly LLC Ethanol | Open Energy Information

    Open Energy Info (EERE)

    JH Kelly LLC Ethanol Jump to: navigation, search Name: JH Kelly LLC Ethanol Place: Longview, Washington State Zip: 98632 Product: A joint venture company between JH Kelly and and...

  12. Farmers Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Farmers' Ethanol LLC Place: Adamsville, Ohio Zip: OH 43802 Product: An association of farmers registered on July 12,2002 with a goal...

  13. Alternative Fuels Data Center: Underwriters Laboratories Ethanol...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    August 2009: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level ... In 2007, UL published new testing procedures for E85 ethanol dispenser systems and, in ...

  14. High-Yield Hybrid Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hig gh-Yield Hy ybrid Cellulosic Ethanol Process Using High-Impact Feedstock WBS 5.5.11.1 ... Markets Poplar C2 Platform End Markets Ethanol Acetic Acid Ethylene Vinyl Acetate 2 ...

  15. Ethanol Fuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More than 95% of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in a high-level blend ...

  16. Ethanol's Effect on Grain Supply and Prices

    SciTech Connect (OSTI)

    2008-01-01

    This document provides graphical information about ethanol's effect on grain supply and prices, uses of corn, and grain price trends.

  17. Re-engineering bacteria for ethanol production

    DOE Patents [OSTI]

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  18. bayesPicture.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information bayesPicture

  19. Ethanol production by recombinant hosts

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  20. Ethanol production in recombinant hosts

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D.

    2005-02-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  1. Ethanol production by recombinant hosts

    DOE Patents [OSTI]

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  2. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect (OSTI)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  3. Economics of ethanol fuel for crop production

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/year greater than that of ethanol and diesel must inflate at least 23 percent/year more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years. (Refs. 13).

  4. Stocks of Fuel Ethanol

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History U.S. 20,390 20,603 20,460 20,425 20,817 20,926 2010-2016 PADD 1 7,399 7,375 6,918 7,488 7,170 7,365 2010-2016 PADD 2 6,478 6,366 6,777 6,754 6,880 6,894 2010-2016 PADD 3 3,713 4,036 3,792 3,201 3,718 3,648 2010-2016 PADD 4 321 330 321 343 346 359 2010-2016 PADD 5 2,479 2,495

  5. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  6. Mid-Level Ethanol Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Level Ethanol Blends Test Program DOE, NREL, and ORNL Team Presented by Keith Knoll Work supported by DOE/EERE Vehicle Technologies Program Annual Merit Review and Peer Evaluation meeting May 19, 2009 Kevin Stork Vehicle Technologies Program Shab Fardanesh and Joan Glickman Office of the Biomass Program This presentation does not contain any proprietary or classified information Project ID: ft_05_knoll Collaborators Kevin Stork DOE OVT Shab Fardanesh DOE OBP Joan Glickman DOE OBP Wendy Clark

  7. Keweenaw Bay Indian Community Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Keweenaw Bay Indian Community PRESENTATION Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands DOE Tribal Energy Program Review October 25 29, 2010 Gregg Nominelli, J.D. Economic Developer BACKGROUND INFORMATION  U.S. Department of Justice - Community Capacity Development Office  Alternative & Renewable Energy Committee Established by Tribal Council  Council for Energy Resource Tribes (CERT) - Developed Strategic Energy Plan

  8. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect (OSTI)

    Parish, Esther S; Kline, Keith L; Dale, Virginia H; Efroymson, Rebecca Ann; McBride, Allen; Johnson, Timothy L; Hilliard, Michael R; Bielicki, Dr Jeffrey M

    2013-01-01

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  9. Bay Front Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBayFrontBiomassFacility&oldid397174" Feedback Contact needs updating Image needs updating...

  10. Glacier Bay Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Glacier Bay Inc Place: Oakland, California Zip: 94601 Product: US-based, advanced thermal control, sound reduction, and DC power management technologies...

  11. Hooper Bay Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates...

  12. Massachusetts Bay Transportation Authority | Open Energy Information

    Open Energy Info (EERE)

    Authority Name: Massachusetts Bay Transportation Authority Address: 10 Park Plaza, Suite 3910 Boston, MA 02116 Zip: 02116 Website: www.mbta.com Coordinates:...

  13. Bioconversion of plant biomass to ethanol. Final report, December 1, 1979-December 31, 1980

    SciTech Connect (OSTI)

    Su, T.M.; Lamed, R.J.; Lobos, J.; Brennan, M. Jr.; Smith, J.F.; Tabor, D.; Brooks, R.

    1980-01-01

    This final report describes research performed on a process for the direct fermentation of pretreated hardwood and corn stover to ethanol. Experimental investigations were conducted on the technical problem areas that limit the utilization of lignocellulose for ethanol production, i.e., wood pretreatment, culture development, and fermentation. Considerable technical progress has been demonstrated in each area. The experimental findings have led to process design improvements that can reduce the capital cost for ethanol production. Studies on wood pretreatment to enhance carbohydrate recovery and susceptibility to enzymatic hydrolysis continued to show progress. Rapid decompression of treated fibers to atmospheric pressure was found to make little or no contribution to enhancing the rate of enzymatic hydrolysis. Acid extraction of the hemicellulose component prior to sulfur dioxide augmented wood steaming increased the overall fermentable carbohydrate recovery and, therefore, the attainable yield of ethanol. Only modest improvements in fiber digestibility are now required to meet the pretreatment goals. A new and highly cellulolytic strain of C. thermocellum, designated as strain YS, was isolated from hot springs soil samples and tested. A previously unreported effect of stirring and hydrogen on the fermentation product pattern of several strains of C. thermocellum was discovered. Mono- and co-culture fermentations were performed to understand the factors that affect the yield of ethanol. Co-culturing C. thermocellum strain YS with efficient ethanol-producing non-cellulolytic strains resulted in higher ethanol yields than that observed in strain YS mono-culture cellulose fermentation. The feasibility of ethanol production at high substrate concentrations was investigated in serum bottle experiments. The amount of ethanol produced declined as the substrate concentration increased.

  14. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  15. Process for producing ethanol from syngas

    DOE Patents [OSTI]

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  16. Kinder Morgan Central Florida Pipeline Ethanol Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol

  17. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  18. San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Estates Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility Facility San Luis Bay...

  19. Doe Bay Village Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility...

  20. San Francisco Bay Conservation and Development Commission | Open...

    Open Energy Info (EERE)

    Conservation and Development Commission Jump to: navigation, search Logo: San Francisco Bay Conservation and Development Commission Name: San Francisco Bay Conservation and...

  1. Pedro Bay Village Council (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name: Pedro Bay Village Council Place: Alaska Phone Number: (907) 850-2225 Website: www.swamc.orghtml...

  2. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  3. Ethanol as a fuel: design and construction of an ethanol production facility for a farm

    SciTech Connect (OSTI)

    Pelger, E.C. III

    1981-01-01

    This dissertation describes the production of ethanol from biomass. It includes descriptions of photosynthesis, feedstock preparation, fermentation, distillation and end use. Technical problems and limitations as well as social, political, and economic aspects of producing ethanol are addressed. The potential of small-scale ethanol production and specific case studies are reviewed. A low-cost efficient design for a single farm ethanol facility is included. (DMC)

  4. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  5. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  6. US Ethanol Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: US Ethanol Holdings Place: New York, New York Zip: 10022 Product: Subsidiary of boutique investment bank and advisory firm, Geneva...

  7. Mixed waste paper to ethanol fuel

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  8. Low-Level Ethanol Fuel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

  9. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Energy Savers [EERE]

    Protec Fuel to market and distribute commercial ethanol produced from algae for fleets and retail consumption from Algenol's commercial demonstration module in Fort Myers, Florida. ...

  10. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    19.29 KB) More Documents & Publications Verenium Biofuels Fact Sheet Verenium Pilot- and Demonstration-Scale Biorefinery Pacific Ethanol, Inc

  11. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  12. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  13. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  14. Dissociative electron attachments to ethanol and acetaldehyde...

    Office of Scientific and Technical Information (OSTI)

    3sup - are recorded, indicating the low kinetic energies of Osup -OHsup - for ethanol while the low and high kinetic energy distributions of Osup - ions for acetaldehyde. ...

  15. Coulee Area Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    entity proposing to develop, own and operate a large-scale corn-to-ethanol plant in Sparta, Wisconsin. References: Coulee Area Renewable Energy1 This article is a stub. You...

  16. 2016 Bioenergizeme Infographic Challenge: The History of Ethanol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The History of Ethanol 2016 Bioenergizeme Infographic Challenge: The History of Ethanol 2016 Bioenergizeme Infographic Challenge: The History of Ethanol This infographic was created by students from Smithtown High School East in St. James, NY

  17. BlueFire Ethanol, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. A proposal issued by BlueFire Ethanol Inc,describing a project that will give DOE understanding of a new biological fermentation ...

  18. Alternative Fuels Data Center: Ethanol Benefits and Considerations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More

  19. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  20. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ethanol-Gasoline Blends by Addition of Higher Alcohols Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. deer12_ickes.pdf (1.45 MB) More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on

  1. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications (EIA)

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  2. Ethanol production using engineered mutant E. coli

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  3. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  4. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  5. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  6. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  7. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  8. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress...

    Office of Scientific and Technical Information (OSTI)

    Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses Citation Details In-Document Search Title: Systems biology analysis of Zymomonas mobilis ZM4 ethanol ...

  9. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5...

    Office of Scientific and Technical Information (OSTI)

    Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites Citation Details In-Document Search Title: Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 ...

  10. Experiences from Ethanol Buses and Fuel Station Report - Nanyang...

    Open Energy Info (EERE)

    Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang AgencyCompany Organization: BioEthanol for...