National Library of Energy BETA

Sample records for battery type nickel

  1. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, and alkaline batteries. All batteries need to be sorted by battery type. Each battery type must be accumulated in a clearly labeled receptacle to identify the acceptable battery type. Batteries can be dropped off

  2. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  3. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    for advanced lithium ion batteries. Materials Science andin high voltage lithium ion batteries: A joint experimentalof rechargeable lithium-ion batteries after prolonged

  4. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  5. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    lithium batteries. Electrochemistry Communications 9, 262 (Amatucci, Structure and Electrochemistry of Copper FluorideLi-ion battery, Fe2OF4. Electrochemistry Communications 11,

  6. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    a new cathode material for batteries of high energy density.energy sources, are strong drivers for fundamental research in new materials

  7. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    materials. Energy & Environmental Science 4, 3680 (Sep,ion batteries. Energy & Environmental Science 4, 3223 (Sep,study. Energy & Environmental Science, A. Rudola, K.

  8. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  9. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  10. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect (OSTI)

    Paxton, B K [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  11. The Effects of Temperature on the Electrochemical Performance of Sodium-Nickel Chloride Batteries

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-10-01

    The sodium-nickel chloride (ZEBRA) battery is typically fabricated with a thick tubular ?"-alumina solid electrolyte (BASE) and operated at relatively high temperatures (? 300ºC) to achieve adequate electrochemical performance. In the present work, a planar-type sodium-nickel chloride battery possessing a thin BASE (~600 ?m thick) was tested in order to evaluate the feasibility of the battery operation at low temperatures (?200°C). Electrochemical test results revealed that the battery was able to be cycled at C/3 rate at as low as 175°C despite the higher cell polarization at the reduced temperature. Overall, low operating temperature resulted in a considerable improvement in the stability of cell performance. Cell degradation was negligible at 175°C, while 55% increase in end-of-charge polarization was observed at 280°C after 60 cycles. SEM analysis indicated that the performance degradation at higher temperatures was related to the particle growth of both nickel and sodium chloride in the cathode. The cells tested at lower temperatures (e.g., 175 and 200°C), however, exhibited a sharp drop in cell voltage at the end of discharge due to the diffusion limitation, possibly caused by the limited ionic conductivity of NaAlCl4 melt or the poor wettability of sodium on the BASE. Therefore, improvements in the ionic conductivity of a secondary electrolyte and sodium wetting are desirable to further enhance the battery performance at low temperatures.

  12. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    Weidner, John W.

    Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W of lithium and nickel battery systems developed at the University of South Carolina is presented. Models of Li/Li-ion batteries are reviewed that simulated the behavior of single electrode particles, single

  13. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOE Patents [OSTI]

    Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  14. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  15. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    electrodes, full cells and batteries (sets of full cells) under a variety of operating conditions (e and batteries (sets of full cells) to simulate various operating conditions like cyclic voltammetry, constantMathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W

  16. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  17. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOE Patents [OSTI]

    Sindorf, John F. (Pewaukee, WI)

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  18. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  19. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

  20. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    SciTech Connect (OSTI)

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  1. Research, development, and demonstration of nickel-zinc batteries for electric-vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in work at Exide in three main development areas, i.e., battery design and development, nickel cathode study, and electrochemical studies is reported. Battery design and development concentrated on the optimization of design parameters, including electrode spacing, charging methods, electrolyte concentration, the design and fabrication of prototype cells and modules, and testing to verify these parameters. Initial experiments indicated that an interelectrode spacing of 2.5 mm was optimum when normal (D.C.) charging is used. It was during these experiments that a high rate charging technique was developed to deposit a dense active zinc which did not shed during vibration. A 4 cell - 300 Ah experimental module was built and sent to NBTL for testing. Initial testing on this module and a 300 Ah cell are reported. Experiments on electrolyte concentration indicate that higher concentrations of KOH (8M, 9M or 10M) are beneficial to capacity maintenance. Available nickel cathodes were evaluated for possible use in the VIBROCEL. These included pocket, sintered plaque impregnated, nickel plated steel wool impregnated, plastic bonded and CMG (multifoil) electrodes. These electrodes have Coulombic densities ranging from 70 Ah/Kg for pocket plates to 190 Ah/Kg for CMG electrodes. Detailed test data are presented for each type including rate capability, effect of zincate on performance, and capacity maintenance with cycling. Work on zinc deposition emphasized the special charging technique. This is a deposition using special waveforms of charging current, to deposit dense crystalline zinc on the anode substrate.

  2. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Pantier, Earl A. (Penn Hills, PA)

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  3. Novel Ternary Molten Salt Electrolytes for intermediate-temperature sodium/nickel chloride batteries

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium-nickel chloride (ZEBRA) battery is typically operated at relatively high temperature (250~350°C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150 to 200°C can lead to enhanced cycle life by suppressing temperature related degradation mechanisms. The reduced temperature range also allows for lower cost materials of construction such as elastomeric sealants and gaskets. To achieve adequate electrochemical performance at lower operating temperatures requires an overall reduction in ohmic losses associated with temperature. This includes reducing the ohmic resistance of ?”-alumina solid electrolyte (BASE) and the incorporation of low melting point molten salt as the secondary electrolyte. In present work, planar-type Na/NiCl2 cells with a thin flat plate BASE (600 ?m) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salt formulation for use as secondary electrolytes were fabricated by the partial replace of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of the ternary molten salts demonstrated , improved ionic conductivity, and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175°C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150oC.

  4. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  5. INTRODUCTION Among different types of rechargeable batteries, polymer

    E-Print Network [OSTI]

    Bahrami, Majid

    INTRODUCTION Among different types of rechargeable batteries, polymer lithium-ion (Li-ion) cells% per month), and long cycling life [1]. Such desired features have made Li-ion batteries one the most vehicles with Li- ion batteries in order to reduce or remove the contribution of internal combustion engine

  6. Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries

    E-Print Network [OSTI]

    Ransil, Alan Patrick Adams

    2013-01-01

    Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

  7. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  8. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Progress achieved under ANL Contract No. 31-109-38-4248 from 16 August 1978 to 16 August 1979 is reported. The first segment of the overall program, component development, consists of four basic tasks proceeding in parallel: nickel electrode development, zinc electrode development, separator development, and sealed cell development. Each of these tasks is reported herein on a self-contained basis. System engineering is the second major subdivision of the effort. It includes the design and testing of all cells, the investigation of charge control devices and techniques, and the complete analysis of all cells for failure modes. It also encompasses the accelerated testing of 20-Ah cells. To date, large numbers of these cells (incorporating separator variations, active material additives and internal design variations) have been subjected to this type of testing. 48 figures, 47 tables. (RWR)

  9. With a new type of lithium battery that has been developed at TU

    E-Print Network [OSTI]

    Langendoen, Koen

    When charging and discharging the battery lithium ions and electrons should be able to move easilyWith a new type of lithium battery that has been developed at TU Delft electric cars can drive thick without reducing the performance of the battery: recharging the battery, where lithium needs

  10. Last Revised: 10/2013 Battery Waste Collection Request

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    Only Storage Location Mixed Batteries (alkaline, carbon zinc, Ni-Cad, nickel metal hydride, mercuryLast Revised: 10/2013 Battery Waste Collection Request www.ehs.washington.edu/forms/epo/1943.pdf Instructions: Fill out the approximate weight of each battery type KG For Environmental Health and Safety Use

  11. Paste Type Nickel Electrode Containing Compound And At Least One Other Element

    DOE Patents [OSTI]

    Bernard, Patrick (Massy, FR); Bertrand, Fran.cedilla.oise (Ris Orangis, FR); Simonneau, Olivier (Dourdan, FR)

    1999-11-30

    The present invention provides a paste type nickel electrode for a storage cell having an alkaline electrolyte, the electrode comprising a current collector and a paste containing a nickel-based hydroxide and an oxidized compound of cobalt syncrystallized with at least one other element, wherein said hydroxide forms a first powder and wherein said compound forms a second powder distinct from said first powder, said powders being mixed mechanically within said paste.

  12. Fact #607: January 25, 2010 Energy and Power by Battery Type...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy to power ratio for different battery types (a range is shown for each battery). An increase in specific energy correlates with a decrease in specific power. Lithium-ion...

  13. Modeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material

    E-Print Network [OSTI]

    developed high-energy-density batteries, e.g., the nickel-metal hydride battery and the lithium-ion batteryModeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material B. Wu and R. E of South Carolina, Columbia, South Carolina 29208, USA A nonisothermal model of a nickel-hydrogen cell has

  14. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  15. Analytical assessment of the thermal behavior of nickel-metal hydride batteries

    E-Print Network [OSTI]

    Bahrami, Majid

    * , Maryam Yazdanpour, Majid Bahrami Laboratory for Alternative Energy Conversion (LAEC), Mechatronic Systems value problems of heat conduction, Dover Publications, New York, 1989 [3] M.S. Wu et al., J. Power Sour inside the battery can be approximated from the well-known energy balance analysis proposed by Bernardi

  16. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Pantier, Earl A. (Penn Hills, PA)

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  17. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils

    E-Print Network [OSTI]

    The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils a Rhizosphere Science Research Group, Department of Plant and Soil Sciences, N122S Agricultural Sciences North Manure and Byproducts Laboratory, Beltsville, MD 20705, USA c Environmental Soil Chemistry Research Group

  18. CHEMICAL WASTE RECYCLING PROGRAM All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include

    E-Print Network [OSTI]

    Baker, Chris I.

    CHEMICAL WASTE RECYCLING PROGRAM BATTERIES All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include alkaline, lithium, rechargeable, coin batteries, lead-acid and all other types. Uninterruptible Power Source (UPS) batteries must be removed from the UPS casing

  19. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  20. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter

  1. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive 48128, USA h i g h l i g h t s Proposed a dynamic universal battery model based on second-order RC a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness

  2. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries

    E-Print Network [OSTI]

    Peng, Huei

    Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries i g h l i g h t s battery model parameters are optimized. 2012 Accepted 1 June 2012 Available online 9 June 2012 Keywords: Battery management systems SOC

  3. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01

    for nickel metal hydride batteries including hysteresis” ,Control of Lithium-Ion Batteries”, Control Systems, IEEE,modeling of lead acid batteries”, Applied Power Electronics

  4. Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins

    E-Print Network [OSTI]

    Matsubara, Ryosuke

    Nickel-catalyzed intermolecular benzylation and heterobenzylation of unactivated alkenes to provide functionalized allylbenzene derivatives are described. A wide range of both the benzyl chloride and alkene coupling partners ...

  5. Research, development and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Research progress in the development of Ni/Fe batteries (electrodes in particular) for the period is described. The negative plate demonstrated a reliable lifetime of almost 1000 cycles; 20 mm positive plates were proved feasible; prototype cells yielded output at about 50 Wh/kg and 100 Wh/liter; program goals of 20% greater than these figures appear feasible. 27 figures, 20 tables. (RWR)

  6. Advanced batteries for electric vehicle applications

    SciTech Connect (OSTI)

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  7. X-ray Absorption Measurements on Nickel Cathode of Sodium-beta Alumina batteries: Fe-Ni-CI Chemical Associations

    SciTech Connect (OSTI)

    Bowden, Mark E.; Alvine, Kyle J.; Fulton, John L.; Lemmon, John P.; Lu, Xiaochuan; Webb-Robertson, Bobbie-Jo M.; Heald, Steve M.; Balasubramanian, Mahalingam; Mortensen, Devon R.; Seidler, Gerald T.; Hess, Nancy J.

    2014-02-01

    Sections of Na-Al-NiCl2 cathodes from sodium-beta alumina ZEBRA batteries have been characterized with X-ray fluorescence mapping, and XANES measurements to probe the microstructure, elemental correlation, and chemical speciation after voltage cycling. Cycling was performed under identical load conditions at either 240 or 280 °C operating temperature and subsequently quenched in either the charged or discharged state. X-ray fluorescence mapping and XANES measurements were made adjacent to the current collector and ?"-Al2O3 solid electrolyte interfaces to detect possible gradients in chemical properties across the cathode. An FeS additive, introduced during battery synthesis, was found to be present as either Fe metal or an Fe(II) chloride in all cathode samples. X-ray fluorescence mapping reveals an operating temperature and charge-state dependent spatial correlation between Fe, Ni, and Cl concentration. XANES measurements indicate that both Ni and Fe are chemically reactive and shift between metallic and chloride phases in the charged and discharged states, respectively. However the percentage of chemically active Ni and Fe is significantly less in the cell operated at lower temperature. Additionally, the cathode appeared chemically homogeneous at the scale of our X-ray measurements.

  8. Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work

    E-Print Network [OSTI]

    Langendoen, Koen

    Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby nickel metal and ni-cad batteries. But with this increase in battery life come potential hazards. Use batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

  9. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  10. CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries

    E-Print Network [OSTI]

    Nemeth, Karoly

    2013-01-01

    We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

  11. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  12. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  13. Dual-band internal antenna ofPIFA type for mobile handsets and the effect of the handset case and battery

    E-Print Network [OSTI]

    Park, Seong-Ook

    Dual-band internal antenna ofPIFA type for mobile handsets and the effect of the handset case and battery Young-Jun Cho*, Soon-Ho Hwang, Osami Ishida, and Seong-Ook Park Information and Communications the influence of the handset case and battery. The proposed antenna operates at KPCS (1750-1870 MHz

  14. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; Yang, Zhenzhong; Yu, Xiqian; Gu, Lin; Hu, Yong -Sheng; Li, Hong; Yang, Xiao -Qing; Chen, Liquan; et al

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS.more »When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  15. Resistive companion battery modeling for electric circuit simulations , R. Dougalb

    E-Print Network [OSTI]

    Resistive companion battery modeling for electric circuit simulations B. Wua , R. Dougalb , R be achieved based on RC models. In this study, the construction of RC battery models is investigated. A general battery model and a nickel±metal hydride cell model have been built. Simulations of RC battery

  16. Polymeric battery separators

    SciTech Connect (OSTI)

    Minchak, R. J.; Schenk, W. N.

    1985-06-11

    Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

  17. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    E-Print Network [OSTI]

    Childress, Michael J; Seitenzahl, Ivo; Sullivan, Mark; Maguire, Kate; Taubenberger, Stefan; Scalzo, Richard; Ruiter, Ashley; Blagorodnova, Nadejda; Camacho, Yssavo; Castillo, Jayden; Elias-Rosa, Nancy; Fraser, Morgan; Gal-Yam, Avishay; Graham, Melissa; Howell, D Andrew; Inserra, Cosimo; Jha, Saurabh W; Kumar, Sahana; Mazzali, Paolo A; McCully, Curtis; Morales-Garoffolo, Antonia; Pandya, Viraj; Polshaw, Joe; Schmidt, Brian; Smartt, Stephen; Smith, Ken W; Sollerman, Jesper; Spyromilio, Jason; Tucker, Brad; Valenti, Stefano; Walton, Nicholas; Wolf, Christian; Yaron, Ofer; Young, D R; Yuan, Fang; Zhang, Bonnie

    2015-01-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of $^{56}$Ni ($M_{Ni}$) produced in the explosion. We then examine $^{56}$Ni yields for different SN Ia ejected masses ($M_{ej}$ - calculated using the relation between light...

  18. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    Jul, 2001). Z. H. Lu, J. R. Dahn, In situ X-ray diffraction4109 (2011). Z. Lu, J. R. Dahn, In Situ X-Ray Diffraction9306 (2011). Z. H. Lu, J. R. Dahn, Can all the lithium be

  19. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    H. Futata, N. Yamazoe, Solid electrolyte CO2 sensor usingconduction, initially as solid electrolytes [45-47] and moreas the formation of solid electrolyte interface (SEI) layer

  20. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOE Patents [OSTI]

    Bernard, Patrick (Massy, FR); Baudry, Michelle (Le Pontaroux, FR)

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  1. Venkat Srinivasan John W. Weidner Ralph E. White Mathematical models of the nickel hydroxide active material

    E-Print Network [OSTI]

    -cadmium, nickel-metal hydride, nickel-zinc, and nickel-hydrogen batteries [1]. However, even after a century. The negative electrode used in the cell could be a porous cadmium, metal hydride, zinc, or gas-fed hydrogen Á R.E. White (&) Department of Chemical Engineering, Swearingen Engineering Building, University

  2. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  3. Technological assessment and evaluation of high power batteries and their commercial values

    E-Print Network [OSTI]

    Teo, Seh Kiat

    2006-01-01

    Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

  4. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  5. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

  6. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  7. Nickel anode electrode

    DOE Patents [OSTI]

    Singh, Prabhakar (Bethel, CT); Benedict, Mark (Monroe, CT)

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  8. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  9. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  10. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOE Patents [OSTI]

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  11. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  12. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    2000) Costs of Lithium-Ion Batteries for Vehicles. Report,for High-Power Lithium-Ion Batteries. J. Power Sources 128:in High-Power Lithium-Ion Batteries. J. Electrochem. Soc.

  13. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  14. Current collectors for rechargeable Li-Air batteries

    SciTech Connect (OSTI)

    Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL

    2011-01-01

    Here we report the negative influence of porous nickel foam for use as current collectors in rechargeable Li-air batteries. Uncoated nickel foam promotes the decomposition of LiPF6-organic carbonate electrolytes under normal charging conditions reported for rechargeable Li-air cells. We have identified Ni free porous carbon supports as more appropriate cathode current collectors.

  15. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J. (Pittsburgh, PA)

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  16. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  17. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  18. The Future of Automobile Battery Recycling | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Automobile Battery Recycling Title The Future of Automobile Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract...

  19. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  20. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  1. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries

  2. Taking Battery Technology from the Lab to the Big City

    ScienceCinema (OSTI)

    Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

    2014-01-10

    Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

  3. Taking Battery Technology from the Lab to the Big City

    SciTech Connect (OSTI)

    Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

    2013-07-29

    Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

  4. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  5. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    for Li-ion batteries. Solid Electrolyte Interface (SEI)-athe formation of a solid electrolyte interface (SEI) onElectrolyte Solutions, Temperatures). Electrochem. and Solid-

  6. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  7. AN EXPLORATION INTO BATTERY CHEMISTRY IONIC FLOW, INTERCALATION AND

    E-Print Network [OSTI]

    Petta, Jason

    AN EXPLORATION INTO BATTERY CHEMISTRY IONIC FLOW, INTERCALATION AND CRYSTAL LATTICES JAKE GARCIA ALLA ZAMARAYEVA ADVISOR: DAN STEINGART #12;A PROBLEM IN SOCIETY! · The energy problem · Batteries-cost and environmentally friendly battery? #12;BACKGROUND · Different Common Battery types: Galvanic "Wet" Cell Dry Cell

  8. Suzuki batteries The '96 to present Suzuki DR650SE comes from the factory with a Yuasa YTX9BS battery. This is a

    E-Print Network [OSTI]

    Westall, James M.

    Suzuki batteries The '96 to present Suzuki DR650SE comes from the factory with a Yuasa YTX9BS battery. This is a highquality AGM (absorbed glass mat) type battery, which is sealed and maintenance free. AGM batteries last much longer than conventional floodedcell batteries in normal service

  9. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC...

  10. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  11. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01

    Control of Lithium-Ion Batteries”, Control Systems, IEEE,is one type of Lithium-Ion batteries with voltage around

  12. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S. [HeteroFoaM Center, a DOE Energy Frontier Research Center, Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd., Storrs, Connecticut 06269-3139 (United States); Chu, Yong S. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 703 Upton, New York 11973-5000 (United States); Yi, Jaemock [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Bldg. 438-B007 Argonne, Illinois 60439 (United States); Andrews, Joy C.; Liu Yijin; Pianetta, Piero [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., MS 69 Menlo Park, California 94025 (United States)

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  13. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    13]); (d) 48 lithium ion battery modules in Nissan Leafhighly toxic. In 1991, lithium-ion battery was introduced byThree main types of lithium ion battery have been developed

  14. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle...

  15. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE...

  16. Comparison of various battery technologies for electric vehicles 

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01

    for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None...

  17. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  18. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  19. Molten-Salt Batteries for Medium and Large-Scale Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Yang, Zhenguo

    2014-12-01

    This chapter discusses two types of molten salt batteries. Both of them are based on a beta-alumina solid electrolyte and molten sodium anode, i.e., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. The chapter first reviews the basic electrochemistries and materials for various battery components. It then describes the performance of state-of-the-art batteries and future direction in material development for these batteries.

  20. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect (OSTI)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  1. Automating Personalized Battery Management on Smartphones

    E-Print Network [OSTI]

    Falaki, Mohamamd Hossein

    2012-01-01

    3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

  2. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (Batteries tested -manufacturers, technology, and characteristics Manufacturer K2 EIG A123 Technology type Iron phosphate Iron phosphate Iron phosphate Iron Phosphate Graphite/

  3. Maximizing Battery Life Routing in Wireless Ad Hoc Networks

    E-Print Network [OSTI]

    Liang, Weifa

    Maximizing Battery Life Routing in Wireless Ad Hoc Networks Weifa Liang Department of Computer Abstract--Most wireless ad hoc networks consist of mobile devices which operate on batteries. Power con, for an ad hoc network consisting of the same type of battery mobile nodes, two approximation algorithms

  4. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  5. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterizationmore »revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  6. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L. (Los Alamos, NM)

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  7. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli

    SciTech Connect (OSTI)

    Phillips, C.; Schreiter, E; Stultz, C; Drennan, C

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel [Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029-10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141-1148]. While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface [Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794-799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676-13681], the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 {angstrom} resolution and have obtained nickel anomalous data (1.4845 {angstrom}) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR-DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules.

  8. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect (OSTI)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  9. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  10. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Vlahinos, A.; Kim, G.-H.

    2005-01-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid vehicles. Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry. To illustrate the process, we simulated the thermal performance of two generations of Panasonic prismatic nickel-metal-hydride modules used in the Toyota Prius. The model showed why the new generation of Panasonic modules had better thermal performance. Thermal images from two battery modules under constant current discharge indicate that the model predicts the experimental trend reasonably well.

  11. A Universal State-of-Charge Algorithm for Batteries Bingjun Xiao Yiyu Shi Lei He

    E-Print Network [OSTI]

    He, Lei

    A Universal State-of-Charge Algorithm for Batteries Bingjun Xiao Yiyu Shi Lei He Electrical-of-charge (SOC) measures energy left in a battery, and it is critical for modeling and managing batteries to different types of batteries. Knowing open-circuit voltage (OCV) leads to SOC due to the well known mapping

  12. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in Pasadena, CA...

  13. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng; Liu, Jue; Lee, Byungju; Qiao, Ruimin; Yang, Zhenzhong; Xu, Shuyin; Yu, Xiqian; Gu, Lin; Hu, Yong-Sheng; Yang, Wanli; et al

    2015-03-25

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accuratelymore »identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.« less

  14. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Liu, Jue [Brookhaven National Lab. (BNL), Upton, NY (United States); Lee, Byungju [Seoul National Univ. (Korea, Republic of); Qiao, Ruimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source; Yang, Zhenzhong [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Xu, Shuyin [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States)] (ORCID:000000018513518X); Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Hu, Yong-Sheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)] (ORCID:0000000284306474); Yang, Wanli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source] (ORCID:0000000306668063); Kang, Kisuk [Seoul National Univ. (Korea, Republic of); Li, Hong [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)] (ORCID:000000028659086X); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Huang, Xuejie [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)

    2015-03-25

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.

  15. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  16. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  17. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  18. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    Xiangyun Song helped me with battery experiments. I want toMesoporous Block Copolymer Battery Separators by DavidMesoporous Block Copolymer Battery Separators by David

  19. Steps to Commercialization: Nickel Metal Hydride Batteries | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers at the Energyonecelebrates specialwarmEnergy

  20. Steps to Commercialization: Nickel Metal Hydride Batteries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting State Energy Advisory BoardStateFailures

  1. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  2. Modeling lithium diffusion in nickel composite graphite Venkat R. Subramanian, Ping Yu, Branko N. Popov, Ralph E. White*

    E-Print Network [OSTI]

    Popov, Branko N.

    Modeling lithium diffusion in nickel composite graphite Venkat R. Subramanian, Ping Yu, Branko N. Exchange current and diffusion coef®cient for the lithium-diffusion are predicted. # 2001 Elsevier Science computers, and camcorders. The distinguished feature of lithium-ion batteries is the use of intercalation

  3. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  4. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect (OSTI)

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600?K. After it cooled to 100?K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup ¯}, 1{sup ¯},2] crystal orientation.

  5. C Battery Corral 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    reliability. The total consumption of lead-acid batteries in the United States reported in 2008 is $2.9 billion per year and is growing at an annual rate of 8%. The utilization of Lithium-ion battery is growing rapidly. The possibility of lithium-ion... Energy Storage Parameters ............................................................................ 25 Table 2 Case I Cost Comparison ................................................................................ 27 Table 3 PHEV Battery...

  6. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  7. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  8. CVD Growth of Carbon Nanotubes Directly on Nickel Substrate

    E-Print Network [OSTI]

    Du, Chunsheng; Pan, Ning

    2005-01-01

    growth, carbon nanotubes, nickel substrates 1. Introductionto directly grow carbon nanotubes on nickel substrate underof the carbon nanotubes The nickel substrates were directly

  9. A Look Through the Crystal Ball at the Future of Automobile Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Look Through the Crystal Ball at the Future of Automobile Battery Recycling Title A Look Through the Crystal Ball at the Future of Automobile Battery Recycling Publication Type...

  10. CRADA (AL-C-2009-02) Final Report: Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl; Schmidt, Frederick; Frerichs, A.E.; Ament, Katherine A.

    2013-05-01

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La{sub 1-x}R{sub x})(Ni{sub 1-y}M{sub y})(Si{sub z}), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  11. Nickel-containing hydrocracking catalyst

    SciTech Connect (OSTI)

    Abdo, S.F.

    1989-03-28

    A catalytic composition is described, comprising a cracking component and a hydrogenation metal component consisting essentially of greater than 13 weight percent of nickel components, calculated as NiO.

  12. Dorothy Nickel Friesen Oral History

    E-Print Network [OSTI]

    Friesen, Dorothy Nickel; Hobson, Katie

    2015-01-01

    Oral history interview with Dorothy Nickel Friesen conducted by Katie Hobson on July 7, 2015. This interview features the interim pastor at Bethel College Mennonite Church in Newton, Kansas. Questions address Dorothy's experiences as an ordained...

  13. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  14. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  15. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    SciTech Connect (OSTI)

    Rajan, J.B. (comp.) [comp.

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  16. Biosorption of Lead and Nickel by Biomass of Marine Algae

    E-Print Network [OSTI]

    Volesky, Bohumil

    Biosorption of Lead and Nickel by Biomass of Marine Algae Z.R. Holan and B. Volesky" Department 22, 1993 Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales

  17. Nickel(0)-Catalyzed Asymmetric Hydrocyanation of 1,3-Dienes

    E-Print Network [OSTI]

    RajanBabu, T. V. "Babu"

    (0)-catalyzed hydrocyanation of certain types of 1,3-dienes. 1-Phenyl-1,3-butadiene, 1-vinyl-3 in support of the development of the adiponitrile process from 1,3-butadiene and HCN by the DupontNickel(0)-Catalyzed Asymmetric Hydrocyanation of 1,3-Dienes Biswajit Saha and T. V. Rajan

  18. Non-Sintered Nickel Electrode

    DOE Patents [OSTI]

    Bernard, Patrick (Massy, FR); Dennig, Corinne (Asnieres sur Seine, FR); Cocciantelli, Jean-Michel (Bordeaux, FR); Alcorta, Jose (Bordeaux, FR); Coco, Isabelle (Dax, FR)

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  19. Survey of mercury, cadmium and lead content of household batteries

    SciTech Connect (OSTI)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  20. Collecting battery data with Open Battery Gareth L. Jones1

    E-Print Network [OSTI]

    Imperial College, London

    Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

  1. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  2. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  3. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  4. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  5. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  6. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    L. C. , R. , Costs of Lithium-Ion Batteries for Vehicles. Inpast two decades, lithium-ion batteries have emerged as anMore recently, lithium-ion batteries have been employed in

  7. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    of a Vanadium Redox-Flow Battery to Maintain Power Quality,"Fuel System Using Redox Flow Battery," ed: WO Patentand D. B. Hickey, "Redox Flow Battery System for Distributed

  8. Metal pad instabilities in liquid metal batteries

    E-Print Network [OSTI]

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  9. Environmental Health & Safety will help you properly dispose of and recycle your batteries & CFLs regardless

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    Environmental Health & Safety will help you properly dispose of and recycle your batteries & CFLs regardless of type. All batteries (rechargeable or single use) have a finite life span and will eventually need to be properly disposed of and recycled. Many batteries are considered "Hazardous Waste

  10. Friction welded battery component

    SciTech Connect (OSTI)

    Bowen, G.K.; Zagrodnik, J.P.

    1990-07-31

    This patent describes a battery component for use in a flow battery containing fluid electrolyte. It comprises: first and second bond ribs disposed on opposite sides of and defining a channel and respective primary flash traps disposed adjacent the bond ribs opposite the channel.

  11. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  12. Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries

    E-Print Network [OSTI]

    Dutta, Indranath

    Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries 1. Shao Y, X Wang, MH storage in vanadium redox flow batteries." Journal of Power Sources 195(13):4375-4379. 2. Shao Y, MH nanotube electrodes for redox flow batteries." Electrochemistry Communications 11(10):2064-2067. doi:10

  13. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect (OSTI)

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  14. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    image. Chapter 2 – Relationship Between Morphology and Conductivity of Block- Copolymer Based Battery

  15. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  16. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  17. SYMPOSIUM DE GENIE ELECTRIQUE (SGE'14) : EF-EPF-MGE 2014, 8-10 JUILLET 2014, ENS CACHAN, FRANCE Intgration d'une batterie circulation pour lisser la

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Cet article propose d'utiliser une batterie à circulation ou « flow battery » pour faciliter la'énergie (ESS) ont été étudiés pour être associés à une hydrolienne dans [6]. La technologie de type « flow » batterie (batterie à circulation d'électrolyte) apparaît très appropriée pour le stockage de l

  18. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  19. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  20. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  1. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  2. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  3. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  4. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  5. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  6. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  7. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  8. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  9. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  10. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  11. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery charging and discharging. Researchers first charged commercial-grade battery cells to 50% full in 30 minutes, mimicking real world conditions. Then, the battery cell...

  12. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    film lithium and lithium-ion batteries. Solid State Ionicselectrolytes for lithium-ion batteries. Advanced Materialsand side reactions in lithium-ion batteries. Journal of the

  14. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  15. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  16. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

  17. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  18. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks...

  19. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of sodium-nickel chloride battery at temperatures lower than 200°C reduces cell degradation and improves the cyclability. One of the main technical issues in terms of operating this battery at intermediate temperatures such as 175°C is the poor wettability of sodium melt on ?”-alumina solid electrolyte (BASE) causing reduced active area and limited charging . In order to overcome the problem related to poor wettability of Na melt on BASE at 175°C, Pt grid was applied on the anode side of BASE using a screen printing technique. Deeper charging and improved cycling behavior was observed on the cells with metalized BASEs due to extended active area.

  20. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2014-01-01

    Operation of the sodium-nickel chloride battery at temperatures below 200°C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on ?”-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175°C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  1. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  2. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  3. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  4. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  5. Nickel aluminide alloys with improved weldability

    DOE Patents [OSTI]

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  6. Nickel aluminide alloys with improved weldability

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); Goodwin, Gene M. (Lenior City, TN)

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  7. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  8. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  9. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer battery, lithium-ion batteries, and lithium-basedElectrolyte For Lithium-Ion Rechargeable Batteries," LithiumK. Ozawa, "Lithium-ion Rechargeable Batteries with LiCo0 and

  10. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  11. Ductile filler metal alloys for welding nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); McNabb, Jeffrey D. (Lenoir City, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2003-04-08

    Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

  12. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  13. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  14. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  15. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  16. Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes

    SciTech Connect (OSTI)

    Cheng Jipeng . E-mail: mseem@zju.edu.cn; Zhang Xiaobin; Ye Ying

    2006-01-15

    Nickel nanoparticles were prepared and uniformly supported on multi-walled carbon nanotubes (MWCNTs) by reduction route with CNTs as a reducing agent at 600 deg. C. As-prepared nickel nanoparticles were single crystalline with a face-center-cubic phase and a size distribution ranging from 10 to 50 nm, and they were characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). These nickel nanoparticles would be coated with graphene layers, when they were exposed to acetylene at 600 deg. C. The coercivity values of nickel nanoparticles were superior to that of bulk nickel at room temperature.

  17. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  18. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  19. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  20. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  1. Safe battery solvents

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  2. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  3. Gold-nickel-titanium brazing alloy

    DOE Patents [OSTI]

    Mizuhara, Howard (Hillsborough, CA)

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  4. Battery switch for downhole tools

    DOE Patents [OSTI]

    Boling, Brian E. (Sugar Land, TX)

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  5. Flow Batteries A Historical Perspective

    E-Print Network [OSTI]

    Flow Batteries A Historical Perspective Robert F. Savinell Case Western Reserve University Department of Chemical Engineering DOE Flow Battery Workshop March 2012 #12;2 OUTLINE ·The first flow cell? ·Review articles- documented progress ·Early NASA Work- some learning ·Fuel Cell and Flow Battery

  6. Additive for iron disulfide cathodes used in thermal batteries

    DOE Patents [OSTI]

    Not Available

    1982-03-23

    The invention comprises thermal batteries employing an FeS/sub 2/ depolarizer itself. A minor amount of CaSi/sub 2/ preferably 1-3% by weight is provided as an additive in the FeS/sub 2/ depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS/sub 2/ by weight generally comprises 64 to 90%.

  7. Additive for iron disulfide cathodes used in thermal batteries

    DOE Patents [OSTI]

    Armijo, James R. (Albuquerque, NM); Searcy, Jimmie Q. (Albuquerque, NM)

    1983-01-01

    The invention comprises thermal batteries employing an FeS.sub.2 depolarizer, i.e. cathode material, and the depolarizer itself. A minor amount of CaSi.sub.2 preferably, 1-3% by weight is provided as an additive in the FeS.sub.2 depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS.sub.2 by weight generally comprises 64-90%.

  8. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    DOE Patents [OSTI]

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  9. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  10. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  11. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  12. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  13. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  14. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  15. Electrolyte for zinc bromine storage batteries

    SciTech Connect (OSTI)

    Ando, Y.; Ochiai, T.

    1985-04-09

    A negative electrolyte for electrolyte circulation-type storage batteries has a composition basically comprising zinc bromide as an active material and this active material is mixed with specified amounts of quaternary ammonium bromides of heterocyclic compounds such as morpholine, pyridine and pyrrolidine or ammonia as a bromine complexing agent and a dendrite inhibitor with or without specified amounts of Sn/sup 2 +/ and Pb/sup 2 +/.

  16. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn?O?). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn?O? as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  17. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  18. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    SciTech Connect (OSTI)

    Kim, Dong Soo; Lee, Hee Chul [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni{sup 3+} ions is found to increase with the O{sub 2} ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni{sup 3+} ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  19. From carbon nanobells to nickel nanotubes

    SciTech Connect (OSTI)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  20. THE DEVELOPMENT OF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT AND CRYOGENIC APPLICATIONS

    E-Print Network [OSTI]

    Haddick, Glen T.

    2011-01-01

    OF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT ANDOF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT ANDOF NICKEL-FREE AUSTENITIC STAINLESS STEELS FOR AMBIENT AND

  1. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  2. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  3. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  4. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  5. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  6. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. A Lighting Solution using Discarded Laptop Batteries

    E-Print Network [OSTI]

    Toronto, University of

    UrJar A Lighting Solution using Discarded Laptop Batteries Vikas Chandan vchanda4@in.ibm.com IBM year 3 #12;Li-Ion Batteries Li-Ion batteries power laptops, tablets and phones, form a key constituent of e-waste IBM India produced ~10 tons of discarded laptop batteries (2013) Recycling Li-Ion batteries

  8. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  9. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low of these batteries can be improved by using the concept of a smart battery system (SBS). In a SBS, battery data from

  10. An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics

    E-Print Network [OSTI]

    Pedram, Massoud

    An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

  11. Elastic moduli of nickel and iron aluminides 

    E-Print Network [OSTI]

    Manjigani, Sreedhar

    1993-01-01

    A research program has been completed on the dynamic elastic modulus measurements for several nickel and iron aluminide based intermetallics. The PUCOT (piezoelectric ultrasonic composite oscillator technique) was used for this purpose. Stress...

  12. Negative electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  13. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  14. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  15. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery...

  17. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atfor use in lithium-ion batteries. Thermal stabilities andFor rechargeable lithium-ion batteries, we require that any

  18. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    in High-Power Lithium-Ion Batteries for Use in Hybridas Cathodes for Lithium-Ion Batteries. Chem. Mater. 2011,seen in magnesium or lithium ion batteries would operate at

  19. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01

    battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

  20. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  1. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles

    E-Print Network [OSTI]

    Firestone, Jeremy

    i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed more robust. This report analyzes V2G power from three types of EDVs--battery, hybrid, and fuel cell and prices are high. Fuel cell and hybrid EDVs are sources of new power generation. For economic reasons

  2. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Power Management 101 ! Motivation and principle of operation " Rationale: Power and Smart BatteriesBattery Characteristics and Smart Batteries ! Nonlinear characteristics of batteries " Rate capacity effect # The total energy capacity that a battery can deliver during its lifetime depends

  3. Response of Lithium Polymer Batteries to Mechanical Loading

    E-Print Network [OSTI]

    Petta, Jason

    Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 #12;Outline · Motivation · Battery Structure · Testing and Results · Conclusions #12;Motivation · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery

  4. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  5. Development of Industrially Viable Battery Electrode Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  6. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  7. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  8. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (USCAR). It also works directly with industry battery and material suppliers through competitive research and development awards. To learn how batteries are used...

  9. New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575

    SciTech Connect (OSTI)

    Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko

    2000-07-01

    This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

  10. Flow Battery Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast(ER1)Flow Battery

  11. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  12. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  13. A Desalination Battery Mauro Pasta,

    E-Print Network [OSTI]

    Cui, Yi

    A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia Information ABSTRACT: Water desalination is an important approach to provide fresh water around the world demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

  14. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Alex A. Zozulya; Dana Z. Anderson

    2013-08-06

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

  15. Zinc-bromine battery technology

    SciTech Connect (OSTI)

    Bellows, R.; Grimes, P.; Malachesky, P.

    1983-01-01

    Some progress in the field of zinc-bromine batteries is reviewed, and a number of successes and some difficulties are related. The direction of work includes, among other areas, testing of parametric and large batteries. The program includes the control of electrode planarity through electrode thickness and electrode support, improved cathode activation coatings to increase and maintain performance near the end of battery capacity, reduced retention of bromine in the battery cell stock at shutdown to lower capacity loss and improve sealing techniques. Projected factory cost should be competitive with lead-acid batteries. Progress has been demonstrated in scale-up and performance, as well as improving the life of the system. (LEW)

  16. Nickel aluminides: Breaking into the marketplace

    SciTech Connect (OSTI)

    Krause, C.

    1995-12-31

    Nurtured by ORNL researchers for almost 15 years, nickel aluminides may have found their niche. ORNL`s modified nickel aluminides are receiving considerable attention by the heat-treating industry in the United States and may have arrived just in the nick of time to make some companies more competitive. Nickel aluminides are intermetallic materials that have long been considered potentially useful because, thanks to their ordered crystal structure, they are very strong and hard and melt only at very high temperatures. But they had a serious weakness: they were too brittle to be shaped into reliable components. Then, in 1982, ORNL researchers led by Chain T. Liu in the Metals and Ceramics Division found the secret recipe for producing a ductile nickel aluminide alloy: add trace amounts of a few alloying elements in the right proportion. It was like turning peanut brittle into taffy. Their most important discovery was that the addition of a small amount of boron (200 parts per million) to a nickel aluminide alloy (Ni{sub 3}Al) makes the alloy highly ductile at room temperature. To address the safety concerns of the alloy preparation industry, Vinod Sikka and Joseph Vought developed a new process in collaboration with Seetharama Deevi, who was on a 1-year sabbatical at ORNL from the Research Center at Philip Morris in Richmond, Virginia. The development is called the Exo-Melt process.

  17. Dietary chromium and nickel enhance UV-carcinogenesis in skin...

    Office of Scientific and Technical Information (OSTI)

    chromium and nickel enhance UV-carcinogenesis in skin of hairless mice The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1...

  18. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    in design of mobile embedded sys- tems today is the battery lifetime for a given size and weight in the energy densities of the battery technologies, estimating the lifetime and energy delivered by the battery applications. Stochastic battery models [6, 8] have also been proposed which are faster than to the PDE model

  19. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  20. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

  1. Microstructural, mechanical and weldability assessments of the dissimilar welds between ??- and ??-strengthened nickel-base superalloys

    SciTech Connect (OSTI)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of ??- and ??-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. ??-Strengthened nickel-base Alloy 500 and ??-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of ??-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of ??- and ??-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of ??- and ??-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type, morphology and distribution of the phases are thoroughly investigated. • Dissimilar welding is successfully performed without occurrence of any hot cracks.

  2. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  3. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  4. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  5. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  6. Breakthrough Research on Platinum-Nickel Alloys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because they can deliver high power in a relatively small, lightweight device. Unlike batteries, PEM fuel cells do not require recharging, but rely on a supply of hydrogen and...

  7. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  8. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  9. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  10. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  11. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  12. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    microdiffraction. Lithium ion batteries have made a greatthose used in lithium-ion batteries. Dynamic potentiometricrechargeable lithium ion batteries consist of many layers of

  13. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variouselectrodes for lithium-ion batteries, Journal of MaterialsAdvances in Lithium-Ion Batteries (Chapter 4), Kluwer

  14. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    2000). Costs of Lithium-Ion Batteries for Vehicles, (ANL/Lithium ion Batteries 2.1.1 Lithium versus Lithium ion Batteries Lithium systems

  15. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  16. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  17. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

  18. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed for studying battery failures points to a potential next step in extending lithium ion battery lifetime and capacity, opening a path to wider use of these batteries...

  19. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  20. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  1. Manufacturing of Protected Lithium Electrodes for Advanced Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A...

  2. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

  3. Psychometric properties of the penn computerized neurocognitive battery

    E-Print Network [OSTI]

    Moore, TM; Reise, SP; Gur, RE; Hakonarson, H; Gur, RC; Gur, RC

    2015-01-01

    a computerized neurocognitive battery in children age 8 –21.based neurocog- nitive battery. Therapeutic Hypothermia anda standardized neurocognitive battery. Neuropsychology, 28,

  4. Electroactive materials for rechargeable batteries

    SciTech Connect (OSTI)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  5. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  6. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  7. Delayed Nickel Decay in Gamma Ray Bursts

    E-Print Network [OSTI]

    G. C. McLaughlin; R. A. M. J. Wijers

    2002-05-19

    Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce an observable gamma ray burst due to beaming.

  8. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect (OSTI)

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  9. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  10. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  11. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  12. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  13. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  14. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  15. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  16. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  17. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Turner, John A; Allu, Srikanth; Elwasif, Wael R; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-01-01

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  18. Switchable mirrors based on nickel-magnesium films

    SciTech Connect (OSTI)

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  19. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  20. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optimizing better battery materials. A Battery of Tests for Better Batteries The prosaic battery has often been overlooked as little more than an afterthought in a consumer-driven...

  1. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect (OSTI)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  2. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery

    E-Print Network [OSTI]

    Jo, Moon-Ho

    , such as fuel cells and secondary batteries. Here we report a coin-type Si nanowire NW half-cell Li-ion battery is the central research subject in various energy conversion systems, such as solar cells, fuel cells must be optimally coordinated.7 In this respect, Si nanowire NW arrays can serve as the high capacity

  3. Improving nickel metal hydride batteries through research in negative electrode corrosion control and novel electrode materials 

    E-Print Network [OSTI]

    Alexander, Michael Scott

    1997-01-01

    electrode materials. In order to fully understand the processes involved in the corrosion study, tests were carried at Brookhaven National Laboratory using X-ray Absorption Near Edge Spectroscopy. These tests showed that Zn prevented the corrosion of Ni...

  4. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  5. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  6. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  7. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.with battery powered microelectromechanical systems (MEMS),

  8. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    battery cathodes for portable electronics (and is even the material used in batteries for the original Tesla

  9. Extended abstracts: seventh battery and electrochemical contractors' conference

    SciTech Connect (OSTI)

    Sheppard, D.; Hurwitch, J. (comps.)

    1985-11-01

    Seventy-two papers are arranged under the following session headings: EPRI storage program, review of key program activities, sodium/sulfur battery development, advanced battery research (two sessions), flow battery development, sodium/sulfur battery research, systems analysis and technology transfer, performance and testing (two sessions), flow battery research, metal/air batteries, and fuel cells. (DLC)

  10. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  11. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the...

  12. Electrolyte Model Helps Researchers Develop Better Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    batteries are leading candidates to play an important role in the transition to a renewableBatteries by William Rodgers Hudson Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jeffrey Long, Chair Increasing interest in renewable

  14. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  15. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07

    , have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard...

  16. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  17. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  18. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  19. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion...

  1. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-Model for Aging of Lithium-Ion Battery Cells. Journal of The

  2. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles

    SciTech Connect (OSTI)

    Barzegar Vishlaghi, M. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Farzalipour Tabriz, M., E-mail: meisam.fa@gmail.com [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammad Moradi, O. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-07-15

    Highlights: ? Electrohydrodynamic atomization (EHDA) assisted chemical synthesis of nickel nanoparticles is reported. ? Substituting water with non-aqueous media prevents the formation of nickel hydroxide. ? Size of particles decreased from 10 to 20 nm down to 2–4 nm by using multi-jet mode. ? Synthesized nanoparticles have diffraction patterns similar to amorphous materials. -- Abstract: In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UV–Visible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.

  4. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  5. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  6. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  7. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  8. Review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  9. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  10. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  11. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  12. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  13. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  14. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    Batteries for Vehicular Applications Venkat Srinivasan Lawrence Berkeley National Lab 1 Cyclotron Road, MS 70R 0108B Berkeley, CA 94720 Abstract. This paper will describe battery technology), and plug-in- hybrid-electric vehicles (PHEV). The present status of rechargeable batteries

  15. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries/SVO batteries. A case study highlighting the rich chemistry and electrochemistry of the Li/SVO system providing

  16. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  17. 0 INFORMATION BATTERIES-FOR BIOTELEMETRY

    E-Print Network [OSTI]

    Thomas, David D.

    A -BIAC 0 INFORMATION MODULE MIO BATTERIES-FOR BIOTELEMETRY AND OTHER APPLICATIONS Prepared by go to the Applications Engineering Department of P. R. Mallory Battery Company for supplying. High vacuum or pressures of 5C00 psi have no detectable effect on mercury batteries. Momentary short

  18. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transpar- ent and have to be thick

  19. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow 2011Year #12;Flow Battery Research at PNNL and Sandia #12; Iron-containing "MetIL" Redox Couples for Flow Batteries, Sandia Sandia has developed

  20. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  1. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  2. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  3. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  4. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    1 Adaptive Battery Charge Scheduling with Bursty Workloads Dylan Lexie , Shan Lin, and Jie Wu.wu@temple.edu Abstract--Battery-powered wireless sensor devices need to be charged to provide the desired functionality after deployment. Task or even device failures can occur if the voltage of the battery is low

  5. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect (OSTI)

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  6. Effects of nickel, chromate, and arsenite on histone 3 lysine...

    Office of Scientific and Technical Information (OSTI)

    LIFE SCIENCES; ARSENIC; CARCINOMAS; CELL DIVISION; CHROMATES; CHROMIUM; DNA; GENES; LUNGS; LYSINE; METHYLATION; MICROSCOPY; NICKEL; OCCUPATIONAL EXPOSURE Word Cloud More Like...

  7. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  8. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  9. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  10. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  11. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  12. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5type structures, respectively, and in which M is one or more metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  13. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0type structures, respectively, and in which M is one or more metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  14. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  15. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  16. Toxicity of nickel and nickel electroplating water to the freshwater cladoceran Moina macrocopa

    SciTech Connect (OSTI)

    Wong, C.K.; Wong, P.K.; Tao, H. (Chinese Univ. of Hong Kong, Shatin (Hong Kong))

    1991-09-01

    The present study investigates the effects of Ni{sup 2+} and other components of nickel electroplating water on the survival and reproductive capacity of the cladoceran Moina macrocopa, a common inhabitant of small ponds and rice paddies in Hong Kong and Southern China.

  17. Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle-battery systems

    SciTech Connect (OSTI)

    Malachesky, P.A.; Bellows, R.J.; Einstein, H.E.; Grimes, P.G.; Newby, K.; Young, A.

    1983-01-01

    The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirements of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge. Based on these studies, low profile, 12 dm/sup 2/ bipolar cell components have been developed which are readily incorporated into a variety of motive power and stationary energy storage system designs.

  18. A materials database for Li(Si)/FeS sub 2 thermal batteries

    SciTech Connect (OSTI)

    Guidotti, R.A.

    1990-09-01

    The establishment of a database for the materials that are used in production Li(Si)/FeS{sub 2} thermal batteries designed at Sandia National Laboratories is described. The database is a Hewlett-Packard (HP) network type (IMAGE) designed to run on an HP3000 computer. Heavy emphasis is placed on the use of screen forms for entry, editing, and retrieval of data. Custom screen forms were used for the various materials in the battery. For the purposes of the materials database, each battery is composed of four mixes: cathode, separator, anode, and heat (pyrotechnic) powders. A consistent lot-numbering system was adopted for both the mixes and the discrete components that make up the mixes. Each serial number of a particular battery is linked to the lot numbers of the four mixes used in the battery. Each mix, in turn, is linked to the lot numbers of the discrete components that are contained within the mix. This allows traceability of each of the components used in any given serial number of a particular battery. The materials database provides the necessary traceability, as required by the Department of Energy, for the lifetime of the program associated with the battery. 3 refs., 23 figs.

  19. Proton Diffusion in Nickel Hydroxide Prediction of Active Material Utilization

    E-Print Network [OSTI]

    Weidner, John W.

    Proton Diffusion in Nickel Hydroxide Prediction of Active Material Utilization Sathya Motupally of the active material is controlled by the diffusion rate of protons through the film. This hypothesis- tion by including the effect of proton diffusion through the active material of the nickel electrode.6

  20. Computational Benchmarking in Biomimetic Nickel, Copper, and Iron Complexes 

    E-Print Network [OSTI]

    Brothers, Scott Michael

    2012-02-14

    in the absence of experimental data. In this dissertation, such techniques serve to elucidate the observed reactivity or electronic character of both nickel and copper bound in square planar N?S? ligand fields, and of {Fe(NO)?} units, respectively. Nickel...

  1. Nickel Sequestration in a Kaolinite-Humic Acid Complex

    E-Print Network [OSTI]

    Sparks, Donald L.

    Nickel Sequestration in a Kaolinite-Humic Acid Complex M A A R T E N N A C H T E G A A L * A N D D to elucidate the effect of humic acid (HA) coatings on the formation and stabilization of nickel precipitates of ubiquitous coating materials such as humic acids. Introduction The mobility and bioavailability of trace

  2. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors

    E-Print Network [OSTI]

    Wood, Mary. H.; Welbourn, Rebecca J. L.; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M.

    2015-06-07

    period of 24 hours to ensure equilibration was attained. The solid was then separated by centrifugation, and the final concentration of the supernatant in each case measured using a Total Organic Carbon Analyser (Sievers InnovOx 3.00). PNR PNR... the reflectivity of the two aforementioned spin states without polarisation analysis. The beam footprint on the sample was fixed to (35 x 35) mm2 and the angular divergence of the incoming beam was ??/? = 3 % (FWHM). Two nickel-sputtered silicon substrates (from...

  3. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  4. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T. (5423 Vista Sandia, NE., Albuquerque, NM 87111)

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  5. Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Yang, B; Prakash, GKS; Narayanan, SR

    2012-01-01

    Rechargeable iron-based alkaline batteries such as iron - air and nickel - iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.021301jes] All rights reserved.

  6. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  7. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  8. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  9. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  10. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  11. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  12. Online Prediction of Battery Lifetime for Embedded and Mobile Devices

    E-Print Network [OSTI]

    Krintz, Chandra

    Online Prediction of Battery Lifetime for Embedded and Mobile Devices Ye Wen, Rich Wolski, and compare it to two similar battery prediction technologies: ACPI and Smart Battery. We employ twenty is a critical resource for battery-powered embedded systems and mobile devices. As such, battery life must

  13. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  14. A Battery Health Monitoring Framework for Planetary Rovers

    E-Print Network [OSTI]

    Daigle, Matthew

    A Battery Health Monitoring Framework for Planetary Rovers Matthew Daigle NASA Ames Research Center Moffett Field, CA 94035 chetan.s.kulkarni@nasa.gov Abstract--Batteries have seen an increased use source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries

  15. Heavy reflector experiments in the IPEN/MB-01 reactor: Stainless steel, carbon steel and nickel

    SciTech Connect (OSTI)

    Santos, Adimir dos; Andrade e Silva, Graciete Simoes de; Jerez, Rogerio; Liambos Mura, Luis Felipe; Fuga, Rinaldo [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242 - CEP 05508-000 Sao Paulo, SP (Brazil)

    2013-05-06

    New experiments devoted to the measurements of physical parameters of a light water core surrounded by a heavy reflector were performed in the IPEN/MB-01 research reactor facility. These experiments comprise three sets of heavy reflector (SS-304, Carbon Steel, and Nickel) in a form of laminates around 3 mm thick. Each set was introduced individually in the west face of the core of the IPEN/MB-01 reactor. The aim here is to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check for the SS-304 reflector experiment. The experimental results comprise critical control bank positions, temperatures and reactivities as a function of the number of the plates. Particularly to the case of Nickel, the experimental data are unique of its kind. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this nuclear data library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  16. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  18. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  19. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect (OSTI)

    Chen, Xiao [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhang, Bingsen [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Li, Chuang; Shao, Zhengfeng [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Su, Dangsheng [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Williams, Christopher T. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States)] [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  20. Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films

    E-Print Network [OSTI]

    Reed, Mark

    Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform nanotubes grown on patterned nickel nanodots and uniform thin films by plasma-enhanced chemical vapor on patterned nickel nanodots and uniform thin films is different. During growth of carbon nanotubes, a nickel

  1. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  2. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  3. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  4. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  5. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full ion battery-super capacitor hybrid system is preferred over a lithium ion battery for higher rates ion battery ($100 W/kg). Also, since the inter- nal resistance of the super capacitor is smaller than

  6. Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    1 Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh. Monitoring and charge control of these batteries can be improved by using the concept of a smart battery system (SBS). In the present work, a smart battery monitor has been designed and manufactured

  7. Lithium-titanium-oxide anodes for lithium batteries

    DOE Patents [OSTI]

    Vaughey, John T. (Elmhurst, IL); Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Jansen, Andrew N. (Bolingbrook, IL); Chen, Chun-hua (Westmont, IL)

    2001-01-01

    A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0battery comprising an plurality of cells, electrically connected, each cell comprising a negative electrode, an electrolyte and a positive electrode, the negative electrode consisting of the spinel-type structure disclosed.

  8. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  9. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOE Patents [OSTI]

    Engelhaupt, Darell E. (Kansas City, MO)

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  10. NO. REV. NO. LSPE THERMAL BATTERY TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

  11. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Rodney Shane

    2011-09-30

    This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  12. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing lithium with other metals with multiple charges could greatly increase battery capacity. But first researchers need to understand how to keep multiply charged...

  13. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    to 1) - a New Cathode Material for Batteries of High- Energyefforts to develop new high-energy materials such as silicon

  14. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Environmental Management (EM)

    batteries enable electric drive vehicles to consume less petroleum and produce less pollution than conventional vehicles. At full capacity, the EnerG2 plant will produce enough...

  15. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the porous electrode. Using the STXM lithium maps and the high-resolution TEM images, researchers found that LFP battery particles do not charge simultaneously....

  16. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  17. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    abuse tolerant lithium-ion (Li-ion) batteries is an important step in electrifying the drive train and facilitating widespread adoption of HEVs and PHEVs. Nanocomposite...

  18. Advanced Battery Materials Characterization: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success stories from the High Temperature Materials...

  19. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  20. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  1. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  2. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  3. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  4. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  5. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  6. Automated Battery Swap and Recharge to Enable Persistent UAV Missions

    E-Print Network [OSTI]

    Toksoz, Tuna

    This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

  7. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

  8. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    system and second-life lithium-ion battery energy storage. Atrade-off between lithium-ion battery aging and economicIncorporating an empirical lithium-ion battery capacity loss

  9. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    silicon nanowires for lithium ion battery anode with longfor high-performance lithium-ion battery anodes. Appl. Phys.as the anode for a lithium-ion battery with high coulombic

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

  11. Team Led by Argonne National Lab Selected as DOE's Batteries...

    Office of Environmental Management (EM)

    Building a Better Battery for Vehicles and the Grid New Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid...

  12. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    1/3 O 2 for advanced lithium-ion batteries. J. Power Sourcesof LiFePO4 based lithium ion batteries. Mater. Lett. 2007,negative electrode in lithium-ion batteries: AFM study in an

  13. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,composite anodes for lithium-ion batteries. J. Mater. Chem.cathode materials for lithium-ion batteries. J. Mater. Chem.

  14. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  15. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. ActaO 2 cathode material for lithium ion battery: Dependence of

  16. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    negative electrode in lithium-ion batteries: AFM study in anJ. R. , Alloy design for lithium-ion battery anodes. J.Carbon materials for lithium-ion rechargeable batteries.

  17. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  18. A Bayesian nonparametric approach to modeling battery health

    E-Print Network [OSTI]

    Doshi-Velez, Finale P.

    The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

  19. Battery Lifetime-Aware Automotive Climate Control for Electric Vehicles

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    Battery Lifetime-Aware Automotive Climate Control for Electric Vehicles Korosh Vatanparvar) optimization involves stringent con- straints on driving range and battery lifetime. Sophisticated embedded systems and huge number of computing resources have enabled re- searchers to implement advanced Battery

  20. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

  1. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  2. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    than converted into useful energy. Battery charging systemscharging – directly useful energy or “battery energy”) –

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  4. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING

    SciTech Connect (OSTI)

    None

    2012-12-20

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, has completed the collection, sample analysis, and review of analytical results to benchmark the concentrations of gross alpha-emitting radionuclides, gross beta-emitting radionuclides, and technetium-99 in commercial grade nickel. This report presents methods, change management, observations, and statistical analysis of materials procured from sellers representing nine countries on four continents. The data suggest there is a low probability of detecting alpha- and beta-emitting radionuclides in commercial nickel. Technetium-99 was not detected in any samples, thus suggesting it is not present in commercial nickel.

  5. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect (OSTI)

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ? 135 ?m) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ? 1.5 ?m) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ? 470 MPa that was accompanied by limited ductility (? 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  6. Graphene-based battery electrodes having continuous flow paths...

    Office of Scientific and Technical Information (OSTI)

    Graphene-based battery electrodes having continuous flow paths Citation Details In-Document Search Title: Graphene-based battery electrodes having continuous flow paths Some...

  7. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  8. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  9. X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy Reveals How Crystal Mechanics Drive Battery Performance Print Rechargeable lithium-ion batteries power most portable electronics and are becoming more widely used in...

  10. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  11. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. Nanocomposite Materials for Lithium-Ion Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocompositematerialsliion.pdf More Documents & Publications Progress of DOE...

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing...

  14. GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery...

    Office of Science (SC) Website

    chemistry of an actual commercial battery while charging and discharging in real time. Additional studies of battery cross-sections at APS helped engineers further...

  15. The Science of Battery Degradation. Sullivan, John P; Fenton...

    Office of Scientific and Technical Information (OSTI)

    to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery...

  16. Fact Sheet: Sodium-Beta Batteries (October 2012) | Department...

    Office of Environmental Management (EM)

    Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for...

  17. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  18. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  19. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be Battery Game-Changer Electrolyte Genome Could Be Battery Game-Changer The Materials Project screens molecules to accelerate electrolyte discovery April 15, 2015 Julie Chao,...

  20. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm...

  1. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with Conducting...

  3. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    materials for advanced lithium-ion batteries. J. Powersilicon nanowires for lithium ion battery anode with longal. High-performance lithium-ion anodes using a hierarchical

  4. ORNL, Industry to Collaborate in Advanced Battery Research |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new...

  5. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  6. Battery Cathode Developed by Argonne Powers Plug-in Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacities than conventional cathode materials, resulting in batteries with higher energy density. Because the batteries can store more energy, manufacturers can either use...

  7. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

  8. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  9. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  10. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies...

  11. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  12. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

  14. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  15. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  16. Overview and Progress of the Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen...

  17. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  18. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  19. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  20. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  1. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

  2. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  3. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview2.pdf More...

  4. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies...

  5. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Environmental Management (EM)

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  6. Overview and Progress of the Battery Testing, Analysis, and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  8. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components...

  9. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    PHEV from which those battery requirements flow. The circlesbattery technologies do not meet the requirements that flowflow from them. In summary, policymakers, automakers, battery

  10. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    PHEV from which those battery requirements flow. The circlesbattery technologies do not meet the requirements that flowflow from them. In summary, policymakers, automakers, battery

  11. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  12. Fault-tolerant battery system employing intra-battery network architecture

    DOE Patents [OSTI]

    Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

    2000-01-01

    A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

  13. Atomistic computer simulation analysis of nanocrystalline nickel-tungsten alloys

    E-Print Network [OSTI]

    Engwall, Alison Michelle

    2009-01-01

    Nanocrystalline nickel-tungsten alloys are harder, stronger, more resistant to degradation, and safer to electrodeposit than chromium. Atomistic computer simulations have previously met with success in replicating the ...

  14. Solidification/stabilization of simulated uranium and nickel contaminated sludges 

    E-Print Network [OSTI]

    Ramabhadran, Sanjay

    1996-01-01

    Research missions in nuclear energy conducted by the U.S. Department of Energy facilities have generated large volumes of mixed wastes with hazardous and radioactive components. Uranium and nickel are the primary contaminants of concern...

  15. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  16. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  17. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono, MexicoBanhamOil HomeBattery

  18. Sandia Energy - Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied TurbulentAssessmentBattery

  19. Geogenic Nickel Speciation in Serpentine Soils and Its Relationship to Nickel Uptake in Hyperaccumulator Plants. Tuesday, November 3, 2009: 3:00 PM

    E-Print Network [OSTI]

    Sparks, Donald L.

    Geogenic Nickel Speciation in Serpentine Soils and Its Relationship to Nickel Uptake Siebecker1, Tiziana Centofanti2, Rufus Chaney2 and Donald Sparks1, (1)Plant and Soil Sciences, Univ to extract pollutants from soil. Some can accumulate up to 20g/kg nickel in dry shoot biomass. This ability

  20. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  1. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  2. The Internal Resistance of a Battery

    E-Print Network [OSTI]

    Singal, Ashok K

    2013-01-01

    The standard exposition of the internal resistance of a battery, as given in the undergraduate text-books, is lacking in proper physics. The battery has a tendency to maintain the electric potential difference across its terminals equal to its chemical potential, and in an open circuit, when no electric current flows, these two do match. However in a closed circuit, a drop in electric potential across the battery terminals is inevitable for a steady flow of electric current throughout the circuit, because the chemical reactions driving the electric current within the battery can proceed only if the electric potential at its terminals differs from the chemical potential. It is shown that for small voltage changes, the current passing through the battery is linearly proportional to the change in potential from the open-circuit value (i.e., its chemical potential), giving rise to a semblance of an internal resistance in series with the external resistance.

  3. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  4. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    into the battery market. Therefore the standard carbonaceouselectric vehicle demand market in our modern life, the

  5. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical behaviors in lithium-ion batteries? · Current work ­ Mechanical behaviors the separator ­ How do we test

  6. Engineering design factors in flowing electrolyte bipolar batteries

    SciTech Connect (OSTI)

    Grimes, P.; Bellows, R.; Malachesky, P.

    1984-08-01

    Flowing electrolyte bipolar batteries allow a system designer great flexibility in fitting the batteries to applications. A mathematical model has been developed describing flow battery characteristics to aid the designer. This model can be used to compute the interrelationships of power, energy, volume, number of cells, cell area, capacity, weight, etc. Examples from zinc bromine battery systems are given.

  7. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Elspass, C.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-01-01

    The design, testing, operation, and state of development of zinc-bromine batteries are discussed. (LEW)

  8. U.S. Battery R&D Progress and Plans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Failure Mitigation Advanced Battery Development Performance Optimization Cost Reduction Cell Design & Electrochemistry Optimization Power & Capacity...

  9. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    photovoltaic systems with battery storages control based onthat the energy stored in the battery is bounded withinthe capacity of the battery. Eq. 3b constrains the battery

  10. Aalborg Universitet Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    output type sources such as photovoltaic (PV) systems and secondary batteries. In this paper, several communication interface between the central controller and sources in order to collect data needed for adaptive and photovoltaic (PV) can be virtually considered as completely controllable, within the limits imposed by natural

  11. System for agitating the acid in a lead-acid battery

    DOE Patents [OSTI]

    Weintraub, Alvin (Schenectady, NY); MacCormack, Robert S. (Glenville, NY)

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  12. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  13. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-01-01

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  14. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  15. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  16. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  17. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  18. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  19. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  20. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.