Powered by Deep Web Technologies
Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

2

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network (OSTI)

active material for Li-ion battery, Fe2OF4. ElectrochemistryIron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-raymaterials for Li-ion battery……………………………133 8.2. P2 type

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

3

Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries  

E-Print Network (OSTI)

Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries estimation Li-ion battery Robustness analysis a b s t r a c t Battery State of Charge (SOC) estimation. This paper analyzes the robustness of SOC estimation algorithms for two types of Li-ion batteries under

Peng, Huei

4

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

5

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

6

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network (OSTI)

in a Li Ion Battery: A Solid-State NMR, X-ray Diffraction,in a Li Ion Battery: A Solid-State NMR, X-ray Diffraction,

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

7

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

8

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

9

Characterization of Materials for Li-ion Batteries: Success Stories...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion...

10

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

11

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

12

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Support of 5 V Li-ion Chemistries Vehicle Technologies Office Merit Review 2014: Fluorinated Electrolyte for 5-V Li-Ion Chemistry High Voltage Electrolyte for Lithium Batteries...

13

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

14

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

15

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

E-Print Network (OSTI)

Ethylene Carbonate in Li-Ion Battery Electrolyte Guoyingof a commercial Li-ion battery electrolyte containing 2 %are an important part of Li-ion battery technology yet their

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

16

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

17

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

18

Aerosol Synthesis Of Cathode Materials For Li-Ion Batteries.  

E-Print Network (OSTI)

??Rapid advancement of technologies for production of next-generation Li-ion batteries will be critical to address the Nation's need for clean, efficient and secure transportation system… (more)

Zhang, Xiaofeng

2011-01-01T23:59:59.000Z

19

Development of High Capacity Anode for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

20

Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6  

E-Print Network (OSTI)

of LiPF 6 Salt and Li-ion Battery Electrolytes ContainingLiPF 6 in prototypical Li-ion battery solvents was studied6 and the prototypical Li- ion battery solvents EC, PC, DMC

Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of...

22

Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CellPack Level Models for Automotive Li-Ion Batteries with Experimental Validation Development of CellPack Level Models for Automotive Li-Ion Batteries with Experimental...

23

Multi-scale Characterization Studies of Aged Li-ion Battery Materials for Improved Performance.  

E-Print Network (OSTI)

?? Among various electrical energy storage devices the recent advances in Li-ion battery technology has made this technology very promising. Li-ion batteries can be used… (more)

Nagpure, Shrikant C.

2012-01-01T23:59:59.000Z

24

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

25

Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries  

E-Print Network (OSTI)

12 for High Rate Li-ion Batteries A. Jaiswal 1 , C. R. Hornenext generation of Li-ion batteries for consumer electronics

Jaiswal, A.

2010-01-01T23:59:59.000Z

26

Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4  

E-Print Network (OSTI)

thermal stability of the Li-ion battery. CONCLUSIONS CoatingPDDA. EC- AFM studies on Li-ion battery electrodes offered

Stroeve, Pieter; Vidu, Ruxandra

2004-01-01T23:59:59.000Z

27

Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries  

E-Print Network (OSTI)

of the Li-ion batteries through developing electrode materials [1e5], reducing size [6] and optimizing shape,13], as one of the main factors limiting Li-ion battery performance, has not been resolved. Fundamental the ulti- mate performance and stability. Theoretical work of Li-ion batteries has focused on macroscopic

Liu, Fuqiang

28

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries  

E-Print Network (OSTI)

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly to their high-energy density, Li ion batteries (LIBs) are attractive for these applications, and all-solid-state

Rubloff, Gary W.

29

Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally  

E-Print Network (OSTI)

Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified ABSTRACT: The tremendous growth of Li-ion batteries into a wide variety of applications is setting new applications from portable electronics to electric vehicles. A critical element of a Li-ion battery is the Li

Ceder, Gerbrand

30

Electrochimica Acta 51 (2006) 20122022 A generalized cycle life model of rechargeable Li-ion batteries  

E-Print Network (OSTI)

­discharge model to simulate the cycle life behavior of rechargeable Li-ion batteries has been developed. The model and Newman [4] made a first attempt to model the parasitic reaction in Li-ion batteries by assuming a solvent and reversible capacity loss due to the growth and dissolution of SEI film in Li-ion batteries. Ramadass et al

Popov, Branko N.

31

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network (OSTI)

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

32

Short communication Enhanced autonomic shutdown of Li-ion batteries by polydopamine  

E-Print Network (OSTI)

Short communication Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated Accepted 9 July 2014 Available online 17 July 2014 Keywords: Li-ion batteries Thermal shutdown Polyethylene binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR

Sottos, Nancy R.

33

Li-Ion and Other Advanced Battery Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

34

Identity of Passive Film Formed on Aluminum in Li-ion Battery Electrolytes with LiPF6  

E-Print Network (OSTI)

Film on Aluminum in Li-ion Battery Electrolytes with LiPFFormed on Aluminum in Li-ion Battery Electrolytes with LiPFbattery charging. From the prospective of maintaining a functioning cathode in Li-ion

Zhang, Xueyuan; Devine, T.M.

2008-01-01T23:59:59.000Z

35

Predictive Models of Li-ion Battery Lifetime (Presentation)  

SciTech Connect

Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

2014-09-01T23:59:59.000Z

36

Synthesis of Li-ion battery cathode materials via freeze granulation.  

E-Print Network (OSTI)

??Recently, enormous efforts have been done within the development of Li-ion batteries for use in portable electric devices from small scale applications such as mobile… (more)

Kasvayee, Keivan Amiri

2011-01-01T23:59:59.000Z

37

Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries  

E-Print Network (OSTI)

Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries incorporation leads to significant decrease in the temperature rise in Li-ion batteries. Graphene leads September 2013 Keywords: Battery Thermal management Graphene Phase change material a b s t r a c t Li

38

Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries  

E-Print Network (OSTI)

Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf of composite materials used in Li-ion batteries. In this paper, we develop a stochastic simulation model in 3D, Stochastic Simulation Model, Structural Analysis, Marked Point Process, Germ-Grain Model, Model Fitting

Schmidt, Volker

39

ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Li-ion Batteries for Utility Unique Li-ion Batteries for Utility Applications Daiwon Choi, Vilayanur V. Viswanathan, Wei Wang, Vincent L. Sprenkle Pacific Northwest National Laboratory 902 Battelle Blvd., P. O. Box 999, Richland, WA 99352, USA DOE Energy Storage Program Review, Washington, DC Sept. 26-28, 2012 Acknowledgment: Dr. Imre Gyuk - Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability  Investigate the Li-ion battery for stationary energy storage unit in ~kWh level.  Fabrication and optimization of LiFePO 4 / Li 4 Ti 5 O 12 18650 cell.  Li-ion battery energy storage with effective thermal management.  Improve rate and cycle life of Li-ion battery.  Screen possible new cathode/anode electrode materials and its combinations

40

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

develop the high energy high power cathode materials for LIBNew Cathode Material for Batteries of High- Energy Density.High Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nonequilibrium Phase Transformation and Particle Shape Effect in LiFePO4 Materials for Li-Ion Batteries  

E-Print Network (OSTI)

-induced nonequilibrium phenomenon in Li-ion batteries. A theoretical anal- ysis is presented to show for Li-ion batteries as power sources in transporta- tion and future energy landscape requires transformaiton in Li ion batteries, especially on meta- stable miscibility gap distortion and discharge behaviors

Liu, Fuqiang

42

Microstructure Reconstruction and Direct Evaluation of Li-Ion Battery Cathodes Fuqiang Liu* and N A Siddique  

E-Print Network (OSTI)

Microstructure Reconstruction and Direct Evaluation of Li-Ion Battery Cathodes Fuqiang Liu* and N of Texas at Arlington, Arlington, Texas 76019, USA High-capacity Li-ion batteries are among the best of the major challenges in Li-ion batteries is to improve mass transport across multiple phase interfaces

Liu, Fuqiang

43

Studies on Capacity Fade of Spinel based Li-Ion Batteries  

E-Print Network (OSTI)

Engineering University of South Carolina #12;Physical Characteristics of Cellbatt Lithium Ion Battery Engineering University of South Carolina #12;Change in discharge capacity for Li-ion cells charged for Electrochemical Engineering University of South Carolina #12;Experimental Full Cell studies on CellBatt® Li-ion

Popov, Branko N.

44

Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6  

E-Print Network (OSTI)

Thermal Stability of LiPF 6 Salt and Li-ion Batterythermal stability of the neat LiPF 6 salt and of 1 molal solutions of LiPF 6 in prototypical Li-ion battery

Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

2006-01-01T23:59:59.000Z

45

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan The advent of Li-ion batteries has played a central role in the impressive development of portable digital and wireless technology. Such success has triggered further efforts to utilize them as key components in other applications with an even larger impact on society, which include electric vehicles and energy backup for renewable energy sources. However, several challenges need to be met before these expectations can be realized, as Li-ion batteries currently do not meet the power and energy density requirements of these devices. New and better materials for the electrodes

46

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)  

SciTech Connect

Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

Not Available

2014-01-01T23:59:59.000Z

47

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network (OSTI)

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle 15213, USA h i g h l i g h t s We analyze EV Li-ion NMC-G battery & pack designs and optimize thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

48

Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications  

E-Print Network (OSTI)

Simplified Electrochemical and Thermal Model of LiFePO4- Graphite Li-Ion Batteries for Fast Charge, a simplified electrochemical and thermal model of LiFePO4-graphite based Li-ion batteries is developed for battery management system (BMS) applications and comprehensive aging investigations. Based on a modified

Paris-Sud XI, Université de

49

Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed Under Randomized Use  

E-Print Network (OSTI)

Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed). In this paper, we use an electrochemistry-based lithium ion (Li-ion) battery model developed in (Daigle, Moffett Field, CA 94035 matthew.j.daigle@nasa.gov ABSTRACT Tracking the variation in battery dynamics

Daigle, Matthew

50

A high-gain adaptive observer for detecting Li-ion battery terminal voltage collapse  

Science Journals Connector (OSTI)

We use a high-gain adaptive observer and a trend filtering algorithm to detect early stages that lead to terminal voltage collapses in Li-ion batteries. This approach allows accurate detection without having sophisticated battery models. Theoretical ... Keywords: Adaptive filters, Adaptive systems, Detection algorithms, High-gain, Trend

Shayok Mukhopadhyay, Fumin Zhang

2014-03-01T23:59:59.000Z

51

Short communication Hierarchical SiOx nanoconifers for Li-ion battery anodes with  

E-Print Network (OSTI)

oxide Li rechargeable battery Anode Nanoconifer Nanowire Thermal evaporation a b s t r a c t Silicon subShort communication Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural through a simple thermal evaporation process.

Jo, Moon-Ho

52

Abstract--A novel, accurate, compact, and power efficient Lith-ium-Ion (Li-Ion) battery charger designed to yield maximum  

E-Print Network (OSTI)

1 Abstract-- A novel, accurate, compact, and power efficient Lith- ium-Ion (Li-Ion) battery charger battery, linear charger, switching charger. I. INTRODUCTION ITHIUM-ION (Li-Ion) batteries are widely used of Li-Ion batteries to over-charged voltages im- poses stringent charge requirements on the design

Rincon-Mora, Gabriel A.

53

Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information that can be  

E-Print Network (OSTI)

Proposals In Situ Electron Microscopy and Spectroscopy Studies of Interfaces in Advanced Li-ion BatteriesFigure 1. Schematic drawing showing the components of a Li-ion battery cell and the information (8300 28th Ct NE, Unit 200, Lacey, Washington 98516) Electrochemical energy storage devices (EES

54

In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode  

Science Journals Connector (OSTI)

In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode ... Li-ion batteries; solid electrolyte interphase; graphene; graphite; X-ray scattering ...

Sudeshna Chattopadhyay; Albert L. Lipson; Hunter J. Karmel; Jonathan D. Emery; Timothy T. Fister; Paul A. Fenter; Mark C. Hersam; Michael J. Bedzyk

2012-07-23T23:59:59.000Z

55

In-situ raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in the Li-ion battery composite cathode  

E-Print Network (OSTI)

2 Particles in the Li-ion Battery Composite Cathode Jingleidegradation of various Li-ion battery systems has been the

Lei, Jinglei; McLarnon, Frank; Kostecki, Robert

2004-01-01T23:59:59.000Z

56

A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis  

Science Journals Connector (OSTI)

Abstract In this work, a methodology based on rigorous model fitting and sensitivity analysis is presented to determine the parameters describing the physicochemical behavior of commercial pouch Li-ion batteries of high-capacity (16 A h), utilized in electric vehicles. It is intended for a rapid estimation of the kinetic and transport parameters, state of charge and health of a Li-ion battery when chemical information is not available, or for a brand new system. A pseudo 2-D model comprised of different contributions reported in the literature is utilized to describe the mass, charge and thermal balances of the cell and porous electrodes; and adapted to the battery chemistry under study. The sensitivity analysis of key model parameters is conducted to determine confidence intervals, using Analysis of Variance (ANOVA) for non-linear models. Also individual multi-parametric sensitivity analysis is conducted to assess the impact of the model parameters on battery voltage. The battery is comprised of multiple cells in parallel containing carbon anodes and LiNi1/3Co1/3Mn1/3O2 (NMC) cathodes with maximum and cut-off voltages of 4.2 and 2.7 V, respectively. Mass and charge transfer limitations during the discharge/charge of the battery are discussed as a function of State of Charge (SOC). A thermal analysis is also conducted to estimate the temperature rise on the surface of the battery. This modeling methodology can be extended to the analysis of other chemistry types of Li-ion batteries, as well as the evaluation of other material phenomena including capacity fade.

Jorge Vazquez-Arenas; Leonardo E. Gimenez; Michael Fowler; Taeyoung Han; Shih-ken Chen

2014-01-01T23:59:59.000Z

57

Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles Yi Zeng1, Martin Z. Bazant1,2  

E-Print Network (OSTI)

Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles Yi Zeng1, Martin Z. Bazant1,2 1 particle. This general approach extends previous Li-ion battery models, which either neglect phase theory for Li-ion batteries [13, 18] with Butler-Volmer kinetics and concentration depen- dent

Bazant, Martin Z.

58

Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles  

Science Journals Connector (OSTI)

Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles ... The production of concentrated lithium brine includes inspissations of lithium containing brine by solar energy in the desert of Atacama. ... Concerning EI99 H/A, the production of the anode generates the highest impact, while CED, GWP, and ADP show the highest impact for the production of the cathode. ...

Dominic A. Notter; Marcel Gauch; Rolf Widmer; Patrick Wäger; Anna Stamp; Rainer Zah; Hans-Jörg Althaus

2010-08-09T23:59:59.000Z

59

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number  

E-Print Network (OSTI)

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh number TLi+ value of 0.9 at room temperature 21­23°C . The solid-state flexible, translucent polymer of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

Rubloff, Gary W.

60

Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries  

E-Print Network (OSTI)

Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries Matt Pharr, Cambridge, Massachusetts 02138, United States ABSTRACT: We have measured the fracture energy of lithiated, the fracture energy at a second state of charge (at small concentrations of lithium) is measured by determining

Suo, Zhigang

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1 Measurements of the Fracture Energy of Lithiated Silicon Electrodes 2 of Li-Ion Batteries  

E-Print Network (OSTI)

1 Measurements of the Fracture Energy of Lithiated Silicon Electrodes 2 of Li-Ion Batteries 3 Matt University, Cambridge, Massachusetts 02138, United States 5 ABSTRACT: We have measured the fracture energy parallel. The stress in the electrodes is measured during 10 electrochemical cycling by the substrate

62

Energy efficiency of Li-ion battery packs re-used in stationary power applications  

Science Journals Connector (OSTI)

Abstract The effects of capacity fade, energy efficiency fade, failure rate, and charge/discharge profile are investigated for lithium-ion (Li-ion) batteries based on first use in electric vehicles (EVs) and second-use in energy storage systems (ESS). The research supports the feasibility of re-purposing used Li-ion batteries from \\{EVs\\} for use in ESS. Based on data extrapolation from previous studies with a low number of charge/discharge cycles, it is estimated that the EV battery loses 20% of its capacity during its first use in the vehicle and a further 15% after its second use in the ESS over 10 years. As energy efficiency decreases with increased charge/discharge cycles, a capacity fade model is used to approximate the effect of the relationship between cycles and capacity fade over the life of the battery. The performance of the battery in its second use is represented using a model of degradation modes, assuming a 0.01% cell failure rate and a non-symmetric charge/discharge profile. Finally, an accurate modeling of battery performance is used to examine energy savings and greenhouse gas (GHG) emission reduction benefits from using a Li-ion battery first in an EV and then in an ESS connected to the Ontario electrical grid.

Leila Ahmadi; Michael Fowler; Steven B. Young; Roydon A. Fraser; Ben Gaffney; Sean B. Walker

2014-01-01T23:59:59.000Z

63

High Voltage Electrolytes for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Funding for FY12 * 250K Timeline Budget Barriers * Argonne National Laboratory * Saft Batteries * U of Texas, Austin * U of Utah * U of Maryland Partners * SOA electrolytes...

64

Preparation and performance characterization of polymer Li-ion batteries using gel poly(diacrylate) electrolyte prepared by in situ thermal polymerization  

Science Journals Connector (OSTI)

A gel polymer electrolyte (GPE) was prepared by in-situ thermal polymerization of 1,3-butanediol diacrylate (BDDA...?3 S cm?1 at 20 °C. The MCMB–LiCoO2 type polymer Li-ion batteries (PLIB) prepared using this in-...

L. X. Yuan; J. D. Piao; Y. L. Cao; H. X. Yang…

2005-04-01T23:59:59.000Z

65

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

as a battery material due to its excellent thermal safetybattery system, including the safety attributes (both overcharge and thermalbattery electrodes, for example, have been observed during electrochemical cycling and thermal

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

66

High Voltage Electrolytes for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY09 and FY10 * 400K (DOE) Timeline Budget Barriers * Argonne National Laboratory * Saft Batteries * University of Maryland Partners * State-of-the-art LiPF 6 Carbonate...

67

ZnWO4 nanocrystals/reduced graphene oxide hybrids: Synthesis and their application for Li ion batteries  

Science Journals Connector (OSTI)

ZnWO4..., as an environment-friendly and economic material, has the potential for Li ion batteries (LIB) application. In this paper,...4 supported on the reduced graphene oxide (RGO) to improve its LIB...4 nanocr...

Xiao Wang; BoLong Li; DaPeng Liu; HuanMing Xiong

2014-01-01T23:59:59.000Z

68

Applied Surface Science 266 (2013) 516 Interphase chemistry of Si electrodes used as anodes in Li-ion batteries  

E-Print Network (OSTI)

in Li-ion batteries Catarina Pereira-Nabaisa,b , Jolanta S´wiatowskaa, , Alexandre Chagnesb, , Franc made to increase the energy density of lithium-ion batteries (LiB), namely for electric vehicle applications. One way to improve the energy density of a battery is to use high specific capacity materials, e

Boyer, Edmond

69

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

70

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes  

Science Journals Connector (OSTI)

Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes ... The composite materials exhibit better cycling stability and Coulombic efficiency as anodes in lithium ion batteries, as compared to pure Si nanoparticles and physically mixed graphene/Si composites. ...

Zhe-Fei Li; Hangyu Zhang; Qi Liu; Yadong Liu; Lia Stanciu; Jian Xie

2014-04-04T23:59:59.000Z

71

Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries  

E-Print Network (OSTI)

Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries Hyun materials as cathode in lithium ion batteries because of its intrinsic low-cost, environmental friendliness that enhances the contact between active material grains and electrolyte. In particular, LiMn2O4 nanorods

Cui, Yi

72

New Li-ion Battery Evaluation Research Based on Thermal Property and Heat Generation Behavior of Battery  

Science Journals Connector (OSTI)

We do a new Li-ion battery evaluation research on the effects of cell resistance and polarization on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evaluated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge-discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included DC-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter ?. The relationship between R, ?, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.

Zhe Lv; Xun Guo; Xin-ping Qiu

2012-01-01T23:59:59.000Z

73

A stand-alone wind power supply with a Li-ion battery energy storage system  

Science Journals Connector (OSTI)

Abstract The improved structure of stand-alone wind power system which is presented in this paper based on a doubly fed induction generator (DFIG) and permanent magnet synchronous machine (PMSM). A Li-ion battery energy storage system is used to compensate the inherent power fluctuations (excess or shortage) and to regulate the overall system operation based on a power management strategy. The modeling and the control of a DFIG for stand-alone power applications are detailed. However, the magnitude and frequency of the DFIG stator output voltage are controlled under variable mechanical speed. This task is ensured via the control of d and q components of the rotor flux by means of a back-to-back pulse width modulation (PWM) converter connected to the rotor side of the DFIG. The PMSM is coupled mechanically to the wind turbine and supplies a required power to the PWM converter in order to regulate the dc bus voltage to the desired value. In order to validate the proposed stand-alone wind power supply structure both a theoretical system analysis and a complete simulation of the overall wind energy conversion system (WECS) with Li-ion battery energy storage system is carried out to prove the performances of the control strategy.

Tedjani Mesbahi; Ahmed Ouari; Tarak Ghennam; El Madjid Berkouk; Nassim Rizoug; Nadhir Mesbahi; Moudrik Meradji

2014-01-01T23:59:59.000Z

74

TiSnSb a new efficient negative electrode for Li-ion batteries: mechanism investigations by operando-XRD and Mossbauer techniques  

E-Print Network (OSTI)

TiSnSb a new efficient negative electrode for Li-ion batteries: mechanism investigations We report the electrochemical study of TiSnSb towards Li, as a negative electrode for Li-ion batteries. TiSnSb can reversibly take up more than 5 lithiums per formula unit leading to reversible

Boyer, Edmond

75

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries ... Three types of FeF3 nanocrystals were synthesized by different chemical routes and investigated as a cathode-active material for rechargeable lithium batteries. ... (1-3) Though many types of metal oxides and phosphates have been tested as alternative cathode materials,(4, 5) no real breakthrough has been achieved in capacity, especially for intercalation cathodes, the capacity-determining electrode in the present LIBs systems. ...

Ting Li; Lei Li; Yu L. Cao; Xin P. Ai; Han X. Yang

2010-01-28T23:59:59.000Z

76

A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries  

SciTech Connect

Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

Harris, S J; Timmons, A; Pitz, W J

2008-11-13T23:59:59.000Z

77

Dual active material composite cathode structures for Li-ion batteries  

Science Journals Connector (OSTI)

The efficacy of composite Li-ion battery cathodes made by mixing active materials that possessed either high-rate capability or high specific energy was examined. The cathode structures studied contained carbon-coated LiFePO4 and either Li[Li0.17Mn0.58Ni0.25]O2 or LiCoO2. These active materials were arranged using three different electrode geometries: fully intermixed, fully separated, or layered. Discharge rate studies, cycle-life evaluation, and electrochemical impedance spectroscopy studies were conducted using coin cell test structures containing Li-metal anodes. Results indicated that electrode configuration was correlated to rate capability and degree of polarization if there was a large differential between the rate capabilities of the two active material species.

J.F. Whitacre; K. Zaghib; W.C. West; B.V. Ratnakumar

2008-01-01T23:59:59.000Z

78

ESS 2012 Peer Review - Organic and Inorganic Solid Electrolytes for Li-ion Batteries - Nader Hagh, NEI Corporation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organic and Inorganic Solid Electrolytes for Li-ion Batteries Organic and Inorganic Solid Electrolytes for Li-ion Batteries Background & Objectives * Lithium ion batteries widely used in consumer applications Solvent leakage and flammability of conventional liquid electrolytes * Current solid state electrolytes suffer from low ionic conductivity, inferior rate capability, and interfacial instability * Objective of the program is to develop solid state organic and inorganic electrolyte that has enhanced ionic conductivity * PEO based polymer electrolyte has poor room ionic conductivity due to crystallinity * The current program develops a PEO based hybrid copolymer that disrupts crystallization and at the same time provides mechanical integrity Abstract: The use of a solid polymer electrolyte instead of the conventional liquid or gel electrolyte can drastically improve the safety

79

Development and testing of 100-kW/ 1-minute Li-ion battery systems for energy storage applications.  

SciTech Connect

Two 100 kW min{sup -1} (1.67 kW h{sup -1}) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h{sup -1} and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

Doughty, Daniel Harvey; Clark, Nancy H.

2004-07-01T23:59:59.000Z

80

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORK Identify suitable graphite materials for anodes that meet the requirement for low cost and long cycle life. Fabricate half cells (Ligraphite) and Li-ion (graphiteolivine)...

82

CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries  

Science Journals Connector (OSTI)

CoFe2O4-graphene nanosheets (CoFe2O4...-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The...?1 even ...

Yinglin Xiao; Xiaomin Li; Jiantao Zai; Kaixue Wang; Yong Gong; Bo Li…

2014-10-01T23:59:59.000Z

83

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries  

Science Journals Connector (OSTI)

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries ... (1, 2) Commercial LIBs use graphite as the anode material with a low theoretical specific capacity of 372 mAh g–1, necessitating extensive research to develop substitute anode materials with higher energy/power densities for high performance LIBs to satisfy demanding applications like electric vehicles. ...

Mohammad Akbari Garakani; Sara Abouali; Biao Zhang; Curtis Alton Takagi; Zheng-Long Xu; Jian-qiu Huang; Jiaqiang Huang; Jang-Kyo Kim

2014-10-15T23:59:59.000Z

84

Two-phase transition of Li-intercalation compounds in Li-ion batteries  

Science Journals Connector (OSTI)

Among all electrode materials, olivine LiFePO4 and spinel Li4Ti5O12 are well-known for their two-phase structure, characterized by a flat voltage plateau. The phase transition in olivine LiFePO4 may be modeled in single particle and many-particle systems at room temperature, based on the thermodynamic phase diagram which is easily affected by coherency strain and the size effect. Some metastable and transient phases in the phase diagram can also be detected during non-equilibrium electrochemical processes. In comparison to olivine LiFePO4, spinel Li4Ti5O12 possesses a ‘zero strain’ property and performs Li-site switching during the phase transition, which lead to a different phase structure. Here, the phase transitions of olivine LiFePO4 and spinel Li4Ti5O12 are systematically reviewed, and the concepts discussed may be extended to other two-phase Li-intercalation compounds in Li-ion batteries.

De Li; Haoshen Zhou

2014-01-01T23:59:59.000Z

85

Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries  

Science Journals Connector (OSTI)

Abstract Micrometric TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li1Ni1/3Co1/3Mn1/3O2 at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm?2.

H.A. Wilhelm; C. Marino; A. Darwiche; P. Soudan; M. Morcrette; L. Monconduit; B. Lestriez

2015-01-01T23:59:59.000Z

86

Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells  

Science Journals Connector (OSTI)

Abstract Lithium ion (Li-ion) batteries are promising power sources for hybrid powertrain systems, and the thermal management of batteries has been identified as a critical issue both for safety and efficiency concerns. This work studied thermal management of a Li-ion battery module both experimentally and computationally. A battery module consisting of multiple cells was fabricated and experimentally tested in a wind tunnel facility. Systematic tests were performed under various flow velocities, charging and discharging current, and module configuration. Computationally, a high-fidelity two dimensional computational fluid dynamics (CFD) model was developed to capture the detailed dynamics of thermal management of the cells. Temperature rise of cells and pressure measurements were recorded in the experiments, and compared with CFD model simulations. Reasonable agreement was obtained, confirming the validity of the model. The validated model was then applied to study the power consumption required by the thermal management system. The results obtained in this combined experimental and numerical study are expected to be valuable for the optimized design of battery modules and the development of reduced-order models.

Fan He; Xuesong Li; Lin Ma

2014-01-01T23:59:59.000Z

87

The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods  

E-Print Network (OSTI)

The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from details for the electrochemical properties of these organic electrodes (chemical potential for Li ion the optimum positions of Li ions intercalated within each C6O6 framework. 3. We then optimized each

Goddard III, William A.

88

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode  

Science Journals Connector (OSTI)

(1-21) Following the initial work by Padhi et al. on the inductive effects of polyanions in a phospho-olivine LiFePO4 cathode with an increased Fe2+/3+ redox couple potential, olivine structures have become the focus of Li-ion battery cathodes in recent years. ... This process shows potential for further improvement using a simplified synthesis route to obtain fully electrochemically active LiMnPO4, which appears to be a promising cathode material for Li-ion batteries. ... The low surface activity of this material, compared to lithiated transition-metal oxides used as cathode materials for Li-ion batteries, is due to the relatively low basicity and nucleophilicity of the O atoms in the olivine compds. ...

Daiwon Choi; Donghai Wang; In-Tae Bae; Jie Xiao; Zimin Nie; Wei Wang; Vilayanur V. Viswanathan; Yun Jung Lee; Ji-Guang Zhang; Gordon L. Graff; Zhenguo Yang; Jun Liu

2010-07-19T23:59:59.000Z

89

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

90

Nanostructured ion beam-modified Ge films for high capacity Li ion battery N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman et al.  

E-Print Network (OSTI)

Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes N. G. Rudawski, B718 (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications://apl.aip.org/authors #12;Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes N. G. Rudawski,1

Florida, University of

91

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy  

SciTech Connect

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

2014-02-21T23:59:59.000Z

92

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

Lithium Ion Batteries", Materials Science and Engineering R,Ion Batteries", as it appears in Materials Science and EngineeringIon Batteries", as it appears in Materials Science and Engineering

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

93

Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability  

Science Journals Connector (OSTI)

Fe3O4 is an attractive conversion reaction-based anode material with high theoretical capacity (928 mA h g?1...). However, the poor cycling and rate performance hinder its applications in Li-ion batteries. In thi...

Delong Ma; Shuang Yuan; Zhanyi Cao

2014-06-01T23:59:59.000Z

94

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

95

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

of the Layered, “Li-Excess” Lithium-Ion Battery Electrodeof the Layered, "Li-Excess" Lithium-Ion Battery ElectrodeCATION MIGRATION IN LITHIUM EXCESS NICKEL MANGANESE OXIDES

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

96

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

lithium battery cathode. Electrochemical and Solid Statebattery performance of LiMn2O4 cathode. Solid State Ionics,

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

97

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)  

SciTech Connect

Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-06-01T23:59:59.000Z

98

Thin, Flexible Secondary Li-Ion Paper Liangbing Hu,  

E-Print Network (OSTI)

Thin, Flexible Secondary Li-Ion Paper Batteries Liangbing Hu, Hui Wu, Fabio La Mantia, Yuan Yang, secondary Li-ion batteries are key components in por- table electronics due to their high power and energy integrated all of the components of a Li-ion battery into a single sheet of paper with a simple lamination

Cui, Yi

99

Divalent Iron Nitridophosphates: A New Class of Cathode Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

(4-6) Here we demonstrate the design of a battery cathode material incorporating N3– anions as a distinct structural building block. ... Lithium transition metal phosphates are of interest as storage cathodes for rechargeable Li batteries because of their high energy d., low raw materials cost, environmental friendliness and safety. ... The reversible specific capacities for the cathode and anode active materials were detd. ...

Jue Liu; Xiqian Yu; Enyuan Hu; Kyung-Wan Nam; Xiao-Qing Yang; Peter G. Khalifah

2013-09-18T23:59:59.000Z

100

Development of High Capacity Anode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anode Structures: Overview of New DOE BATT Anode Projects Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Hybrid Nano Carbon...

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mössbauer Spectroscopy and New Composite Electrodes for Li-ion batteries  

Science Journals Connector (OSTI)

Lithium-ion batteries have become one of the most promising power sources for portable equipment because of their high specific energy and working voltage. Many studies have been devoted to negative electrodes...

Pierre-Emmanuel Lippens; Jean-Claude Jumas

2008-01-01T23:59:59.000Z

102

Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage  

SciTech Connect

i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

Wang, Wei; Choi, Daiwon; Yang, Zhenguo

2013-01-01T23:59:59.000Z

103

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

104

Enhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries  

E-Print Network (OSTI)

March 2014 Available online 12 March 2014 Keywords: Li-ion battery LiMnPO4 Reduced graphene oxide ChargeEnhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries Sungun Wi a , Jaewon Kim a , Seunghoon Nam a , Joonhyeon Kang a , Sangheon

Park, Byungwoo

105

Structural Complexity of Layered-spinel Composite Electrodes for Li-ion Batteries  

SciTech Connect

The complexity of layered-spinel yLi{sub 2}MnO{sub 3} {center_dot} (1-y)Li{sub 1+x}Mn{sub 2-x}O{sub 4} (Li:Mn = 1.2:1; 0 = x = 0.33; y = 0.45) composites synthesized at different temperatures has been investigated by a combination of x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and nuclear magnetic resonance (NMR). While the layered component does not change substantially between samples, an evolution of the spinel component from a high to a low lithium excess phase has been traced with temperature by comparing with data for pure Li{sub 1+x}Mn{sub 2-x}O{sub 4}. The changes that occur to the structure of the spinel component and to the average oxidation state of the manganese ions within the composite structure as lithium is electrochemically removed in a battery have been monitored using these techniques, in some cases in situ. Our 6Li NMR results constitute the first direct observation of lithium removal from Li{sub 2}MnO{sub 3} and the formation of LiMnO{sub 2} upon lithium reinsertion.

Cabana, J.; Yang, X.; Johnson, C.S., Chung, K.-Y.; Yoon, W.-S.; Kang, S.-H.; Thackeray, M.M., Grey, C.P.

2010-08-01T23:59:59.000Z

106

Amorphous Zn?GeO? Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries  

SciTech Connect

Amorphous and crystalline Zn?GeO? nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn?GeO? nanoparticles, compared to that of crystalline Zn?GeO? nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

2013-07-30T23:59:59.000Z

107

Thermal Stability and Phase Transformation of Electrochemically Charged/Discharged LiMnPO4 Cathode for Li-Ion Battery  

SciTech Connect

Electrochemically active LiMnPO4 nanoplate at lithiated/delithiated state were subjected to thermal stability and phase transformation evaluate for safety as a cathode material for Li-ion battery. The phase transformation and oxygen evolution temperature on the delithiated MnPO4 were characterized using in-situ hot-stage X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), thermogravimetric - differential scanning calorimetry - mass spectroscopy (TGA-DSC-MS), transmission electron microscopy and scanning electron microscopy (SEM) - energy dispersive X-ray analysis (EDAX).

Choi, Daiwon; Xiao, Jie; Choi, Young Joon; Hardy, John S.; Vijayakumar, M.; Bhuvaneswari, M. S.; Liu, Jun; Xu, Wu; Wang, Wei; Yang, Zhenguo; Graff, Gordon L.; Zhang, Jiguang

2011-11-01T23:59:59.000Z

108

ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES  

SciTech Connect

FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

Yakovleva, Marina

2012-12-31T23:59:59.000Z

109

Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

Shahabeddin K. Mohammadian; Yuwen Zhang

2015-01-01T23:59:59.000Z

110

Engineering Recently, we created the first Li-ion electrochemical cell  

E-Print Network (OSTI)

characterization of Li-ion battery materials. In this presentation, I'll first review our latest progress of using for understanding important processes in Li-ion batteries. For example, liquid cells are required in order impact on the design of Li-ion batteries. Finally I will discuss outstanding challenging issues

111

Effect of tab design on large-format Li-ion cell performance , Gang Luo b  

E-Print Network (OSTI)

Model a b s t r a c t Large-format Li-ion batteries are essential for vehicle and grid energy storage. Today, scale-up of Li-ion cells has not maximized the potential of available battery materials, leading a sustainable energy future. How to unlock the potential of existing Li battery materials and scale up Li-ion

112

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes  

E-Print Network (OSTI)

O 2 for Li-ion Battery Composite Cathodes Marek L. MarcinekRaman spectroscopy. The composite LiNi 1/3 Co 1/3 Mn 1/3 O 2electronic contact within the composite cathode and does not

Doeff, M.M.

2012-01-01T23:59:59.000Z

113

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries and their Health Monitoring  

E-Print Network (OSTI)

only the surface temperature of the battery can be measured, a thermal model is needed to estimate identification scheme is designed for a cylindrical lithium ion battery thermal model, by which the parameters-line parameterization methodology and the closed loop architecture. A linear battery thermal model is explored first

Stefanopoulou, Anna

114

Conduction in Multiphase ParticulateFibrous Networks Simulations and Experiments on Li-ion Anodes  

E-Print Network (OSTI)

promising Li-ion battery technologies incorporate nanoarchitectured carbon networks, typically in the form electronically February 7, 2003. Several promising Li-ion battery technologies incorporate nanoarchitecturedConduction in Multiphase ParticulateÃ?Fibrous Networks Simulations and Experiments on Li-ion Anodes

Sastry, Ann Marie

115

Li2NiO2 as a Novel Cathode Additive for Overdischarge Protection of Li-Ion Batteries  

Science Journals Connector (OSTI)

As the fuel-cell voltage reaches the plateau region, the anode voltage is also saturated around 3.6 V (vs Li/Li+) where the anodic copper dissolution is estimated to occur. ... Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack ...

Hochun Lee; Sung-Kyun Chang; Eun-Young Goh; Jun-Yong Jeong; Jae Hyun Lee; Hyeong-Jin Kim; Jeong-Ju Cho; Seung-Tae Hong

2007-12-06T23:59:59.000Z

116

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

117

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

118

First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System  

SciTech Connect

Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

2011-07-28T23:59:59.000Z

119

Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance  

SciTech Connect

Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

Bi, Zhonghe [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

120

ESS 2012 Peer Review - Tehachapi Wind Energy Storage Project Using Li-Ion Batteries - Christopher Clarke, SCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tehachapi Storage Project (TSP) Tehachapi Storage Project (TSP) American Recovery and Reinvestment Act Funded Project Christopher R. Clarke - Southern California Edison (SCE) christopher.r.clarke@sce.com Examples of Wind Generation in the Tehachapi Wind Resource Area August 2012 June 2012 May 2012 February 2012 April 2012 Progress To Date * Facility construction expected to complete in September 2012 * First Power Conversion System installed September 13, 2012 * A123 to ship initial battery equipment for delivery week of September 24, 2012 Future Major Milestones * September 2012 - Completion of BESS facility * October 2012 - Initial installation * November 2012 - Installation of second Power Conversion Subsystem * Q1 2013 - Install balance of equipment and commissioning * Q2 2013 - Start of 2 year M&V testing and reporting

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Three-phase model for the reversible lithiation/delithiation of SnO anodes in Li-ion batteries  

E-Print Network (OSTI)

Using first-principles calculations, we propose a microscopic model to explain the reversible lithiation/delithiation of tin-oxide anodes in lithium-ion batteries. When the irreversible regime ends, the anode grains consist of layers of Li-oxide separated by Sn bilayers. During the following reversible lithiation, the Li-oxide undergoes two phase transformations that give rise to a Li-enrichment of the oxide and the formation of a SnLi composite. The anode grain structure stays layered and ordered with an effective theoretical reversible capacity of 4.5 Li per Sn atom. The predicted anode volume expansion and voltage profile agree well with experiments, contrary to existing models.

Pedersen, Andreas; Luisier, Mathieu

2015-01-01T23:59:59.000Z

122

Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries  

SciTech Connect

A binder-free, high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g{sup ?1} at 1/3C over 100 cycles and 835 mAh g{sup ?1} at 8C after 60 cycles, and significantly a discharge capacity of 186 mAh g{sup ?1} was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode in high-performance thin film LIBs.

Wang, C. D.; Chui, Y. S.; Chen, X. F., E-mail: xianfeng.chen@cityu.edu.hk, E-mail: apwjzh@cityu.edu.hk; Zhang, W. J., E-mail: xianfeng.chen@cityu.edu.hk, E-mail: apwjzh@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Li, Y. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China) [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Department of Polymer Science and Engineering, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

123

Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries  

Science Journals Connector (OSTI)

A binder-free high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g?1 at 1/3C over 100 cycles and 835 mAh g?1 at 8C after 60 cycles and significantly a discharge capacity of 186 mAh g?1 was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode in high-performance thin film LIBs.

C. D. Wang; Y. S. Chui; Y. Li; X. F. Chen; W. J. Zhang

2013-01-01T23:59:59.000Z

124

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network (OSTI)

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

125

Journal of Power Sources 126 (2004) 193202 Li-ion microbatteries generated by a laser direct-write method  

E-Print Network (OSTI)

to fabricate Li-ion microbatteries. The battery electrodes are made by the laser-induced forward transfer. Keywords: Microbattery; Battery; Li-ion; Direct-write; Laser 1. Introduction A current trend in technologyJournal of Power Sources 126 (2004) 193­202 Li-ion microbatteries generated by a laser direct

Arnold, Craig B.

126

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

127

Li Storage and Impedance Spectroscopy Studies on Co3O4, CoO, and CoN for Li-Ion Batteries  

Science Journals Connector (OSTI)

Urea act as an oxidising fuel. ... vehicles (EV) or for large-scale batteries for electricity power storage, has made lithium ion rechargeable battery development into a growth area which has gained high momentum for its research activities. ...

M. V. Reddy; Gundlapalli Prithvi; Kian Ping Loh; B. V. R. Chowdari

2013-12-10T23:59:59.000Z

128

Development of First Principles Capacity Fade Model for Li-Ion Cells  

E-Print Network (OSTI)

Development of First Principles Capacity Fade Model for Li-Ion Cells P. Ramadass,* Bala Haran,** Parthasarathy M. Gomadam,* Ralph White,*** and Branko N. Popov**,z Department of Chemical Engineering developed to simulate the capacity fade of Li-ion batteries. Incorporation of a continuous occurrence

Popov, Branko N.

129

Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries  

SciTech Connect

Li-rich layered material Li1.2Ni0.2Mn0.6O2 possesses high voltage and high specific capacity, which makes it an attractive candidate for the transportation industry and sustainable energy storage systems. The rechargeable capacity of the Li-ion battery is linked largely to the structural stability of the cathode materials during the charge-discharge cycles. However, the structure and cation distribution in pristine (un-cycled) Li1.2Ni0.2Mn0.6O2 have not yet been fully characterized. Using a combination of aberration-corrected scanning/transmission electron microscopy, X-ray dispersive energy spectroscopy (XEDS), electron energy loss spectroscopy (EELS), and complementary multislice image simulation, we have probed the crystal structure, cation/anion distribution, and electronic structure of Li1.2Ni0.2Mn0.6O2 nanoparticle. We discovered that the electronic structure and valence state of transition metal ions show significant variations, which have been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine material are critical for understanding the capacity and voltage fading of this material for battery application.

Gu, Meng; Genc, Arda; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

2013-05-14T23:59:59.000Z

130

A Novel In-situ Electrochemical Cell for Neutron Diffraction Studies of Phase Transitions in Small Volume Electrodes of Li-ion Batteries  

SciTech Connect

The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell has also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.

Vadlamani, Bhaskar S [ORNL; An, Ke [ORNL; Jagannathan, M. [University of Utah; Ravi Chandran, K. [University of Utah

2014-01-01T23:59:59.000Z

131

Microsoft PowerPoint - NanoAnode for Li-ion Batteries SRNL-L9100-2009-00153p1.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Anodes for Lithium-Ion Nanostructured Anodes for Lithium-Ion Batteries at a glance  patent pending  increase energy density  longer cyclic life  replaces graphite anodes  simple and lower cost manufacturing Current carbon-based anodes are fabricated through a series of processes of mixing carbon, binder and conductive additives in organic solution, pasting the slurry on current collector and baking to remove solvent. It involves intensive labor, fire safety and environment emission control resulting in high cost. Background Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has developed new anodes for lithium-ion batteries that are reported to increase the energy density four-fold. It is

132

One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability  

SciTech Connect

Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup ?1} at a current density of 50 mA g{sup ?1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

2014-02-15T23:59:59.000Z

133

A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery  

Science Journals Connector (OSTI)

Abstract The formation of a SEI layer and its growth cause internal resistance increase and capacity loss, leading to performance degradation of lithium-ion batteries. In order to comprehensively investigate the effects of SEI growth on battery performance, a one-dimensional thermal-electrochemical model was developed. This model is equipped with a growth mechanism of the SEI layer coupled with thermal evolution, based on the diffusional process of the solvent through the SEI layer and the kinetic process at the interface between the solid and liquid phases. The model is able to reveal the effects of diffusivity, reaction kinetics and temperature on SEI layer growth and cell capacity fade. We show that depending on the SEI thickness, the growth can be kinetics-limited or diffusion-limited. With the layer becoming thicker, its growth rate slows down gradually due to increased diffusion resistance. The SEI layer grows faster during charge than discharge due to the difference in the electron flux through the SEI layer and the temperature change during cycling. Temperature rise due to reaction and joule heating accelerates the SEI layer growth, leading to more capacity loss. Our model can provide insights on position-dependent SEI growth rate and be used to guide the strategic monitoring location.

Lin Liu; Jonghyun Park; Xianke Lin; Ann Marie Sastry; Wei Lu

2014-01-01T23:59:59.000Z

134

Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode  

Science Journals Connector (OSTI)

Abstract A novel anode material for lithium-ion batteries, graphene-wrapped Si nanoparticles (NPs) embedded in carbon composite nanofibers (CCNFs) with G/Si, is fabricated by electrospinning and subsequent thermal treatment. In \\{CCNFs\\} with G/Si, Si \\{NPs\\} are distributed and preserved inside the CNF surface because the graphene wrapping the Si \\{NPs\\} help prevent agglomeration and ensure a good dispersion of Si \\{NPs\\} inside the CNF matrix. 20-GSP prepared from a weight ratio of 20 wt% of G/Si to polyacrylonitrile exhibits stable capacity retention and a reversible capacity of above 600 mAh g?1 up to 100 cycles. The high cycling performance and superior reversible capacity of the 20-GSP anode can be attributed to the one-dimensional nanofibrous structure with non-agglomerated Si \\{NPs\\} in the CNF matrix, which promotes charge transfer, maintains a stable electrical contact, and buffers the Si volume expansion.

So Yeun Kim; Kap Seung Yang; Bo-Hye Kim

2015-01-01T23:59:59.000Z

135

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network (OSTI)

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

136

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

NLE Websites -- All DOE Office Websites (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

137

Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method  

SciTech Connect

In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700°C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.84399×10{sup ?10} and 8.59888×10{sup ?10} cm{sup 2} s{sup ?1}, respectively.

Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng [Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus Sukolilo Surabaya Indonesia 60111 (Indonesia)

2014-02-24T23:59:59.000Z

138

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

139

LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries  

Science Journals Connector (OSTI)

LiMn2O4 exhibits lower cost, acceptable environmental characteristics, and better safety properties than other positive-electrode (cathode) materials for lithium-ion batteries. In this study, excess Li doped Li1+xMn2O4 is synthesized by a well-mixed co-precipitation method with LiOH utilized as both the reactant and co-precipitation agent. The precursor is calcined for various heating times and temperatures to form a fine powder of a single spinel phase with different particle sizes, size distributions, and morphology. The minimum heating temperature is around 400 °C. For short heating periods, Mn2O3 impurity is observed, but disappears after longer heating times. The average particle size is in the range 2–8 ?m for powders calcined between 700 and 870 °C. The lattice parameter increases with increase in heating temperature. The electrochemical behavior of LiMn2O4 powder is examined by using test cells which consist of a cathode, a metallic lithium anode, and an electrolyte of 1 M LiPF6 in a 1:1 (volume ratio) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). Cells with cathodes of LiMn2O4, Li1.08Mn2O4 and Li1.1Mn2O4 give a capacity of 85, 109 and 126 mAh g?1, respectively. The introduction of excess Li in LiMn2O4 apparently increases the capacity, and decreases significantly the rate of capacity degradation on charge–discharge cycling.

H.W Chan; J.G Duh; S.R Sheen

2003-01-01T23:59:59.000Z

140

Thermal Modeling and Effects of Electrode Configuration on Thermal Behaviour of a LiFePO4 Battery  

Science Journals Connector (OSTI)

Li-ion battery has great application prospects on electric vehicles ... etc. For the performance of Li-ion battery is closely related to its operating temperature, the battery thermal management technique is cons...

Cheng Ruan; Kun Diao; Huajie Chen; Yan Zhou…

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GM Li-Ion Battery Pack Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

142

GM Li-Ion Battery Pack Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

143

Li-Ion Battery Cell Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corp. LG Chem Chemicals Electronics Comm.& Services *LG Chem *LG Hausys *LG Household & Health Care *LG Life Sciences *LG MMA *LG Electronics *LG Display *LG Innotek *Hiplaza...

144

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

145

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network (OSTI)

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

146

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

147

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.  

E-Print Network (OSTI)

in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries

148

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

149

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

150

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One and their drawbacks Porous electrode models of Li-ion batteries often use approximations to eliminate the time and disadvantages when used in Li-ion battery models. For instance, the Duhamel's superposition method is the robust

Subramanian, Venkat

151

Thermal Instability of Olivine-Type LiMnP04 Cathodes  

E-Print Network (OSTI)

Standard for Lithium Batteries, document 1642, 3 rd Edition,of high energy phosphate Li-ion batteries is discussed. 2.g. Thermal runaway of Li-ion batteries occurs when the heat

Chen, Guoying

2010-01-01T23:59:59.000Z

152

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network (OSTI)

more sustainable alternative energy storage solutions. Inmore sustainable alternative energy storage solutions. Inmore sustainable alternative energy storage solutions [123].

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

153

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network (OSTI)

Properties of as-prepared NiO-NiF 2 /C material………………………66Electrochemical properties of NiO-NiF 2 /C electrodes………………and reversibility of NiF 2 and NiO-NiF 2 /C 5.3.4.

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

154

Lithium Source For High Performance Li-ion Cells  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New cathode and anode electrodes are required to improve the energy density of Li-ion cells for transportation technologies. The cost of Li-ion systems for transportation...

155

Lithium Source For High Performance Li-ion Cells | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Cells Lithium Source For High Performance Li-ion Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

156

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

157

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network (OSTI)

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as… (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

158

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

159

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

160

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of Thermal Aging and Structural Stability of Li[Lix(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.11) Cathode Active Material for Rechargeable Li-Ion Batteries  

Science Journals Connector (OSTI)

The high rate capability of Mn-rich Li[Lix(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.11) cathode active materials is investigated by cycling the cell at a given rate for five cycles and keeping the cell idle under thermal control chamber for 10 h and the same process repeating up to 30 cycles. The before and after thermal aging of Mn-rich cathode materials deliver the initial discharge capacity of 153 and 157.32 mA h g-1 up to 30 cycles and also it is maintained the average specific discharge capacity of 140 mA h g-1 for before thermal aging and more than 90% capacity retention. After thermal aging of cathode materials have maintain the average specific discharge capacity of 155 mA h g-1 and more than 97% capacity retentions. During charging, they are not oxidized further; Ni2+ and at least part of Co3+ ions are oxidized to higher valence states. During the discharge reactions, the small amount of Mn3+ reduced to the Mn4+ and some part of Ni3+ ions are reduced to Ni4+. Also the Co3+ ions are fully reduced to the Co4+ state, which due to thermal aging studies does not have major affects in the Mn-rich layered structure under thermal control chamber. These thermal aging analyses are essential to achieve a deeper understanding of the structural defects and safety views for Li-ion batteries to use in electric vehicle technologies.

Kumaran Vediappan; Yong Nam Jo; Suk-Jun Park; Hyun-Soo Kim; Chang Woo Lee

2012-01-01T23:59:59.000Z

162

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes  

SciTech Connect

In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

2008-12-10T23:59:59.000Z

163

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

164

Significant Cost Improvement of Li-Ion Cells Through Non-NMP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies Significant Cost Improvement of Li-Ion...

165

Thermal Instability of Olivine-Type LiMnP04 Cathodes  

E-Print Network (OSTI)

In the presence of a Li-ion battery electrolyte, delithiatedion battery electrolyte is also evaluated, and its impact on the safety of high energy phosphate Li-

Chen, Guoying

2010-01-01T23:59:59.000Z

166

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2007-01-01T23:59:59.000Z

167

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

168

Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions.  

E-Print Network (OSTI)

??Lithium ion (Li-ion) batteries have been gaining recognition as the primary technology for energy storage in motive applications due to their improved specific energy densities,… (more)

Bhatia, Padampat Chander

2013-01-01T23:59:59.000Z

169

Fact #607: January 25, 2010 Energy and Power by Battery Type  

Energy.gov (U.S. Department of Energy (DOE))

Batteries are made from many different types of materials. The chart below shows the energy to power ratio for different battery types (a range is shown for each battery). An increase in specific...

170

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

171

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

172

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

173

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Price EDrive PriusPM synchron AC PM synchron AC Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2010-01-01T23:59:59.000Z

174

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

175

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have of SWNTs on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion Battery (LIB). A LIB using only graphite in the anode was the control. SWNTs were mixed

Mellor-Crummey, John

176

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

This causes the material to undergo a phase change, however,7b) materials undergo an observable phase change or generatey=0.05 materials undergo an observable phase change upon the

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

177

Development of High Energy Cathode for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the theoretical capacity of LiMnPO 4. * Flat voltage plateau at 4.1 V indicates the phase transition between LiMnPO 4 and MnPO 4 . * At 1C and 2C rate (PHEV constant output)...

178

Investigation of critical parameters in Li-ion battery electrodes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at 500CT1000C for 12 h. Technical accomplishments: LiNi 12 Mn 32 O 4 , Neutron Diffraction 500C 700C 900C 1000C 7 Technical accomplishments: LiNi 12 Mn...

179

Streamlining the Optimization of Li-Ion Battery Electrodes  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

180

Graphene/metal Oxide Nanocomposites for Li-ion Batteries  

Science Journals Connector (OSTI)

Our work focuses on preparing the graphene/metal oxide nanocomposites by facile methold and exploring the graphene/metal oxide composites with unique structural or compositions for...

Liang, Junfei; Li, Lidong; Guo, Lin

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Voltage Electrolytes for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

effective than HFiP in improving cycle life in LNMOgraphite cells at RT. - Synthesized Al(HFiP) additives with electron deficient center Al - Calculated oxidation potential of...

182

2010 DOE, Li-Ion Battery Cell Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

183

High Voltage Electrolytes for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

184

Construction of a Li Ion Battery (LIB) Cathode Production Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customers. Construct our Production Facility in Elyria, Ohio as Part of the Recovery Act Program. "This presentation does not contain any proprietary, confidential, or...

185

Construction of a Li Ion Battery (LIB) Cathode Production Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt008esdicarlo2011p.pdf More Documents & Publications...

186

High Voltage Electrolytes for Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

below 4.5 V; * Sulfone-based solvents showed anodic stability up to 5.8 V but: * SEI chemistry from reduction of sulfones does not provide protection of graphitic anodes * Most...

187

Construction of a Li Ion Battery (LIB) Cathode Production Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review and Peer Evaluation Meeting arravt007esconner2012p.pdf More Documents & Publications Saft Factory of the Future Saft Factory of the Future Saft Factory of the Future...

188

Thermal processes in the systems with Li-battery cathode materials and LiPF6 -based organic solutions  

Science Journals Connector (OSTI)

Thermodynamic instability of positive electrodes (cathodes) in Li-ion batteries in humid air and battery solutions results in capacity fading and batteries degradation, especially at elevated temperatures. In thi...

Ortal Haik; Francis Susai Amalraj…

2014-08-01T23:59:59.000Z

189

High Capacity Pouch-Type Li-air Batteries  

SciTech Connect

The pouch-type Li-air batteries operated in ambient condition are reported in this work. The battery used a heat sealable plastic membrane as package material, O2¬ diffusion membrane and moisture barrier. The large variation in internal resistance of the batteries is minimized by a modified separator which can bind the cell stack together. The cells using the modified separators show improved and repeatable discharge performances. It is also found that addition of about 20% of 1,2-dimethoxyethane (DME) in PC:EC (1:1) based electrolyte solvent improves can improve the wetability of carbon electrode and the discharge capacities of Li-air batteries, but further increase in DME amount lead to a decreased capacity due to increase electrolyte loss during discharge process. The pouch-type Li-air batteries with the modified separator and optimized electrolyte has demonstrated a specific capacity of 2711 mAh g-1 based on carbon and a specific energy of 344 Wh kg-1 based on the complete batteries including package.

Wang, Deyu; Xiao, Jie; Xu, Wu; Zhang, Jiguang

2010-05-05T23:59:59.000Z

190

Ab initio prediction of thermodynamics in alkali metal-air batteries  

E-Print Network (OSTI)

Electric vehicles ("EVs") require high-energy-density batteries with reliable cyclability and rate capability. However, the current state-of-the-art Li-ion batteries only exhibit energy densities near ~150 Wh/kg, limiting ...

Kang, ShinYoung

2014-01-01T23:59:59.000Z

191

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

192

Li ion migration in Li3PO4 electrolytes: Effects of O vacancies and N substitutions  

E-Print Network (OSTI)

Li ion migration in Li3PO4 electrolytes: Effects of O vacancies and N substitutions Y. A. Dua and N structures of isolated defects associated with extrinsic Li ion vacancies and interstitials. In particular the combination of an O vacancy and a N substitution, stabilizing a Li ion vacancy. We also studied the effects

Holzwarth, Natalie

193

In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications  

SciTech Connect

Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

Daniel A Scherson

2013-03-14T23:59:59.000Z

194

Survey of mercury, cadmium and lead content of household batteries  

SciTech Connect

Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

2014-01-15T23:59:59.000Z

195

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another, which either stores or discharges energy, depending on the direction of the flow. They can employ several different chemistries, each offering distinct benefits and limitations. Despite their success in mobile applications, Li-ion technologies have not demonstrated

196

Dispelling a Misconception About Mg-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

One promising alternative would be a battery based on a multivalent ion, such as magnesium (Mg). Whereas a Li-ion with a charge of +1 provides only a single electron for an...

197

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

198

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

199

Significant Cost Improvement of Li-Ion Cells Through Non-NMP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 DOE Program Review: Significant Cost Improvement of Li- Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies PI: YK Son...

200

Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging  

E-Print Network (OSTI)

to hierarchical structures found in energy materials such as battery electrodes, fuel cells, and catalytic systems Science Highlight ­ July 2011 Better Batteries through Nanoscale 3D Chemical Imaging Concerns battery technology. Although Li-ion batteries, crucial in the boom of portable electronics, stand

Wechsler, Risa H.

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Direct hybridization of tin oxide/graphene nanocomposites for highly efficient lithium-ion battery anodes  

Science Journals Connector (OSTI)

A facile direct hybridization route to prepare SnO2/graphene nanocomposites for Li-ion battery anode application is demonstrated. Uniform distribution of...2 nanoparticles on graphene layers was enabled by a one-...

Dong Ok Shin; Hun Park; Young-Gi Lee; Kwang Man Kim…

2014-06-01T23:59:59.000Z

202

Power Capability Estimation Accounting for Thermal and Electical Contraints of Lithium-Ion Batteries.  

E-Print Network (OSTI)

??Lithium-ion (Li-ion) batteries have become one of the most critical components in vehicle electrification due to their high specific power and energy density. The performance… (more)

Kim, Youngki

2014-01-01T23:59:59.000Z

203

Degradation of Li/S Battery Electrodes Studied Using X-ray Phase Contrast Tomography  

E-Print Network (OSTI)

the Li-ion battery market. This can be explained by their high energy density, high operating voltage1 Degradation of Li/S Battery Electrodes Studied Using X-ray Phase Contrast Tomography L. Zielkea. Zengerlea,f and S. Thielea,g Lithium/sulphur batteries are promising candidates for future energy storage

Schmidt, Volker

204

Significant Cost Improvement of Li-Ion Cells Through Non-NMP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 DOE Merit Review ES133: Significant Cost Improvement of Li-ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies PI: YK Son...

205

Significant Cost Improvement of Li-Ion Cells Through Non-NMP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P.I. Yongkyu Son Johnson Controls 2014 DOE Vehicle Technologies Program Review June 17, 2014 Project ID : ES133 Significant Cost Improvement of Li-ion Cells Through Non-NMP...

206

High Energy Density Li-ion Cells for EVs Based on Novel, High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Systems Vehicle Technologies Annual Merit Review 6182014 1 High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Keith D. Kepler...

207

Towards a lithium-ion fiber battery  

E-Print Network (OSTI)

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

208

Models for Battery Reliability and Lifetime  

SciTech Connect

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

209

Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi[subscript 0.45]Mn[subscript 0.45]Co[subscript 0.1?y]Al[subscript y]O[subscript 2] Positive Electrode Materials for Li-ion Batteries  

SciTech Connect

Single-phase LiNi{sub 0.45}Mn{sub 0.45}Co{sub 0.1-y}Al{sub y}O{sub 2} layered oxide materials with 0 {<=} y {<=} 0.10 were prepared using the glycine-nitrate combustion method. Al-substitution has a minimal effect on the defect concentration and rate capability of the materials, but raises the operating voltage and reduces the capacity fade of the materials during prolonged cycling compared to the unsubstituted system. In situ X-ray diffraction suggests the presence of Al has a significant structural impact during battery operation. It acts to limit the changes in lattice parameters observed during electrochemical charging and cycling of the materials. High-resolution X-ray diffraction reveals structural distortions in the transition metal layers of as-synthesized powders with high Al-contents, as well as a structural evolution seen in all materials after cycling.

Conry, Thomas E.; Mehta, Apurva; Cabana, Jordi; Doeff, Marca M. (UCB); (SSRL)

2012-10-23T23:59:59.000Z

210

Fluorinated Electrolyte for 5-V Li-Ion Chemistry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and evaluation of 10 mAh pouch cells in the lab. - Delivery of twelve 10 mAh pouch cells to DOE for testing and verification. Proposed Future Work 29 PHEV and EV batteries...

211

Composition dependence of average and local structure of xLi(Li1/3Mn2/3)O2–(1 ? x)Li(Mn1/3Ni1/3Co1/3)O2 active cathode material for Li ion batteries  

Science Journals Connector (OSTI)

Abstract This study focused on the composition dependence of the crystal structure and cathode performance of xLi(Li1/3Mn2/3)O2–(1 ? x)Li(Mn1/3Ni1/3Co1/3)O2 (0 ? x ? 1) prepared by co-precipitation. From charge-discharge tests, it was found that there was large differences in the battery performance between the composition of x = 0.2 and x ? 0.3. For the samples, the average crystal structures were determined by the Rietveld refinement of neutron diffraction patterns. The results indicated that for x = 0.2, Li existed at both 2b and 4g sites, whereas for x ? 0.3, Li was localized at 2b sites and Mn occupied the 4g sites. In order to examine the local crystal structure, pair distribution function (PDF) and extended X-ray absorption fine structure (EXAFS) analyses were carried out. From the PDF analysis, a significant difference was seen in the short-range peaks associated with the transition metal layer for x = 0.2, 0.4 and 0.6. The EXAFS results indicated a large difference in the local structure around Mn for x = 0.2 and x ? 0.3. This is thought to be due to ordering of LiMn6 and LiMn5Ni, which is likely to affect cathode performance.

Yasushi Idemoto; Masahiro Inoue; Naoto Kitamura

2014-01-01T23:59:59.000Z

212

Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-Ion Cells  

SciTech Connect

Recently a pinch-torsion test is developed for safety testing of Li-ion batteries (Ren et al., J. Power Source, 2013). It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum principal strain, which is believed to induce the internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum principal strain is also examined.

Xia, Yuzhi [University of Tennessee, Knoxville (UTK); Li, Dr. Tianlei [Florida State University, Tallahassee; Ren, Prof. Fei [Temple University; Gao, Yanfei [ORNL; Wang, Hsin [ORNL

2014-01-01T23:59:59.000Z

213

High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries ... Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries ... Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. ...

Haijun Yu; Haoshen Zhou

2013-03-28T23:59:59.000Z

214

Performance study of commercial LiCoO2 and spinel-based Li-ion cells  

E-Print Network (OSTI)

Performance study of commercial LiCoO2 and spinel-based Li-ion cells P. Ramadass, Bala Haran, Ralph White, Branko N. Popov* Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA Received 20 April 2002; accepted 29 April 2002 Abstract The performance of Cell-Batt1 Li-ion

Popov, Branko N.

215

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

216

Newton-Krylov-Multigrid Algorithms for Battery Simulation Venkat Srinivasan,b,  

E-Print Network (OSTI)

Newton-Krylov-Multigrid Algorithms for Battery Simulation J. Wu,a Venkat Srinivasan,b, * J. Xu the behavior of various electrochemical systems, specifically, batteries and fuel cells. In this paper, we thermal and electrochemical coupled Li-ion model and extend the familiar Band J subroutine by utilizing

217

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

218

High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications  

SciTech Connect

Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

Dillon, A. C.

2012-01-01T23:59:59.000Z

219

Electrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications  

E-Print Network (OSTI)

, low duty-cycle task multiplex- ing, and smart power-aware networks, the energy stored in micro- scaleElectrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications Erick O micro-systems like biomedical implants and ad-hoc wireless transceiver micro-sensors continue

Rincon-Mora, Gabriel A.

220

A battery chemistry-adaptive fuel gauge using probabilistic data association  

Science Journals Connector (OSTI)

Abstract This paper considers the problem of state of charge (SOC) tracking in Li-ion batteries when the battery chemistry is unknown. It is desirable for a battery fuel gauge (BFG) to be able to perform without any offline characterization or calibration on sample batteries. All the existing approaches for battery fuel gauging require at least one set of parameters, a set of open circuit voltage (OCV) parameters, that need to be estimated offline. Further, a BFG with parameters from offline characterization will be accurate only for a “known” battery chemistry. A more desirable BFG is one that is accurate for “any” battery chemistry. In this paper, we show that by storing finite sets of OCV parameters of possible batteries, we can derive a generalized BFG using the probabilistic data association (PDA) algorithm. The PDA algorithm starts by assigning prior model probabilities (typically equal) for all the possible models in the library and recursively updates those probabilities based on the voltage and current measurements. In the event of an unknown battery to be gauged, the PDA algorithm selects the most similar OCV model to the battery from the library. We also demonstrate a strategy to select the minimum sets of OCV parameters representing a large number of Li-ion batteries. The proposed approaches are demonstrated using data from portable Li-ion batteries.

G.V. Avvari; B. Balasingam; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery  

Science Journals Connector (OSTI)

A flexible free-standing graphene/SnO2 nanocomposites paper (GSP) was prepared by coupling a simple filtration method and a thermal reduction together for the first time. Compared with the pure SnO2 nanoparticles, the GSP exhibited a better cycling ...

Junfei Liang; Yue Zhao; Lin Guo; Lidong Li

2012-10-22T23:59:59.000Z

222

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

surface phase structural change, the materials thereforerelated phase/structural change nears the material surface.material voltage and change of lattice parameters versus Li concentration. In manganese spinel, phase

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

223

Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

224

Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

225

Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

226

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

out at the Stanford Synchroton Radiation Lightsource (SSRL).electrodes at the Stanford Synchroton Radiation Lightsourcein situ at the Stanford Synchroton Radiation Lightsource.

Doeff, Marca M.

2010-01-01T23:59:59.000Z

227

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

a perfect spinel phase, only transition metal ions reside onspinel phase transformation, in which transition metal ionJ-T ions, therefore low temperature phase transition similar

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

228

Diagnostic Studies to Improve Abuse Tolerance and Life of Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

229

Formation Of The Spinel Phase In The Layered Composite Cathode Used In Li-Ion Batteries  

SciTech Connect

Pristine Li-rich layered cathodes, such as Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.1Mn0.525Co0.175O2, were identified to exist in two different structures: LiMO2 R-3m and Li2MO3 C2/m phases. Upon charge/discharge cycling, both phases gradually transform to the spinel structure. The transition from LiMO2 R-3m to spinel is accomplished through the migration of transition metal ions to the Li site without breaking down the lattice, leading to the formation of mosaic structured spinel grains within the parent particle. In contrast, transition from Li2MO3 C2/m to spinel involves removal of Li+ and O2-, which produces a large lattice strain and leads to the breakdown of the parent lattice and therefore the newly formed spinel grains show random orientation within the same particle. Cracks and pores were also noticed within some particles, which is believed to be the consequence of the breakdown of the lattice and vacancy condensation upon removal of lithium ions. The presently observed structure transition characteristics provide direct reasons for the observed gradual capacity loss and poor rate performance of the layered composite. Ultimately it also provides clues about how to improve the materials structure with potential improved performance.

Gu, Meng; Belharouak, Ilias; Zheng, Jianming; Wu, Huiming; Xiao, Jie; Genc, Arda; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

2013-01-22T23:59:59.000Z

230

Electrochemical properties of Li ion polymer battery with gel polymer electrolyte based on polyurethane  

Science Journals Connector (OSTI)

Gel polymer electrolyte (GPE) was prepared using polyurethane acrylate as polymer host and its performance was evaluated. LiCoO2/GPE/graphite cells were prepared and their electrochemical performance as a functio...

H-S. Kim; G-Y. Choi; S-I. Moon; S-P. Kim

2003-06-01T23:59:59.000Z

231

Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

232

Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

233

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

234

Selection of Conductive Additives in Li-Ion Battery Cathodes A Numerical Study  

E-Print Network (OSTI)

- capacity LiNi1-xCoxO2 to lower cost LiNi1-xCoxO2. The addition of conductive additives to cathode materials significantly improve overall conductivity. Percolation was achieved for the volume fraction of active material particulate system. Neither surface nor bulk modifications of active-material particle conductivities seem

Sastry, Ann Marie

235

High Capacity MoO3 Nanoparticle Li-Ion Battery Anode  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

236

Electrochemical studies of few-layered graphene as an anode material for Li ion batteries  

Science Journals Connector (OSTI)

Few-layered graphene (FLG) with specific surface area of only ~8.2 m2 g?1 was synthesized from graphene oxide (GO) using microwave-assisted exfoliation. GO was prepared using modified Hummers method. Few-layered ...

Shaikshavali Petnikota; Naresh K. Rotte…

2014-04-01T23:59:59.000Z

237

Graphene-wrapped Fe2O3 nanorings for Li ion battery anodes  

Science Journals Connector (OSTI)

Graphene-wrapped Fe2O3 nanorings (RGO/Fe2O3...) were synthesized by a facile approach, which assembled with graphene and the Fe2O3 nanorings precursor through the colloidal coagulation effect at room temperature....

Lili Wang; Qiushi Chen; Yongchun Zhu; Yitai Qian

2014-11-01T23:59:59.000Z

238

Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries  

E-Print Network (OSTI)

approximately 100 nm in width and 1­2 mm in length have been fabricated via the hydrothermal process microspheres;10 hydrothermal synthesis of VO2 (B) nanobelts,11,12 nanorods,13 nanoflakes and nanoflowers.14 materials, long fabrication times and complicated processing methods, which in turn result in a high cost

Cao, Guozhong

239

GBL-based electrolyte for Li-ion battery: thermal and electrochemical performance  

Science Journals Connector (OSTI)

Thermal stability, flammability, and electrochemical performances of...4] have been examined in comparison with contemporary (EC/EMC, 1:3 vol.%, 1 M LiPF6...) electrolyte by DSC, accelerating rate calorimetry (AR...

Dmitry Belov; Deng-Tswen Shieh

2012-02-01T23:59:59.000Z

240

Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of High Energy Cathode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es056zhang2010p.pdf More Documents & Publications Phase Behavior and Solid State Chemistry in Olivines Development of High Energy Cathode Materials Interfacial Processes -...

242

Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles  

E-Print Network (OSTI)

Using the recently developed Cahn-Hilliard reaction (CHR) theory, we present a simple mathematical model of the transition from solid-solution radial diffusion to two-phase shrinking-core dynamics during ion intercalation ...

Zeng, Yi

243

Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

244

Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

245

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

246

Scientists Create Worlds Smallest Battery | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of the contemporary electronic age, powering everything from cell phones and laptop computers to hybrid electric vehicles. But while superior to many alternatives for electrical energy storage, Li-ion batteries are not optimal in every respect. Despite much progress over the years, their

247

Argonne TTRDC - TransForum v10n1 - New Molecule for Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

New Molecule Could Help Make Batteries Safer, Less Expensive New Molecule Could Help Make Batteries Safer, Less Expensive Charge transfer mechanism for Li-ion battery overcharge protection Charge Transfer Mechanism for Li-ion Battery Overcharge Protection. When the battery is overcharged, the redox shuttle (bottom molecule) will be oxidized by losing an electron to the positive electrode. The radical cation formed (top molecule) will then diffuse back to the negative electrode, causing the cation to obtain an electron and be reduced. The net reaction is to shuttle electrons from the positive electrode to the negative electrode without causing chemical damage to the battery. Safety, life and cost are three of the major barriers to making commercially-viable lithium-ion batteries for plug-in hybrid electric

248

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

249

Model-Experimental Studies on Next-generation Li-ion Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Performance and Degradation Modeling of Batteries Improved Methods for Making Intermetallic Anodes Overview of Applied Battery Research...

250

Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

251

Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4  

E-Print Network (OSTI)

correlate well with the better cycling performance of Al-doped LiMn2O4 in our Li-ion battery tests: LiAl0Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4 Yuan Yang, Chong Xie nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials

Cui, Yi

252

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

253

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

254

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

255

Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

Yong Seok Choi; Dal Mo Kang

2014-01-01T23:59:59.000Z

256

Performance analysis results of a battery fuel gauge algorithm at multiple temperatures  

Science Journals Connector (OSTI)

Abstract Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from ?20 °C to 40 °C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.

B. Balasingam; G.V. Avvari; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

257

Experimental performances of a battery thermal management system using a phase change material  

Science Journals Connector (OSTI)

Abstract Li-ion batteries are leading candidates for mobility because electric vehicles (EV) are an environmentally friendly mean of transport. With age, Li-ion cells show a more resistive behavior leading to extra heat generation. Another kind of problem called thermal runway arises when the cell is too hot, what happens in case of overcharge or short circuit. In order to evaluate the effect of these defects at the whole battery scale, an air-cooled battery module was built and tested, using electrical heaters instead of real cells for safety reasons. A battery thermal management system based on a phase change material is developed in that study. This passive system is coupled with an active liquid cooling system in order to initialize the battery temperature at the melting of the PCM. This initialization, or PCM solidification, can be performed during a charge for example, in other words when the energy from the network is available.

Charles-Victor Hémery; Franck Pra; Jean-François Robin; Philippe Marty

2014-01-01T23:59:59.000Z

258

Metal-Air Batteries  

SciTech Connect

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

259

Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A tin oxide-titanium oxide/graphene (SnO2-TiO2.../G) ternary nanocomposite as high-performance anode for Li-ion batteries was prepared via a simple reflux method. ... The graphite oxide (GO) was reduced to graphene

Shan-Shan Chen; Xue Qin

2014-10-01T23:59:59.000Z

260

Thermal study of organic electrolytes with fully charged cathodic materials of lithium-ion batteries  

Science Journals Connector (OSTI)

We systematically investigated thermal effects of organic electrolytes/organic solvents with...0.5CoO2) of Li-ion battery under rupture conditions by using oxygen bomb...3O4, CoO, and LiCoO2 were the main solid p...

Qian Huang; Manming Yan; Zhiyu Jiang

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE-SPEC-3018-96; Flooded-Type Lead-Acid Storage Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-96 8-96 August 1996 DOE SPECIFICATION FLOODED-TYPE LEAD-ACID STORAGE BATTERIES U.S. Department of Energy FSC 6140 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No.DE96009469 DOE-SPEC-3018-96 iii FOREWORD 1. Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user's purpose.

262

DOE-SPEC-3019-96; Valve-Regulated Type Lead-Acid Storage Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-96 9-96 August 1996 DOE SPECIFICATION VALVE-REGULATED TYPE LEAD-ACID STORAGE BATTERIES U.S. Department of Energy FSC 6140 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE96009470 DOE-SPEC-3019-96 THIS PAGE INTENTIONALLY LEFT BLANK DOE-SPEC-3019-96 iii FOREWORD 1. Use of this purchase specification is not mandatory. User should review the document and

263

Modeling and simulation of Li-ion conduction in poly(ethylene oxide)  

E-Print Network (OSTI)

/discharge voltage depends on the current and resistance of all battery components. In most solid-state lithium as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter-ion batteries, a thin-layer (0.02­0.2 mm) solid polymer electrolyte (SPE) is sandwiched between two electrodes

Averbuch, Amir

264

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network (OSTI)

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

265

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

266

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

results obtained for the Li-ion battery electrodes suggestnanotubes utilized in the Li-ion battery electrodes. Thenanotubes utilized in the Li-ion battery electrodes. The

Khan, Javed Miller

2012-01-01T23:59:59.000Z

267

Laboratory Directed Research and Development Program FY2011  

E-Print Network (OSTI)

properties, 2) the ‘Li-ion Battery Explorer’ containingand new compounds for Li-ion battery electrode materials, 3)Li-ion diffusion process and the overall battery

ed, Todd Hansen

2013-01-01T23:59:59.000Z

268

Composite Battery Boost | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Like Properties of Soft Nanoparticle Suspensions Water-Like Properties of Soft Nanoparticle Suspensions Real-Time Capture of Intermediates in Enzymatic Reactions A New Multilayer-Based Grating for Hard X-ray Grating Interferometry The Most Detailed Picture Yet of a Key AIDS Protein Superconductivity with Stripes Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Composite Battery Boost December 2, 2013 Bookmark and Share Normalized XANES spectra of Li/Se cell during cycling. Black line is the battery voltage profile. New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to

269

Li ion diffusion mechanism in the crystalline electrolyte -Li3PO4  

E-Print Network (OSTI)

battery3 Solid state electrolyte could be made very thin to overcome to the low ion- conductivity et al., Solid State Ionics 53-56, 647 (1992). 3. http://www.ms.ornl.gov/researchgroups/Functional/BatteryV)material kTEA e T K T / )( - = 1. B. Wang et al., J. of Solid State Chemistry 115, 313 (1995). 2. J. B. Bates

Holzwarth, Natalie

270

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

271

DFT+U Study of Polaronic Conduction in Li2O2 and Li2CO3: Implications for Li-Air Batteries  

E-Print Network (OSTI)

power systems for automobiles. Electric vehicles (EVs) represent one of the main alternatives source. However, the present electric vehicles, powered by Li ion batteries, are limited in power in the cities produced by the fossil fuel-powered vehicles (FFVs) is forcing the development of alternative

Thygesen, Kristian

272

Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator  

E-Print Network (OSTI)

December 2012 Keywords: Li-ion battery separator Polyvinyl alcohol Carbon micro-nanofibers Suspension acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro of the polyvinyl alcohol gel formation, and the mixing of hydro- phobic reagents along with polyethylene glycol

Singh, Jayant K.

273

Modeling- Scale-Bridging Simulations Active Materials in Li-ion Batteries, and Validation in BATT Electrodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

274

First-principles modeling of thermal stability and morphology control of cathode materials in Li-ion batteries  

E-Print Network (OSTI)

We compute the energy of a large number of oxidation reactions of 3d transition metal oxides using the generalized gradient approximation (GGA) to density functional theory and GGA+ U method. Two substantial contributions ...

Wang, Lei, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

275

Tin Oxide Based Composites Derived Using Electrostatic Spray Deposition Technique as Anodes for Li-Ion Batteries.  

E-Print Network (OSTI)

?? Recent advances in the electric & hybrid electric vehicles and rapid developments in the electronic devices have increased the demand for high power and… (more)

Dhanabalan, Abirami

2012-01-01T23:59:59.000Z

276

Characterization of Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

277

Vehicle Technologies Office Merit Review 2014: Real-time Metrology for Li-ion Battery R&D and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Applied Spectra, Inc at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for...

278

LiFePO4/CA cathode nanocomposite with 3D conductive network structure for Li-ion battery  

Science Journals Connector (OSTI)

A novel LiFePO4/Carbon aerogel (LFP/CA) nanocomposite with 3D conductive network structure was synthesized by using carbon aerogels as both template and conductive framework, and subsequently wet impregnating LiF...

Qiong Jiang; Yunlong Xu; Chongjun Zhao…

2012-04-01T23:59:59.000Z

279

Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6  

E-Print Network (OSTI)

like alcohol or cathode active material that may (or maya catalytic effect to cathode active material (e.g. LiCoO 2like alcohol or cathode active material that may (or may

Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

2006-01-01T23:59:59.000Z

280

Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries  

SciTech Connect

The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

2009-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SnO2-CuO/graphene nanocomposites for high performance Li-ion battery anodes  

Science Journals Connector (OSTI)

The nanocomposites of SnO2-CuO/graphene are synthesized via a two-step method. ... CuO nanorods are firstly uniformly loaded on the graphene nanosheets, and then SnO2 nanoparticles are coated on CuO nanorods. SnO

Jun Zhao; WanFei Shan; XinBei Xia; Qi Wang…

2014-06-01T23:59:59.000Z

282

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

283

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

284

Free-Standing Na2/3Fe1/2Mn1/2O2@Graphene Film for a Sodium-Ion Battery Cathode  

Science Journals Connector (OSTI)

Free-Standing Na2/3Fe1/2Mn1/2O2@Graphene Film for a Sodium-Ion Battery Cathode ... Graphene is a well-known material endowed with numerous advantages that have led to its extensive use as a conductive additive in Li-ion batteries, including superior electronic conductivity, a large surface area, and excellent mechanical strength. ...

Hongli Zhu; Kang Taek Lee; Gregory Thomas Hitz; Xiaogang Han; Yuanyuan Li; Jiayu Wan; Steven Lacey; Arthur von Wald Cresce; Kang Xu; Eric Wachsman; Liangbing Hu

2014-03-03T23:59:59.000Z

285

Flexible fiber batteries for applications in smart textiles  

E-Print Network (OSTI)

Here we discuss two alternative approaches for building flexible batteries for applications in smart textiles. The first approach uses well-studied inorganic electrochemistry (Al-NaOCl galvanic cell) and innovative packaging in order to produce batteries in a slender and flexible fiber form that can be further weaved directly into the textiles. During fabrication process the battery electrodes are co-drawn within a microstructured polymer fiber, which is later filled with liquid electrolyte. The second approach describes Li-ion chemistry within solid polymer electrolytes that are used to build a fully solid and soft rechargeable battery that can be furthermore stitched onto a textile, or integrated as stripes during weaving process.

Qu, Hang; Rolland, Julien; Vlad, Alexandru; Gohy, Jean-François; Skorobogatiy, Maksim

2013-01-01T23:59:59.000Z

286

Final Report: Nanomaterials in Secondary Battery Research and Development, July 1, 1995 - September 14, 1999  

SciTech Connect

We have been exploring the rate capabilities of nanostructured Li-ion battery electrodes. These nanostructured electrodes are prepared via the template method - a general procedure used to prepare nanomaterials pioneered in the P.I.'s laboratory. The nanostructured electrodes consist of nanofibers or tubules of the electrode material that protrude from a current-collector surface like the bristles of a brush. These nanostructured electrodes show dramatically improved rate capabilities relative to conventional electrode designs.

Martin, Charles R.

2000-01-31T23:59:59.000Z

287

Chemical Fabrication and Electrochemical Characterization of Graphene Nanosheets Using a Lithium Battery Platform  

Science Journals Connector (OSTI)

For instance, graphene-based nanocomposites have found extensive applications in Li-ion batteries (LIBs) as scientists and engineers seek to achieve superior electrochemical performances. ... Second-Year Undergraduate; Graduate Education/Research; Interdisciplinary/Multidisciplinary; Hands-On Learning/Manipulatives; Electrochemistry; Materials Science; Nanotechnology; Upper-Division Undergraduate; Laboratory Instruction ... International Journal of Pharmaceutical Sciences and Drug Research (2010), 2 (2), 127-133 CODEN: IJPSPP; ISSN:0975-248X. ...

Aaron J. Blake; Hong Huang

2014-11-20T23:59:59.000Z

288

3D Printing of Li-Ion Microbattery Architectures K. Sun, T.-S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, and J.A. Lewis, "3D  

E-Print Network (OSTI)

3D Printing of Li-Ion Microbattery Architectures K. Sun, T.-S. Wei, B.Y. Ahn, J, and actuators. These 3D printed ba

Faraon, Andrei

289

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

290

Investigation of power battery thermal management by using mini-channel cold plate  

Science Journals Connector (OSTI)

Abstract In order to guarantee the safety and extend the cycle life of Li-ion power batteries within electric vehicles, a mini-channel cold plate-based battery thermal management system is designed to cool a rectangular Li-ion battery. A three-dimensional thermal model of the cooling system was established and the effects of number of channels, flow direction, inlet mass flow rate and ambient temperature on temperature rise and distribution of the battery during the discharge process were investigated. The results suggest that the maximum temperature of the battery decreases with increases in the number of channels and inlet mass flow rate. The effect of flow direction on cooling performance was smaller after mass flow rate increased. The cooling performance improved with the increase of inlet mass flow rate but the increasing trend became smaller, and the mass flow rate as 5 × 10?4 kg s?1 was optimal. The simulation results will be useful for the design of mini-channel cold plate-based battery thermal management system.

Yutao Huo; Zhonghao Rao; Xinjian Liu; Jiateng Zhao

2015-01-01T23:59:59.000Z

291

ESS 2012 Peer Review - Solid State Li Metal Batteries for Grid-Scale Energy Storage - Mohit Singh, Seeo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Review 2012 Annual Review 2012 Mohit Singh, VP R&D and Engineering Funded in part by the Energy Storage Systems Program from the Department of Energy through the National Energy Technology Laboratory Copyright ©2012 Seeo Inc. All rights reserved Conventional Li Ion Seeo Battery Li Foil Anode Dry Solid Separator Dry Polymer Cathode Composite Al Current Collector Cu Current Collector Porous Graphite Anode Composite Porous Separator Porous Cathode Composite Al Current Collector Element Li Ion Seeo Seeo Benefits Electrolyte Liquid Solid Safety: Non-reactive and non-flammable Energy: Superior specific energy (Wh/kg) Reliability: High temp stability, minimal fade Anode Porous Solid Cathode Porous Solid Seeo's solid polymer battery

292

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials ... The electrochemically inert layered defect-rocksalt compound Li2MnO3 has been structurally integrated with more electrochemically active layered compounds in order to enhance Li-ion-battery cathode stability. ... Cathodes of the material had a discharge capacity of 200 mA-h/g, based on the mass of the Li-Mn oxide; an electrode capacity of >140 mA-h/g was achieved on cycling in a room-temp. ...

R. Benedek; M. M. Thackeray; A. van de Walle

2008-08-06T23:59:59.000Z

293

First-principles study of graphene-lithium structures for battery applications  

Science Journals Connector (OSTI)

In order to identify the best and most promising graphene-lithium structures for battery applications we performed a systematic study of different multilayer graphene-lithium structures using first-principles density-functional theory. The most promising structure identified is a few layer compound which contains a single graphene layer and four lithium layers. In this structure lithium density is six times higher than that of intercalated graphite and high lithium density observed in recent experiments can be due to this structure. In addition we show that electron density distribution around the positive Li ions is very important to design new advanced materials for battery applications.

Alper Buldum; Gulcin Tetiker

2013-01-01T23:59:59.000Z

294

Scientists Create World's Smallest Battery | U.S. DOE Office of Science  

Office of Science (SC) Website

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image shows distortion of nanowire electrode during charging Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of

295

ESS 2012 Peer Review - Sodium Intercalation Battery for Stationary Storage - David Ofer, Tiax  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Intercalation Battery for Sodium Intercalation Battery for Stationary Storage Energy Storage Systems Program (ESS) Peer Review and Update Meeting 2012 David Ofer Ofer.david@tiaxllc.com Washington DC, September 27, 2012 Sodium Intercalation Battery for Stationary Storage Background and Purpose 2 Large-scale stationary energy storage for integration with renewables and for off-peak energy capture is a new application requiring new rechargeable batteries. * New combination of requirements - Long cycle life under deep cycling use profile - High cycling efficiency - Moderate rate capability - Very low cost - No requirement for particularly high specific energy or energy density * TIAX is developing a novel Na-ion battery - Leverages teachings of Li-ion technology - Targets novel low-cost chemistry and cell design

296

Sandwich-Type Functionalized Graphene Sheet-Sulfur Nanocomposite for Rechargeable Lithium Batteries  

SciTech Connect

A sandwich structured graphene sheet-sulfur (GSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of graphene stacks and a layer of sulfur nanoparticles integrated into a three-dimensional architecture. This GSS nanoscale layered composite, making use of the efficient physical and electrical contact between sulfur and the large surface area, highly conductive graphene, provides a high loading of active materials of ~70 wt%, a high tape density of ~0.92 g?cm-3, and a high power with a reversible capacity of ~505 mAh?g-1 (~464 mAh?cm-3) at a current density of 1,680 mA?g-1 (1C). When coated with a thin layer of cation exchange Nafion film, the migration of dissolved polysulfide anions from the GSS nanocomposite was effectively alleviated, leading to a good cycling stability of 75% capacity retention over 100 cycles. This sandwich-structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.

Cao, Yuliang; Li, Xiaolin; Aksay, Ilhan A.; Lemmon, John P.; Nie, Zimin; Yang, Zhenguo; Liu, Jun

2011-03-30T23:59:59.000Z

297

Depolarized and Fully Active Cathode Based on Li(Ni0.5Co0.2Mn0.3)O2 Embedded in Carbon Nanotube Network for Advanced Batteries  

Science Journals Connector (OSTI)

In this design, the CNT network simultaneously served as an electron transport pathway as well as an active cathode ingredient besides NCM523, showing reversible electrochemical activity during the Li ion battery operation in the presence of a high voltage electrolyte. ... (b) Voltage curves of NCM cathode calculated based on the first-principle method, and the experimental data obtained from the filtration NCM/CNT cathodes are shown in it for comparison. ... In conclusion, we have developed a fully active and depolarized composite cathode material based on NCM523 particles embedded in the interwoven 3D CNT network, which serves the dual functions of both storing Li ions as the active materials and providing the superhighway for the electron and Li ion migration. ...

Zhongzhen Wu; Xiaogang Han; Jiaxin Zheng; Yi Wei; Ruimin Qiao; Fei Shen; Jiaqi Dai; Liangbing Hu; Kang Xu; Yuan Lin; Wanli Yang; Feng Pan

2014-06-30T23:59:59.000Z

298

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

299

The Science of Battery Degradation.  

SciTech Connect

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

300

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microsoft PowerPoint - 120824_US-China_Battery_Workshop_-_Ford_Masias_print.ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Confidential Ford Confidential Rechargeable Energy Storage System (RESS) x Safety Research US-China EV & Battery Workshop August 24, 2012 Ford Confidential Page 2 Ford Battery Safety Research System Mechanical Thermal Electrical Battery Safety Hazards System: * RESS Safety * NHTSA Award (2011 - 2013) Mechanical: * Ford-MIT Alliance * Prof. Wierzbicki (2012 - 2014) Thermal: * U. Maryland URP * Prof. Sunderland (2012 - 2015) Electrical: * Ford-UM Alliance * Prof. Chris Mi (2012 - 2014) Research Activity Ford Confidential Page 3 NHTSA RESS Safety Solicitation Timing Solicitation 1/26/11 Proposal 4/21/11 Award Sept 2011 Finish Sept 2013 Scope HEV/PHEV/BEV Li-Ion Battery Purpose Develop Safety Test Methods & Performance Safety Metrics Tasks * Active - Single Failure * Passive - Single Failure + Loss of Control System

302

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

303

Effect on Performance of Composition of Li-Ion Carbon Anodes Derived from PMAN/DVB Copolymers  

SciTech Connect

The effects on electrochemical performance of the nitrogen content of disordered carbons derived from polymethacryonitrile (PMAN)-divinylbenzene (DVB) copolymers were examined in galvanostatic cycling tests between 2 V and 0.01 V vs. Li/Li+ in lM LiPF6/ethylene carbonate (EC)-dimethyl carbonate (DMC). The first-cycle reversible capacities and coulombic efficiencies increased with increase in the level of nitrogen for samples prepared at 700°C. However, the degree of fade also increased. Similar tests were performed on materials that were additionally heated at 1,000° and 1,300°C for five hours. Loss of nitrogen, oxygen, and hydrogen occurred under these conditions, with none remaining at the highest temperature in all cases but one. The pyrolysis temperature dominated the electrochemical performance for these samples, with lower reversible and irreversible capacities for the first intercalation cycle as the pyrolysis temperature was increased. Fade was reduced and coulombic efficiencies also improved with increase in temperate. The large irreversible capacities and high fade of these materials makes them unsuitable for use in Li-ion cells.

Even, William R.; Guidotti, Ronald A.

1999-05-14T23:59:59.000Z

304

Mesoscale Modeling of a Li-Ion Polymer Cell Chia-Wei Wanga,  

E-Print Network (OSTI)

version 3.2 . Four types of cathode active material particles, arranged in both regular and random arrays sizes of active material particles were also shown to be beneficial for high power density applications and for low diffusivity active materials. © 2007 The Electrochemical Society. DOI: 10.1149/1.2778285 All

Sastry, Ann Marie

305

Storage Viability and Optimization Web Service  

E-Print Network (OSTI)

Ion fast-charging (Li-Ion-fc) battery, higher costs due tocost reduction for Li-Ion-fc battery, ZnBr flow battery andIon slow-charging (Li-Ion-sc) battery, lower costs due to

Stadler, Michael

2010-01-01T23:59:59.000Z

306

1 September 2000 Z .Chemical Physics Letters 327 2000 6975  

E-Print Network (OSTI)

materials are w xcommercially used in Li-ion batteries 2 where the specific energy capacity is partially, between the graphene shells and between the nanotubes. They have been suggested as candi- date high energy density anode materials for rechargeable Li-ion batteries. Two types of carbon nanotubes can now be syn

307

Boosting batteries | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

308

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques  

SciTech Connect

The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in ·capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the· lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information· about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

Yang, Xiao-Qing

2007-05-23T23:59:59.000Z

309

Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)  

SciTech Connect

Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

2014-02-01T23:59:59.000Z

310

The Self-Improvement of Lithium-Ion Batteries | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture and Viral Disease Architecture and Viral Disease RNA Folding: A Little Cooperation Goes a Long Way A New Phase in Cellular Communication Engineering Thin-Film Oxide Interfaces Novel Materials Become Multifunctional at the Ultimate Quantum Limit Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Self-Improvement of Lithium-Ion Batteries NOVEMBER 30, 2012 Bookmark and Share Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure. The search for clean and green energy in the 21st century requires a better and more efficient battery technology. The key to attaining that goal may

311

Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint  

SciTech Connect

Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

2014-10-01T23:59:59.000Z

312

EMSL - batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

313

Elastic and inelastic scattering of 240-MeV (6)Li ions from (40)Ca and (48)Ca and tests of a systematic optical potential  

E-Print Network (OSTI)

PHYSICAL REVIEW C 81, 044612 (2010) Elastic and inelastic scattering of 240-MeV 6Li ions from 40Ca and 48Ca and tests of a systematic optical potential Krishichayan, X. Chen,* Y.-W. Lui, J. Button, and D. H. Youngblood Cyclotron Institute, Texas.... ACKNOWLEDGMENTS This work was supported in part by the US Department of Energy under Grant DE-FG02?93ER40773 and by the Robert A. Welch Foundation under Grant A-0558. [1] D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999). [2] S...

Chen, Krishichayan X.; Lui, Y. -W; Button, J.; Youngblood, David H.

2010-01-01T23:59:59.000Z

314

Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

315

TiO2 nanoparticles for Li-ion battery anodes: Mitigation of growth and irreversible capacity using LiOH and NaOH  

Science Journals Connector (OSTI)

TiO2 anatase and rutile nanoparticles with various sizes and morphologies have been synthesized by very facile and scalable methods. A post-treatment including addition of LiOH or NaOH to the particles followed by heating at 180°C in air or autoclave ...

Martin Søndergaard; Yanbin Shen; Aref Mamakhel; Mario Marinaro; Margret Wohlfahrt-Mehrens; Karen Wonsyld; Søren Dahl; Bo B. Iversen

2014-12-04T23:59:59.000Z

316

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode  

SciTech Connect

Electrochemically active LiMnPO4 nanoplates have been synthesized via novel single step solid state reaction in molten hydrocarbon. The LiMnPO4 prepared show unique porous nanoplate shape ~50nm in thickness with highly preferred crystallographic orientation. The reversible cycling of carbon coated LiMnPO4 show flat potential at 4.1 V vs. Li with specific capacity reaching up to 168mAh/g and excellent cycling performance using only galvanostatic charging / discharging mode.

Choi, Daiwon; Wang, Donghai; Bae, In-Tae; Xiao, Jie; Nie, Zimin; Wang, Wei; Viswanathan, Vilayanur V.; Lee, Yun Jung; Zhang, Jiguang; Graff, Gordon L.; Yang, Zhenguo; Liu, Jun

2010-08-11T23:59:59.000Z

317

Studies on Capacity Fade of Spinel-Based Li-Ion Batteries Ramadass Premanand, Anand Durairajan,* Bala Haran,** Ralph White,*** and  

E-Print Network (OSTI)

be attributed to i structural degradation at the cathode and ii loss of active materials at both electrodes due was done on the active material at both elec- trodes. For all charge currents, the resistance of both nonstoichiometric spinel as the positive electrode material has been studied at different charging rates

318

Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries  

SciTech Connect

The structures, electrochemical properties and thermal stability of Al-substituted lithium-excess oxides, Li{sub 1.2}Ni{sub 0.16} Mn{sub 0.56}Co{sub 0.08-y}Al{sub y}O{sub 2} (y = 0, 0.024, 0.048, 0.08), are reported, and compared to the stoichiometric compounds, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2}. A solid solution was found up to at least y = 0.06. Aluminum substitution improves the poor thermal stability while preserving the high energy density of lithium-excess oxides. However, these high manganese compositions are inferior to the lithium stoichiometric materials, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2} (z = 0.333, 0.4), in terms of both power and thermal stability.

Li, Zheng; Chernova, Natasha A.; Feng, Jijun; Upreti, Shailesh; Omenya, Fredrick; Whittingham, M. Stanley (SUNY-Binghamton)

2012-03-15T23:59:59.000Z

319

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

320

KAir Battery  

Energy.gov (U.S. Department of Energy (DOE))

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network (OSTI)

based on interviews with Li-ion battery companies. The pacePerformance and Safety by Li-ion Battery for Pedelec. Lighth. Outlook of Future Li-ion Battery Chemistries for Safety

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

322

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

supercapacitors. Fuel cell/Li-ion battery hybrids achievedFUDS and US06 cycles Li-ion Battery Coupled to FC DC-Link16 Comparison of fuel cell/Li-ion battery hybrids with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

323

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

71 Illustration 29: A Li-ion battery module w/ BMS wiringthe proper design of a Li-ion battery management system (shop. Illustration 29: A Li-ion battery module w/ BMS wiring

Jungers, Bryan D

2009-01-01T23:59:59.000Z

324

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

around China, Chinese Li-ion battery manufacturers and thesystems. Innovation in Li-ion battery technology for EVsto EVs. At least three Li-ion battery companies are making

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

325

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

326

SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties  

SciTech Connect

The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-Ã?Â?Ã?Â?salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

Trulove, Paul C; Foley, Matthew P

2013-03-14T23:59:59.000Z

327

BatPRO: Battery Manufacturing Cost Estimation | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type...

328

Multifunctional, Inorganic-Filled Separators for Large Format...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

329

Multifunctional, Inorganic-Filled Separators for Large Format...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries 2012 DOE Hydrogen...

330

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

battery chemistry for future HEVs (including PHEVs) is currently Li-ion.its battery pack, but it used lead-acid rather than Li-ion

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

331

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Assessment of Future Li-Ion Battery Production Costs. GermanNREL’s PHEV/EV Li-ion Battery Secondary-Use Project.

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

332

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network (OSTI)

8]; (b) A lithium-ion (Li-ion) battery pack consisting of 488]; (b) A lithium-ion (Li-ion) battery pack consisting of 48

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

333

Conductive Rigid Skeleton Supported Silicon as High-Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes....

334

Evaluating the End-of-Life Phase of Consumer Electronics:Methods and Tools to Improve Product Design and Material Recovery  

E-Print Network (OSTI)

industry) [143] Material Li-ion Battery Aluminum (Al) Cobalt15” LCD Display 6 cell Li-ion battery DVD Drive Hard Disc

Mangold, Jennifer Ann

2013-01-01T23:59:59.000Z

335

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

336

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

337

Rate-dependent morphology of Li2O2 growth in Li-O2 batteries  

E-Print Network (OSTI)

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.

Horstmann, B; Mitchell, R; Bessler, W G; Shao-Horn, Y; Bazant, M Z

2013-01-01T23:59:59.000Z

338

3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)  

SciTech Connect

In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involving a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.

Lee, K. J.; Kim, G. H.; Smith, K.

2010-10-14T23:59:59.000Z

339

A robust approach to battery fuel gauging, part II: Real time capacity estimation  

Science Journals Connector (OSTI)

Abstract In this paper, the second of a series on battery fuel gauging, we present an approach for real time capacity estimation. In part I of this series, we presented a real time parameter estimation approach for various battery equivalent models. The proposed capacity estimation scheme has the following novel features: it employes total least squares (TLS) estimation in order to account for uncertainties in both model and the observations in capacity estimation. The TLS method can adaptively track changes in battery capacity. We propose a second approach to estimate battery capacity by exploiting rest states in the battery. This approach is devised to minimize the effect of hysteresis in capacity estimation. Finally, we propose a novel approach for optimally fusing capacity estimates obtained through different methods. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries. The proposed approach performs within 1% or better accuracy in terms of capacity estimation based on both simulated as well as HIL evaluations.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

340

Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery  

SciTech Connect

Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: > Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. > Accommodate volume changes of Si NPs during Li ion charge/discharge. > Sizes of microcapsules were controlled by experimental parameters. > Lithium storage capacity and coulombic efficiency were demonstrated. > Use of sol-gel procedure as intermediate reaction.

Bae, Joonwon, E-mail: joonwonbae@gmail.com [Samsung Advanced Institute of Technology, Yong-In City 446-712, Gyeong-Gi Province (Korea, Republic of)

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network (OSTI)

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient… (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

342

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

343

Li(Mn1/3Ni1/3Fe1/3)O2–Polyaniline hybrids as cathode active material with ultra-fast charge–discharge capability for lithium batteries  

Science Journals Connector (OSTI)

We first report the ultra-fast charge–discharge capability of organic–inorganic (Li(Mn1/3Ni1/3Fe1/3)O2–Polyaniline (PANI)) nanocomposites prepared by mixed hydroxide route and followed by polymerization of aniline monomers with different concentrations (0.1 and 0.2 mol concentration of PANI). Li-insertion properties are evaluated in half-cell configuration, test cell (Li/Li(Mn1/3Ni1/3Fe1/3)O2–PANI) comprising 0.2 mol. PANI delivered the reversible capacity of ?127, ?114 and ?110 mAh g?1 at ultra-high current rate of 5, 30 and 40 C, respectively with exceptional cycleability between 2 and 4.5 V vs. Li. Such an exceptional performance is mainly due to the conducting pathways promoted by PANI network and it is revealed by impedance measurements. This result certainly provides the possibility of using such layered type Fe based cathode materials in high power Li-ion batteries to drive zero emission vehicles such as hybrid electric vehicles or electric vehicles applications in near future.

K. Karthikeyan; S. Amaresh; V. Aravindan; W.S. Kim; K.W. Nam; X.Q. Yang; Y.S. Lee

2013-01-01T23:59:59.000Z

344

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

Lead Acid, Ni-Mh, and Li-ion battery manufacturing isMh battery, HEV Page 4 of 10 with a Li-ion battery, PHEV20with a Li-ion battery, PHEV60 with a Li-ion battery, and

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

345

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

346

Primer on lead-acid storage batteries  

SciTech Connect

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

347

Toshiba recommends Windows 7 Satellite P755-0CN  

E-Print Network (OSTI)

Battery Battery Type: Removable, Rechargeable 6-cell Lithium Ion (Li-ion) 10.8V x 48Wh capacity Battery ­20 to 65 C (-4 to 149 F) Thermal Gradient: Operating 15 C per hr. max; Non Operating 20 C per hr. max Warranty. Note the original battery is warranted for one year from date of purchase. Pre-installed software

Saskatchewan, University of

348

Battery Safety Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

349

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

350

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Alloys of clathrate allotropes for rechargeable batteries  

SciTech Connect

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

352

Real-time studies of battery electrochemical reactions inside a transmission electron microscope.  

SciTech Connect

We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

2012-01-01T23:59:59.000Z

353

A robust approach to battery fuel gauging, part I: Real time model identification  

Science Journals Connector (OSTI)

Abstract In this paper, the first of a series of papers on battery fuel gauge (BFG), we present a real time parameter estimation strategy for robust state of charge (SOC) tracking. The proposed parameter estimation scheme has the following novel features: it models hysteresis as an error in the open circuit voltage (OCV) and employs a combination of real time, linear parameter estimation and SOC tracking technique to compensate for it. This obviates the need for modeling of hysteresis as a function of SOC and load current. We identify the presence of correlated noise that has been so far ignored in the literature and use it to enhance the accuracy of model identification. As a departure from the conventional “one model fits all” strategy, we identify four different equivalent models of the battery that represent four modes of typical battery operation and develop the framework for seamless SOC tracking by switching. The proposed parameter approach enables a robust initialization/re-initialization strategy for continuous operation of the BFG. The performance of the online parameter estimation scheme was first evaluated through simulated data. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

354

Numerical investigation of thermal behaviors in lithium-ion battery stack discharge  

Science Journals Connector (OSTI)

Abstract Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors.

Rui Liu; Jixin Chen; Jingzhi Xun; Kui Jiao; Qing Du

2014-01-01T23:59:59.000Z

355

Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Molybdenum nitride and nitrogen-doped graphene nanosheets (MoN/GNS) hybrid materials are synthesized by a simple hydrothermal method combined with a heat treatment at 800 °C under an ammonia atmosphere. It is found by scanning and transmission electron microscopy that MoN nanoparticles ranging from 20 to 40 nm in diameter are homogeneously anchored to GNS. The electrochemical performance of MoN/GNS as a possible anode material for Li-ion batteries is investigated. Galvanostatic charge/discharge experiments reveal that the hybrid materials exhibit an enhanced lithium storage capacity and excellent rate capacity as a result of its efficient electronic and ionic mixed conducting network. The electrochemical results demonstrate that the weight ratio of GNS and MoN had significant effect on the electrochemical performance.

Botao Zhang; Guanglei Cui; Kejun Zhang; Lixue Zhang; Pengxian Han; Shanmu Dong

2014-01-01T23:59:59.000Z

356

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

357

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Laboratory (HTML) User Program Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Materials for Li-ion...

358

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

359

Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries  

E-Print Network (OSTI)

hydrogen storage alloys for Nickel-Metal Hydride batteries J. Monnier 1 , H. Chen 1 , S. Joiret2,3 , J present higher hydrogen storage capacity and higher discharge capacity, eg. 356mAh/g for LaCaMgNi9 [4 in the huge market of hybrid electric vehicles (HEV) and Emergency Light Units (ELU). Hydrogen

Boyer, Edmond

360

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

362

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

363

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

367

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

368

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

369

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

life of the battery since the electrode thermal propertiesthe Li-ion battery electrodes. The thermal con- ductivity,in the Li-ion battery electrodes. The thermal conductivity,

Khan, Javed Miller

2012-01-01T23:59:59.000Z

373

Comparative Environmental Impacts of Electric Bikes in China  

E-Print Network (OSTI)

by more than half. A Li-ion battery that is equivalent (inLi- ion) batteries are much more expensive, but also have much higher energy densities, so battery

Cherry, Christopher R.; Weinert, Jonathan X.; Yang, Xinmiao

2009-01-01T23:59:59.000Z

374

The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method  

E-Print Network (OSTI)

energy, rechargeable Li-ion battery based on carbon nanotubewith Sb and SnSb0.5 as Li-ion battery anodes. Carbon, 2003.Li, A review of application of carbon nanotubes for lithium ion battery

Zhao, Lin

2013-01-01T23:59:59.000Z

375

Developing Next-Generation Multimodal Chemical Imaging Capability by Combining STEM/APT/STXM/HIM Research Team: Theva Thevuthasan, Arun Devaraj, Craig Szymanski, Birgit Schwenzer, Shuttha Shutthanandan, Zhijie Xu,  

E-Print Network (OSTI)

analysis of the same particle Li-ion Battery Cathodes: STXM-TEM-APT Na-ion Battery Cathodes Li-ion Battery ion battery cathodes. Performed directly coupled STXM- TEM-APT analysis of Li and Na ion battery.6O2 cathode nanoparticles by STXM, TEM, and APT. Li segregation to Mn rich regions in advanced Li-ion

376

HyperConnected: Wireless--extended connectivity Quickly find a network, without opening your  

E-Print Network (OSTI)

wrapping Batteries Primary 4-cell/28 WHr "Smart" Li-Ion battery featuring ExpressChargeTM Primary 6-cell/42 WHr "Smart" Li-Ion battery featuring ExpressChargeTM Primary 9-cell/68 WHr Li-Ion battery CONNECTIVITY at 1.36 kg, is designed for the traveling professionals who demand absolute mobility. With long battery

Fiebig, Peter

377

E-Print Network 3.0 - alkaline battery electrodes Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

PHYSICS DIVISION ESH BULLETIN 07-02 BATTERY RECYCLING May 21, 2007 ORNL recycles all types... , and sealed or open celled lead-acid. No batteries should be disposed of in the...

378

Batteries - Materials Processing and Manufacturing Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

379

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

380

Batteries Breakout Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

382

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

383

EMSL - battery materials  

NLE Websites -- All DOE Office Websites (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

384

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

385

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

386

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

387

Probing the Failure Mechanism of SnO{sub 2} Nanowires for Sodium-Ion Batteries  

SciTech Connect

Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO{sub 2} nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515-1520). Upon Na insertion into SnO{sub 2}, a displacement reaction occurs, leading to the formation of amorphous Na{sub x}Sn nanoparticles dispersed in Na{sub 2}O matrix. With further Na insertion, the Na{sub x}Sn crystallized into Na{sub 15}Sn{sub 4} (x = 3.75). Upon extraction of Na (desodiation), the Na{sub x}Sn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na{sub 2}O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO{sub 2}. DFT calculations indicate that Na{sup +} diffuses 30 times slower than Li{sup +} in SnO{sub 2}, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO{sub 2} significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

Gu, Meng; Kushima, Akihiro; Shao, Yuyan; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D; Li, Ju; Wang, Chongmin

2013-09-30T23:59:59.000Z

388

Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries  

Science Journals Connector (OSTI)

Abstract Na-ion Battery is attractive alternative to Li-ion battery due to the natural abundance of sodium resource. Searching for suitable anode materials is one of the critical issues for Na-ion battery due to the low Na-storage activity of carbon materials. In this work, we synthesized a nanohybrid anode consisting of ultrafine SnO2 anchored on few-layered reduced graphene oxide (rGO) by a facile hydrothermal route. The SnO2/rGO hybrid exhibits a high capacity, long cycle life and good rate capability. The hybrid can deliver a high charge capacity of 324 mAh gSnO2?1 at 50 mA g?1. At 1600 mA g?1 (2.4C), it can still yield a charge capacity of 200 mAh gSnO2?1. After 100 cycles at 100 mA g?1, the hybrid can retain a high charge capacity of 369 mAh gSnO2?1. X-ray photoelectron spectroscopy, ex situ transmission electron microscopy and electrochemical impedance spectroscopy were used to investigate the origin of the excellent electrochemical Na-storage properties of SnO2/rGO.

Yandong Zhang; Jian Xie; Shichao Zhang; Peiyi Zhu; Gaoshao Cao; Xinbing Zhao

2015-01-01T23:59:59.000Z

389

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information · Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It stores electricity in plastic. Plastic batteries are the most radical innovation in commercial batteries since the dry cell was introduced in 1890. Plastic batteries offer higher capacity, higher voltage, and longer shelf-life than many competitive designs. Companies are testing new shapes and configurations, including flat batteries, that can be bent like cardboard. Researchers expect that the new technology will free electronic designers from many of the constraints imposed by metal batteries such as limited recharging cycles, high weight, and high cost.

390

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

391

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

392

Characterization of Li-rich xLi2MnO3·(1?x)Li[MnyNizCo1?y?z]O2 as cathode active materials for Li-ion batteries  

Science Journals Connector (OSTI)

Abstract We have investigated the crystallographical, morphological, and electrochemical behaviors of synthesized four different compositions of xLi2MnO3·(1?x)Li[MnyNizCo1?y?z]O2 cathode active materials using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and galvanostatic cycler. The four different compositions of cathode active materials demonstratea commonly angular shape of primary particles, but agglomerated spherical shape in appearance. All the attempted compositions of xLi2MnO3·(1?x)Li[MnyNizCo1?y?z]O2 cathodes deliver a specific discharge capacity of between 220 and 242 mAh/g at room temperature when cycled between 2.5 and 4.6 V versus Li/Li+ at C/10 rate.

Yong Nam Jo; K. Prasanna; Suk Joon Park; Chang Woo Lee

2013-01-01T23:59:59.000Z

393

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes  

E-Print Network (OSTI)

1/3 Mn 1/3 O 2 cathode active material powders for lithium-conductivity of cathode active materials can limit the powergraphitic coatings on cathode active material powders and

Doeff, M.M.

2012-01-01T23:59:59.000Z

394

Spray-drying synthesized lithium-excess Li4+xTi5?xO12?? and its electrochemical property as negative electrode material for Li-ion batteries  

Science Journals Connector (OSTI)

Li4Ti5O12 (Fd-3m space group) materials were synthesized by controlling the lithium and titanium ratios (Li/Ti) in the range of 0.800–0.900 by using a spray-drying method, followed by calcination at several temperatures between 700 and 900 °C for large-scale production. Chemical and structure studies of the final products were done by X-ray diffraction (XRD), neutron diffraction (ND), X-ray photon electron spectroscopy (XPS), scanning electron microscopy (SEM) and inductively coupled plasma mass spectrometry (ICP-MS). The optimum synthesis condition was examined in relation to the electrochemical characteristics including charge–discharge cycling and ac impedance spectroscopy. It was found that when the spray-drying precursors at the Li/Ti ratio of 0.860 were calcined at 700–900 °C for 12 h in air, a pure Li4+xTi5?xO12?? (x = 0.06–0.08) phase with a lithium-excess composition was obtained. Based on the structural studies, it was found that the excess lithium is located at the lithium and titanium layer of the 16d site in the spinel structure (Fd-3m). These pure Li4+xTi5?xO12?? (x = 0.06–0.08) phase materials showed a higher discharge capacity of ?164 mAh g?1 at 1.55 V (vs. Li/Li+), between the cut-off voltage of 1.2–3.0, with an excellent cyclability and superior rate performance in comparison with the Li4Ti5O12 phase containing impurity phases.

Daisuke Yoshikawa; Yoshihiro Kadoma; Jung-Min Kim; Koichi Ui; Naoaki Kumagai; Naoto Kitamura; Yasushi Idemoto

2010-01-01T23:59:59.000Z

395

GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance  

SciTech Connect

A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

2014-09-01T23:59:59.000Z

396

Ionic, XRD, dielectric and cyclic voltammetry studies on PVdF-co-HFP / MMT clay intercalated LiN ( C 2 F 5 SO 2 ) 2 based composite electrolyte for Li-ion batteries  

Science Journals Connector (OSTI)

The composition dependence of plasticizer (EC/DMC) (70-x(wt%)) and LiBETI x(wt%) salt for fixed contents on PVdF-co-HFP(25wt%)/surface modified(SM)-octadecylamine MMT(ODA-MMT) nanoclay(5wt%) host matrix by varying its compositions x=1.5 3.0 4.5 6.0 wt% prepared via solution casting technique has been investigated by A.C. Impedance Dielectric XRD and cyclic voltammetry(CV) studies. The enhanced conductivity 2.1×10?5 S/cm at 300C is observed for (EC/DMC)(70-6)wt%/LiBETI(x=6)wt%. The XRD at 2?=20.9° confirms ?-phase formation and CV studies on membranes show cyclability and reversibility. The dielectric studies show increase in dielectric constant and dielectric loss with decrease in frequency is attributed to high contribution of charge accumulation at the electrode-electrolyte interface.

2014-01-01T23:59:59.000Z

397

Study of C-coated LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} as positive electrode material for Li-ion batteries  

SciTech Connect

Commercial C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} positive electrode material has been investigated by {sup 57}Fe Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS). The combined use of these experimental techniques provides a better understanding of the electrochemical reaction involved during cycling. {sup 57}Fe MS is very efficient to directly follow oxidation state of Fe in the electrode, and gives surprisingly indirect information on the oxidation state of Mn as observed by XAS and XPS. The electrochemical mechanism is proposed based from in situ and operando investigations using both MS and XAS, and is consistent with XPS surface studies. XPS analysis of the electrodes at the end of charge (4.4 V) reveals enhanced electrode/electrolyte interface reactivity at this high potential. Aging of C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4}/Li cells after 50 cycles at 60 Degree-Sign C indicates a rather good electrochemical behavior (low capacity fading) of the electrode material. Both {sup 57}Fe MS and XPS (Mn 2p and Fe 2p) clearly show no modification on Fe and Mn oxidation state compared to fresh electrode confirming the good electrochemical performances. - Graphical abstrct: Quantitative evaluation of the Fe{sup 3+} and Mn{sup 3+} content during the first charge/discharge cycle obtained from K-edge XANES spectra of C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} recorded upon cell operation at RT with C/10 rate. During the charge co-existence of Fe and Mn oxidation is observed between points 2 and 4 of the potential curve. At the end of the charge the cut-off voltage limits the oxidation at about 93%. Highlights: Black-Right-Pointing-Pointer C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} electrode material upon cycling vs. metallic lithium. Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy is a (in)direct probe for Fe(Mn) oxidation state. Black-Right-Pointing-Pointer Both K-Fe and K-Mn edges XAS show a simultaneous oxidation of Fe{sup 2+} and Mn{sup 2+} in a small range of compositions. Black-Right-Pointing-Pointer Surface analysis from XPS allows reveals slight differences at the surface of the electrode with respect to the bulk.

Perea, A. [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1 Agregats, Interfaces et Materiaux pour l'Energie CC 1502, Place Eugene Bataillon, 34095 Montpellier, Cedex 5 (France); Castro, L. [IPREM-ECP, Universite de Pau, Helioparc, 2 av. Pierre Angot, 64053 Pau, Cedex 9 (France); Aldon, L., E-mail: laurent.aldon@um2.fr [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1 Agregats, Interfaces et Materiaux pour l'Energie CC 1502, Place Eugene Bataillon, 34095 Montpellier, Cedex 5 (France); Stievano, L. [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1 Agregats, Interfaces et Materiaux pour l'Energie CC 1502, Place Eugene Bataillon, 34095 Montpellier, Cedex 5 (France); Dedryvere, R.; Gonbeau, D. [IPREM-ECP, Universite de Pau, Helioparc, 2 av. Pierre Angot, 64053 Pau, Cedex 9 (France); Tran, N.; Nuspl, G. [Sued-Chemie AG, Ostenriederstr. 15, D-85368 Moosburg (Germany); Breger, J.; Tessier, C. [SAFT, 111-113 bd. Alfred Daney, 33074 Bordeaux, Cedex (France)

2012-08-15T23:59:59.000Z

398

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

399

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

400

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries  

E-Print Network (OSTI)

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R. Introduction The ideal electrolyte material for a solid-state battery would have the ionic conductivity and cathode binder thin-®lm, solid-state, rechargeable lithium batteries of the type Li/ BCE/LiMnO2 have been

Sadoway, Donald Robert

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modelling challenges for battery materials and electrical energy storage  

Science Journals Connector (OSTI)

Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrode–electrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .

Richard P Muller; Peter A Schultz

2013-01-01T23:59:59.000Z

402

MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System  

E-Print Network (OSTI)

Introduction Lithium-ion batteries have played a centralas current commercial Li-ion batteries currently do not meetnext generation of batteries designed for transportation '

Cabana, Jordi

2010-01-01T23:59:59.000Z

403

Polymerizable Additive for Passivating High Voltage Cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

batteries with the goal of significantly increasing battery energy density. Conventional Li-ion battery electrolyte systems are quite unstable at these high potentials, leading to...

404

Costs of lithium-ion batteries for vehicles  

SciTech Connect

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

405

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

406

Thermal behavior of nickel–metal hydride battery during charging at a wide range of ambient temperatures  

Science Journals Connector (OSTI)

The thermal behavior of D-type Ni–MH battery during charging was investigated at a wide ... this work. The temperature measurement of the battery was conducted by using a thermal infrared imager put in a high–low...

Kai Zheng Fang; Dao Bin Mu; Shi Chen…

2011-07-01T23:59:59.000Z

407

Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. Abstract:...

408

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

409

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

410

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

411

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

412

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

413

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

414

Temperature maintained battery system  

SciTech Connect

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

415

Evaluation and Characterization of Lightweight Materials: Success...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Materials Characterization Capabilities...

416

Definition: Lead-acid battery | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lead-acid battery Jump to: navigation, search Dictionary.png Lead-acid battery A type of battery that uses plates made of pure lead or lead oxide for the electrodes and sulfuric acid for the electrolyte.[1] View on Wikipedia Wikipedia Definition Related Terms Battery, electrolyte References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Lead-acid_battery&oldid=487934" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

417

Nickel coated aluminum battery cell tabs  

DOE Patents (OSTI)

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

418

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

419

EaglePicher Horizon Batteries LLC | Open Energy Information  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC EaglePicher Horizon Batteries LLC Jump to: navigation, search Name EaglePicher Horizon Batteries, LLC Place Dearborn, Michigan Zip MI 48126 Product Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery. Coordinates 39.520064°, -94.770486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.520064,"lon":-94.770486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Blue Spark Technologies formerly Thin Battery Technologies Inc | Open  

Open Energy Info (EERE)

Spark Technologies formerly Thin Battery Technologies Inc Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place Westlake, Ohio Zip 44130 Sector Carbon Product Developer and licensor of carbon-zinc battery technology. Coordinates 32.980007°, -97.168831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.980007,"lon":-97.168831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Union Suppo Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Suppo Battery Co Ltd Suppo Battery Co Ltd Jump to: navigation, search Name Union Suppo Battery Co Ltd Place Shenyang, China Zip 110015 Product Liaoning-based manufacturer of rechargeable NiMH batteries. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

425

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

426

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

427

International Conference of Modeling, Optimization and Simulation -MOSIM'12 June 06-08, 2012 Bordeaux -France  

E-Print Network (OSTI)

ALGORITHM FOR A LI-ION BATTERY EQUIVALENT ELECTRICAL CIRCUIT IDENTIFICATION R. AL NAZER, V. CATTIN, diverse equivalent electrical circuits have been used to modelize Li-ion battery behaviour. However (EEC) introduces non integer derivatives to accurately modelize the Li-ion battery behaviour. We

Paris-Sud XI, Université de

428

A610 Journal of The Electrochemical Society, 160 (4) A610-A615 (2013) 0013-4651/2013/160(4)/A610/6/$31.00 The Electrochemical Society  

E-Print Network (OSTI)

-situ measurements of current distribution in a Li-ion battery using a newly developed pouch cell with a segmented-discharge and long cycle life, the Li-ion battery has become the dominant power source for man- portable electronics to unlock the potential of existing Li battery materials and to scale up Li-ion cells to 10-100 Ah sizes

429

Journal of The Electrochemical Society, 160 (11) A2299-A2305 (2013) A2299 0013-4651/2013/160(11)/A2299/7/$31.00 The Electrochemical Society  

E-Print Network (OSTI)

significant effects on the performance and current distribution of a Li-ion battery cell. Fewer tabs typically in large format Li-ion batteries that enable vehicle- and grid-energy storage is highly warranted. © 2013 been made in improving the energy density of Li-ion battery during the past two decades,1­3 the demand

430

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

431

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

432

Axion Battery Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Axion Battery Products Inc Place Woodbridge, Ontario, Canada Zip L4L 5Y9 Product Subsidiary of Axion Power International, which is to run three lead acid battery fabrication lines. Coordinates 38.660595°, -77.247875° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.660595,"lon":-77.247875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Modeling of passive thermal management for electric vehicle battery packs with PCM between cells  

Science Journals Connector (OSTI)

Abstract A passive thermal management system is examined for an electric vehicle battery pack. Phase change material (PCM) is infused in foam layers separating the lithium-ion (Li-ion) cells. Known operating conditions lead to selecting a suitable PCM for the application, n-octadecane wax. Suitable porous foam for infusion is decided on through experimentation. Finite volume based simulations are conducted to study the thermal behavior of a 4 cell sub-module. The effect of different discharge rates are compared for this sub-module, with and without the PCM's presence. The results show that the maximum temperature in the system is decreased up to 7.3 K by replacing dry foam with PCM-soaked “wet foam”. The addition of PCM also makes the temperature distribution more uniform across the cells. The modeling results give indication of the quantity of PCM required, show the influence of the transient melt behavior under dynamic operating conditions, and examine design constraints associated with this approach.

N. Javani; I. Dincer; G.F. Naterer; G.L. Rohrauer

2014-01-01T23:59:59.000Z

434

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

435

Current balancing for battery strings  

DOE Patents (OSTI)

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

436

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

437

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

438

Additive for iron disulfide cathodes used in thermal batteries  

DOE Patents (OSTI)

The invention comprises thermal batteries employing an FeS/sub 2/ depolarizer itself. A minor amount of CaSi/sub 2/ preferably 1-3% by weight is provided as an additive in the FeS/sub 2/ depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS/sub 2/ by weight generally comprises 64 to 90%.

Not Available

1982-03-23T23:59:59.000Z

439

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

440

2004 Fall GTAC Review:2004 Fall GTAC Review: A Monolithic, SelfA Monolithic, Self--Powered SystemPowered System--  

E-Print Network (OSTI)

Technology unbalance between IC fabrication and conventional battery technology (e.g., Li-ion, NiCd, NiMH) l-CapacitorMicro-Fuel Cell Thin-Film Li-ion Battery Li-ion or Li- polymer #12;GEDC Industry Advisory Board, October 2004 Application) l Single configuration: micro-fuel cell (t1); thin film Li-ion battery (t2) l Hybrid

Rincon-Mora, Gabriel A.

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

442

Toshiba recommends Windows 7 Satellite P755-0M6  

E-Print Network (OSTI)

36.5mm Weight: 250g Battery Battery Type: Removable, Rechargeable 6-cell Lithium Ion (Li-ion) 10.8V x 48Wh capacity Battery Life: Up to 3.5 hours (Dependent on usage) Dimensions: (WxHxD) 205 x 50.5 x 20 (41 to 95 F); Non Operating ­20 to 65 C (-4 to 149 F) Thermal Gradient: Operating 15 C per hr. max

Saskatchewan, University of

443

Toshiba recommends Windows 7 Satellite L750-12T  

E-Print Network (OSTI)

) Dimensions: (WxHxD) 107 x 47 x 30.5 mm Weight: 250g Battery Battery Type: Removable, Rechargeable 6-cell Lithium Ion (Li-ion) 10.8V x 48Wh capacity Battery Life: Up to 5.5 hours (Dependent on usage) Dimensions Temperature: Operating 5° to 35° C (41° to 95° F); Non Operating ­20° to 65° C (-4° to 149° F) Thermal

Saskatchewan, University of

444

Batteries, mobile phones & small electrical devices  

E-Print Network (OSTI)

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

445

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

446

2010 DOE Hydrogen Program and Vehicle Technologies Office Annual...  

Energy Savers (EERE)

for PHEV Lithium Ion Batteries Gardner 3M USABC Battery Separator Development Smith Celgard Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion...

447

CX-010634: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010634: Categorical Exclusion Determination Creation of Li-Ion Battery Test Labs, Customer Return Repair Center & End of Life Battery - Task 8...

448

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

449

Vent construction for batteries  

SciTech Connect

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

450

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

Li-Ion (Johnston Controls Saft—JCS). Whereas EPRI’s analysisLi-Ion (Johnston Controls Saft—JCS). To understand Figure 3,Co 0.1 Al 0.05 )O 2 JCI-Saft 3 Pilot 1 nickel, (Graphite)

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

451

United States Advanced Battery Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

452

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

453

Advanced battery modeling using neural networks  

E-Print Network (OSTI)

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

454

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

455

Sandia National Laboratories: Evaluating Powerful Batteries for...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

456

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

457

Batteries lose in game of thorns | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

458

Disordered Materials Hold Promise for Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

459

Hierarchically Structured Materials for Lithium Batteries. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

460

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

462

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

463

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

464

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

465

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

466

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

467

Coordination Chemistry in magnesium battery electrolytes: how...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

468

Upgrading the Vanadium Redox Battery | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

469

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network (OSTI)

Rack PDU BackupMain Bus-type power network Utility Diesel Generator ATS PDU Server Rack Server RackDistributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power

Simunic, Tajana

470

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network (OSTI)

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed more robust. This report analyzes V2G power from three types of EDVs--battery, hybrid, and fuel cell and prices are high. Fuel cell and hybrid EDVs are sources of new power generation. For economic reasons

Firestone, Jeremy

471

Advanced Lead Acid Battery Consortium | Open Energy Information  

Open Energy Info (EERE)

Lead Acid Battery Consortium Lead Acid Battery Consortium Jump to: navigation, search Name Advanced Lead-Acid Battery Consortium Place Durham, North Carolina Zip 27713 Sector Vehicles Product The ALABC is a research consortium of more than 50 battery-related companies that was originally formed in 1992 to advance the capabilities of the valve-regulated lead acid battery to help electric vehicles become a reality. Coordinates 45.396265°, -122.755099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.396265,"lon":-122.755099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Contour Energy Systems formerly CFX Battery | Open Energy Information  

Open Energy Info (EERE)

Contour Energy Systems formerly CFX Battery Contour Energy Systems formerly CFX Battery Jump to: navigation, search Name Contour Energy Systems (formerly CFX Battery) Place Azusa, California Zip 91702 Product California-based battery maker which claims to have developed novel fluorine-based battery chemistries, nano-materials science and manufacturing processes. Coordinates 34.13361°, -117.905879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.13361,"lon":-117.905879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Redox Flow Batteries, a Review  

SciTech Connect

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

474

Lithium batteries for pulse power  

SciTech Connect

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

475

Battery system with temperature sensors  

DOE Patents (OSTI)

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

476

Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion...

477

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode. LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion...

478

SciChar Workshop | JCESR  

NLE Websites -- All DOE Office Websites (Extended Search)

adipex for sale Charge to the SciChar Workshop Define the grand science challenges for battery science for the Li-ion and Beyond Li-ion research communities. Identify...

479

Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract In this work, pure LVP nanoparticles and an LVP/graphene nanocomposite are successfully synthesized by a simple and cost effective polyol based solvothermal method, which can be easily scaled up. The synthesized nanocomposite contained small (30–60 nm) LVP nanoparticles completely and uniformly anchored on reduced graphene nanosheets. As a cathode for lithium ion batteries, the nanocomposite electrode delivered high reversible lithium storage capacity (189.8 mA h g?1 at 0.1 C), superior cycling stability (111.8 mA h g?1 at 0.1 C, 112.6 mA h g?1 at 5 C, and 103.4 mA h g?1 at 10 C after 80 cycles) and better C-rate capability (90.8 mA h g?1 at 10 C), whereas the pure LVP nanoparticles electrode delivered much less capacity at all investigated current rates. The enhanced electrochemical performance of the nanocomposite electrode can be attributed to the synergistic interaction between the uniformly dispersed LVP nanoparticles and the graphene nanosheets, which offers a large number of accessible active sites for the fast diffusion of Li ions, low internal resistance, high conductivity and more importantly, accommodates the large volume expansion/contraction during cycling.

Alok Kumar Rai; Trang Vu Thi; Jihyeon Gim; Sungjin Kim; Jaekook Kim

2015-01-01T23:59:59.000Z

480

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

Note: This page contains sample records for the topic "battery type li-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

In Situ X-ray Near-Edge Absorption Spectroscopy Investigation of the State of Charge of All-Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

all-vanadium flow battery; X-ray near-edge adsorption spectroscopy; synchrotron; in situ; state of charge; electrolyte ... Among different types of RFBs, the all-vanadium redox flow battery (VRB) displays excellent electrochemical activity and reversibility. ... To the best of our knowledge, this is the first report to use the in situ synchrotron techniques to study the redox flow battery. ...

Chuankun Jia; Qi Liu; Cheng-Jun Sun; Fan Yang; Yang Ren; Steve M. Heald; Yadong Liu; Zhe-Fei Li; Wenquan Lu; Jian Xie

2014-09-05T23:59:59.000Z

482

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

483

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

484

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

485

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

486

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

487

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

488

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

489

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

490

Developing Next-Gen Batteries With Help From NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

491

Making Li-air batteries rechargeable: material challenges. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

492

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

493

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

494

EV Everywhere Battery Workshop Introduction | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

495

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

496

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

497

Batteries using molten salt electrolyte  

DOE Patents (OSTI)

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

498

Thermal Batteries for Electric Vehicles  

SciTech Connect

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

499

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

500

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Energy.gov (U.S. Department of Energy (DOE))

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.