Sample records for battery test manual

  1. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  2. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  3. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01T23:59:59.000Z

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  4. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  5. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01T23:59:59.000Z

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  6. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  7. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Energy Savers [EERE]

    DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  8. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  9. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01T23:59:59.000Z

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  10. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01T23:59:59.000Z

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  11. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01T23:59:59.000Z

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  12. Advancing Toward Test Automation through Effective Manual Testing

    E-Print Network [OSTI]

    . This paper will walk through a best practice scenario for using Manual Tester to more naturally organize test Automation through Effective Manual Testing Bob Levy, Lead Product Manager ­ Functional Test Dennis ElenburgAdvancing Toward Test Automation through Effective Manual Testing May 2005 Advancing Toward Test

  13. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  14. Advanced Vehicle Testing - Beginning-of-Test Battery Testing...

    Broader source: Energy.gov (indexed) [DOE]

    2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

  15. Abuse Testing of High Power Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Circuit - OverdischargeVoltage Reversal - Partial Short Circuit Ref.: Sandia Report SAND 2005-3123, "FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric...

  16. A Comparison of the Abilities Measured by the Cambridge and Educational Testing Service EFL Test Batteries

    E-Print Network [OSTI]

    Bachman, Lyle F; Davidson, Fred; Foulkes, John

    1990-01-01T23:59:59.000Z

    EFL proficiency test batteries. Language Testing 5, Bachman,Service E F L Test Batteries' Lyle F. Bachman University ofstructure of the two test batteries, both within each test

  17. PNGV Battery Performance Testing and Analyses

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

    2002-03-01T23:59:59.000Z

    In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

  18. NREL Battery Thermal and Life Test Facility (Presentation)

    SciTech Connect (OSTI)

    Keyser, M.

    2011-05-01T23:59:59.000Z

    This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

  19. Nevada Test Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers' Council Nevada Test Site

    2010-02-09T23:59:59.000Z

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  20. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  1. Potential use of battery packs from NCAP tested vehicles.

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.

    2013-10-01T23:59:59.000Z

    Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

  2. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (Batteries tested -manufacturers, technology, and characteristics Manufacturer K2 EIG A123 Technology type Iron phosphate Iron phosphate Iron phosphate Iron Phosphate Graphite/

  3. Tonopah Test Range capabilities: technical manual

    SciTech Connect (OSTI)

    Manhart, R.L.

    1982-11-01T23:59:59.000Z

    This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

  4. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  5. AVTA: Battery Testing - Best Practices for Responding to Emergency...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho National Laboratory. Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on Full-Scale Testing Results - June 2013...

  6. Sandia National Laboratories: Sandia Battery Abuse Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Battery Abuse Testing Laboratory Sandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program On January 21, 2014, in...

  7. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  8. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  9. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  10. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  11. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  12. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  13. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  14. 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice...

    Energy Savers [EERE]

    05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability This...

  15. High power battery test methods for hybrid vehicle applications

    SciTech Connect (OSTI)

    Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

    1997-11-01T23:59:59.000Z

    Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

  16. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

  17. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  18. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  19. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  20. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    9679 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk Jeffrey Wishart July 2013 The Idaho National Laboratory is a U.S. Department...

  1. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  2. Webinar: Test Procedure for Battery Chargers; Notice of Data Availability

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the notice of data availability regarding test procedures for battery chargers. 79 FR 27774  (May 15, 2014). For more information, please visit...

  3. Nevada Test Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers' Council - Nevada Test Site

    2009-10-01T23:59:59.000Z

    This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

  4. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect (OSTI)

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01T23:59:59.000Z

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  5. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  6. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  7. Overview of PNGV Battery Development and Test Programs

    SciTech Connect (OSTI)

    Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

    2002-02-01T23:59:59.000Z

    Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

  8. Testing three 90Whr Dell Batteries for Latitude E6410 I have been able, for complicated reasons, to test three batteries sold as 9cell 90Whr batteries for

    E-Print Network [OSTI]

    Sloman, Aaron

    Testing three 90Whr Dell Batteries for Latitude E6410 I have been able, for complicated reasons, to test three batteries sold as 9cell 90Whr batteries for the Dell Latitude E6410 computer, one made battery was fully charged then allowed to discharge while the laptop was on, and not doing very much

  9. Test Report : GS battery, EPC power HES RESCU.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

  10. Sandia Energy - Battery Abuse Testing Laboratory (BATLab)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & Computational MathBattery

  11. Abuse Testing of High Power Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Tests Performed for USABC Cells and Modules Abuse Test Condition Termination Overcharge 1C To failure or stable heat output " 3C To failure or stable heat...

  12. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of VariousMiller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology and

  13. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

  14. Abuse Testing of High Power Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules Abuse Testing at Cell Level with No Mitigation Controls Abuse Test Condition Termination Overcharge 1C To failure or stable heat output " 3C To failure or stable heat...

  15. Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...

    Broader source: Energy.gov (indexed) [DOE]

    Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

  16. Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

  17. Manual

    Broader source: Energy.gov (indexed) [DOE]

    Evaluations HSS Office of Health, Safety and Security Isotek Isotek Systems, LLC JIC Joint Information Center LED Laboratory Emergency Director LEM Local Emergency Manual LERC...

  18. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    of the Electric Fuel Zinc-Air Battery System for EVs,of the Electric Fuel Zinc-air battery for electric vehicles,

  19. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J was performed for both VRLA and NiMH batteries using Penn State University's electric vehicle, the Electric Lion and hybrid-electric vehicles. A thorough understanding of battery systems from the point of view

  20. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Batteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Batterybatteries with Nano-Li4Ti5O12 electrodes, Advanced Automotive Battery and Ultracapacitor Conference, Third International Symposium on Large Lithium-ion Battery

  1. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  2. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  3. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  4. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  5. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  6. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  7. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  8. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    initial and life cycle costs of the battery. As indicatedbattery chemistries have the potential for longer cycle life which on a life cycle costLife cycle data for the Altairnano 50Ah cell (Altairnano data) Battery cost

  9. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  10. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  11. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  12. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01T23:59:59.000Z

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  13. Vehicle Technologies Office Merit Review 2014: Battery Safety Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  14. Vehicle Technologies Office Merit Review 2015: Battery Safety Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  15. Implications of NiMH Hysteresis on HEV Battery Testing and Performance

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

    2002-08-01T23:59:59.000Z

    Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

  16. Manual

    Broader source: Energy.gov (indexed) [DOE]

    Performance Test OEM BNL Office of Emergency Management PA Protective Action PIO Public Information Officer SAE Site Area Emergency SC-31.1 DOE Office of Science,...

  17. PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

    2002-06-01T23:59:59.000Z

    Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

  18. Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2005-07-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOE’s FreedomCAR and Vehicle Technologies Program.

  19. Battery Thermal Modeling and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries fromThermal Modeling and

  20. Battery systems performance studies - HIL components testing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries fromThermal Modeling andof

  1. Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2010-02-01T23:59:59.000Z

    With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

  2. Test Series 2: seismic-fragility tests of naturally-aged Class 1E Exide FHC-19 battery cells

    SciTech Connect (OSTI)

    Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J.; Tulk, J. D.; Janis, W. J.; Black, D. A.; Paulsen, G. D.; Aucoin, B. D.

    1985-03-01T23:59:59.000Z

    The seismic-fragility of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and their thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the ''end-of-life'' of a battery if subjected to a seismic event. This report, the second in a test series of an extensive seismic research program, covers the testing of 10-year old lead-calcium Exide FHC-19 cells from the Calvert Cliffs Nuclear Power Station operated by the Baltimore Gas and Electric Company. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, both rigidly and loosely mounted; and multicell (three-cell) tests, mounted in a typical battery rack. A total of six electrically active cells was used in the two different cell configurations.

  3. Test Series 4: seismic-fragility tests of naturally-aged Exide EMP-13 battery cells

    SciTech Connect (OSTI)

    Bonzon, L.L.; Hente, D.B.; Kukreti, B.M.; Schendel, J.; Tulk, J.D.; Janis, W.J.; Black, D.A.; Paulsen, G.D.; Aucoin, B.D.

    1985-03-01T23:59:59.000Z

    This report, the fourth in a test series of an extensive seismic research program, covers the testing of a 27-year old lead-antimony Exide EMP-13 cells from the recently decommissioned Shippingport Atomic Power Station. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, rigidly mounted; and multicell (five-cell) tests, mounted in a typical battery rack. A total of nine electrically active cells was used in the two different cell configurations. None of the nine cells failed during the actual seismic tests when a range of ZPAs up to 1.5 g was imposed. Subsequent discharge capacity tests of five of the cells showed, however, that none of the cells could deliver the accepted standard of 80% of their rated electrical capacity for 3 hours. In fact, none of the 5 cells could deliver more than a 33% capacity. Two of the seismically tested cells and one untested, low capacity cell were disassembled for examination and metallurgical analyses. The inspection showed the cells to be in poor condition. The negative plates in the vicinity of the bus connections were extremely weak, the positive buses were corroded and brittle, negative and positive active material utilization was extremely uneven, and corrosion products littered the cells.

  4. Hybrid energy storage test procedures and high power battery project FY-1995 interim report

    SciTech Connect (OSTI)

    Hunt, G.L.

    1995-12-01T23:59:59.000Z

    Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation of such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.

  5. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  6. Test series 1: seismic-fragility tests of naturally-aged Class 1E Gould NCX-2250 battery cells

    SciTech Connect (OSTI)

    Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J. S.; Tulk, J. D.; Janis, W. J.; Black, D A; Paulsen, G. D.; Aucoin, B. D.

    1984-09-01T23:59:59.000Z

    The seismic-fragility response of naturally-aged, nuclear station, safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds; and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the end-of-life of a battery, given a seismic event. This report covers the first test series of an extensive program using 12-year old, lead-calcium, Gould NCX-2250 cells, from the James A. Fitzpatrick Nuclear Power Station operated by the New York Power Authority. Seismic tests with three cell configurations were performed using a triaxial shake table: single-cell tests, rigidly mounted; multi-cell (three) tests, mounted in a typical battery rack; and single-cell tests specifically aimed towards examining propagation of pre-existing case cracks. In general the test philosophy was to monitor the electrical properties including discharge capacity of cells through a graduated series of g-level step increases until either the shake-table limits were reached or until electrical failure of the cells occurred. Of nine electrically active cells, six failed during seismic testing over a range of imposed g-level loads in excess of a 1-g ZPA. Post-test examination revealed a common failure mode, the cracking at the abnormally brittle, positive lead bus-bar/post interface; further examination showed that the failure zone was extremely coarse grained and extensively corroded. Presently accepted accelerated-aging methods for qualifying batteries, per IEEE Std. 535-1979, are based on plate growth, but these naturally-aged 12-year old cells showed no significant plate growth.

  7. Dual battery sets including zinc MnO{sub 2} rechargeable cells on constant power tests

    SciTech Connect (OSTI)

    Schumm, B. Jr.

    1998-07-01T23:59:59.000Z

    Electric vehicle power requirements typically are much greater than what would be recommended for rechargeable zinc manganese dioxide alkaline batteries. In order to use the zinc manganese dioxide system as an economical power source for heavy load or pulse systems it is necessary to augment the pulse load carrying capability. Eagle-Cliffs is testing commercially available rechargeable zinc manganese dioxide cells in sets. These sets consist one configuration of the zinc manganese dioxide cells accompanied by a much lower capacity device ( which may be another configuration of zinc manganese dioxide cells) supporting any heavy pulse current requirements. Thus the zinc manganese dioxide cells provide at least a low cost, environmentally desirable main power battery and perhaps the pulse power yet the system still meets the intermittent high power needs of many uses. In this test program, small zinc manganese dioxide rechargeable cells are supported by a nickel cadmium battery or a different set of zinc manganese dioxide cells simulating any of a number of devices such as power batteries, large capacitors, flywheels, etc. Discharge performance demonstrating forty-five to fifty watt-hours per kilogram and 80 watts per kilogram is achieved by the system.

  8. 2010 Ford Fusion-4699 Hybrid BOT Battery Test Results

    Broader source: Energy.gov (indexed) [DOE]

    of Motors 1 : 1 Motor Power Rating 2 : 60 kW VIN : 3FADP0L32AR194699 Static Capacity Test Measured Average Capacity: 5.29 Ah Measured Average Energy Capacity: 1,370 Wh Vehicle...

  9. Selected test results from the neosonic polymer Li-ion battery.

    SciTech Connect (OSTI)

    Ingersoll, David T.; Hund, Thomas D.

    2010-07-01T23:59:59.000Z

    The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

  10. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  11. A Multi-Trait Multi-Method Analysis of the Bayesian Screening Instrument and Test Battery for LD Adolescents

    E-Print Network [OSTI]

    Alley, Gordon R.; Deshler, Donald D.; Mellard, Daryl F.; Warner, Michael M.

    1980-01-01T23:59:59.000Z

    Component Disability Instrument was investigated. The reliability and validity of the Modified Component Disability Checklist and Secondary Test battery were investigated in the third study (Research Report No. 11)....

  12. AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an experimental vehicle not for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  13. Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards

    SciTech Connect (OSTI)

    Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

    2011-10-19T23:59:59.000Z

    Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

  14. US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing

    SciTech Connect (OSTI)

    Donald Karner; J.E. Francfort

    2005-09-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

  15. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  16. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect (OSTI)

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01T23:59:59.000Z

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  17. Battery Usage and Thermal Performance of the Toyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures: Preprint

    SciTech Connect (OSTI)

    Kelly, K. J.; Mihalic, M.; Zolot, M.

    2001-11-20T23:59:59.000Z

    This study describes the results from the National Renewable Energy Laboratory's (NREL) chassis dynamometer testing of a 2000 model year Honda Insight and 2001 model year Toyota Prius. The tests were conducted for the purpose of evaluating the battery thermal performance, assessing the impact of air conditioning on fuel economy and emissions, and providing information for NREL's Advanced Vehicle Simulator (ADVISOR).

  18. Design of a testing device for quasi-confined compression of lithium-ion battery cells

    E-Print Network [OSTI]

    Roselli, Eric (Eric J.)

    2011-01-01T23:59:59.000Z

    The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

  19. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01T23:59:59.000Z

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  20. Testing of a naturally aged nuclear power plant inverter and battery charger

    SciTech Connect (OSTI)

    Gunther, W.E.

    1988-09-01T23:59:59.000Z

    A naturally aged inverter and battery charger were obtained from the Shippingport facility. This equipment was manufactured in 1974, and was installed at Shippingport in 1975 as part of a major plant modification. Testing was performed on this equipment under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program to evaluate the type and extent of degradation due to aging, and to determine the effectiveness of condition monitoring techniques which could be used to detect aging effects. Steady state testing was conducted over the equipment's entire operating range. Step load changes were also initiated in order to monitor the electrical response. During this testing, component temperatures were monitored and circuit waveforms analyzed. Results indicated that aging had not substantially affected equipment operation. On the other hand, when compared with original acceptance test data, the monitoring techniques employed were sensitive to changes in measurable component and equipment parameters indicating the viability of detecting degradation prior to catastrophic failure. 7 refs., 34 figs., 12 tabs.

  1. Development and testing of 100-kW/ 1-minute Li-ion battery systems for energy storage applications.

    SciTech Connect (OSTI)

    Doughty, Daniel Harvey; Clark, Nancy H.

    2004-07-01T23:59:59.000Z

    Two 100 kW min{sup -1} (1.67 kW h{sup -1}) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h{sup -1} and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

  2. Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  3. advanced battery technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

  4. advanced battery technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

  5. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  6. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  7. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  8. Laboratory manual for salt-mixing test in 37- and 217-pin bundles. [LMFBR

    SciTech Connect (OSTI)

    Chan, Y.N.; Todreas, N.E.

    1980-08-01T23:59:59.000Z

    This laboratory manual deals with the procedure employed during salt tracer experiments used in evaluating the hydraulic characteristics of a rod bundle. A description of the standard equipment used is given together with the details of manufacture of probes used for detecting the salt concentration. Details of the bundle construction have been excluded as they are availble in the reference cited. An attempt has been made to point out potential trouble areas and procedures.

  9. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    SciTech Connect (OSTI)

    White, Ralph E.; Popov, Branko N.

    2002-10-31T23:59:59.000Z

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  10. Current trends and innovations in porometry and porosimetry applicable to battery separator testing and development: Introducing the Micro-Flow Porometer

    SciTech Connect (OSTI)

    Stillwell, C.R.; Gupta, K.M. [Porous Materials Inc., Ithaca, NY (United States)

    1996-11-01T23:59:59.000Z

    Pore structure of separators is a critical property for efficiency of batteries and fuel cells. As such, porosity characterization is of great interest to those developing, as well as those manufacturing, these materials. This paper discusses the two most frequently used techniques for porosity characterization: porosimetry and porometry. The strengths and limitations of both testing techniques is discussed with a focus on appropriate test selection to obtain optimal results. This paper also describes the new user-friendly instruments now available from Porous Materials Inc. (PMI) and the recent advances that have made these techniques more useful for those involved with product development, product improvement, and quality control in the battery separator industry. This paper introduces the new Micro-Flow Porometer, which is capable of testing flow rates as low as .0001 cc/min. The usefulness of the Micro-Flow Porometer for battery separator testing is discussed and additional advances in porosimetry is introduced.

  11. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27T23:59:59.000Z

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  12. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

  13. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  14. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  15. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect (OSTI)

    NONE

    1996-05-30T23:59:59.000Z

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  16. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Johns, William H.

    2013-11-01T23:59:59.000Z

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  17. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01T23:59:59.000Z

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  18. advanced lithium-ion batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

  19. SAT Mathematics standardized test manual for high-performing high school students

    E-Print Network [OSTI]

    Vasquez, Phillip A

    2009-01-01T23:59:59.000Z

    Most high school standardized testing preparation materials are geared towards the average student scoring in the 5 0 th percentile. There are few resources available to lower and higher scoring students who have different ...

  20. Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

  1. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  2. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project, Report3 for the advanced lithium battery chemistries are based onwith ultracapacitors, the LTO lithium battery should be

  3. THERM 5 / WINDOW 5 NFRC simulation manual

    SciTech Connect (OSTI)

    Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

    2003-06-01T23:59:59.000Z

    This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

  4. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01T23:59:59.000Z

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  5. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  6. Solid Electrolyte Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Present Li-ion Batteries Insertion compounds have limited capacity Li Air batteries are inefficient if used for electrical energy storage Li S batteries have too...

  7. Predictability of estimated maximal aerobic capacities for manual material handlers using submaximal box lifting and bench stepping tests

    E-Print Network [OSTI]

    Cortner, James D.

    1996-01-01T23:59:59.000Z

    , physiologic and psychophysic principles in the Department of Health and Human Services (DHHS-NIOSH) publication 81-122 entitled Work Practices Guide for Manual Lifting. The Guide incorporated those principles into specific formulas that rate specific tasks.... 3 kg (9. 5 lb). For each subject, heart rate was plotted against V Ot measurements and furnished with a best ftt line using linear regression. An individual's maximal aerobic capacity was estimated by extrapolating the best ftt line...

  8. TALENT user's manual.

    SciTech Connect (OSTI)

    Merchant, Bion John

    2012-01-01T23:59:59.000Z

    The Ground-Based Monitoring R and E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. The software tool used to capture and analyze the data collected from testing is called TALENT: Test and Analysis Evaluation Tool. This document is the manual for using TALENT. Other reports document the testing procedures that are in place (Kromer, 2007) and the algorithms employed in the test analysis (Merchant, 2011).

  9. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  10. Gravid Mosquito Trap P462 -Trap The ChemTica GMT operates on 4 size D cell batteries. A photo-activated switch turns on the fan

    E-Print Network [OSTI]

    Ishida, Yuko

    batteries. A photo-activated switch turns on the fan at dusk. Manual shutoff is required at dawn to prevent at dawn to prevent loss of trapped mosquitoes. Power is supplied by four D cell batteries. The upper case

  11. EML procedures manual

    SciTech Connect (OSTI)

    Volchok, H.L.; de Planque, G. (eds.)

    1982-01-01T23:59:59.000Z

    This manual contains the procedures that are used currently by the Environmental Measurements Laboratory of the US Department of Energy. In addition a number of analytical methods from other laboratories have been included. These were tested for reliability at the Battelle, Pacific Northwest Laboratory under contract with the Division of Biomedical and Environmental Research of the AEC. These methods are clearly distinguished. The manual is prepared in loose leaf form to facilitate revision of the procedures and inclusion of additional procedures or data sheets. Anyone receiving the manual through EML should receive this additional material automatically. The contents are as follows: (1) general; (2) sampling; (3) field measurements; (4) general analytical chemistry; (5) chemical procedures; (6) data section; (7) specifications.

  12. Biosafety Manual

    SciTech Connect (OSTI)

    King, Bruce W.

    2010-05-18T23:59:59.000Z

    Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may cause disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.

  13. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    battery configuration. Lead-acid batteries do not shuttleincluding lead-acid, nickel-based, and lithium-ion batteries

  14. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12T23:59:59.000Z

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  15. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  16. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  17. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-01-01T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  18. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-12-31T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  19. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  20. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01T23:59:59.000Z

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  1. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  2. Multicell Li/SOCl/sub 2/ reserve battery

    SciTech Connect (OSTI)

    Baldwin, A.R.; Garoutte, K.F.

    1984-01-01T23:59:59.000Z

    Recent development work on reserve lithium thionyl chloride (RLTC) batteries at SNLA and Honeywell has included safety and performance evaluations. The RLTC battery is being considered for applications that have traditionally been fulfilled by state-of-the-art thermal batteries and reserve silver oxide zinc electrochemical systems. These applications typically demand a reserve battery having a rapid voltage rise, high reliability, operational safety and useful active lifetime ranging from minutes to hours. The RLTC work reported here was directed toward a power battery capable of meeting or exceeding the design requirements. Performance and safety test data indicate that the RLTC battery may be better suited than thermal batteries for some long-life applications. Table II presents a comparison between a Li(Si)/FeS/sub 2/ thermal battery and an RLTC battery, both of which were designed to fulfill the requirements.

  3. PART III DIVISION 13 PAGE 1 RUTGERS DESIGN STANDARDS MANUAL NOV 2008 DIVISION 13 SPECIAL CONSTRUCTION

    E-Print Network [OSTI]

    operating condition. The system #12;PART III DIVISION 13 PAGE 2 RUTGERS DESIGN STANDARDS MANUAL NOV 2008 detail battery calculations per NFPA 72. 4. Indicate all A/C, fans, Dampers to be monitored by fire alarm detailed battery calculations per the

  4. RADIATION ALERT User Manual

    E-Print Network [OSTI]

    Haller, Gary L.

    the Inspector in good condition, handle it with care, and observe the following precautions: · Do fields. · If you expect to not use the Inspector for longer than one month, remove the battery to avoid damage from battery corrosion. · Change the battery promptly when the battery indicator appears

  5. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  6. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  7. Medical Management Treatment Manual

    E-Print Network [OSTI]

    Bezrukov, Sergey M.

    Medical Management Treatment Manual: A Clinical Guide for Researchers and Clinicians) This manual is an adaptation of: Medical Management Treatment Manual: A Clinical Research Guide for Medically, Maryland #12;Message to the Users of this Medical Management (MM) Manual from the Editors Background

  8. Davis PV plant operation and maintenance manual

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This operation and maintenance manual contains the information necessary to run the Photovoltaics for Utility Scale Applications (PVUSA) test facility in Davis, California. References to more specific information available in drawings, data sheets, files, or vendor manuals are included. The PVUSA is a national cooperative research and demonstration program formed in 1987 to assess the potential of utility scale photovoltaic systems.

  9. NREL: Energy Storage - Battery Ownership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

  10. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  11. KHIIIKHIIIKHIIIKHIII----LRFLRFLRFLRF User manual

    E-Print Network [OSTI]

    Napp, Nils

    ............................................................................................... 2 1.3. RECYCLING.............................................................. 6 2.5. BATTERY

  12. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  13. Request for Information on Evaluating New Products for the Battery...

    Broader source: Energy.gov (indexed) [DOE]

    for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication DOE Notice of Proposed Rulemaking to Amend the External Power Supply Test...

  14. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research 2011 Annual Merit Review Results Report - Energy Storage Technologies...

  15. DC Fast Charging Effects on Battery Life and EVSE Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Charging Effects on Battery Life and EVSE Efficiency and Security Testing This presentation does not contain any proprietary, confidential, or otherwise restricted information PI:...

  16. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  17. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14T23:59:59.000Z

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  18. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  19. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  20. Comparison of various battery technologies for electric vehicles 

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01T23:59:59.000Z

    four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

  1. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  2. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01T23:59:59.000Z

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  3. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  4. Thermal Evaluation of the Honda Insight Battery Pack: Preprint

    SciTech Connect (OSTI)

    Zolot, M.D.; Kelly, K.; Keyser, M.; Mihalic, M.; Pesaran, A.; Hieronymus, A.

    2001-06-18T23:59:59.000Z

    The hybrid vehicle test efforts at National Renewable Energy Laboratory (NREL), with a focus on the Honda Insight's battery thermal management system, are presented. The performance of the Insight's high voltage NiMH battery pack was characterized by conducting in-vehicle dynamometer testing at Environmental Testing Corporation's high altitude dynamometer test facility, on-road testing in the Denver area, and out-of-car testing in NREL's Battery Thermal Management Laboratory. It is concluded that performance does vary considerably due to thermal conditions the pack encounters. The performance variations are due to both inherent NiMH characteristics, and the Insight's thermal management system.

  5. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30T23:59:59.000Z

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  6. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  7. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  8. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  9. ECU Physicians Group Practice Policy and Procedure Manual

    E-Print Network [OSTI]

    ECU Physicians Group Practice Policy and Procedure Manual Topic: HIV Antibody Testing # IM 13 Manual Topic: HIV Antibody Testing # IM 13 Section: 4 Section Name: Information Management Approval Date Section: 4 Section Name: Information Management Approval Date: 01/09/01 Medical Director Approval: Richard

  10. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  11. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08T23:59:59.000Z

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  12. Utility battery storage systems program report for FY 94

    SciTech Connect (OSTI)

    Butler, P.C.

    1995-03-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  13. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01T23:59:59.000Z

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  14. EMSL Operations Manual

    SciTech Connect (OSTI)

    Foster, Nancy S.

    2009-03-25T23:59:59.000Z

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  15. EMSL Operations Manual

    SciTech Connect (OSTI)

    Foster, Nancy S.

    2009-06-18T23:59:59.000Z

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  16. October 2014 Implementation Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities described in this Manual Primary Residential Heating System A heating system that serves 50% or more of the conditioned living area of a residence PTCS(tm)...

  17. Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  18. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  19. ISSUES MANAGEMENT PROGRAM MANUAL

    E-Print Network [OSTI]

    Gravois, Melanie

    2007-01-01T23:59:59.000Z

    LBNL/PUB-5519 (1), Rev. 032 ISSUES MANAGEMENT PROGRAM MANUAL LBNL/PUB-5519 (1), Rev.Berkeley National Laboratory LBNL/PUB-5519 (1), Rev. 0

  20. EMS Programs Manual

    Broader source: Energy.gov [DOE]

    The Environmental Management System Programs Manual (LMS/POL/S04388-3.0) is obsolete and has been removed from the LM website.

  1. Mail Services User's Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-07-12T23:59:59.000Z

    This Manual provides detailed information on using the Department of Energy (DOE) mail services. Canceled by DOE G 573.1-1.

  2. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid. Summary Researchers from the...

  3. Boosting batteries | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way for widespread adoption of lithium ion batteries for applications such as powering electric vehicles and storing renewable energy on the grid. The Science Rechargeable...

  4. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  5. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  6. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25T23:59:59.000Z

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  7. Assessments A Training Manual

    E-Print Network [OSTI]

    Modern Industrial Assessments A Training Manual Version 2.0 Sponsored by: Produced by: Dr. Michael. Modern Industrial Assessments: A Training Manual, grew from the desires of the United States Department conservation and waste minimization / pollution prevention training courses and information agencies sponsored

  8. Fraction Collector User Manual

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Fraction Collector Frac-950 18-1139-56 User Manual #12;#12;Important user information All users Territories Hong Kong © Copyright Amersham Biosciences AB 2002 - All rights reserved Fraction Collector Frac Fraction Collector Frac-950 User Manual 18-1139-56 Edition AE v Contents 1 Introduction 1.1 General

  9. Process Manual Biological & Agricultural

    E-Print Network [OSTI]

    Boas, Harold P.

    · · · · ·t t ·t ·t t t ·t . ~ t · · Process· Manual Biological & Agricultural Engineering MANUAL FOR THE BIOLOGICAL AND AGRICULTURAL ENGINEERING DEPARTMENT TexasA&MUniversity Article I. NAME The name ofthis organization shall be the Biological and Agricultural Engineering Department (abbreviated

  10. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

  11. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-21T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

  12. Rensselaer Academic Advising Manual

    E-Print Network [OSTI]

    Bystroff, Chris

    information specific to Rensselaer with reprints of articles relevant to academic advising. Please noteRensselaer Academic Advising Manual For copies, corrections, or suggestions, contact: The Advising & Learning Assistance Center Sage Lab 2106 (518) 276-6269 #12;Rensselaer Academic Advising Manual #12

  13. Rensselaer Academic Advising Manual

    E-Print Network [OSTI]

    Bystroff, Chris

    with reprints of articles relevant to academic advising. Please note that Additional materials mayRensselaer Academic Advising Manual For copies, corrections, or suggestions, contact: The Advising & Learning Assistance Center Sage Lab 2106 (518) 276-6269 #12;Rensselaer Academic Advising Manual 6

  14. Personnel Security Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-22T23:59:59.000Z

    This Manual provides detailed requirements and procedures to supplement DOE O 472.1B, Personnel Security Activities, which establishes the overall objectives, requirements, and responsibilities for implementation and operation of the Personnel Security Program and the Personnel Security Assurance Program in the Department of Energy (DOE). This Manual addresses only the Personnel Security Program.

  15. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  16. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  17. Isolated Differential Amplifier INSTRUCTION MANUAL

    E-Print Network [OSTI]

    Kleinfeld, David

    ................................................................................................................... 8 Measuring Electrode Impedance: the Z Mode ..................................................................................................................................... 5 OPERATING INSTRUCTIONS...............................................................................................................13 Recharge the Batteries

  18. Utility Battery Storage Systems Program report for FY93

    SciTech Connect (OSTI)

    Butler, P.C.

    1994-02-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  19. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect (OSTI)

    Roberts, R.

    1985-06-01T23:59:59.000Z

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  20. Improved lithiumsulfur batteries with a conductive coating on the separator to prevent the

    E-Print Network [OSTI]

    Cui, Yi

    Improved lithium­sulfur batteries with a conductive coating on the separator to prevent*ac Lithium­sulfur (Li­S) batteries are highly attractive for future generations of portable electronics novel electrodes and electrolytes have been tested to improve Li­S battery performance. However

  1. Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries Xiaogang Han,,

    E-Print Network [OSTI]

    Li, Teng

    Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries Xiaogang Han,, Yang Liu,, Zheng Jia ABSTRACT: Atomic-layer-deposition (ALD) coatings have been increasingly used to improve battery performance/discharging. Battery tests in coin-cells further showed the ALD-Al2O3 coating remarkably boosts the cycling performance

  2. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  3. Vegetation Change Analysis User's Manual

    SciTech Connect (OSTI)

    D. J. Hansen; W. K. Ostler

    2002-10-01T23:59:59.000Z

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  4. TA-55 change control manual

    SciTech Connect (OSTI)

    Blum, T.W.; Selvage, R.D.; Courtney, K.H.

    1997-11-01T23:59:59.000Z

    This manual is the guide for initiating change at the Plutonium Facility, which handles the processing of plutonium as well as research on plutonium metallurgy. It describes the change and work control processes employed at TA-55 to ensure that all proposed changes are properly identified, reviewed, approved, implemented, tested, and documented so that operations are maintained within the approved safety envelope. All Laboratory groups, their contractors, and subcontractors doing work at TA-55 follow requirements set forth herein. This manual applies to all new and modified processes and experiments inside the TA-55 Plutonium Facility; general plant project (GPP) and line item funded construction projects at TA-55; temporary and permanent changes that directly or indirectly affect structures, systems, or components (SSCs) as described in the safety analysis, including Facility Control System (FCS) software; and major modifications to procedures. This manual does not apply to maintenance performed on process equipment or facility SSCs or the replacement of SSCs or equipment with documented approved equivalents.

  5. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  6. Salinas : theory manual.

    SciTech Connect (OSTI)

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2004-08-01T23:59:59.000Z

    This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programer-notes manual, the user's notes and of course the material in the open literature.

  7. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18T23:59:59.000Z

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  8. Short term generation scheduling in photovoltaic-utility grid with battery storage

    SciTech Connect (OSTI)

    Marwali, M.K.C.; Ma, H.; Shahidehpour, S.M. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering] [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering; Abdul-Rahman, K.H. [Siemens Energy and Automation, Brooklyn Park, MN (United States)] [Siemens Energy and Automation, Brooklyn Park, MN (United States)

    1998-08-01T23:59:59.000Z

    This paper presents an efficient approach to short term resource scheduling for an integrated thermal and photovoltaic-battery generation. The proposed model incorporated battery storage for peak load shaving. Several constraints including battery capacity, minimum up/down time and ramp rates for thermal units, as well as natural photovoltaic (PV) capacity are considered in the proposed model. A case study composed of 26 thermal units and a PV-battery plant is presented to test the efficiency of the method.

  9. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  10. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  11. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  12. Budget Execution Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-30T23:59:59.000Z

    The manual provides the user with a single source for references, definitions, and detailed procedures for distributing and controlling Department funds.Canceled by DOE M 135.1-1A. Does not cancel other directives.

  13. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07T23:59:59.000Z

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

  14. Aerosol Sampler Operations Manual

    E-Print Network [OSTI]

    Fischer, Emily V.

    -1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

  15. Environmental audit manual

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The primary purpose of this manual is to provide a guide upon which an environmental regulatory compliance audit, assessment, or appraisal of a DOE facility can be conducted, and to ensure that all aspects of a particular regulatory area are adequately and consistently covered. In addition, this audit manual provides lines of inquiry to assess a facility's adherence to environmental best management practices (BMPs). The protocols are in a format such that the results and observations of an audit can be documented and recorded. The ultimate objectives of the use of this manual are to document a facility's compliance with environmental laws and regulations, identify areas of potential noncompliance, and plan for corrective action. Although this manual has been developed by a DOE Headquarters entity, it has been designed for use at all levels within DOE.

  16. Geochemical engineering reference manual

    SciTech Connect (OSTI)

    Owen, L.B.; Michels, D.E.

    1984-01-01T23:59:59.000Z

    The following topics are included in this manual: physical and chemical properties of geothermal brine and steam, scale and solids control, processing spent brine for reinjection, control of noncondensable gas emissions, and goethermal mineral recovery. (MHR)

  17. Media Sanitization Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23T23:59:59.000Z

    The Manual establishes minimum technical and management requirements for the sanitization of electronic media, hardware, and devices and a risk-based approach to sanitization. Does not cancel other directives.

  18. User' Software Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MM-Group Home MMG Advisory Committees 4-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info FAQs 4-ID-D Beamline Software Manual Introduction...

  19. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  20. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  1. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  2. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  3. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  4. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  5. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  6. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  7. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  8. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  9. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  10. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  11. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  12. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  13. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

  14. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  15. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

  16. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  17. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  18. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the study could pave the way for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid....

  19. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01T23:59:59.000Z

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  20. Battery Charger Efficiency

    Office of Environmental Management (EM)

    Marine Battery Banks don't look like power tools Marine and RV Chargers Differ from Automotive Chargers * The core strategy in the CEC standard is to shut down the charger when...

  1. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16T23:59:59.000Z

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  2. Battery SEAB Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from

  3. advantage flow batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is potentially a greater economy of scale for a wind-powered station when compared with a PV station. Testing at NREL on wind-powered battery charging stations has focused on a low...

  4. The Psychology Clinic Manual of Procedures and

    E-Print Network [OSTI]

    Zhang, Yuanlin

    and Maintenance of Test Security 10.6 Obtaining Assessment Materials 10.7 Standard Assessment Protocol 10.8 CourseTEXAS TECH UNIVERSITY The Psychology Clinic Manual of Procedures and Requirements FALL 2013 Edition Statement 1.3 Faculty and Staff 1.4 Contact Information 1.5 Hours of Operation 1.6 Parking 1.7 Clinic

  5. User Manual Version 1.1

    E-Print Network [OSTI]

    Napp, Nils

    ................................................................................................................5 1.3 Recycling.....................................................................................................................8 3.1.2 ON¢ OFF Battery Switch..................................................................................14 3.1.9 Batteries

  6. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  7. Software_Design_Document,Testing,Deployment_and_Configuration_Management,and_Use_Manual_of_the_UUIS--a_Team_2_COMP5541-W10_Project_Approach

    E-Print Network [OSTI]

    Ahmad, Omer Shahid; Jason,; Chen,; Ilham, Najah; Lu, Jianhai; Sun, Yiwei; Wang, Tong; Zhu, Yongxin

    2010-01-01T23:59:59.000Z

    The Software Design Document has three part: 1. Overview of System Architecture;2. System Architecture;3. Database Layer and two Appendix I: Deployment and Configuration; II: Test cases

  8. A User Programmable Battery Charging System

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age...

  9. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29T23:59:59.000Z

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  10. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

    1993-01-01T23:59:59.000Z

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  11. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  12. Khepera III Stargazer User manual

    E-Print Network [OSTI]

    Napp, Nils

    . Tharin LRF/battery card ON update Trademark Acknowledgements: IBM PC : International Business Machines................................................................................................. 2 1.3 RECYCLING

  13. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01T23:59:59.000Z

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  14. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  15. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  16. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  17. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  18. Electrocatalysts for Nonaqueous Lithium–Air Batteries:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

  19. Testimonials - Partnerships in Battery Technologies - Capstone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

  20. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01T23:59:59.000Z

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  1. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  2. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  3. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  4. Salinas : theory manual.

    SciTech Connect (OSTI)

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2011-11-01T23:59:59.000Z

    Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

  5. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01T23:59:59.000Z

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  6. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  7. Glycoprotein Enrichment Resin User Manual

    E-Print Network [OSTI]

    Lebendiker, Mario

    Glycoprotein Enrichment Resin User Manual Cat. No. 635647 PT4050-1 (PR912675) Published 14 January Laboratories, Inc. Version No. PR912675 ATakara Bio Company 2 Glycoprotein Enrichment Resin User Manual I.................................................................................................4 IV. Glycoprotein Enrichment

  8. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES: AshleyManagerDepartment

  9. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES: AshleyManagerDepartmentTestbed |

  10. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March 31,

  11. Batteries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An error occurred. Try watching this

  12. Cyber Security Process Requirements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-12T23:59:59.000Z

    The Manual establishes the minimum implementation standards for cyber security management processes throughout the Department. No cancellation.

  13. Food Battery Competition Sponsored by

    E-Print Network [OSTI]

    Tennessee, University of

    and outstanding lithium-ion batteries, you can recognize the progress. Lithium provides good voltages and powerFood Battery Competition Sponsored by: The University of Tennessee, Materials Advantage (MA not have enough natural resources to support our growing populations and energy needs forever. Batteries

  14. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  15. Information Security Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-12T23:59:59.000Z

    The Manual establishes security requirements for the protection and control of matter required to be classified or controlled by statutes, regulations, or U.S. Department of Energy (DOE) directives. Original dated dated 1-16-09. Canceled by DOE O 471.6--except for Section D.

  16. Information Security Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-01-16T23:59:59.000Z

    This Manual establishes security requirements for the protection and control of matter required to be classified or controlled by statutes, regulations, or U.S. Department of Energy directives. Cancels DOE M 470.4-4 Chg 1. DOE M 470.4-4A Chg 1 issued 10-12-10.

  17. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  18. Bioengineering Internship Manual

    E-Print Network [OSTI]

    Collins, Gary S.

    Bioengineering Internship Manual Washington State University Bioengineering Internship Program-335-4332 #12;General Description: An internship is a self-initiated, supervised work experience in related fields. The purpose of an internship is to enhance a student's professional preparation through

  19. CONCRETE PAVEMENT Reference Manual

    E-Print Network [OSTI]

    CONCRETE PAVEMENT Reference Manual Prepared for Federal Highway Administration Office of Pavement by National Concrete Pavement Technology Center at Iowa State University 2711 South Loop Drive, Suite 4700 No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date February 2008 Concrete Pavement

  20. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05T23:59:59.000Z

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  1. ACADEMIC PROGRAM PROCEDURE MANUAL

    E-Print Network [OSTI]

    Fay, Noah

    1 ACADEMIC PROGRAM REVIEW PROCEDURE MANUAL 2014-2015 Office of the Senior Vice President Tucson, AZ 85721 #12;2 ACADEMIC PROGRAM REVIEW MANAGEMENT TEAM Web Site for Academic Program Review http Educational Policy Studies & Practice Spanish and Portuguese Electrical & Computer Engineering Teaching

  2. The Gambit Scheme manual.

    E-Print Network [OSTI]

    2008-01-22T23:59:59.000Z

    Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and .... are best placed in the initialization file, which is a file containing Scheme code. ...... ("hello"). 15.2 Exception objects related to memory management ...... ming practice to use a name with the same case as in C.

  3. SERVICE MANUAL AUTORANGING

    E-Print Network [OSTI]

    Kleinfeld, David

    SERVICE MANUAL AUTORANGING DC POWER SUPPLY AGILENT MODELS 6010A, 6011A, 6012B and 6015A Agilent pay for return of products to Customer. Warranty services outside the country of initial purchase, the Customer shall be entitled to a refund of the purchase price upon return of the product to Agilent

  4. HASL procedures manual

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Addition and corrections to the following sections of the HASL Procedures Manual are provided: Table of Contents; Bibliography; Fallout Collection Methods; Wet/Dry Fallout Collection; Fluoride in Soil and Sediment; Strontium-90; Natural Series; Alpha Emitters; and Gamma Emitters. (LK)

  5. National Security System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-08T23:59:59.000Z

    The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

  6. Media Sanitization Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23T23:59:59.000Z

    The Manual establishes minimum technical and management requirements for the sanitization of electronic media, hardware, and devices and a risk-based approach to sanitization. Admin Chg 1 dated 9-1-09. Canceled by DOE O 205.1B.

  7. Media Sanitization Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23T23:59:59.000Z

    The Manual establishes minimum technical and management requirements for the sanitization of electronic media, hardware, and devices and a risk-based approach to sanitization. Admin Chg 1 dated 9-1-09; Admin Chg 2 dated 12-22-09. Canceled by DOE O 205.1B

  8. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Energy Savers [EERE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  9. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

  10. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31T23:59:59.000Z

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  11. Utility battery storage systems. Program report for FY95

    SciTech Connect (OSTI)

    Butler, P.C.

    1996-03-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  12. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01T23:59:59.000Z

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  13. Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries Hyun diameters less than 10 nm and lengths of several micrometers. Galvanostatic battery testing showed that Li, lithium ion battery, LiMn2O4 nanowires, high power density, Jahn-Teller distortion T he high energy

  14. Improvements to the Hybrid2 Battery Model James F. Manwell, Jon G. McGowan, Utama Abdulwahid, and Kai Wu

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    power systems is the storage battery component. This component has a major impact on the system process. The voltage model is based on the adaptation of the Battery Energy Storage Test (or "BEST") model1 Improvements to the Hybrid2 Battery Model by James F. Manwell, Jon G. McGowan, Utama Abdulwahid

  15. The development of a computerized battery simulator optimized for use in the ELPH 2.0 simulation environment

    E-Print Network [OSTI]

    Moore, Stephen W

    1996-01-01T23:59:59.000Z

    Equivalent Circuit Battery Model. . . . . . . . . 10 Et(SOC, I) Relationship for Discharge. . . . . Er(SOC, I) Relationship for Charge. . . . . . n(SOC, I) Relationship for Discharge. . . . . n(SOC, I) Relationship for Charge. Battery Model Simulink Icon.... Icon Mask Menu. . . . . . . . . . . . . . . . . . . . . . Simulink Voltage Calculator Subroutine. . . . . . 10 Sirnulink Efficiency Calculator Subroutine. . . . . 11 Battery Model Simulink Program. . . 12 Test Drive Cycle 10 kW 300 Seconds...

  16. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01T23:59:59.000Z

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  17. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01T23:59:59.000Z

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  18. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01T23:59:59.000Z

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  19. Method and apparatus for smart battery charging including a plurality...

    Office of Scientific and Technical Information (OSTI)

    Re-direct Destination: A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger...

  20. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Energy Savers [EERE]

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  1. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01T23:59:59.000Z

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  2. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04T23:59:59.000Z

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  3. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22T23:59:59.000Z

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  5. Personnel Security Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    This Manual provides detailed requirements and procedures to supplement DOE O 472.1B, Personnel Security Activities, which establishes the overall objectives, requirements, and responsibilities for implementation and operation of the Personnel Security Program and the Personnel Security Assurance Program in the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE M 472.1-1A.

  6. A Look Inside SLAC's Battery Lab

    SciTech Connect (OSTI)

    Wei Seh, Zhi

    2014-07-17T23:59:59.000Z

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  7. A Look Inside SLAC's Battery Lab

    ScienceCinema (OSTI)

    Wei Seh, Zhi

    2014-07-21T23:59:59.000Z

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  8. OASIS User Manual

    E-Print Network [OSTI]

    Bojtar, L

    2009-01-01T23:59:59.000Z

    The OASIS system has been operational for years now. After a long development the project has reached a state where the number of features it provides exceeds largely what most of its users knows about. The author felt it was time to write a user manual explaining all the functionality of the viewer application. This document is a user manual, concentrating on the functionality of the viewer from the user’s point of view. There are already documents available on the project’s web site about the technical aspects at http://project-oasis.web.cern.ch/project-oasis/presentations.htm . There was an attempt to produce a tutorial on the viewer, but it didn’t get much further than the table of contents, that however is well thought. The structure of this user manual follows the same principle, the basic and most often used features are grouped together. Advanced or less often used features are described in a separate chapter. There is a second organizational principle, features belong to different levels: chann...

  9. Surface Modification of LiNi0.5Mn0.3Co0.2O2 Cathode for Improved Battery Performance

    E-Print Network [OSTI]

    Lynch, Thomas

    2012-10-19T23:59:59.000Z

    and chemical protection by thin oxide coatings will continue to improve battery capability and open up new applications. Ceria-coated Li-NMC cells show the best capacity and rate performance in battery testing. Through electrochemical impedance spectroscopy...

  10. Revision of DOE Manual 460.2-1

    Broader source: Energy.gov (indexed) [DOE]

    Practices Manual DOE Writing Team March 2006 TECWG 2 Proposed Revision Timeline Proposed Revision Timeline Complete new draft of Manual 206 Draft Manual provided to Manual Review...

  11. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01T23:59:59.000Z

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  12. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance...

  13. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery...

  14. Radiological control manual. Revision 1

    SciTech Connect (OSTI)

    Kloepping, R.

    1996-05-01T23:59:59.000Z

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  15. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  16. IEEE Standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard.

  17. RDS operations manualField implementation

    E-Print Network [OSTI]

    Mullins, Dyche

    for trainings and TA. #12;RDS operations manual IBBS Toolbox 227 Women's Health Monitoring Survey fieldRDS operations manualField implementation #12;RDS operations manual 226 IBBS Toolbox RDS operations manual The RDS operations manual is designed to guide project staff during the implementation of RDS

  18. Novel electrolyte chemistries for Mg-Ni rechargeable batteries.

    SciTech Connect (OSTI)

    Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

    2010-10-01T23:59:59.000Z

    Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

  19. Verification tests of the U. S. Electricar Corporation Lectric Leopard. Technical report 3 Aug-25 Sep 81

    SciTech Connect (OSTI)

    Dowgiallo, E.J. Jr; Snellings, I.R.; Chapman, R.D.

    1982-04-01T23:59:59.000Z

    The Lectric Leopard manufactured by U.S. Electricar Corporation was tested at MERADCOM as part of the Department of Energy project to verify conformity to performance standards of electric vehicles. The Leopard is a standard Fiat Strada sedan which has been converted to an electric vehicle. It is powered by 16 6-V batteries through a silicon-controlled rectifier (SCR) Controller to a 23-hp series-wound d.c. motor. It is equipped with a five-speed manual transmission, power-assisted disc brakes in the front and drum brakes in the rear. It is not equipped with regenerative braking.

  20. Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint

    SciTech Connect (OSTI)

    Pesaran, A.; Heon, G. H.; Smith, K.

    2011-01-01T23:59:59.000Z

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  1. United States Advanced Battery Consortium

    Broader source: Energy.gov (indexed) [DOE]

    of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

  2. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07T23:59:59.000Z

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  3. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03T23:59:59.000Z

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  4. DOE explosives safety manual. Revision 7

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  5. Cyber Security Process Requirements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-12T23:59:59.000Z

    The Manual establishes the minimum implementation standards for cyber security management processes throughout the Department. No cancellation. Admin Chg 1 dated 9-1-09.

  6. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  7. Advanced battery modeling using neural networks

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  8. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  9. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage & Battery Leading the charge in battery R&D Argonne National Laboratory is a global leader in the development of advanced battery technologies and has a portfolio of...

  10. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  11. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  12. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  13. Good upkeep adds to battery life

    SciTech Connect (OSTI)

    Jackson, D.

    1983-01-01T23:59:59.000Z

    The care and maintenance of underground mine batteries is discussed. A guide to motive power battery manufacturers in USA is included, plus a list of definitions of battery terms.

  14. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    to Thermal Rise in Lead-Acid Batteries Used in Electricon Advances in Lead-Acid Batteries, The Electrochemicalbattery market is for lead-acid batteries for SLI (starting,

  15. Hybrid Aerocapacitor{trademark}-battery power sources

    SciTech Connect (OSTI)

    Isaacson, M.J.; Kraemer, B.J.; Laramore, T.J. [PolyStor Corp., Dublin, CA (United States)] [and others

    1997-10-01T23:59:59.000Z

    PolyStor, Power-One, LLNL and Aerojet are participants in a Technology Reinvestment Program contract supported by the Advanced Research Project Agency for developing carbon aerogel-based Electrolytic Double Layer Capacitors (Aerocapacitors). This paper reports some recent results for organic-electrolyte Aerocapacitors developed under this contract and initial results on their use in electrolytic double layer capacitor (EDLC)-battery power sources. EDLC-battery hybrid power sources offer the potential for increased discharge time, improved low temperature performance and longer cycle life vis-a-vis batteries in pulse discharge applications. The authors previously presented performance results for AA Aerocapacitors but this is the first report of their work on hybrid power sources. Prototype organic-electrolyte Aerocapacitors exhibit low equivalent series resistance (ESR), high capacitance, excellent rate capability at room temperature and low temperatures, and long life. The AA-size devices assembled for testing have ESRs of 20-30 m{Omega} at 1000 Hz and capacitances of about 6 Farads. They are capable of being discharged at very high rates. The capacity at 15 Amps is about 71% of the capacity at 1 Amp. The capacity at 1 Amp and {minus}40{degrees}C is 57% of the room-temperature 1 Amp capacity. AA Aerocapacitors have demonstrated 32,000 cycles in cycle life testing. After an initial capacity decrease of about 17% the capacity remained almost constant between cycle 10,000 and cycle 32,000.

  16. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  17. RADTRAN 6 technical manual.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Neuhauser, Karen Sieglinde; Heames, Terence John; O'Donnell, Brandon M.; Dennis, Matthew L.

    2014-01-01T23:59:59.000Z

    This Technical Manual contains descriptions of the calculation models and mathematical and numerical methods used in the RADTRAN 6 computer code for transportation risk and consequence assessment. The RADTRAN 6 code combines user-supplied input data with values from an internal library of physical and radiological data to calculate the expected radiological consequences and risks associated with the transportation of radioactive material. Radiological consequences and risks are estimated with numerical models of exposure pathways, receptor populations, package behavior in accidents, and accident severity and probability.

  18. DEPARTMENT OF ENERGY MANUAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3DepartmentENERGY MANUAL

  19. Safety and Health Policy and Procedure Manual Biological Safety Manual

    E-Print Network [OSTI]

    Saidak, Filip

    Biological Safety Association (ABSA) best practices as well as all federal, state, and local regulations. IISafety and Health Policy and Procedure Manual Biological Safety Manual Section 280 INDEX I. Policy space suitable for work being conducted · Under the Office of Research Compliance, establish and manage

  20. Sandia National Laboratories: Evaluating Powerful Batteries for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

  1. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes...

  2. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  3. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    2011Year #12;Flow Battery Research at PNNL and Sandia #12 with industries and universities New Generation Redox Flow Batteries, PNNL Developed new generation redox flow

  4. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed. In all three cases, today's batteries simply do not hold enough charge. Replacing lithium with other metals with multiple charges could greatly increase battery capacity....

  5. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  6. Upgrading the Vanadium Redox Battery | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

  7. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  8. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  9. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery...

  10. Academic Apprentice Personnel Manual 1 Academic Apprentice

    E-Print Network [OSTI]

    Jalali. Bahram

    Academic Apprentice Personnel Manual 1 Academic Apprentice Personnel Manual For Departments Updated December 2013 #12;2 Academic Apprentice Personnel Manual Contents Glossary of Terms and Acronyms .............3 What are Academic Apprentice Personnel

  11. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    lithium-ion battery is the most advanced rechargeable battery technology in use today. These batteries

  12. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect (OSTI)

    None

    2010-09-15T23:59:59.000Z

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they’re forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  13. PHEV Battery Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV Battery Cost

  14. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Jr., Richard G. (Royal Oak, MI); Bernier, David R. (Rochester Hills, MI)

    1999-12-28T23:59:59.000Z

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  15. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  16. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  17. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15T23:59:59.000Z

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  18. POET with C++ Reference Manual

    E-Print Network [OSTI]

    Buhr, Peter Allan

    POET with #22;C++ Reference Manual University of Waterloo David Taylor and Peter A. Buhr c #3; 1996 July 23, 2006 #3; Permission is granted to make copies for personal or educational use #12; 2 POET Reference Manual Contents 1 Introduction 3 2 Before Starting POET 3 3 Accessing POET 3 4 User Interface 3 5

  19. ENERGY MANAGEMENT OPERATIONAL PROCEDURE MANUAL

    E-Print Network [OSTI]

    Harman, Neal.A.

    ENERGY MANAGEMENT OPERATIONAL PROCEDURE MANUAL Swansea University Estates Services Singleton Park Swansea SA2 8PP Tel 01792 295819 Fax 01792 295820 #12;Swansea University Energy Management Operational ......................................................................................11 #12;Swansea University Energy Management Operational Procedural Manual Estates Services April 2008

  20. NEVADA TEST SITE RADIOLOGICAL CONTROL MANUAL

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspen

  1. Nevada National Security Site Radiological Control Manual

    SciTech Connect (OSTI)

    Radiological Control Managers’ Council

    2012-03-26T23:59:59.000Z

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

  2. Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications

    SciTech Connect (OSTI)

    CREADY, ERIN; LIPPERT, JOHN; PIHL, JOSH; WEINSTOCK, IRWIN; SYMONS, PHILIP

    2003-03-01T23:59:59.000Z

    The technical and economic feasibility of applying used electric vehicle (EV) batteries in stationary applications was evaluated in this study. In addition to identifying possible barriers to EV battery reuse, steps needed to prepare the used EV batteries for a second application were also considered. Costs of acquiring, testing, and reconfiguring the used EV batteries were estimated. Eight potential stationary applications were identified and described in terms of power, energy, and duty cycle requirements. Costs for assembly and operation of battery energy storage systems to meet the requirements of these stationary applications were also estimated by extrapolating available data on existing systems. The calculated life cycle cost of a battery energy storage system designed for each application was then compared to the expected economic benefit to determine the economic feasibility. Four of the eight applications were found to be at least possible candidates for economically viable reuse of EV batteries. These were transmission support, light commercial load following, residential load following, and distributed node telecommunications backup power. There were no major technical barriers found, however further study is recommended to better characterize the performance and life of used EV batteries before design and testing of prototype battery systems.

  3. Progress in the development of recycling processes for electric vehicle batteries

    SciTech Connect (OSTI)

    Jungst, R.G.; Clark, R.P.

    1994-08-01T23:59:59.000Z

    Disposition of electric vehicle (EV) batteries after they have reached the end of their useful life is an issue that could impede the widespread acceptance of EVs in the commercial market. This is especially true for advanced battery systems where working recycling processes have not as yet been established. The DOE sponsors an Ad Hoc Electric Vehicle Battery Readiness Working Group to identify barriers to the introduction of commercial EVs and to advise them of specific issues related to battery reclamation/recycling, in-vehicle battery safety, and battery shipping. A Sub-Working Group on the reclamation/recycle topic has been reviewing the status of recycling process development for the principal battery technologies that are candidates for EV use from the near-term to the long-term. Recycling of near-term battery technologies, such as lead-acid and nickel/cadmium, is occurring today and it is believed that sufficient processing capacity can be maintained to keep up with the large number of units that could result from extensive EV use. Reclamation/recycle processes for midterm batteries are partially developed. Good progress has been made in identifying processes to recycle sodium/sulfur batteries at a reasonable cost and pilot scale facilities are being tested or planned. A pre-feasibility cost study on the nickel/metal hydride battery also indicates favorable economics for some of the proposed reclamation processes. Long-term battery technologies, including lithium-polymer and lithium/iron disulfide, are still being designed and developed for EVs, so descriptions for prototype recycling processes are rather general at this point. Due to the long time required to set up new, full-scale recycling facilities, it is important to develop a reclamation/recycling process in parallel with the battery technologies themselves.

  4. Recombinant electric storage battery

    SciTech Connect (OSTI)

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10T23:59:59.000Z

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  5. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect (OSTI)

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01T23:59:59.000Z

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  6. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  7. FRMAC Operations Manual

    SciTech Connect (OSTI)

    Frandsen, K.

    2010-05-01T23:59:59.000Z

    In the event of a major radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) will coordinate the federal agencies that have various statutory responsibilities. The FRMAC is responsible for coordinating all environmental radiological monitoring, sampling, and assessment activities for the response. This manual describes the FRMAC’s response activities in a radiological incident. It also outlines how FRMAC fits in the National Incident Management System (NIMS) under the National Response Framework (NRF) and describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the affected areas. In the event of a potential or existing major radiological incident, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is responsible for establishing and managing the FRMAC during the initial phases.

  8. Transmission line: design manual

    SciTech Connect (OSTI)

    Farr, H.H.

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to outline the various requirements for, and the procedures to be followed in the design of power transmission lines by the Bureau of Reclamation, US Department of the Interior. Numerous design studies, which have been made on specific aspects of transmission line design, are included with explanations of their applications. Information is presented concerning such aspects as selection of type of construction, conductor sags and tensions, insulation, lightning protection, clearance patterns, galloping conductors, structure limitation and guying charts, and structure spotting. Structure design examples are limited to wood-pole construction. Interpretations of the National Electrical Safety Code and other codes are made as required. Some of the example problems were developed when the sixth edition of NESC was current, and are so noted; however, most examples use the 1977 edition of NESC.

  9. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    , nickel cadmium (Nicad), nickel metal hydride, lithium ion, silver button, mercury, magnesium carbon. Recycling rechargeable batteries Rechargeable batteries are often referred to as nickel cadmium, nickel Battery Per Bag Please sort the batteries by battery type, using a separate receptacle for nickel cadmium

  10. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    battery electrolytes; we also describe a general approach toward performing fundamental in situ characterization

  11. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    CHARACTERIZATION ON HIGHLY ORIENTED PYROLYTIC GRAPHITE cator of electrode passivation in realistic battery

  12. Waste Toolkit A-Z Battery recycling

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

  13. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    (submarines) Stationary batteries 250 Wh~5 MWh Emergency power supplies, local energy storage, remote relay1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro

  14. Batteries, mobile phones & small electrical devices

    E-Print Network [OSTI]

    , mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

  15. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  16. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  17. Pennsylvania Act 38/Nutrient Management Program/Technical Manual January 2013

    E-Print Network [OSTI]

    Guiltinan, Mark

    Pennsylvania Act 38/Nutrient Management Program/Technical Manual January 2013 Section IV Record Management Program/Technical Manual January 2013 Section IV Record Keeping and Informational Requirements Management Information for each crop management unit. 5. Manure sampling records. Records of manure testing

  18. Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses

    SciTech Connect (OSTI)

    James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

    2006-02-01T23:59:59.000Z

    This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

  19. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01T23:59:59.000Z

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  20. Manual for Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-08-28T23:59:59.000Z

    The Manual provides detailed requirements to supplement DOE O 475.2, Identifying Classified Information, dated 8/28/07. Cancels DOE M 475.1-1A; canceled by DOE O 475.2A

  1. Surface Environmental Surveillance Procedures Manual

    SciTech Connect (OSTI)

    Hanf, RW; Dirkes, RL

    1990-02-01T23:59:59.000Z

    This manual establishes the procedures for the collection of environmental samples and the performance of radiation surveys and other field measurements. Responsibilities are defined for those personnel directly involved in the collection of samples and the performance of field measurements.

  2. Cyber Security Process Requirements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-12T23:59:59.000Z

    The Manual establishes minimum implementation standards for cyber security management processes throughout the Department. Admin Chg 1 dated 9-1-09; Admin Chg 2 dated 12-22-09. Canceled by DOE O 205.1B. No cancellations.

  3. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    electrochemical characterization, and battery performance ofthe battery cell for electrochemical characterization. TheBattery Highlights 13 2.3 Electrochemical Characterization ..

  4. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  5. EES and Batteries: The Basics | University of Texas Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES AND BATTERIES: THE BASICS Virtually all portable electronic devices, including cell phones, PDAs and laptop computers, rely on chemical energy stored in batteries. Batteries...

  6. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  7. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  8. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  9. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  10. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  11. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

  12. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  13. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  14. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  15. Making Li-air batteries rechargeable: material challenges. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

  16. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01T23:59:59.000Z

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  17. CH Packaging Maintenance Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-01-02T23:59:59.000Z

    This procedure provides instructions for performing inner containment vessel (ICV) and outer containment vessel (OCV) maintenance and periodic leakage rate testing on the following packaging seals and corresponding seal surfaces using a nondestructive helium (He) leak test. In addition, this procedure provides instructions for performing ICV and OCV structural pressure tests.

  18. State Energy Program Operations Manual

    SciTech Connect (OSTI)

    Office of Building Technology, State and Community Programs

    1999-03-17T23:59:59.000Z

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  19. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  20. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  1. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  2. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  3. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  4. Carbon-enhanced VRLA batteries.

    SciTech Connect (OSTI)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01T23:59:59.000Z

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  5. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  6. JSATS Decoder Software Manual

    SciTech Connect (OSTI)

    Flory, Adam E.; Lamarche, Brian L.; Weiland, Mark A.

    2013-05-01T23:59:59.000Z

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Decoder is a software application that converts a digitized acoustic signal (a waveform stored in the .bwm file format) into a list of potential JSATS Acoustic MicroTransmitter (AMT) tagcodes along with other data about the signal including time of arrival and signal to noise ratios (SNR). This software is capable of decoding single files, directories, and viewing raw acoustic waveforms. When coupled with the JSATS Detector, the Decoder is capable of decoding in ‘real-time’ and can also provide statistical information about acoustic beacons placed within receive range of hydrophones within a JSATS array. This document details the features and functionality of the software. The document begins with software installation instructions (section 2), followed in order by instructions for decoder setup (section 3), decoding process initiation (section 4), then monitoring of beacons (section 5) using real-time decoding features. The last section in the manual describes the beacon, beacon statistics, and the results file formats. This document does not consider the raw binary waveform file format.

  7. COSY INFINITY reference manual

    SciTech Connect (OSTI)

    Berz, M.

    1990-07-01T23:59:59.000Z

    This is a reference manual for the arbitrary order particle optics and beam dynamics code COSY INFINITY. It is current as of June 28, 1990. COSY INFINITY is a code to study and design particle optical systems, including beamlines, spectrometers, and particle accelerators. At its core it is using differential algebraic (DA) methods, which allow a very systematic and simple calculation of high order effects. At the same time, it allows the computation of dependences on system parameters, which is often interesting in its own right and can also be used for fitting. COSY INFINITY has a full structured object oriented language environment. This provides a simple interface for the casual user. At the same time, it offers the demanding user a very flexible and powerful tool for the study and design of systems, and more generally, the utilization of DA methods. The power and generality of the environment is perhaps best demonstrated by the fact that the physics routines of COSY INFINITY are written in its own input language and are very compact. The approach also considerably facilitates the implementation of new features because they are incorporated with the same commands that are used for design and study. 26 refs.

  8. Manual transmission shift linkage

    SciTech Connect (OSTI)

    Sewell, J.S.

    1991-10-01T23:59:59.000Z

    This patent describes a sliding gear manual transmission (10) for an automotive vehicle including a transmission housing (11), an input shaft (12) journalled in the housing, an output shaft (13) axially aligned with the input shaft and journalled in the housing, a countershaft (15) journalled in the housing and carrying a cluster gear (17) thereon, the input shaft (12) terminating in an input gear (14), a plurality of gears (26,27,28,29,31,31) on the output shaft (13) in meshing engagement with the cluster gear (17), and a plurality of synchronizing clutches (36,38,41,42) on the output shaft and countershaft for engagement of gear ratios of the meshing gears, and an axially movable and rotatable shift rail (81) located in the housing and operatively connected to a shift lever (82) actuated by the vehicle operator, the improvement comprising an auxiliary shift rail (98) located in the housing (11) generally paralleling the first mentioned shift rail (81) to provide for actuation of fifth, sixth and reverse gears the auxiliary shift rail (98) having a 5-6 shift arm (104) journalled thereon for axial movement relative thereto, and a reverse shift arm (99) rotatably mounted thereon for axial movement therewith.

  9. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01T23:59:59.000Z

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  10. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31T23:59:59.000Z

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  11. KHIIIKHIIIKHIIIKHIII----GripperGripperGripperGripper User manual

    E-Print Network [OSTI]

    Napp, Nils

    ............................................................................................... 2 1.3. RECYCLING.................................................................................................................... 6 2.5. BATTERY

  12. Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

  13. OPERATOR'S MANUAL IMPORTANT NOTES

    E-Print Network [OSTI]

    Hart, Gus

    . An ISO 9001 Company. ©2010, KEPCO, INC. P/N 228-1724 REV 1 ATE 1/2 RACK POWER SUPPLY AUTOMATIC TEST

  14. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  15. Memorandum, Implementation of Department of Energy Manual 450...

    Energy Savers [EERE]

    Implementation of Department of Energy Manual 450.4-1, Integrated Safety Management System Manual Memorandum, Implementation of Department of Energy Manual 450.4-1, Integrated...

  16. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of...

  17. Lausanne, 12 March 1999K-Team USER MANUAL

    E-Print Network [OSTI]

    Langseth, Helge

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ON - OFF battery switch . . . . . . . . . . . . . . . . . . . . . 4 Jumpers, reset button . . . . . . . . . . . . 10 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Cables

  18. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

  19. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect (OSTI)

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08T23:59:59.000Z

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  20. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01T23:59:59.000Z

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  1. USER MANUAL VERSION 3.5

    E-Print Network [OSTI]

    Napp, Nils

    . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Unpacking . . . . . . . . . . . . . . . . . . . . . 6 3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 ON-OFF Battery Switch . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Power Supply

  2. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Rodney Shane

    2011-09-30T23:59:59.000Z

    This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  3. RADCAL Operations Manual Radiation Calibration Laboratory Protocol

    SciTech Connect (OSTI)

    Bogard, J.S.

    1998-12-01T23:59:59.000Z

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Radiation Calibration Laboratory (RADCAL) in its Dosimetry Applications Research (DOSAR) Program. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments. Operations of the HPRR were terminated in 1987 and the reactor was moved to storage at the Oak Ridge Y-12 Plant; however, RADCAL will continue to be operated in accordance with the guidelines of the National Institute of Standards and Technology (NIST) Secondary Calibration Laboratory program and will meet all requirements for testing dosimeters under the National Voluntary Laboratory Accreditation Program (NVLAP). This manual is to serve as the primary instruction and operation manual for the Oak Ridge National Laboratory's RADCAL facility. Its purpose is to (1) provide operating protocols for the RADCAL facility, (2) outline the organizational structure, (3) define the Quality Assurance Action Plan, and (4) describe all the procedures, operations, and responsibilities for the safe and proper operation of all routine aspects of the calibration facility.

  4. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  5. Batteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    ;Lithium-ion battery Modern Li-ion Battery Cathode:Anode: e-e- u o b e y e- Electrolyte LiPF6 in Ethylene Electronic Li-ion Batteries Theoretical Energy Density Source: TIAX, LLC #12;Lithium-ion battery BatteryBatteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan Staff Scientist Lawrence

  6. SOWFA + Super Controller User's Manual

    SciTech Connect (OSTI)

    Fleming, P.; Gebraad, P.; Churchfield, M.; Lee, S.; Johnson, K.; Michalakes, J.; van Wingerden, J. W.; Moriarty, P.

    2013-08-01T23:59:59.000Z

    SOWFA + Super Controller is a modification of the NREL's SOWFA tool which allows for a user to apply multiturbine or centralized wind plant control algorithms within the high-fidelity SOWFA simulation environment. The tool is currently a branch of the main SOWFA program, but will one day will be merged into a single version. This manual introduces the tool and provides examples such that a user can implement their own super controller and set up and run simulations. The manual only discusses enough about SOWFA itself to allow for the customization of controllers and running of simulations, and details of SOWFA itself are reported elsewhere Churchfield and Lee (2013); Churchfield et al. (2012). SOWFA + Super Controller, and this manual, are in alpha mode.

  7. Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries

    SciTech Connect (OSTI)

    Jiang, Jiuchun; Shi, Wei; Zheng, Jianming; Zuo, Pengjian; Xiao, Jie; Chen, Xilin; Xu, Wu; Zhang, Jiguang

    2014-06-01T23:59:59.000Z

    e investigated the long-term cycling performance of large format 20Ah LiFePO4/graphite batteries when they are cycled in various state-of-charge (SOC) ranges. It is found that batteries cycled in the medium SOC range (ca. 20~80% SOC) exhibit superior cycling stability than batteries cycled at both ends (0-20% or 80-100%) of the SOC even though the capcity utilized in the medium SOC range is three times as large as those cycled at both ends of the SOC. Several non-destructive techniques, including a voltage interruption approach, model-based parameter identification, electrode impedance spectra analysis, ?Q/?V analysis, and entropy change test, were used to investigate the performance of LiFePO4/graphite batteries within different SOC ranges. The results reveal that batteries at the ends of SOC exhibit much higher polarization impedance than those at the medium SOC range. These results can be attributed to the significant structural change of cathode and anode materials as revealed by the large entropy change within these ranges. The direct correlation between the polarization impedance and the cycle life of the batteries provides an effective methodology for battery management systems to control and prolong the cycle life of LiFePO4/graphite and other batteries.

  8. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  9. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  10. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  11. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  12. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  13. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    of the range and charging-time issues. INTRODUCTION TO BATTERIES Several electrical energy storage be achieved by a high-energy Li-ion cell (similar to the batteries used in the Tesla Roadster).a However

  14. Batteries lose in game of thorns | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries lose in game of thorns Batteries lose in game of thorns Released: January 30, 2013 Scientists see how and where disruptive structures form and cause voltage fading Images...

  15. Hierarchically Structured Materials for Lithium Batteries. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric...

  16. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  17. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  18. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  19. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  20. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    of the low power battery status until nodes start to fail. Moreover, it requires extra time and effort

  1. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24T23:59:59.000Z

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  2. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  3. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01T23:59:59.000Z

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  4. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  5. Financial Policy Manual RISK MANAGEMENT POLICIES

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Financial Policy Manual Page 1 RISK MANAGEMENT POLICIES 2601 Departmental Scope & Responsibility;Financial Policy Manual Page 1 2601 DEPARTMENTAL SCOPE & RESPONSIBILITY Subject: Risk Management & Insurance Effective: December 1986 Revised: May 2011 Last Reviewed: March 2014 Resp. Office: Risk Management

  6. Explosive Safety Manual, to a New Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-02T23:59:59.000Z

    This memorandum provides justification for the conversion of Department of Energy (DOE) Manual (M) 440.1-1A, DOE Explosives Safety Manual, dated 1-9-06, into a new DOE Order.

  7. USER MANUAL IMPORTANT SAFETY PRECAUTIONS

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    or local power company. For products intended to operate from battery power, or other sources, refer service personnel.. 16.Ventilation - Slots and openings in the cabinet are provided for ventilation or rack unless proper ventilation is the manufacturers instructions have been adhered to. 17.Attachments

  8. Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.

    2014-12-01T23:59:59.000Z

    During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

  9. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  10. Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March

  11. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet in embedded systems. It describes the prominent battery models with their advantages and draw- backs of the battery. With the tremendous increase in the comput- ing power of hardware and the relatively slow growth

  12. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  13. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20T23:59:59.000Z

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  14. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  15. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  16. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  17. Thesis Manual Archives and Special Collections

    E-Print Network [OSTI]

    Shihadeh, Alan

    ................................................................................................................................. 4 F. Indentation MANUAL I. Introduction The following guidelines are offered to help graduate students meet the Library

  18. Learning Community Peer Mentor Supervisor's Manual

    E-Print Network [OSTI]

    Lin, Zhiqun

    Learning Community Peer Mentor Supervisor's Manual #12;Table of Contents Introduction.........................................................................................................................................4 Timeline for Hiring Mentors.......................................................................................................7 Supervision of Mentors

  19. US Department of Energy Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This manual establishes practices for the conduct of radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. (VC)

  20. US Department of Energy Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This manual establishes practices for the conduct of radiological control activities. The Manual states DOE's positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. (VC)

  1. Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications

    E-Print Network [OSTI]

    Teodorescu, Remus

    Terms--Lithium-ion battery, Performance model, Elec- trochemical Impedance Spectroscopy, Degradation. I on measurements performed during an accelerated cycling ageing process. Since ageing tests under real operation) measurements. TABLE I VARIOUS CHEMISTRIES OF LI-ION BATTERIES AND THEIR CHARACTERISTICS (BASED ON [5

  2. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  3. Undergraduate Studies Manual

    E-Print Network [OSTI]

    Stormo, Gary

    , drug delivery, monitoring systems, nuclear medicine, and medical imaging, to name a few. The many, and/ or control biologic systems. They are also responsible for the design, devel- opment, testing and treatment of patients · rehabilitative procedures and devices, e.g., prosthetic joints, blood vessels

  4. LASER SAFETY MANUAL 2014 RICE UNIVERSITY 1

    E-Print Network [OSTI]

    Natelson, Douglas

    LASER SAFETY MANUAL 2014 RICE UNIVERSITY 1 Rice University Laser Safety Manual Environmental Health and Safety MS 123 P.O. Box 1892 Houston, TX 77251-1892 January 2014 #12;LASER SAFETY MANUAL 2014 RICE UNIVERSITY 2 Introduction The objective of the Rice University Laser Safety program is to assist all levels

  5. LASER SAFETY MANUAL 2012 RICE UNIVERSITY 1

    E-Print Network [OSTI]

    Natelson, Douglas

    LASER SAFETY MANUAL 2012 RICE UNIVERSITY 1 Rice University Laser Safety Manual Environmental Health and Safety MS 123 P.O. Box 1892 Houston, TX 77251-1892 December 2012 #12;LASER SAFETY MANUAL 2012 RICE, and general procedures to aid those individuals working in the laser laboratory environment. It is intended

  6. DATA MONITORING AND ANALYSIS PROGRAM MANUAL

    E-Print Network [OSTI]

    DATA MONITORING AND ANALYSIS PROGRAM MANUAL LBNL/PUB-5519 (3), Rev. 0 Effective Date: _July 23 Data Monitoring and Analysis Program Manual REVISION HISTORY Revision Date Revision Description #12;LBNL/PUB-5519 (3), Rev. 0 Page 3 of 23 Data Monitoring and Analysis Program Manual TABLE OF CONTENTS

  7. LESSONS LEARNED AND BEST PRACTICES PROGRAM MANUAL

    E-Print Network [OSTI]

    LESSONS LEARNED AND BEST PRACTICES PROGRAM MANUAL LBNL/PUB-5519 (4), Rev. 1 Approved by: _James (4), Rev. 1 Page 2 of 15 Lessons Learned and Best Practices Program Manual RECORD OF REVISION........................................................................................ 15 #12;LBNL/PUB-5519 (4), Rev. 1 Page 4 of 15 Lessons Learned and Best Practices Program Manual 1

  8. USER'S MANUAL Revision 1.0c

    E-Print Network [OSTI]

    van Hemmen, J. Leo

    to correct the interference at your own expense. California Best Management Practices RegulationsH8QM3-2 H8QMi-2 USER'S MANUAL Revision 1.0c SUPER ® #12;Manual Revision 1.0c Release Date: November in the United States of America The information in this User's Manual has been carefully reviewed

  9. SimProjectTM Player's Manual

    E-Print Network [OSTI]

    Rudowsky, Ira

    SimProjectTM Player's Manual i SIMPROJECTTMA Project Management Simulation for Classroom variables that are routinely encountered in project management and decision making. Best and most important Instruction PLAYER'S MANUAL V 1.2 JEFFREY K. PINTO, PH.D. AND DIANE H. PARENTE, PH.D. Player's Manual for use

  10. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  11. SOLID ELECTROLYTE BATTERIES

    Broader source: Energy.gov (indexed) [DOE]

    * Funding received in FY10-FY11 - 315K Timeline Budget Barriers * Karim Zaghib of Hydro Quebec Partners 2 The University of Texas at Austin Milestones Develop and test a...

  12. Cyber Security Incident Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-01-08T23:59:59.000Z

    The manual establishes minimum requirements for a structured cyber security incident detection and management process for detecting, identifying, categorizing, containing, reporting, and mitigating cyber security incidents involving DOE information and information systems operated by DOE or by contractors on behalf of the Department. No cancellations.

  13. Cyber Security Incident Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-01-08T23:59:59.000Z

    The manual establishes minimum requirements for a structured cyber security incident detection and management process for detecting, identifying, categorizing, containing, reporting, and mitigating cyber security incidents involving DOE information and information systems operated by DOE or by contractors on behalf of the Department. No cancellations. Admin Chg 1 dated 9-1-09.

  14. Operation manual Installation Category I

    E-Print Network [OSTI]

    Kleinfeld, David

    Cary 50 Hardware Operation manual Installation Category I Pollution Degree 2 Safety Class 3 (EN-2:1991 IEC 801-3:1984 IEC 801-4:1988 Equipment Model Number Cary 50 Series Responsible Person in the EUUV software 4-13 5 Spare parts 5-1 #12;Cary 50 Publication date: 06/99 vii Safety practices and hazards Your

  15. PNNL Hoisting and Rigging Manual

    SciTech Connect (OSTI)

    Haynie, Todd O.; Fullmer, Michael W.

    2008-12-29T23:59:59.000Z

    This manual describes the safe and cost effective operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, slings, rigging hardware, and hoisting equipment. It is intended to be a user's guide to requirements, codes, laws, regulations, standards, and practices that apply to Pacific Northwest National Laboratory (PNNL) and its subcontractors.

  16. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04T23:59:59.000Z

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

  17. INSTRUCTION MANUAL ISOLATED PULSE STIMULATOR

    E-Print Network [OSTI]

    Kleinfeld, David

    2 Operating Instructions ..6 Theory of Operation 10 Calibration Procedures 12 Inputs 14 Output with: Rack Mount Hardware Instructions & Maintenance Manual NOTE This instrument is not intended cycles. It is set for standard TTL levels. GATE: This BNC connector allows a signal from an external

  18. Quality assurance manual: Volume 1

    SciTech Connect (OSTI)

    Oijala, J.E.

    1988-06-01T23:59:59.000Z

    Stanford Linear Accelerator Center (SLAC) is a DOE-supported research facility that carries out experimental and theoretical research in high energy physics and developmental work in new techniques for particle acceleration and experimental instrumentation. The purpose of this manual is to describe SLAC quality assurance policies and practices in various parts of the Laboratory.

  19. EML Procedures Manual, HASL-300

    SciTech Connect (OSTI)

    Not Available

    1981-09-28T23:59:59.000Z

    Additions and corrections for the EML Procedures Manual, HASL-300, are presented for the following areas: wet/dry collector; ion chamber; field gamma spectrometry; TLD; reactive gas monitoring; cesium; cadmium and lead; carbon dioxide; polynuclear aromatic hydrocarbons; manganese precipitation samples; iron precipitation samples; aluminium precipitation samples; and lead precipitation samples.

  20. TEELINDUSTRIAL OPERATING INSTRUCTIONS & PARTS MANUAL

    E-Print Network [OSTI]

    Kleinfeld, David

    -stage zoning applications in hydronic heating and cooling systems for residential, commercial and/or inTEELINDUSTRIAL SERIES OPERATING INSTRUCTIONS & PARTS MANUAL WATER CIRCULATING PUMPS MODELS 1P899A INSTRUCTIONS CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE, OR SERVICE TEEL PUMPS. PROTECT YOURSELF

  1. Information & Records Management Process Manual

    E-Print Network [OSTI]

    Hickman, Mark

    several significant failures to manage information in the public sector in New Zealand, which the Official Information, Privacy, Copyright and Public Records Acts. How you manage UC informationInformation & Records Management Process Manual 2013Information and Records Management #12;Contents

  2. Job Placement Manual Human Resources

    E-Print Network [OSTI]

    Habib, Ayman

    Job Placement Manual Human Resources Fall 2001 for bargaining unit positions as per the Collective;- 1 - University of Calgary Job Family Definitions General The General job family encompasses, production, light construction, or facility maintenance. Positions in this job family often support a service

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

  4. Computer-Aided Engineering and Secondary Use of Automotive Batteries (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.; Smith, K.; Newbauer, J.

    2010-05-01T23:59:59.000Z

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  5. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode

    E-Print Network [OSTI]

    Angell, C. Austen

    Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including 2014 Available online 27 March 2014 Keywords: Lithium ion battery Sulfone-based electrolytes High t In an extension of our previous studies of sulfone-containing electrolytes for lithium batteries, we report tests

  6. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01T23:59:59.000Z

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  7. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  8. Battery research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Thackeray, M.M.

    1997-10-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  9. MS17AM LEAK CHECKER The MS17AM is a manual valve version of the MS17AB. Since it is a manual unit, some care must be

    E-Print Network [OSTI]

    Massey, Thomas N.

    MS17AM LEAK CHECKER The MS17AM is a manual valve version of the MS17AB. Since it is a manual unit, some care must be exercised in the sequencing of the valves. The most important things to remember are that during normal leak testing: 1. The THROTTLE VALVE is NEVER opened unless the ROUGH VALVE has been

  10. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  11. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01T23:59:59.000Z

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  12. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  13. A summary of chapter 8 (pages 203240) of the IMCP Manual (reference information on page 4) Technical Summary

    E-Print Network [OSTI]

    and during construction to confirm that the concrete mix is suitable for the intended use. Field testing) Technical Summary 8 Concrete Pavement Construction Figure 1. Typical sequence of adding material and Construction Practices for Concrete Pavements: A State-of-the- Practice Manual (IMCP manual). The summaries

  14. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01T23:59:59.000Z

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  15. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01T23:59:59.000Z

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  16. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28T23:59:59.000Z

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  17. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    SciTech Connect (OSTI)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03T23:59:59.000Z

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  18. RH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-09-17T23:59:59.000Z

    This procedure provides operating instructions for the RH-TRU 72-B Road Cask, Waste Shipping Package. In this document, ''Packaging'' refers to the assembly of components necessary to ensure compliance with the packaging requirements (not loaded with a payload). ''Package'' refers to a Type B packaging that, with its radioactive contents, is designed to retain the integrity of its containment and shielding when subject to the normal conditions of transport and hypothetical accident test conditions set forth in 10 CFR Part 71. Loading of the RH 72-B cask can be done two ways, on the RH cask trailer in the vertical position or by removing the cask from the trailer and loading it in a facility designed for remote-handling (RH). Before loading the 72-B cask, loading procedures and changes to the loading procedures for the 72-B cask must be sent to CBFO at sitedocuments@wipp.ws for approval.

  19. Cyber Security Incident Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-01-08T23:59:59.000Z

    The manual establishes minimum requirements for a structured cyber security incident detection and management process for detecting, identifying, categorizing, containing, reporting, and mitigating cyber security incidents involving DOE information and information systems operated by DOE or by contractors on behalf of the Department. Admin Chg 1 dated 9-1-09; Admin Chg 2 dated 12-22-09. Canceled by DOE O 205.1B.

  20. Pollutant Assessments Group Procedures Manual

    SciTech Connect (OSTI)

    Chavarria, D.E.; Davidson, J.R.; Espegren, M.L.; Kearl, P.M.; Knott, R.R.; Pierce, G.A.; Retolaza, C.D.; Smuin, D.R.; Wilson, M.J.; Witt, D.A. (Oak Ridge National Lab., TN (USA)); Conklin, N.G.; Egidi, P.V.; Ertel, D.B.; Foster, D.S.; Krall, B.J.; Meredith, R.L.; Rice, J.A.; Roemer, E.K. (Oak Ridge Associated Universities, Inc., TN (USA))

    1991-02-01T23:59:59.000Z

    This procedures manual combines the existing procedures for radiological and chemical assessment of hazardous wastes used by the Pollutant Assessments Group at the time of manuscript completion (October 1, 1990). These procedures will be revised in an ongoing process to incorporate new developments in hazardous waste assessment technology and changes in administrative policy and support procedures. Format inconsistencies will be corrected in subsequent revisions of individual procedures.