Powered by Deep Web Technologies
Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

2

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

3

Optimization of blended battery packs  

E-Print Network (OSTI)

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

4

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK  

E-Print Network (OSTI)

A DC CIRCUIT BREAKER FOR AN ELECTRIC VEHICLE BATTERY PACK Geoff Walker Dept of Computer Science vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker

Walker, Geoff

5

Investigation on Operating Characteristics of Individual Cell among Battery Pack.  

E-Print Network (OSTI)

??Due to the discrepancy among series-connected cells in a lead-acid battery pack, the restored capacities may not be the same during the charging/discharging processes. Through… (more)

Chen, Wen-Chih

2006-01-01T23:59:59.000Z

6

Electrothermal Battery Pack Modeling and Simulation.  

E-Print Network (OSTI)

??Much attention as been given to the study of Li-Ion batteries for their use in automotive applications such as Hybrid Electric Vehicles (HEV), Plug In… (more)

Yurkovich, Benjamin J.

2010-01-01T23:59:59.000Z

7

Potential use of battery packs from NCAP tested vehicles.  

Science Conference Proceedings (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

8

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

9

Dismantling (H)EV Battery Packs, an Integral Part of Umicore's ...  

Science Conference Proceedings (OSTI)

June 2012, a battery pack dismantling facility was opened in Maxton, NC based on ... Cost, Energy, Emissions, and Resource Assessment of the Production of ...

10

An observer looks at the cell temperature in automotive battery packs  

E-Print Network (OSTI)

An observer looks at the cell temperature in automotive battery packs Maxime Deberta , Guillaume.bloch@univ-lorraine.fr Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module

Paris-Sud XI, Université de

11

Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Geek-Up08.20.10 -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up08.20.10 -- Turning Trash Bags...

12

Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)  

DOE Green Energy (OSTI)

NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

2008-12-01T23:59:59.000Z

13

Questions & Answers Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs  

E-Print Network (OSTI)

Questions & Answers Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs PON12501 1. Relating to both Research Topic Areas, at what stage of the research does the Energ Commission envision a battery manufacturer needing to be involved? y The Energy

14

Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.20.10] -- Turning Trash Bags into Battery Anodes and 8.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be used as components for lithium-ion batteries. We have about three pounds of bacteria living in our gut -- most of which is helpful for our immune system development and metabolism. Scientists at Ames Laboratory are making batteries that are "greener" and more cost-efficient by using rare earth elements -- neodymium

15

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

16

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

17

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays  

E-Print Network (OSTI)

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 harvest and storage processes. This power pack incorporates a series-wound dye- sensitized solar cell material.11,15 Compared with other integrated solar power supplies,16,17 double-sided TiO2 NTs with large

Wang, Zhong L.

18

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

DOE Green Energy (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

19

Treatment or Recycling End-Of-Life (H)EV Battery Packs  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Treatment or Recycling End-Of-Life ...

20

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

SciTech Connect

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

Siu, Stanley C. (Alameda, CA); Evans, James W. (Piedmont, CA); Salas-Morales, Juan (Berkeley, CA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents (OSTI)

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

Siu, S.C.; Evans, J.W.; Salas-Morales, J.

1995-08-15T23:59:59.000Z

22

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to… (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

23

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

24

Design and Study on the State of Charge Estimation for Lithium-ion Battery Pack in Electric Vehicle  

Science Conference Proceedings (OSTI)

State of charge (SOC) estimation is an increasingly important issue in battery management system (BMS) and has become a core factor to promote the development of electric vehicle (EV). In addition to offering the real time display of battery parameters ... Keywords: combination algorithm, state of charge (SOC), open circuit voltage (OCV), extended Kalman filtering (EKF), ampere hour (Ah), battery management system (BMS), electric vehicle (EV)

Jie Xu; Mingyu Gao; Zhiwei He; Jianbin Yao; Hongfeng Xu

2009-11-01T23:59:59.000Z

25

Batteries Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

models (trailers with engine or battery for long drives) "Out-of-the-Box" Ideas * High voltage packs> 600V Packs (getting rid of high current components) * Cars driven on...

26

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

27

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

28

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

29

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

30

Lithium Ion Battery Aging Experiments and Algorithm Development for Life Estimation.  

E-Print Network (OSTI)

??Battery lifespan is one of the largest considerations when designing battery packs for electrified vehicles. Even during vehicle operation, it is essential to monitor the… (more)

Suttman, Alexander K.

2011-01-01T23:59:59.000Z

31

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network (OSTI)

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

32

Online Algorithm for Battery Utilization in Electric Computer Science Department  

E-Print Network (OSTI)

Online Algorithm for Battery Utilization in Electric Vehicles Ron Adany Computer Science Department the problem of utilizing the pack of batteries serving current demands in Electric Vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. Due to its internal

Tamir, Tami

33

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm  

E-Print Network (OSTI)

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm Ron Adany Tami Tamir Abstract We consider the problem of utilizing a pack of m batteries serving among the batteries in the pack. A battery's life depends on the discharge current used for supplying

Tamir, Tami

34

US advanced battery consortium in-vehicle battery testing procedure  

DOE Green Energy (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

35

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

36

Food Battery Competition (New for 2011) Sponsored by  

E-Print Network (OSTI)

Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology'S RESOURCESTOWORK FORYOU Lithium-ion Battery Research page 8 Minister of Science and Technology Visits Argonne page Agency, the Tesla Roadster can travel 244 miles on a single charge of its lithium- ion battery pack

Tennessee, University of

37

Means for controlling battery chargers  

SciTech Connect

A battery charger control device is described that senses the placement of a battery across control terminals and utilizes the voltage thereof to place into conduction a transistor which actuates a relay which turns on a battery charger, which thereafter, monitors the the charge condition of the battery as determined by the voltage supplied to a voltage following circuit from the control terminals, and which actuates an electronic switch after the elapse of a predetermined period of time after the battery has attained a fully charged condition as determined by the voltage of the battery as presented to the voltage following circuit.

Ballman, G.C.

1980-09-16T23:59:59.000Z

38

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

39

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

40

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

42

New Developments in Battery Chargers  

E-Print Network (OSTI)

Abstract: Electronic equipment is increasingly becoming smaller, lighter, and more functional, thanks to the push of technological advancements and the pull from customer demand. The result of these demands has been rapid advances in battery technology and in the associated circuitry for battery charging and protection. For many years, nickel-cadmium (NiCd) batteries have been the standard for small electronic systems. A few larger systems, such as laptop computers and high-power radios, operated on "gel-cell " lead-acid batteries. Eventually, the combined effects of environmental problems and increased demand on the batteries led to the development of new battery technologies: nickel-metal hydride (NiMH), rechargeable alkaline, lithium ion (Li+), and lithium polymer. These new battery technologies require more sophisticated charging and protection circuitry to maximize performance and ensure safety. NiCd and NiMH Batteries NiCd has long been the preferred technology for rechargeable batteries in portable electronic equipment, and in some ways, NiCd batteries still outperform the newer technologies. NiCd batteries have less capacity than Li+ or NiMH types, but their low impedance is attractive in applications that require high current for short periods. Power tools, for example, will continue to use NiCd battery packs indefinitely.

unknown authors

2011-01-01T23:59:59.000Z

43

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

1 All-Electric Conversion of the USPS Long Life Vehicle (LLV) Vehicle Specifications Battery Type: Li-Ion Pack Locations: Underbody (inboard of frame rails) Nominal System Voltage:...

44

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

45

Quantifying Cell-to-Cell Variations in Lithium Ion Batteries  

DOE Green Energy (OSTI)

Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

Santhanagopalan, S.; White, R. E.

2012-01-01T23:59:59.000Z

46

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

47

SIMULATED LIFECYCLE COSTS OF ULTRACAPACITORS IN BATTERY ELECTRIC VEHICLES A.G. Simpson*, P.C. Sernia and G.R. Walker  

E-Print Network (OSTI)

SIMULATED LIFECYCLE COSTS OF ULTRACAPACITORS IN BATTERY ELECTRIC VEHICLES A.G. Simpson*, P, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost costs of ultracapacitors in battery electric vehicle applications. The lifecycle operation

Walker, Geoff

48

Design and analysis of a battery for a formula electric car  

E-Print Network (OSTI)

The purpose of this paper is to present the philosophy and methodology behind the design of the battery pack for MITs 2013 Formula SAE Electric racecar. Functional requirements are established for the pack. An overview of ...

Reineman, Samuel (Samuel Thomas)

2013-01-01T23:59:59.000Z

49

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

50

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

51

Graphitic packing removal tool  

DOE Patents (OSTI)

Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

Meyers, K.E.; Kolsun, G.J.

1996-12-31T23:59:59.000Z

52

Rigidity of packings  

Science Conference Proceedings (OSTI)

In Ludwig Danzer's Habilitatiionsschrift [L. Danzer, Endliche Punktmengen auf der 2-Sphare mit moglichst grossem minimalabstand, Habilitationsschrift, Gottingen, 1963] he initiated a study of the local nature of the packings from the point of view of ...

Robert Connelly

2008-11-01T23:59:59.000Z

53

Packing sets of patterns  

Science Conference Proceedings (OSTI)

Packing density is a permutation occurrence statistic which describes the maximal number of permutations of a given type that can occur in another permutation. In this article we focus on containment of sets of permutations. Although this question has ...

Alexander Burstein; Peter Hästö

2010-01-01T23:59:59.000Z

54

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

55

ESS 2012 Peer Review - Demonstration of a Sodium Ion Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and demonstrated to be able to givetake from grid Achieved - with a >1000 V battery pack at Aquion Energy HQ High Voltage Test System at Aquion Pilot Line in Operation...

56

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network (OSTI)

ABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need battery life depends on the design of thermal management used as well as the specific battery chemistry of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design

Michalek, Jeremy J.

57

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

58

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

59

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

60

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

62

Electric Drive and Advanced Battery and Components Testbed (EDAB...  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed...

63

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

64

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

65

Dynamic data mining technique for rules extraction in a process of battery charging  

Science Conference Proceedings (OSTI)

Battery charging controllers design and application is a growing industry direction. Fast and efficient charging of battery packs is a problem which is difficult and often expensive to solve using conventional techniques. The majority of existing works ... Keywords: Battery charging, Control rules, Data mining, Fuzzy recurrent neural network, Genetic algorithm, Intelligent control, Soft computing

R. A. Aliev; R. R. Aliev; B. Guirimov; K. Uyar

2008-06-01T23:59:59.000Z

66

Measurement of Battery Capacity in Mobile Robot Systems  

E-Print Network (OSTI)

With battery driven robot systems performing very sophisticated tasks, increasing demands on the power supply play a critical role. Operation breakdowns are unpredictable unless the state of the battery is known, and the overall performance should be adjusted according to reliable remaining capacity estimations. This paper addresses many of the issues related to the management and monitoring of battery packs for mobile robots, whereas an implementation for a particular system is presented.

Nestor Lucas; Cosmin Codrea; Thomas Hirth; Javier Gutierrez; Falko Dressler

2005-01-01T23:59:59.000Z

67

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

68

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

69

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

70

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

71

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

72

Superdense Crystal Packings of Ellipsoids  

E-Print Network (OSTI)

Particle packing problems have fascinated people since the dawn of civilization, and continue to intrigue mathematicians and scientists. Resurgent interest has been spurred by the recent proof of Kepler's conjecture: the face-centered cubic lattice provides the densest packing of equal spheres with a packing fraction $\\phi\\approx0.7405$ \\cite{Kepler_Hales}. Here we report on the densest known packings of congruent ellipsoids. The family of new packings are crystal (periodic) arrangements of nearly spherically-shaped ellipsoids, and always surpass the densest lattice packing. A remarkable maximum density of $\\phi\\approx0.7707$ is achieved for both prolate and oblate ellipsoids with aspect ratios of $\\sqrt{3}$ and $1/\\sqrt{3}$, respectively, and each ellipsoid has 14 touching neighbors. Present results do not exclude the possibility that even denser crystal packings of ellipsoids could be found, and that a corresponding Kepler-like conjecture could be formulated for ellipsoids.

Aleksandar Donev; Frank H. Stillinger; P. M. Chaikin; Salvatore Torquato

2004-03-10T23:59:59.000Z

73

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

74

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

75

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

76

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

77

Turn Hoang Nguyen  

Office of Scientific and Technical Information (OSTI)

Synthesis of polycyclic natural products Synthesis of polycyclic natural products by Turn Hoang Nguyen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Organic Chemistry Program of Study Committee: George A. Kraus (Major Professor) Richard C. Larock Valerie V. Sheares-Ashby Jacob W. Petrich Earl G. Hammond Iowa State University Arnes, Iowa 2003 .. 1 1 . Graduate College Iowa State University This is to certify that the doctoral dissertation of Tuan Hoang Nguyen has met the requirements of Iowa State University Major Professor For the Major Program ... 111 r5+7 3534 DEDICATION To myparents, for all their sacr$ces i V TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER I. Synthesis of the Bicyclic Core of Hyperforin and

78

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

79

What to Pack for Mars  

E-Print Network (OSTI)

De Weck, O.L. “What to Pack for Mars.” Spectrum, IEEE 46.6 (2009): 39. © 2009 Institute of Electrical and Electronics Engineers

De Weck, Olivier L.

80

Lattice Calibration with Turn-By-Turn BPM Data  

Science Conference Proceedings (OSTI)

Turn-by-turn beam position monitor (BPM) data from multiple BPMs are fitted with a tracking code to calibrate magnet strengths in a manner similar to the well known LOCO code. Simulation shows that this turn-by-turn method can be a quick and efficient way for optics calibration. The method is applicable to both linacs and ring accelerators. Experimental results for a section of the SPEAR3 ring is also shown.

Huang, Xiaobiao; /SLAC; Sebek, James; /SLAC

2012-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of electric vehicle battery systems through in-vehicle testing: Third annual report, April 1989  

SciTech Connect

This third annual summary report documents the performance from October 1986 through September 1987 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction battery packs. Detailed test procedures and test data are available from EPRI in an informal data report. The purpose of this field test activity is to provide an impartial life evaluation and comparison of the performance of various battery systems in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. This year's report gives the final results on a NiZn, NiCd, Gel Cell, and two lead-acid battery packs. Specific energy and monthly driving ranges (SAE J227a ''C'' cycle and 35 mi/h constant speed cycles) are maintained throughout battery life. Vehicle range test data is analyzed statistically and variable conditions are normalized for comparative purposes. Battery modules in the pack are replaced when their measured ampere-hour capacity at a fixed discharge rate drops to 60 percent of the manufacturer's rated value. The life of a test battery pack is terminated when 25 percent of the modules in the pack have been replaced or require replacement. 26 figs., 8 tabs.

Blickwedel, T.W.; Thomas, W.A.; Whitehead, G.D.

1989-04-01T23:59:59.000Z

82

Intelligent charging and control of portable battery packs.  

E-Print Network (OSTI)

?? This report describes thesis work performed at SAAB Aerotech in Link oping, Sweden. The task was to nd a way to have portable electronics'… (more)

Kjellberg, Olof

2008-01-01T23:59:59.000Z

83

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

84

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

85

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

86

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

87

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

88

Valve stem and packing assembly  

DOE Patents (OSTI)

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele`s pivot. The Schiele`s pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele`s pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele`s pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

Wordin, J.J.

1990-12-31T23:59:59.000Z

89

Pack.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

February 1999 February 1999 Revised: 05/05/99 CHEVROLET S-10 ELECTRIC (NIMH BATTERIES) PERFORMANCE CHARACTERIZATION SUMMARY ELECTRIC TRANSPORTATION DIVISION Urban Range (On Urban Pomona Loop - see other side for map) Test UR1 UR2 UR3 UR4 Payload (lb.) 180 180 920 920 AC kWh Recharge 54.93 57.09 54.98 51.34 AC kWh/mi. 0.78 0.91 0.87 0.85 Range (mi.) 70.4 63.0 63.0 60.4 Avg. Ambient Temp. 63°F 66°F 63°F 50°F UR1 Urban Range Test, Min Payload, No Auxiliary Loads UR2 Urban Range Test, Min Payload, A/C on High, Headlights on Low, Radio On UR3 Urban Range Test, Max Payload, No Auxiliary Loads UR4 Urban Range Test, Max Payload, A/C on High, Headlights on Low, Radio On State of Charge Meter (UR1) Freeway Range (On Freeway Pomona Loop - see other side for map) Test FW1 FW2 FW3 FW4 Payload (lb.) 180 180 920 920 AC kWh Recharge

90

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

91

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

92

Test problems for quasi-satellite packing????  

E-Print Network (OSTI)

1. Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known. Chao Che. School of Mechanical  ...

93

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

94

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

95

Energy management for battery-powered embedded systems  

Science Conference Proceedings (OSTI)

Portable embedded computing systems require energy autonomy. This is achieved by batteries serving as a dedicated energy source. The requirement of portability places severe restrictions on size and weight, which in turn limits the amount of energy that ... Keywords: Battery, low-power design, modeling, scheduling, voltage scaling

Daler Rakhmatov; Sarma Vrudhula

2003-08-01T23:59:59.000Z

96

Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint  

Science Conference Proceedings (OSTI)

Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

Pesaran, A.; Heon, G. H.; Smith, K.

2011-01-01T23:59:59.000Z

97

1 of 5 Copyright 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System  

E-Print Network (OSTI)

1 of 5 Copyright © 2007 Tesla Motors Updated: December 19, 2007 The Tesla Roadster Battery System Tesla Motors August 16, 2006 By Gene Berdichevsky, Kurt Kelty, JB Straubel and Erik Toomre Summary This paper provides details about the design of the Tesla Roadster's lithium-ion (Li-ion) battery pack

Laughlin, Robert B.

98

DETAIL "A" MATES WITH BATTERY INTERFACE1. CONNECTOR (TYCO PART#787444-1, AND IS  

E-Print Network (OSTI)

.642 .038 NOTE: DETAIL "A" MATES WITH BATTERY INTERFACE1. CONNECTOR (TYCO PART#787444 PLACE DECIMAL BA-95 OR BA-95HC BATTERY PACK WITH04/01/05 DETAIL A BA SCALE 1 : 1 NOTE 1 FC D E PLASTIC

Buckingham, Michael

99

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

100

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407  

DOE Green Energy (OSTI)

Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

Smith, K.

2012-01-01T23:59:59.000Z

102

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

103

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

DOE Green Energy (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

104

Performance and life evaluation of nickel/iron battery technology for dual shaft electric propulsion vehicle  

SciTech Connect

As part of a cost-shared contract between the US Department of Energy (Office of Transportation Systems) and Eaton Corp. to develop an advanced dual shaft electric propulsion (DSEP) vehicle, several nickel/iron (Ni/Fe) batteries were designed and procured from Eagle-Picher Industries (EPI) for evaluation and vehicle use. In March 1986, two individual 5-cell Ni/Fe modules and a 140-cell (28-module) battery pack were delivered to Argonne for evaluation. Performance characterization tests were conducted on the two modules and life testing performed on the battery pack. Module performance testing was completed in early 1987 after about 215 cycles of operation. Each module still retained {approximately}90% of its initial 180-Ah capacity at the end of testing ({approximately}163 Ah/970 Wh). Life evaluation of the 168-V, 28-kWh battery pack was conducted with driving profile discharges. A 1377-s power profile that represented the battery load in a DSEP vehicle undergoing a Federal Urban Driving Schedule (FUDS) was used. Testing was temporarily suspended in October 1987 after the battery pack had accumulated 502 cycles (209 cycles in 1986). After a three-month trickle charge ({approximately}3 A), testing was resumed (January 1988) with driving profile discharges. In March 1988, battery performance was being limited by three modules. After 545 cycles, the three modules were removed from the pack. Battery performance, however, continued to decline and another four modules were removed in September 1988 (645 cycles). Several remaining modules started to exhibit a high self-discharge loss and a capacity of only 119 Ah (15.1 kWh) could be achieved. The life evaluation was halted in October 1988 after 661 cycles had been accumulated. This report outlines the test activities and presents the performance results of the individual modules and the battery pack involved in this technology evaluation. 18 figs., 4 tabs.

DeLuca, W. (ed.)

1990-05-01T23:59:59.000Z

105

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

106

Valve stem and packing assembly  

SciTech Connect

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

Wordin, John J. (Bingham County, ID)

1991-01-01T23:59:59.000Z

107

Valve stem and packing assembly  

DOE Patents (OSTI)

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

Wordin, J.J.

1991-09-03T23:59:59.000Z

108

Valve stem and packing assembly  

DOE Patents (OSTI)

A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

Wordin, J.J.

1990-01-01T23:59:59.000Z

109

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

110

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

111

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

112

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

113

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

114

Turning collectors for solar radiation  

DOE Patents (OSTI)

A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

Barak, Amitzur Z. (Chicago, IL)

1976-01-01T23:59:59.000Z

115

MHD plant turn down considerations  

DOE Green Energy (OSTI)

The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.

Lineberry, J.T.; Chapman, J.N.

1991-01-01T23:59:59.000Z

116

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

117

Status of improved lead-acid, nickel/iron, and nickel/zinc batteries being developed under DOE's electric vehicle battery program  

SciTech Connect

The significant progress achieved in each of the three battery systems since the initiation of this battery development program is described. The 1982 demonstrated accomplishments are verified test results obtained on multicell modules (typically three to six cells each) at NBTL through May 1982. In particular, significant technical progress has been made in extending battery life. Additional progress in cell development and battery subsystem design (chargers, watering systems, electrolyte management systems) has allowed the construction of full-size battery packs. Globe Battery Division (lead-acid), Westinghouse (nickel/iron), and Eagle-Picher (nickel/iron) delivered full-size batteries to the Jet Propulsion Laboratory (JPL) for in-vehicle testing and evaluation.

Miller, J.F.; Rajan, J.B.; Hornstra, F.; Christianson, C.C.; Yao, N.P.

1982-01-01T23:59:59.000Z

118

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

119

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

120

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

122

Special Feature: Reducing Energy Costs with Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Energy Costs with Better Batteries Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's (DOE's) goals is to fund research that will revolutionize the performance of next-generation batteries. In honor of DOE's supercomputing month, we are highlighting some of the

123

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

124

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

125

Advanced lead acid battery development project. Final report  

Science Conference Proceedings (OSTI)

This project involved laboratory and road testing of the Horizon (registered) advanced lead acid batteries produced by Electrosource, Inc. A variety of electric vehicles in the fleet operated by the Sacramento Municipal Utility District and McClellan Air Force Base were used for road tests. The project was sponsored by the Defense Advanced Research Projects Agency under RA 93-23 entitled Electric Vehicle Technology and Infrastructure. The Horizon battery is a valve regulated, or sealed, lead acid battery produced in a variety of sizes and performance levels. During the project, several design and process improvements on the Horizon battery resulted in a production battery with a specific energy approaching 45 watt-hours per kilogram (Whr/kg) capable of delivering a peak current of 450 amps. The 12 volt, 95 amp-hour (Ahr) Horizon battery, model number 12N95, was placed into service in seven (7) test vehicles, including sedans, prototype lightweight electric vehicles, and passenger vans. Over 20,000 miles have been driven to date on vehicles powered by the Horizon battery. Road test results indicate that when the battery pack is used with a compatible charger and charge management system, noticeably improved acceleration characteristics are evident, and the vehicles provide a useful range almost 20% greater than with conventional lead-acid batteries.

NONE

1997-02-01T23:59:59.000Z

126

Magnet Coil Shorted Turn Detector  

Science Conference Proceedings (OSTI)

The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

Dinkel, J.A.; Biggs, J.E.

1994-03-01T23:59:59.000Z

127

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

128

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

129

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

130

Device for packaging a lithium battery  

Science Conference Proceedings (OSTI)

Battery packing construction is described for packaging at least one lithium battery, the lithium battery including a solid polymer electrolyte in electrical contact with an anode of lithium or a lithium alloy and a cathode containing at least one metallic salt, the device comprising a first metallic foil having a first continuous band of plastic film bonded thereto by means of a thermoset adhesive along entire peripheral edges of the first metallic foil, a second metallic foil having a second continuous band of plastic film bonded thereto by means of a thermoset adhesive along entire peripheral edges of the second metallic foil, the first and second metallic foils disposed over one another with the first and second plastic films arranged adjacent one another in facing relationship, the lithium battery being sandwiched between the first and the second metallic foils in space inside the first and the second continuous bands of plastic film with the anode in contact with one metallic foil and the cathode in contact with the other metallic foil, the first and second continuous bands of plastic film being imperviously heat-sealed together to prevent any outside substance to contact the battery.

Duval, M.; Giguere, Y.

1993-07-13T23:59:59.000Z

131

Kold Pack: Order (2013-CE-5323)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Kold Pack, Inc. to pay a $8,000 civil penalty after finding Kold Pack had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

132

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

133

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

134

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

135

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

136

NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet)  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) collaboration is developing sophisticated software tools to help improve and accelerate battery design and boost the performance and consumer appeal of electric-drive vehicles with the ultimate goal of diminishing petroleum consumption and polluting emissions.

Not Available

2013-11-01T23:59:59.000Z

137

Gravel packing method and apparatus  

Science Conference Proceedings (OSTI)

A method is described of gravel packing a well formation intersected by a well bore, the method comprising: forming a gel for transporting solids; mixing the solids with the gel; pumping the gel and solids mixed through a tool string disposed in the well bore to a subterranean position above the formation; pumping a breaker fluid to the subterranean position through an annulus breaker between the tool string and the wall of the well bore; introducing the breaker fluid into the tool string at the subterranean position and mixing the breaker fluid with the gel and solids whereby the gel is broken into a low viscosity fluid; and transporting the resultant low viscosity fluid and solids mixed to the formation for packing.

Bolin, M.L.

1987-05-05T23:59:59.000Z

138

Purifying Decane A. Prepare Packing Material  

E-Print Network (OSTI)

to prevent escape of packing material. 4. Seal bottom of column and fill column with packing material to the remaining space at the top of the column. 2. Seal top of column and connect to nitrogen tank. Set with decane. Note: Never allow top of packing material to contact the air after it has been wetted by decane 4

Buckley, Jill S.

139

Jammed Packings of Hard Particles Aleksandar Donev  

E-Print Network (OSTI)

of disordered and ordered hard-sphere and hard-ellipsoid packings. In the first part of this dissertation-equilibrium) free energy of nearly jammed packings of hard particles is designed and implemented. In the second partJammed Packings of Hard Particles Aleksandar Donev A Dissertation Presented to the Faculty

Mohri, Mehryar

140

Pack Cementation Aluminizing of Steels  

Science Conference Proceedings (OSTI)

Table 3   Partial list of commercial applications of pack cementation aluminizing...Carbon and stainless steels Steam power and cogeneration Waterwall tubes 2 % Cr-1% Mo steel Fluidized bed combustor tubes 2 % Cr-1% Mo steel Waste heat boiler tubes Carbon steel Economizer and air preheater tubes 2 % Cr-1% Mo steel Superheater tubes 2 % Cr-1% Mo steel Aerospace (a) Turbine blades...

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

142

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

143

DOE Turns 25 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

> About Us > Our History > NNSA Timeline > DOE Turns 25 DOE Turns 25 October 01, 2002 Washington, DC DOE Turns 25 The Department of Energy marked the 25th anniversary of its...

144

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

145

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

146

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

148

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

149

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

150

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

151

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

152

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

153

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

154

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

155

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

156

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

157

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

158

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

159

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

160

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

162

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

163

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

164

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

165

'Tuning' Graphene Drums Might Turn Conductors to ...  

Science Conference Proceedings (OSTI)

'Tuning' Graphene Drums Might Turn Conductors to Semiconductors. From NIST Tech Beat: June 27, 2012. ...

2013-07-08T23:59:59.000Z

166

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

167

The Packing of Granular Polymer Chains  

SciTech Connect

Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here, we examine the disordered packing of chains constructed out of flexibly connected hard spheres. Using x-ray tomography, we find that long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally, we uncover close similarities between the packing of chains and the glass transition in polymers.

Zou, Ling-Nan; Cheng, Xiang; Rivers, Mark L.; Jaeger, Heinrich M.; Nagel, Sidney R.; UC

2009-12-01T23:59:59.000Z

168

Battery availability for near-term (1998) electric vehicles  

SciTech Connect

Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full-size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340--360 V) powertrains and have acceleration performance (0--80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80--160 km (50--100 miles) with the ranges using nickel-cadmium batteries being 40--60% greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100--150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30--70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This true for both lead-acid and nickel-cadmium batteries. 25 refs., 6 figs., 16 tabs.

Burke, A.F.

1991-06-01T23:59:59.000Z

169

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

2010-07-01T23:59:59.000Z

170

Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report  

SciTech Connect

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOE’s FreedomCAR and Vehicle Technologies Program.

J. Francfort; D. Karner

2005-07-01T23:59:59.000Z

171

Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries  

SciTech Connect

Mesoporous TiO2-B microsperes with a favorable material architecture are designed and synthesized for high power lithium ion batteries. This material, combining the advantages of fast lithium transport with a pseudocapacitive mechanism, adequate electrode-electrolyte contact and compact particle packing in electrode layer, shows superior high-rate charge-discharge capability and long-time cyclability for lithium ion batteries.

Liu, Hansan [ORNL; Bi, Zhonghe [ORNL; Sun, Xiao-Guang [ORNL; Unocic, Raymond R [ORNL; Paranthaman, Mariappan Parans [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

2011-01-01T23:59:59.000Z

172

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

173

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

174

Accelerating Design of Batteries Using Computer-Aided Engineering Tools (Presentation)  

SciTech Connect

Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

Pesaran, A.; Kim, G. H.; Smith, K.

2010-11-01T23:59:59.000Z

175

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

176

Geometrical Properties of Simulated Packings of Spherocylinders  

Science Conference Proceedings (OSTI)

In a wide range of industrial applications there appear systems of hard particles of different shapes and sizes, known as "packings". In this work, the force-biased algorithm, primarily designed to model close packings of equal spheres, is adapted to ...

Monika Bargie?

2008-06-01T23:59:59.000Z

177

Slimhole frac pack tools overcome erosion problems  

SciTech Connect

The application of frac pack technology for stimulation and sand control in the Gulf of Mexico`s unconsolidated formations has steadily increased during the past several years. In addition, re-entry drilling has been one of the fastest growing development techniques used by operators for optimizing reservoir productivity. As such, smaller casing sizes are becoming more common in oil and gas producing wells. Gravel pack tools were being used for frac packing in 7-in. casing sizes and larger, but no tools were available to frac pack in the smaller 5-in. and 5{1/2}-in. casing. The erosion problems operators were experiencing in 7-in. gravel pack tools heightened concerns about fracturing through 5-in. tools with even smaller flow areas. Flow cutting in the 7-in. tools was so severe that it caused fluid communication between the gravel pack ports and the return flow holes in the crossover tool. This allowed fluid and proppant to return to the annulus above the packer, which could cause possible early screen-out and sticking of the crossover tool. The flow cutting could also reduce the tool`s pressure and tensile ratings. Any one of these problems could jeopardize the success of the frac pack operation. Therefore, an erosion resistant crossover tool for slimhole casing was developed to address these problems and optimize frac pack success.

Stout, G. [BJ Services, Tomball, TX (United States). Research and Development Center; Matte, T. [BJ Services, Lafayette, LA (United States); Rogers, B. [Marathon Oil Co., Lafayette, LA (United States)

1997-04-01T23:59:59.000Z

178

VripPack User's Guide Brian Curless  

E-Print Network (OSTI)

and compiling vrip is fairly straightforward. VripPack depends on Tcl/Tk being installed and has been compiled most recently against Tcl/Tk version 8.4. VripPack comes with these libraries for Linux, but you may. The following web page is a good reference for installing Cygwin and Tcl/Tk as needed for vrip: http

Davis, James E.

179

Solar Decathlon Turns Ten | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products...

180

ARM - VAP Product - 10rlprofmr1turn  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Plot Example 10rlprofmr1turn data plot VAP Output : 10RLPROFMR1TURN Raman LIDAR (RL): water vapor mixing ratio and relative humidity profiles, along with PWV Active...

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

182

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

183

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

184

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

185

Method for gravel packing wells  

SciTech Connect

This patent describes a method for gravel packing a well that penetrates an unconsolidated or poorly consolidated subterranean oil or gas reservoir. It comprises: providing a borehole casing through the reservoir; perforating the casing at preselected intervals therealong to form at least one set of longitudinal, perforation tunnels adjacent a substantial portion of the reservoir; locating a sand screen inside the casing and in juxtaposition with the perforation tunnels, an annulus being formed between the sand screen and the casing; positioning a conduit in juxtaposition with the sand screen extending substantially the length of the sand screen and having its upper extremity open to fluids; injecting a fluid slurry containing gravel down through the annulus and conduit whereby the fluid portion of the slurry is forced out of the annulus through the perforation tunnels into the reservoir and the gravel portion of the slurry deposited in the annulus and forced into the perforation tunnels into the formation; sizing the cross-sectional area of the conduit and the annulus so that if gravel forms a bridge in a portion of the annulus thereby blocking the flow of fluid slurry through the the annulus, fluid slurry containing gravel will continue to flow through the conduit and into the annulus around the gravel bridge; and terminating the injection of the slurry.

Jones, L.G.

1990-08-07T23:59:59.000Z

186

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

187

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

188

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

189

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

190

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

191

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

192

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture in  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Heat Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A molecule of fulvalene diruthenium, seen in diagram, changes its configuration when it absorbs heat, and later releases heat when it snaps back to its original shape. Image: Jeffrey Grossman Broadly speaking, there have been two approaches to capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a turbine, or use the heat directly for hot water or home

193

Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.  

DOE Green Energy (OSTI)

Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

Hutchinson, Ronda

2004-06-01T23:59:59.000Z

194

Battery driven 8 channel pulse height analyzer with compact, single gamma-peak, display  

DOE Patents (OSTI)

The invention comprises a hand-held wand including a l.e.d. display and a NaI photomultiplier tube encased in lead or other suitable gamma shielding material, and an electronics and battery back-pack package connected to the wand.

Morgan, J.P.; Piper, T.C.

1990-08-29T23:59:59.000Z

195

Battery driven 8 channel pulse height analyzer with compact, single gamma-peak display  

DOE Patents (OSTI)

The invention comprises a hand-held wand including an l.e.d. display and a aI photomultiplier tube encased in lead or other suitable gamma shielding material, and an electronics and battery back-pack package connected to the wand.

Morgan, John P. (Idaho Falls, ID); Piper, Thomas C. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

196

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

197

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

198

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

199

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

200

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

202

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

203

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

204

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

205

Compost Bedded Pack Barns: Management Practices and Economic Implications.  

E-Print Network (OSTI)

??Compost bedded pack (CBP) barn design and pack maintenance procedures vary considerably, making advising and problem-solving challenging. One objective of this research was to characterize… (more)

Black, Randi Alyson

2013-01-01T23:59:59.000Z

206

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

207

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

208

A Comparison of US and Chinese EV Battery Testing Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

US and Chinese EV US and Chinese EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 US/China Electric Vehicle Initiative Meeting August 23-24, 2012 Boston, MA 1 Argonne National Laboratory 2 Idaho National Laboratory 3 CATARC A Comparison of US and Chinese Battery Testing Protocols  Battery testing is a time-consuming and costly process  There are parallel testing efforts, such as those in the US and China  These efforts may be better leveraged through international collaboration  The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data  In turn, the collaboration may accelerate electric vehicle development and

209

Kold Pack: Proposed Penalty (2013-CE-5323)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Kold Pack, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

210

test problem for packing_sumit  

E-Print Network (OSTI)

Test problems of circles in circle packing with constraints and known the optimal solutions*. Hong-fei Teng1, 2**, Chao Che 2, Yu Chen 1, Yi-shou Wang 1. 1.

211

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

212

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

213

Right Turn on Red! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Right Turn on Red! Right Turn on Red! Right Turn on Red! August 25, 2011 - 12:05pm Addthis Right Turn on Red is a policy that was enacted in the 1970s to help save drivers fuel and money at the pump. | Energy Department Image | Photo by Hantz Leger Right Turn on Red is a policy that was enacted in the 1970s to help save drivers fuel and money at the pump. | Energy Department Image | Photo by Hantz Leger Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Last week, as part of our inaugural edition of Plugged In! -- an email newsletter for staff and contractors here at the Energy Department -- I asked readers for more information about the Right Turn on Red policy that was enacted in the 1970s to help save fuel. I'm happy to report that we received several responses from individuals across the Department with more

214

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

215

On universal structural characteristics of granular packs  

E-Print Network (OSTI)

Understanding the dependence of the structure of granular materials on grain parameters is key to predictive modelling of granular matter. Structural characteristics are commonly believed to be sensitive, for a given packing process, to intergranular friction, particle size distribution and initial conditions. We show here that the intergranular friction coefficient and the initial conditions are details, which can be scaled away, and that structures are determined mainly by the packing dynamics and the grain size distribution. This we do using the quadron description to analyse the structures of a number of numerically-generated planar disc packs in mechanical equilibrium, varying all these parameters. Our findings are as follows. 1. The mean coordination number is a universal function of the packing fraction, independent of the initial conditions, intergranular friction and size distribution we used, when "rattlers" are ignored. 2. For a given packing process and disc size distribution, both the total and conditional quadron volume distributions collapse to universal forms, independent of the initial conditions and intergranular friction. 3. The cell order distribution collapses to a universal form for all friction coefficients, initial conditions and for the two disc size distributions we studied. These results suggest that mechanically stable granular structures are determined mainly by the packing dynamics and the grains size / shape distributions - the effects of the intergranular friction and initial state can be scaled away and are therefore predictable.

Takashi Matsushima; Raphael Blumenfeld

2013-05-27T23:59:59.000Z

216

Turning Big Data into fast data  

NLE Websites -- All DOE Office Websites (Extended Search)

magazine Latest Issue:April 2013 All Issues submit Turning Big Data into fast data for nuclear weapons simulations at the exascale Solving the roadblock for tomorrow's exascale...

217

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

218

Substation battery-maintenance procedures  

SciTech Connect

The frequency of substation battery failures is gratifyingly low. One trouble spot appears to be extraneous short circuits that drain an otherwise healthy battery. Use of the lead--calcium battery promises to reduce substantially the amount of maintenance that substation batteries need.

Timmerman, M.H.

1976-05-15T23:59:59.000Z

219

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

Science Conference Proceedings (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

220

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

222

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

223

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

224

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

225

ARM - VAP Product - 10rlprofbe1turn  

NLE Websites -- All DOE Office Websites (Extended Search)

turn turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027251 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofbe1turn Data Plot Example 10rlprofbe1turn data plot VAP Output : 10RLPROFBE1TURN Raman LIDAR (RL): Best-estimate state of the atmos. profiles from RL & AERI+GOES retrievals Active Dates 1998.03.01 - 2004.01.06 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF Measurements The measurements below provided by this product are those considered scientifically relevant. Aerosol optical depth Aerosol scattering Backscatter depolarization ratio Backscattered radiation Cloud base height Liquid water content

226

Powerpedia Turns Two | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powerpedia Turns Two Powerpedia Turns Two Powerpedia Turns Two January 27, 2012 - 3:15pm Addthis The 500 most viewed pages on Powerpedia, the Energy Department's internal information-sharing website which turned two on January 27, 2011. | Image credit Thomas O'Neill. The 500 most viewed pages on Powerpedia, the Energy Department's internal information-sharing website which turned two on January 27, 2011. | Image credit Thomas O'Neill. Bob Brese Chief Information Officer (Acting) By almost any measure Wikipedia has revolutionized information sharing the world over. Every minute of the day, volunteers are collaborating on more than 20 million articles throughout the site. The Energy Department, inspired by the idea of creating a centralized hub for collaboration and information, launched its own internal wiki -

227

ARM - VAP Product - 10rlprofdep1turn  

NLE Websites -- All DOE Office Websites (Extended Search)

rlprofdep1turn rlprofdep1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027252 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofdep1turn Data Plot Example 10rlprofdep1turn data plot VAP Output : 10RLPROFDEP1TURN 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm Active Dates 1998.03.01 - 2013.12.28 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF Description The primary goal of the Raman Lidar Profiles - Depolarization Ratio (RLPROF_DEP) VAP is to produce linear depolarization ratio profiles. Linear depolarization is defined as the ratio of the cross-polarized return to the

228

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

229

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

230

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name Aerospatiale Batteries (ASB) Place France Product Research, design and manufacture of Thermal Batteries. References...

231

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

232

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1...

233

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research to someone by E-mail Share Vehicle Technologies Office: Applied Battery Research on Facebook Tweet about Vehicle Technologies Office: Applied Battery...

234

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

235

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents...

236

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

get the new available battery capacity that can be assignedof expected lifetime of 1% battery capacity in minutes. Forof energy supply (battery capacity) and demand on cell

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

237

What's Next for Batteries? - Energy Innovation Portal  

What's Next for Batteries? July 30, 2013. What will batteries look like in the future? How will they work? Argonne National Laboratory battery research experts ...

238

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

239

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

240

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

242

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

243

Method for packed column separations and purifications  

DOE Patents (OSTI)

The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

Holman, David A. (Richland, WA); Bruckner-Lea, Cynthia J. (Richland, WA); Brockman, Fred J. (Kennewick, WA); Chandler, Darrell P. (Richland, WA)

2006-08-15T23:59:59.000Z

244

Vehicle Details And Battery Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

System Voltage: 355.2 V Number of Electric Machines 2 : 2 Rated Pack Capacity: 45 Ah Motor: 111 kW (peak), AC induction, Air cooled Rated Pack Energy: 16.5 kWh Generator 2 :...

245

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

246

Battery disconnect sensing circuit for battery charging systems  

SciTech Connect

This patent describes a battery disconnect sensing circuit for battery charging systems which have a pair of cables adapted to be connected to a battery to charge it. The sensing circuit contains a first R-C circuit adapted to connect across the cables and a second R-C circuit adapted to connect across the cables. The time constant of the first R-C circuit is substantially greater than that of the second R-C circuit. Also means connected to the RC circuits produced a momentary control signal in response to disconnection of the cables from a battery being charged. Included in a battery charging system is a source of charging current whose voltage output is controlled at a predetermined value when connected to a battery. It increases to a higher value when disconnected from the battery. Controller means connected with the source activate the battery charging system automatically in response to electrical connection of the battery. The improvement consists of: means for momentarily effecting reversal of the higher voltage value, and battery disconnect sensing means connected the charging source and to the controller means for sensing the reversed higher voltage upon disconnection of the battery charger system from the battery and for responding by automatically deactivating the battery charging system.

Dattilo, D.P.

1986-01-28T23:59:59.000Z

247

Turning unwanted carbon dioxide into electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

and use it as a tool to boost electric power. Turning unwanted carbon dioxide into electricity Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov High Resolution Image The...

248

The Vertical Turn: Topographies of Metropolitan Modernism  

E-Print Network (OSTI)

superpower of the atomic age, these vertical structures andPan-Romanticism in the Atomic Age” before turning to myand the emergence of the atomic age. 228 Dos Passos, John.

Haacke, Paul

2011-01-01T23:59:59.000Z

249

Turning Grass into Gas for Less  

NLE Websites -- All DOE Office Websites (Extended Search)

stored in plant cellulose, then crops like this switchgrass could be turned into biofuels, rather than using corn or other food crops. Pull up to the pump these days and...

250

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

251

Systems approach to rechargeable batteries  

SciTech Connect

When selecting a rechargeable battery for an application, consideration must be given to the total system. Electrical load requirements, mechanical restrictions, environmental conditions, battery life, and charging must be considered to assure satisfactory battery performance. Meeting the electrical requirements involves selecting a battery that will deliver adequate voltage, run time and power. The mechanical aspects are largely a matter of resolving volume and weight. The charger must be capable of returning the battery to full charge in an allotted time. But of greater importance, the charge control method should be chosen carefully to maximize the operational life of the battery. 4 refs.

Mullersman, F.H.

1980-09-01T23:59:59.000Z

252

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

253

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

254

Accelerating Development of EV Batteries Through Computer-Aided Engineering (Presentation)  

Science Conference Proceedings (OSTI)

The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.

2012-12-01T23:59:59.000Z

255

Geometric packing under non-uniform constraints  

Science Conference Proceedings (OSTI)

We study the problem of discrete geometric packing. Here, given weighted regions (say in the plane) and points (with capacities), one has to pick a maximum weight subset of the regions such that no point is covered more than its capacity. We provide ... Keywords: independent set, optimization, rounding scheme

Alina Ene; Sariel Har-Peled; Benjamin Raichel

2012-06-01T23:59:59.000Z

256

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

257

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

258

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

259

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

260

Circulating current battery heater  

SciTech Connect

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

262

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

263

Battery conditioning system having communication with battery parameter memory means in conjunction with battery conditioning  

SciTech Connect

In an exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor and battery conditioning system memory are permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters. In the case of a non-portable conditioning system, two-way communication may be established with a memory associated with the portable unit so that the portable unit can transmit to the conditioning system information concerning battery parameters (e.g. rated battery capacity) and/or battery usage (e.g. numbers of shallow discharge and recharge cycles), and after a conditioning operation, the conditioning system can transmit to the portable unit a measured value of battery capacity, for example. 27 figs.

Koenck, S.E.

1994-01-11T23:59:59.000Z

264

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

265

Safe battery solvents  

SciTech Connect

An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

266

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling ...

267

Battery Cahrging at the EVRS  

NLE Websites -- All DOE Office Websites (Extended Search)

ETA-NTP008 Revision 4 Effective December 1, 2004 Battery Charging Prepared by Electric Transportation Applications Prepared by: Date:...

268

Paintable Battery Neelam Singh1  

E-Print Network (OSTI)

Paintable Battery Neelam Singh1 , Charudatta Galande1 , Andrea Miranda1 , Akshay Mathkar1 , Wei Gao Belgium. If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary

Ajayan, Pulickel M.

269

Seal for sodium sulfur battery  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

1980-01-01T23:59:59.000Z

270

Battery switch for downhole tools  

Science Conference Proceedings (OSTI)

An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

Boling, Brian E. (Sugar Land, TX)

2010-02-23T23:59:59.000Z

271

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

272

Solar Decathlon Turns Ten | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Turns Ten Solar Decathlon Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Solar Decathlon 2013

273

Solar Decathlon Turns Ten | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Turns Ten Solar Decathlon Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Solar Decathlon 2013

274

Solar Decathlon Turns Ten | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turns Ten Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Solar Decathlon 2013 The next Solar Decathlon event will be held in Irvine, California,

275

Regenerative zinc/air and zinc/ferricyanide batteries for stationary power applications  

DOE Green Energy (OSTI)

The authors report a novel configuration for a zinc-particle, packed-bed anode in which an open structure of high hydraulic permeability is maintained indefinitely in a cell with closely spaced walls by the formation of particle bridges and associated gaps. The configuration minimizes electrolyte pumping costs, allows rapid refueling and partial recharge, and provides for 100% zinc consumption. This approach benefits zinc/air fuel batteries by allowing nearly continuous operation and fuel recycle without commercial infrastructure; it benefits Zn/[Fe(CN){sub 6}]{sup {minus}3} batteries by eliminating shape-change and polarization problems found with planar anodes.

Cooper, J.F.; Keene, L.E.; Noring, J.; Maimoni, A.; Peterman, K.

1994-05-01T23:59:59.000Z

276

Cost analysis of 50 kWh zinc--chlorine batteries for mobile applications  

DOE Green Energy (OSTI)

The costs comprising the projected selling price of a 50-kWh zinc--chlorine battery for mobile applications were analyzed. This analysis is predicated on a battery whose engineering and design specifications are well crystallized. Such a design has been proposed and a process plan conceived. This, in turn, led to a simulated manufacturing plan. This analysis showed that no critical resources or complex manufacturing operations are required. The projected cost presumes a production level of 25,000 batteries per year. In that context, a selling price was estimated, in mid-1977 dollars, to be $1645 per battery or $33/kWh. This price excludes the battery charger, for which an added $400 ($8/kWh) is considered reasonable. 8 figures, 19 tables.

Catherino, H.; Henriksen, G.L.; Whittlesey, C.C.; Warde, C.J.; Carr, P.; Symons, P.C.

1978-01-01T23:59:59.000Z

277

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

278

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

279

Current balancing for battery strings  

SciTech Connect

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

280

Battery testing for photovoltaic applications  

SciTech Connect

Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

Hund, T.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Zinc alkaline secondary battery  

SciTech Connect

A zinc alkaline secondary battery with improved service life in which a multi-layer separator is interposed between the negative and positive electrodes and the quantity of the alkaline electrolyte in the layer of the separator adjacent to the negative electrode is less than that of the electrolyte in the layer of the separator adjacent to the positive electrode.

Furukawa, N.; Nishizawa, N.

1983-03-29T23:59:59.000Z

282

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

283

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

284

Probe with integrated heater and thermocouple pack  

DOE Patents (OSTI)

A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

McCulloch, Reg W. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN); Finnell, Wilber K. R. (Kingston, TN)

1990-01-01T23:59:59.000Z

285

Probe with integrated heater and thermocouple pack  

DOE Patents (OSTI)

A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

McCulloch, Reginald W. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN); Finnell, Wilber K. R. (Kingston, TN)

1988-01-01T23:59:59.000Z

286

Turning waste into energy beats landfilling  

E-Print Network (OSTI)

Turning waste into energy beats landfilling By Christopher Hume The Hamilton Spectator (Nov 16 it in Europe, "waste-to-energy," this is a technology that is needed. Objections to it are based on information lots, perhaps $300 million. But what Miller and others fail to understand is that energy-to-waste

Columbia University

287

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

288

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

PHEV Demonstration Vehicle Technologies Program "Distance traveled with plug-in battery pack turned off by the vehicle operator" is a subset of distance traveled in...

289

Fuel Economy of the 2013 Tesla Model S (60 kW-hr battery pack...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 95 Combined 94 City 97 Highway...

290

The environmentally safe battery  

SciTech Connect

There are three aspects to an environmentally safe battery. The first deals with the manufacturing process, the second with the use of environmentally friendly materials, and the third with the disposal and/or recycling of spent units. In this paper, several ongoing programs at Sandia National Laboratories that relate to the environmentally conscious manufacturing of batteries, are discussed. The solvent substitution/elimination program is a two-pronged effort, aimed at identifying new solvents which are compatible with the environment, while at the same time developing dry process cleaning technology. The joining program is evaluating new solvents for flux removal as well as the development of fluxless soldering processes. In the area of welding, new cleaning processes are under study. Chemical microsensors are under development that are capable of identifying and quantifying single chemical species. These sensors have been used to monitor and improve processes using toxic/hazardous solvents. 1 ref., 1 fig.

Levy, S.C.; Brown, N.E.

1991-01-01T23:59:59.000Z

291

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics  

E-Print Network (OSTI)

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

Pedram, Massoud

292

The Silicon Solar Cell Turns 50  

NLE Websites -- All DOE Office Websites (Extended Search)

Daryl Chapin, Calvin Fuller, and Gerald Daryl Chapin, Calvin Fuller, and Gerald Pearson likely never imagined inventing a solar cell that would revolutionize the photovoltaics industry. There wasn't even a photovoltaics industry to revolu- tionize in 1952. The three scientists were simply trying to solve problems within the Bell tele- phone system. Traditional dry cell batteries, which worked fine in mild climates, degraded too rapidly in the tropics and ceased to work when needed. The company therefore asked its famous research arm-Bell Laboratories-to explore alternative sources of freestand- ing power. Daryl Chapin got the assign- ment. At that time, his job was to test wind machines, thermoelectric gensets, and steam engines. Being a solar energy enthusiast, he suggested that the investi- gation include solar cells. His supervisor

293

Smart battery controller for lithium/sulfur dioxide batteries  

Science Conference Proceedings (OSTI)

Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

Atwater, T.; Bard, A.; Testa, B.; Shader, W.

1992-08-01T23:59:59.000Z

294

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

295

Packed fluidized bed blanket for fusion reactor  

DOE Patents (OSTI)

A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

Chi, John W. H. (Mt. Lebanon, PA)

1984-01-01T23:59:59.000Z

296

Turning on the Fan and Turning off the A/C | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C September 20, 2010 - 3:00pm Addthis As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Part of my research led me to understand how ceiling fans are considered the most effective fans compared among table fans, floor fans, and fans mounted to poles or walls because they effectively circulate the air in a room to create a draft throughout the room.

297

Turning on the Fan and Turning off the A/C | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C Turning on the Fan and Turning off the A/C September 20, 2010 - 3:00pm Addthis As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Part of my research led me to understand how ceiling fans are considered the most effective fans compared among table fans, floor fans, and fans mounted to poles or walls because they effectively circulate the air in a room to create a draft throughout the room.

298

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

DOE Green Energy (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

299

BATTERY INDUSTRIAL, LEAD ACID TYPE  

Science Conference Proceedings (OSTI)

... between the cell cover and the cell container, and all openings on the top of the battery other than the filling vents shall be gas tight and effectively ...

300

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 3800 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 7249 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

302

Argonne TTRDC - Experts - Battery Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Technologies Experts Click on a highlighted name to see a full rsum. Jeff...

303

Battery Testing in the US  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-China EV and Battery Workshop Joint Vehicle Demonstrations and Standards Development August 24, 2012 Session Chairmen: Keith Hardy, Argonne National Laboratory Li Jianqiu,...

304

New Life for EV Batteries  

Science Conference Proceedings (OSTI)

Apr 15, 2013 ... Five used Chevrolet Volt batteries are at the heart of the Oak Ridge National Laboratory's (ORNL) effort to determine the feasibility of a ...

305

Rechargeable Batteries, Photochromics, Electrochemical Lithography...  

NLE Websites -- All DOE Office Websites (Extended Search)

employed to explore in detail fundamental interfacial processes. Using current-sensing atomic forcemicroscopy (CSAFM), small variations in the electronic conductance of battery...

306

Flow Batteries: A Historical Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Marvin Warshay *1976 Shunt Current Model, Paul Prokopius *1976 Interfaced an RFB with solar cells *1977 Electrode-Membrane-Flow Battery Testing *Largest polarization @ negative...

307

Nanofilm Coatings Improve Battery Performance  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The ...

308

Attempting clairvoyance with battery performance  

E-Print Network (OSTI)

The light-weight, long-lasting, high-performance attributes of cellular phones and laptop computers, among other equally impressive portable devices currently in the marketplace, are responsible for igniting the overwhelming growth of the battery-powered electronics industry. The demand for smaller and longer lasting solutions, in fact, is only increasing, and key to this success is the battery, which can range from single-use alkaline and zinc-air to rechargeable nickel-cadmium, nickel-metal hydride, lithium-ion, and lithium-polymer technologies. Unfortunately, however, advancements in circuit and system integration have outpaced energy and power density improvements in the battery. Consequently, as batteries conform to the size constraints of portable applications, capacity and output power are necessarily compromised. Degradation in battery performance over time not only affects functionality but also operational life, proving inadequate the traditional assumption that the battery is an ideal voltage source. Including the effects of the battery on state-of-theart systems during the design phase is therefore of increasing importance for optimal life and performance. The problem is securing a suitable Cadence-compatible model. Battery Models State-of-the-art electrical models for batteries are either Thevenin-, impedance-, or runtime-based. Thevenin- and impedance-based models, shown in Figures 1(a)-(b), assume both open-circuit voltage and capacity or state-of-charge (SOC) are constant and approximate loading and ac/transient effects with an impedance network of passive devices for

A. Rincón-mora; Min Chen

2005-01-01T23:59:59.000Z

309

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

The LiNiOiCarbon Lithium-Ion Battery," S. S. lonics, 69,238-the mid-1980's, the lithium-ion battery based on a carboncommercialization of the lithium-ion battery, several other

Doyle, C.M.

2010-01-01T23:59:59.000Z

310

AGM Batteries Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Place United Kingdom Product Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References AGM Batteries Ltd1 LinkedIn Connections CrunchBase Profile...

311

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

to increase the battery's capacity (j n u J per unit volume.to estimate the battery capacity by relating the dischargealso the specific capacity of current battery systems. It is

Doyle, C.M.

2010-01-01T23:59:59.000Z

312

Sodium/sulfur battery engineering for stationary energy storage. Final report  

DOE Green Energy (OSTI)

The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

Koenig, A.; Rasmussen, J. [Silent Power, Inc., Salt Lake City, UT (United States)

1996-04-01T23:59:59.000Z

313

Lithium-Ion Battery Teacher Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Ion Battery Teacher Workshop Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B ¾ of an inch from one end of the sheet. Making the Chassis 6 3. Draw a 5/8" x ½" notch from 1" from the top of the sheet. Making the Chassis 7 4. Draw Line C 2 ½" from the other end of the same sheet of balsa. Making the Chassis 8 5. Using a sharp utility knife or a coping saw, cut

314

Method for charging a storage battery  

SciTech Connect

A method is disclosed for charging a lead-acid storage battery, the method comprising the steps of charging the battery at an initially high rate during an initial stage of the charging cycle, monitoring the internal battery voltage, charging the battery at a lower, finishing rate after a preselected battery voltage has been monitored, and periodically interrupting the finishing charge until the battery is recharged.

Fallon, W.H.; Kirby, D.W.; Neukirch, E.O.; Schober, W.R.

1983-07-19T23:59:59.000Z

315

Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

Pemsler, P.

1981-02-01T23:59:59.000Z

316

Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...  

Rechargeable lithium batteries are superior to other rechargeable batteries due to their ability to store more energy per unit size and weight and to operate at ...

317

Battery Life Predictor Model - Energy Innovation Portal  

Energy Analysis Battery Life Predictor Model ... Technology Marketing Summary Batteries are one of the leading cost drivers of any electric vehicle ...

318

Energy - Green battery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy - Green battery By substituting lignin for highly engineered, expensive graphite to make battery electrodes, researchers have developed a process that requires fewer steps...

319

Advanced battery modeling using neural networks.  

E-Print Network (OSTI)

??Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the… (more)

Arikara, Muralidharan Pushpakam

2012-01-01T23:59:59.000Z

320

Battery-Size Regenerative Fuel Cells  

ORNL 2010-G01073/jcn UT-B ID 201002378 Battery-Size Regenerative Fuel Cells Technology Summary A battery-size regenerative fuel cell with energy ...

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for...

322

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Kayo Battery Industries Group Jump to: navigation, search Name Kayo Battery Industries Group Place...

323

Better Batteries with a Conducting Polymer Binder  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries with a Conducting Polymer Binder Conductive polymer binder for Lithium ion battery June 2013 Berkeley Lab scientists have invented a new material for use in...

324

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Ford Electric Battery Group Jump to: navigation, search Name Ford Electric Battery Group Place Dearborn, MI Information About Partnership with NREL Partnership with NREL Yes...

325

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon American Battery Charging Inc Jump to: navigation, search Name American Battery Charging Inc Place...

326

Battery Wireless Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Battery Wireless Solutions Inc Jump to: navigation, search Name Battery & Wireless Solutions...

327

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvancedLightSource Home Science Highlights Industry @ ALS Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23...

328

China BAK Battery Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon China BAK Battery Inc Jump to: navigation, search Name China BAK Battery Inc Place Shenzhen, Guangdong...

329

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Advanced Battery Factory Jump to: navigation, search Name Advanced Battery Factory Place Shen Zhen...

330

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

331

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Ovonic Battery Company Inc Jump to: navigation, search Name Ovonic Battery Company Inc Place...

332

Carbon Micro Battery LLC | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Carbon Micro Battery LLC Jump to: navigation, search Name Carbon Micro Battery, LLC Place California...

333

Beijing Tianruichi Battery TRC | Open Energy Information  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Beijing Tianruichi Battery TRC Jump to: navigation, search Name Beijing Tianruichi Battery (TRC) Place China...

334

Battery Recycling by Hydrometallurgy: Evaluation of Simultaneous ...  

Science Conference Proceedings (OSTI)

Presentation Title, Battery Recycling by Hydrometallurgy: Evaluation of ... of spent batteries using the same process, in order to overcome the high costs and ...

335

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

in the energy equation, battery capacity, is defined as theperformance and capacity fading of a lithium-ion batteryof large-capacity lithium- ion battery systems. With new

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

336

Nanofilm Coatings Improve Battery Performance - Energy Innovation ...  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The lithium-ion battery is an ...

337

Five rules for longer battery life  

SciTech Connect

The fundamentals of proper lead-acid battery care are given, including five basic maintenance rules, and the reasoning behind them, for longer battery life.

1971-09-01T23:59:59.000Z

338

Evaluation of machining dispersions for turning process  

E-Print Network (OSTI)

In this article we propose to extend the model of simulation of dispersions in turning based on the geometrical specifications. Our study is articulated around two trends of development: the first trend relates to the geometrical model. The geometrical model suggested must allow a follow-up of the geometry of the part during the simulation of machining. It is thus a question of carrying out a systematic treatment of the whole dimensioning and tolerancing process while being based on the principles of the \\DeltaL method. We also planned to integrate this type of specification in the model of simulation of machining suggested. It is more generally a question of extending the traditional model for better taking into account the multi axis specification of coaxiality and perpendicularity on the turned workpieces. The second trend of our study relates to the widening of the field of application of the model. We propose to extend the field of application of the model by taking into account the modifications of several parameters of the manufacturing process plans, likely to involve variations of dispersions.

Arnaud Lefebvre; Valery Wolff

2008-03-03T23:59:59.000Z

339

Dense Packings of Superdisks and the Role of Symmetry  

E-Print Network (OSTI)

We construct the densest known two-dimensional packings of superdisks in the plane whose shapes are defined by |x^(2p) + y^(2p)| 0.5, with the circular-disk case p = 1) and concave-shaped particles (0 Donev, Torquato and Stillinger, J. Comput. Phys. 202 (2005) 737] suggest exact constructions of the densest known packings. We find that the packing density (covering fraction of the particles) increases dramatically as the particle shape moves away from the "circular-disk" point (p = 1). In particular, we find that the maximal packing densities of superdisks for certain p 6 = 1 are achieved by one of the two families of Bravais lattice packings, which provides additional numerical evidence for Minkowski's conjecture concerning the critical determinant of the region occupied by a superdisk. Moreover, our analysis on the generated packings reveals that the broken rotational symmetry of superdisks influences the packing characteristics in a non-trivial way. We also propose an analytical method to construct dense packings of concave superdisks based on our observations of the structural properties of packings of convex superdisks.

Y. Jiao; F. H. Stillinger; S. Torquato

2007-12-04T23:59:59.000Z

340

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The INEL battery data base  

SciTech Connect

The Department of Energy (DOE) has established a Battery Data Base for electric vehicle applications at the Idaho National Engineering Laboratory (INEL). The objectives of the Data Base are to collect, store, and make available to the electric vehicle community battery data from the INEL. Argonne National Laboratory, Sandia National Laboratory, and DOE battery contractors in forms appropriate for evaluating the batteries in electric vehicles. The Data Base currently includes data from over 500 test on 15 batteries of 5 different types. The data (over 120 MB) is stored on a 760 MB harddisk attached to a MicroVax 2. PC-based software to access the data has been developed on the IBM PS/2 using dBASE 4. The initial version of the Data Base to be distributed on a single floppy disk is nearly complete. The first release will include the physical characteristics of the batteries, summary tables showing the test results for each cycle of the battery test programs, and some constant power discharge data for the batteries. Later versions of the Data Base will include second-by-second peak power and SFUDS data, which will require several floppy of Bernoulli disks to store the data. 2 refs., 4 figs.

Burke, A.F.; Hardin, J.E.; Kiser, D.M.

1990-01-01T23:59:59.000Z

342

Nanofilm Coatings Improve Battery Performance  

demand for electric vehicles within the next five years. The lithium-ion battery is an attractive candidate for use in such vehicles because of its light weight and high energy density. At present, however, lithium-ion batteries are not ...

343

Principles of an Atomtronic Battery  

E-Print Network (OSTI)

An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

Alex A. Zozulya; Dana Z. Anderson

2013-08-06T23:59:59.000Z

344

Lithium batteries for pulse power  

DOE Green Energy (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

345

Battery system with temperature sensors  

SciTech Connect

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

346

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-01-01T23:59:59.000Z

347

ATOMIC BATTERY AND TEST INSTRUMENT  

SciTech Connect

A portable nuclear battery is designed which can be adjusted to vary the output. The battery comprises a Sr/sup 90/ peactivated phosphor light source and photocells housed in a shielding structure. The output may be varied by rotating elements between the light source and the photocells. (D.L.C.)

Viszlocky, N.

1962-09-11T23:59:59.000Z

348

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-12-31T23:59:59.000Z

349

A Desalination Battery Mauro Pasta,  

E-Print Network (OSTI)

A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

Cui, Yi

350

Minimizing formation damage during gravel pack operations  

Science Conference Proceedings (OSTI)

A method is described for minimizing formation damage caused by intrusive fluids prior to a gravel packing operation in loosely consolidated formations penetrated by at least one well. The method comprises: filling the casing of the well with an underbalanced completion fluid; placing within the well a removable packer capable of isolating the space between the casing and the formation from the downhole well pressure; setting through the packer a first tubing suitable for perforating and stabilizing the flow of fluids into the well; perforating the casing; and introducing a blocking agent into the formation via the perforations which agent upon solidification is sufficient to minimize formation damage by avoiding the introduction of formation fluids.

Jennings, A.R. Jr.

1987-05-12T23:59:59.000Z

351

Volatile Components from Packing Matrials, Rev. 2  

Science Conference Proceedings (OSTI)

An outgassing study was conducted on five packing materials, comprising two experiments. These materials comprised 277-4 borated concrete, Borobond4 concrete, polyethylene bags, silica-filled silicone rubber seals, and silicone foam padding. The purpose was measure the volume of gases which diffuse from packaging materials when sealed in containers. Two heating profiles were used to study the offgassing quantities in a set of accelerated aging tests. It was determined that the concretes contain a large quantity of water. The plastic materials hold much less moisture, with the silicone materials even consuming water, possibly due to the presence of silica filler. Polyethylene tends to degrade as the temperature is elevated and the foam stiffens.

Smith, R. A.

2006-03-01T23:59:59.000Z

352

Thermal vacancies in close-packing solids  

E-Print Network (OSTI)

Based on Stillinger's version of cell cluster theory, we derive an expression for the equilibrium concentration of thermal monovacancies in solids which allows for a transparent interpretation of the vacancy volume and the energetic/entropic part in the corresponding Gibbs energy of vacancy formation $\\Delta G_{\\rm v}$. For the close--packing crystals of the hard sphere and Lennard--Jones model systems very good agreement with simulation data is found. Application to metals through the embedded--atom method (EAM) reveals a strong sensitivity of the variation of $\\Delta G_{\\rm v}$ with temperature to details of the EAM potential. Our truncation of the cell cluster series allows for an approximate, but direct measurement of crystal free energies and vacancy concentration in colloidal model systems using laser tweezers.

Mostafa Mortazavifar; Martin Oettel

2013-11-20T23:59:59.000Z

353

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

354

Recombinant electric storage battery  

SciTech Connect

This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

Flicker, R.P.; Fenstermacher, S.

1989-10-10T23:59:59.000Z

355

A materials database for Li(Si)/FeS sub 2 thermal batteries  

DOE Green Energy (OSTI)

The establishment of a database for the materials that are used in production Li(Si)/FeS{sub 2} thermal batteries designed at Sandia National Laboratories is described. The database is a Hewlett-Packard (HP) network type (IMAGE) designed to run on an HP3000 computer. Heavy emphasis is placed on the use of screen forms for entry, editing, and retrieval of data. Custom screen forms were used for the various materials in the battery. For the purposes of the materials database, each battery is composed of four mixes: cathode, separator, anode, and heat (pyrotechnic) powders. A consistent lot-numbering system was adopted for both the mixes and the discrete components that make up the mixes. Each serial number of a particular battery is linked to the lot numbers of the four mixes used in the battery. Each mix, in turn, is linked to the lot numbers of the discrete components that are contained within the mix. This allows traceability of each of the components used in any given serial number of a particular battery. The materials database provides the necessary traceability, as required by the Department of Energy, for the lifetime of the program associated with the battery. 3 refs., 23 figs.

Guidotti, R.A.

1990-09-01T23:59:59.000Z

356

Battery conditioning system having communication with battery parameter memory means in conJunction with battery conditioning  

SciTech Connect

This patent describes a battery conditioning system. It comprises: rechargeable battery means for supplying operating current during a number of hours of portable operation so as to become progressively discharged as a result, memory and communications means for operative association with the rechargeable battery means and receiving power from the rechargeable battery means during portable operation, and battery conditioning system means for coupling with the rechargeable batter means and with the memory and communications means, for conditioning of the battery means after a period of portable operation and for the transmission of data concerning the rechargeable battery means.

Koenck, S.E.

1989-12-05T23:59:59.000Z

357

10-MW GTO converter for battery peaking service  

SciTech Connect

A bidirectional 18-pulse voltage source converter utilizing gate turn-off thyristors (GTO's) is described. The converter, which is rated 10 MVA, was placed in service in early 1988 to connect an energy storage battery to a utility grid. The converter is rated and controlled to operate in all four quadrants (discharge, charge, leading vars, or lagging vars) at the full 10-MVA rating. It is capable of independent rapid control of real and reactive power with a transient response of 16 ms to changes in commanded value of real or reactive power. Thus it is usable as a reactive power controller (static var control), voltage control, frequency control, power system stabilizer, or as a real power peaking station. For use as a reactive power controller only, no battery would be needed. The design, construction, control, and application of the converter are described, and performance data taken at factory power test and at the installation are given.

Walker, L.H. (Drive Development Engineering, Drive Systems, General Electric Co., Salem, VA (US))

1990-01-01T23:59:59.000Z

358

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementnot dominate the total battery cost. Note that in generalsuch as cycle life and battery cost and battery management

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

359

Packed bed reactor for photochemical .sup.196 Hg isotope separation  

DOE Patents (OSTI)

Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1992-01-01T23:59:59.000Z

360

A Genetic Approach for Two Dimensional Packing with Constraints  

Science Conference Proceedings (OSTI)

In this paper, a new genetic algorithm based method is proposed for packing rectangular cargos of different sizes into a given loading area in a two dimensional framework. A novel penalty function method is proposed for checking the solution strings ... Keywords: genetic algorithm, penalty function, sentry point, two dimensional packing

Wee Sng Khoo; P. Saratchandran; N. Sundararajan

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Details And Battery Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Nominal Cell Voltage: 3.6 V Number of Electric Machines: 1 Nominal System Voltage: 144 V Motor: 17 kW (peak), Permanent Magnet, Liquid cooled Rated Pack Capacity: 4.7 Ah Maximum...

362

Packing assembly for use in a plunger bore  

SciTech Connect

A packing assembly is described which is adapted to be installed in a machine, such as a pump, the machine having a housing with a plunger bore and a plunger therin to provide a fluid-tight seal for the machine. The assembly consists of: a packing gland which fastens into one end of the plunger bore; a packing gland spacer positioned adjacent to and in contact with the packing gland; a lubrication gland positioned adjacent to and in contact with the packing gland spacer; a separate stack of packing rings, which includes at least two packing rings, each ring in the stack has a front face defining a concave shape, a rear face defining a convex shape, and a groove, defining a concave shape, in the front face; a female adaptor ring positioned between the lubrication gland and the packing ring stack, the female adaptor ring has a front face with a concave shape, the concave shape defines an angle which substantially conforms to the angle defined by the convex shape of the rear face of the last packing ring in the stack, such that the front face of the female adaptor ring can seat firmly against the rear face of the last packing ring; a male-female adaptor ring positioned between two packing rings in the stack, the male-female adaptor ring has a front face and rear face, the rear face has a convex shape and an integral rib member defining a convex shape, on the rear face, and the front face has a concave shape; the convex shape of the rear face of the male-female adaptor ring defines an angle which substantially conforms to the angle defined by the concave shape of the front face of the last packing ring in the stack and the convex shape of the face of the last packing ring in the stack and the convex shape of the rib member substantially conforms to the concave shape of the groove in the front face of the last packing ring.

Cameron, D.C.; Cobb, H.V.; Winn, F.M.

1986-02-25T23:59:59.000Z

363

Charging system for nickel-zing batteries  

SciTech Connect

A source of constant current or constant power supplies charging current to a nickel-zinc battery to produce a generally S-shaped battery voltage waveform. To improve battery life, charging is terminated at the inflection point where the slope of the battery voltage changes from increasing to decreasing.

Jones, R. A.; Reoch, W. D.

1985-03-05T23:59:59.000Z

364

Overview of the Batteries for Advanced Transportation  

E-Print Network (OSTI)

cobaltate batteries have been in commercial use since 1991. A new lithium-ion battery with different cathodeMn2O4 cathode in lithium ion batteries by using surface modification. Since one of the main reasons cathode material for rechargeable lithium ion batteries because of its high voltage, low cost, and safety

Knowles, David William

365

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

366

Battery-Powered Digital CMOS Massoud Pedram  

E-Print Network (OSTI)

1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

Pedram, Massoud

367

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

368

Improving the density of jammed disordered packings using ellipsoids  

E-Print Network (OSTI)

Packing problems, such as how densely objects can fill a volume, are among the most ancient and persistent problems in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic lattice has the highest possible packing fraction ? = ? / ? 18 ? 0.74. It is also well-known that certain random (amorphous) jammed packings have ? ? 0.64. Here we show experimentally and with a new simulation algorithm that ellipsoids can randomly pack more densely; up to ? = 0.68 ? 0.71 for spheroids with an aspect ratio close to that of M&M’S r?Candies, and even approach ? ? 0.74 for general ellipsoids. We suggest that the higher density is directly related to the higher number of degrees of freedom per particle and thus the larger number of particle contacts required to mechanically stabilize the packing. We support this by

Aleksandar Donev; Ibrahim Cisse; David Sachs; Evan A. Variano; Frank H. Stillinger; Robert Connelly; Salvatore Torquato; P. M. Chaikin

2004-01-01T23:59:59.000Z

369

Unconsolidated sand grain shape, size impact frac-pack design  

SciTech Connect

The shape and size of sand grains, as well as the saturating fluid, influence the mechanical properties of unconsolidated sands and need to be considered in frac-pack design. These mechanical properties of unconsolidated properties of unconsolidated sands play an important role in determining the geometry of frac-pack treatments. Stress-strain curves obtained for unconsolidated sands at elevated stresses show highly nonlinear hysteretic behavior. The impact of these findings on frac-pack design can be significant. The nonlinear elastic properties of unconsolidated sand can give rise to some unique features in the pressure response and in the fracture geometry that may not be observed in hard rocks. This article focuses on the impact of mechanical properties of poorly consolidated and unconsolidated sands on the geometry of frac packs. The paper discusses frac packs, mechanical properties (Young`s modulus, shear failure) and effective treatments.

Wang, E.; Sharma, M.M. [Univ. of Texas, Austin, TX (United States)

1997-05-19T23:59:59.000Z

370

Ring type dumped packing saving 30% on tower cost  

SciTech Connect

This article discusses the packing problems of a flue gas processing plant that recovers 90,000 lb/hr of carbon dioxide for use in an enhanced oil recovery (EOR) project. A concentrated absorption solution was needed to keep the liquid circulation low, and a packing with low pressure drop and high effective surface area was needed to keep the fan horsepower and column size down and minimize the amount of CO/sub 2/ that slips through the column. The solution was to use a high concentration CO/sub 2/ recovery solvent and a proprietary ring type packing was used which gives 50% less pressure drop than conventional packing and provides high efficiency. Carbon steel packing rings were used except for two sections.

Wiggins, W.R. III; Hodel, A.E.

1984-02-01T23:59:59.000Z

371

Method and apparatus for rapid battery charging  

SciTech Connect

A method and apparatus for charging electrical storage batteries having a known nominal amperage are described. The method consists in discharging the battery to a predetermined value and then charging the battery with a charging current initially several times greater than the nominal battery amperage. The charging current decreases exponentially from the initial charging current to a charging current much less than the nominal battery amperage when the battery is fully charged. The apparatus uses the discharge rate of an RC circuit to control the charging current applied to the battery. 3 figures, 1 table.

Samsioe, P.E.

1979-12-18T23:59:59.000Z

372

Extended shelf-life battery  

SciTech Connect

A lead-acid battery having extended shelf-life is described comprising: a battery housing containing positive and negative lead-acid electrode elements and separators; sulfuric acid electrolyte contained within the housing in a quantity sufficient to maintain the electrode elements in a damp, but not flooded, condition; a desiccant within the housing located out of contact with the elements and in a position to absorb water vapor present in the housing the desiccant being located in container at least a portion of water is permeable to water vapor; the electrode positive and negative materials being formed - that a charge exists on the battery and so that self-discharge reactions will occur within the housing producing water vapor; the electrolyte having a specific gravity ranging from about 1.015 to about 1.320 and the quantity of the desiccant being sufficient to absorb the water vapor created during the self-discharge reactions to maintain the specific gravity of the electrolyte within the range. A method for extending the storage life of a lead-acid battery comprising the steps of: preparing a formed, lead-acid battery including electrode elements and a flooding quantity of sulfuric acid electrolyte; removing from the battery a substantial quantity of the electrolyte to leave damp elements; placing in the battery a quantity of desiccant in a container, at least a portion of which is permeable to water vapor, the container being in a position to absorb water vapor generated in the battery during self-discharge and at a location out of contact with the electrode elements; and controlling the specific gravity of the electrolyte remaining in the battery after the removal step within a range of about 1.015 and 1.320 during discharge reactions by absorbing water vapor produced thereby in the desiccant.

Bullock, N.K.; Symumski, J.S.

1993-06-15T23:59:59.000Z

373

Method and apparatus for battery charging  

SciTech Connect

This patent describes a method of charging a battery and terminating the charging thereof upon determination of the existence of a prescribed condition comprising the steps of: applying charging current to the battery; measuring the battery voltage soon after the charging current is applied; determining, on the basis of the battery voltage measurement, the knee voltage of the charging characteristic of the particular battery being charged; calculating a battery voltage limit beyond which no further charging current is to be applied, the voltage limit being the point at which the instantaneous battery voltage is a pre-determined value greater than the knee voltage of the battery's charging characteristic; continued measuring of the battery voltage as the charging current is applied; and terminating the application of charging current when the battery voltage limit is reached.

Westhaver, L.A.; Ruksznis, R.E.

1987-01-27T23:59:59.000Z

374

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

375

Anti-stratification battery separator  

Science Conference Proceedings (OSTI)

This patent describes a separator for an electric storage battery comprising a thin microporous sheet for suppressing dendrite growth between adjacent plates of the battery. The sheet has top, bottom and lateral edges defining the principal face of the separator and ribs formed on the surface of the face. The improvement described here comprises: the ribs each (1) having a concave shape, (2) being superposed one over another and (3) extending laterally across the face substantially from one the lateral edge to the other the lateral edge for reducing the accumulation of highly concentrated electrolyte at the bottom of the battery during recharge.

Stahura, D.W.; Smith, V.V. Jr.

1986-10-28T23:59:59.000Z

376

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

377

Solid polymer battery electrolyte and reactive metal-water battery  

SciTech Connect

In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

378

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

379

NUCLEAR BATTERY POWERED TIMERS  

SciTech Connect

During the period from May 1957 to July 1958, four nuclear batiery powered timers were fabricated and tested from two basic designs in the time ranges of onesecond, three-second, annd half-hour intervals. The timers were temperature-tested over a range of -65 to +165 F with accuracics over this temperature range from plus or minus 10 perceat to plus or minus 15 percent. Each unit has a volume of 10 cubic inches, and the timer can be initiated either by an explosive squib or a pull-out wire. At the end of the timing interval, the timer has ann output of 30,000 ergs. The cost of the program was ,000. From the results of this development program, it appears quite feasible to build operable nuclear battery powered timers on a production basis. (auth)

DesJardin, R.L.

1958-09-19T23:59:59.000Z

380

Turn-endings in Japanese syntax-for-conversion.  

E-Print Network (OSTI)

??The current study investigates Japanese syntax-for-conversion especially focusing on the area of turn-endings in Japanese talk-in-interaction. The thesis shows that turn constructions in Japanese is… (more)

Kawakatsu, Manabu

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems  

Science Conference Proceedings (OSTI)

A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

2012-07-15T23:59:59.000Z

382

Battery monitoring and charger control system  

SciTech Connect

A battery cell controlled charging system, consisting of a display unit, battery cell probes, a battery charger and circuitry for controlling the charger, monitors the specific gravity, electrolyte level and temperature control of each cell in a multi-cell lead-acid battery and uses the information to automatically charge the battery when a cell or cells become out of specification while restricting overcharging which is damaging to cells.

Barry, G.H.; Dahl, E.A.

1983-06-14T23:59:59.000Z

383

Method and apparatus for providing sterile charged batteries  

SciTech Connect

A method is described of providing sterile, charged batteries for use in a sterile field comprising the steps of: sterilizing at least one battery and a battery charger, the battery and battery charger being adapted to withstand exposure to the environment present during such sterilizating step; transferring the battery and the battery charger in a sterile state to the sterile field; and charging the battery to a desired voltage with the battery charger in the sterile field.

Pascaloff, J.H.

1987-02-03T23:59:59.000Z

384

Battery Aging, Diagnosis, and Prognosis of Lead-Acid Batteries for Automotive Application.  

E-Print Network (OSTI)

??New battery technologies have been emerging into today’s market and frequenting headlines; however, the lead-acid battery overwhelmingly remains the most common automotive battery. Because of… (more)

Picciano, Nicholas I.

2009-01-01T23:59:59.000Z

385

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

386

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

Pollard, Richard

2012-01-01T23:59:59.000Z

387

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

cell (Altairnano data) Battery cost considerations It is ofnot dominate the total battery cost. Note that in generala detailed lithium battery cost model that is applicable to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

388

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

389

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

could double Chevy Volt battery capacity. ” http://could-double-chevy-volt-battery-capacity/chevy-volt3-4/; “Volt’s Battery Capacity Could Double. ” http://

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

390

The search for better batteries  

Science Conference Proceedings (OSTI)

To handle small, power-hungry electronic systems, manufacturers of rechargeable batteries are exploring at least five technologies: nickel-cadmium, nickel-metal hydride, lithium-ion, lithium-solid polymer electrolyte, and zinc-air. The author describes ...

M. J. Riezenman

1995-05-01T23:59:59.000Z

391

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

392

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

393

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

394

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

395

Influence of Particle Size Distribution on Random Close Packing  

E-Print Network (OSTI)

The densest amorphous packing of rigid particles is known as random close packing. It has long been appreciated that higher densities are achieved by using collections of particles with a variety of sizes. The variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density as a function of polydispersity. Of course, a particle size distribution is also characterized by its skewness, kurtosis, and higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we numerically generate many packings with different particle radii distributions, varying polydispersity and skewness independently of one another. We find two significant results. First, the skewness can have a significant effect on the packing density and in some cases can have a larger effect than polydispersity. Second, the packing fraction is relatively insensitive to the value of the kurtosis. We present a simple empirical formula for the value of the random close packing density as a function of polydispersity and skewness.

Kenneth W. Desmond; Eric R. Weeks

2013-03-19T23:59:59.000Z

396

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

397

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

398

Metal-air battery assessment  

DOE Green Energy (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

399

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

400

Alkali metal/sulfur battery  

SciTech Connect

Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

Anand, Joginder N. (Clayton, CA)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lithium battery safety and reliability  

DOE Green Energy (OSTI)

Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

Levy, S.C.

1991-01-01T23:59:59.000Z

402

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

403

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

404

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

DOE Green Energy (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

405

Rechargeable Battery Circuit Modeling and Analysis of the Battery Characteristic in Charging and Discharging Processes.  

E-Print Network (OSTI)

??In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit… (more)

Kong, Dexinghui

2012-01-01T23:59:59.000Z

406

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

407

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

408

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

409

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

410

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

411

Leaders of the Fuel Cell Pack | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack February 17, 2012 - 10:32am Addthis Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does the report show? The 34 companies profiled used more than 250 fuel cells totaling 30+ MW of stationary power -- enough to supply electricity for over 21,000 households. What do WalMart, Coca-Cola, Sysco, and Whole Foods have in common? They're leading the pack when it comes to hydrogen and fuel cells.

412

Leaders of the Fuel Cell Pack | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack Leaders of the Fuel Cell Pack February 17, 2012 - 10:32am Addthis Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does the report show? The 34 companies profiled used more than 250 fuel cells totaling 30+ MW of stationary power -- enough to supply electricity for over 21,000 households. What do WalMart, Coca-Cola, Sysco, and Whole Foods have in common? They're leading the pack when it comes to hydrogen and fuel cells.

413

LEDS Collaboration in Action Workshop Participant Pack | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDS Collaboration in Action Workshop Participant Pack Jump to: navigation, search LEDSGP Logo.png Advancing climate-resilient low emission development around the world Home About Tools Expert Assistance Events Publications Join Us ACDS Workshop Participant Pack Agenda Accommodations Participants Location Arrival Form Open Space Sessions Speakers Presentations Links Contact Us Participant Pack Pack.pdf Powered by OpenEI ledsgp.org is built on the same platform as the popular Wikipedia site. Like Wikipedia, it is a "wiki" or website developed collaboratively by a community of users. Thanks to our unique relationship with OpenEI.org, you

414

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

415

Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing  

E-Print Network (OSTI)

Cement setting and cohesion are governed by the precipitation and growth of calcium-silicate-hydrate, through a complex evolution of microstructure. A colloidal model to describe nucleation, packing, and rigidity of ...

Masoero, Enrico

416

Frac packs: A specialty option or primary completion technique?  

SciTech Connect

High permeability fracture treatments have taken place at Alaska`s North Slope, in the North Sea, and most recently, in the unconsolidated Miocene formations of the Gulf of Mexico -- where gravel pack completions have historically been used to prevent sand production. In the Gulf of Mexico, attempts were made as early as the mid-1960s to hydraulically fracture sands. However, some of these early treatments failed because of improper techniques, poor candidate selection and lack of understanding of rock property mechanics. Recent developments in fracturing technology, and the use of this technology to fracture through damage has achieved more favorable results than gravel packing and sandstone acidizing, and has led to widespread use of these fracture treatments. The procedure for fracturing high permeability formations is called frac packing. These frac pack treatments are typically used to remove near-wellbore damage that occurs from drilling and completion operations.

NONE

1997-03-01T23:59:59.000Z

417

A hybrid heuristic algorithm for the rectangular packing problem  

Science Conference Proceedings (OSTI)

A hybrid heuristic algorithm for the two-dimensional rectangular packing problem is presented. This algorithm is mainly based on divide-and-conquer and greedy strategies. The computational results on a class of benchmark problems have shown that the ...

Defu Zhang; Ansheng Deng; Yan Kang

2005-05-01T23:59:59.000Z

418

Lawrence Pack, train conductor, and Y-12s uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Pack, train conductor, and Y-12's uranium? Trains were the primary means of long haul transportation in the 1940's. Many trains brought building materials to Y-12 and...

419

Direct contact condensation of immiscible fluids in packed beds  

DOE Green Energy (OSTI)

An experimental study of a film type direct contact heat exchanger using immiscible fluids is made. Laboratory experiments were conducted on a R-113-water system using both 2.5 cm Berl saddles and 3.2 cm spheres as packing, in a 14.6 cm diameter column. The configuration was counter flow, with the vapor phase entering at the base of the column, and condensing on the laminar water film that coated the packing surface. Packing height, water temperature and both water and vapor flow rates were varied in obtaining heat transfer data. These and other packed bed heat transfer data published in the literature were reduced and correlated to yield a relationship between the Stanton number and the important vessel operating parameters.

Thomas, K.D.; Jacobs, H.R.; Boehm, R.F.

1978-11-01T23:59:59.000Z

420

Arbitrary Convex and Concave Rectilinear Module Packing Using TCG  

Science Conference Proceedings (OSTI)

In this paper, we deal with arbitrary convex and concave rectilinearmodule packing using the Transitive Closure Graph (TCG) representation.The geometric meanings of modules are transparent to TCG and itsinduced operations, which makes TCG an ideal representation ...

J. Lin; H. Chen; Y. Chang

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimal management of batteries in electric systems  

DOE Patents (OSTI)

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

422

B#: A battery emulator and power-profiling instrument  

E-Print Network (OSTI)

simulator for lithium-ion battery cells, to model the emu-Current (A) er than the lithium-ion battery’s cutoff voltageresponse time of lithium-ion battery to changes in current

Park, C S; Liu, J F; Chou, P H

2005-01-01T23:59:59.000Z

423

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

portion of the battery’s total energy capacity is used—knownelectricity from a battery which—(i) has a capacity of notassumed battery mass. Second, energy capacity requirements

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

424

Pseudo 3-D simulator optimizes gravel-packed completions  

SciTech Connect

This paper discusses a three-dimensional computer simulation which allows the consistent use of a gravel pack in oil and gas well completions. The primary thrust of the paper is dealing with horizontal oil and gas wells in unconsolidated reservoir rock. The model's objective is to provide an overall computer-aided design and evaluation tool for circulation and squeeze gravel packing. It is based on equations representing conservation of mass, momentum, and energy.

Ali, S.A.; Sanclemente, L.W. (Chevron USA Production Co., New Orleans, LA (United States)); Tupper, M.A. (Dowell, New Orleans, LA (United States))

1994-03-01T23:59:59.000Z

425

Instruction Packing for a 32-bit Stack-Based Processor  

E-Print Network (OSTI)

Abstract- This work proposed a design and development of a 32-bit stack-based processor for embedded systems. A reference processor has a 32-bit stack-based instruction set. This work proposed a technique of instruction packing which packs several instructions into one 32-bit instruction unit. Therefore, the instruction size is reduced. The result of the experiment shows that the proposed technique achieves around 30 % reduction in code size.

Witcharat Lertteerawattana; Tanes Jedsadawaranon; Prabhas Chongstitvatana

2007-01-01T23:59:59.000Z

426

Compilation of COG Packing Reports 2002-2003  

Science Conference Proceedings (OSTI)

Under a technical exchange agreement, EPRI has obtained several reports documenting research conducted by the Candu Owners Group (COG). This report presents a compilation of COG reports documenting research conducted in 20022003 to investigate the frictional performance characteristics of several valve packing materials that contain Teflon (PTFE). The testing conducted by the COG includes the effects of previous ionizing radiation exposure on the frictional performance of these packing materials

2006-05-02T23:59:59.000Z

427

Shock-Induced Flows through Packed Beds: Transient Regimes  

E-Print Network (OSTI)

The early stage of the transient regimes in the shock-induced flows within solid-packed beds are investigated in the linear longwave and high-frequency approximation. The transient resistance law is refined as the Duhameltime integral that follows from the general concept of dynamic tortuosity and compressibility of the packed beds. A closed-form solution is expected to describe accurately the early stage of the transient regime flow and is in qualitative agreement with available experimental data.

Yuri M. Shtemler; Isaac R. Shreiber; Alex Britan

2007-10-15T23:59:59.000Z

428

High Rate Performing lithium-ion Batteries - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and for Supercapacitors, II. Presentation Title, High Rate Performing lithium-ion Batteries.

429

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network (OSTI)

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

430

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery")  

E-Print Network (OSTI)

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery") ACCORDING TO FLORIDA LAW: Sexual Battery/ Rape is the:"Oral, anal or vaginal penetration by, or union with a sexual organ is not required to physically fight back. Florida Sexual Battery Statutes: www.leg.state.fl.us/Statutes (Chapter

Meyers, Steven D.

431

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

432

Argonne Software Licensing: Battery Production for ...  

Battery Production for Manufacturing (BatPro) BatPro is a software package that permits you to input any of the hundreds of parameters used anywhere in a battery ...

433

Battery compatibility with photovoltaic charge controllers  

SciTech Connect

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

434

BLE: Battery Life Estimator | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Estimator (BLE) software is a state-of-the-art tool kit for fitting battery aging data and for battery life estimation. It was designed to make life-cycle estimates...

435

Housing the "Other" Half: American Studies' Global Urban Turn  

E-Print Network (OSTI)

of Istanbul, Ankara, or  Izmir before taking a further turn  toward  Istanbul  and  Izmir,  but  in  fact  we  are 

Faflik, David

2010-01-01T23:59:59.000Z

436

Toyota Treasure Hunt System Turns Up Savings & Uses the Expertise...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Treasure Hunt System Turns Up Savings & Uses the Expertise of Process Engineers Secondary menu join us About us Press room Contact Us Portfolio Manager Login Facility owners...

437

PPPL featured as DOE celebrates turning 35 | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

featured as DOE celebrates turning 35 October 5, 2012 Tweet Widget Facebook Like Google Plus One 35 Years at the Department of Energy (Flickr Photostream)...

438

Turning Themselves In: Why Companies Disclose Regulatory Violations  

E-Print Network (OSTI)

Turning Themselves In: Why Companies Disclose RegulatoryAgency program that encourages companies to self- discloseincreasingly about Industry companies regulating themselves

Short, Jodi L.; Toffel, Michael W.

2005-01-01T23:59:59.000Z

439

NETL: News Release - DOE-Industry Breakthrough Turns Drilling...  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2002 DOE-Industry Breakthrough Turns Drilling System Into Lightning Fast Computer Network Energy Department Cites Remarkable Advance In 'Smart' Oil, Gas Drilling SAN ANTONIO,...

440

Underwater kicking following the freestyle tumble-turn.  

E-Print Network (OSTI)

??Swim turns are a component of competitive swimming where considerable advantage can be gained or lost. This thesis investigates underwater dolphin and flutter kicking techniques… (more)

Clothier, Peter

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

442

Battery Thermal Modeling and Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

443

Graphene Fabrication and Lithium Ion Batteries Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

444

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture autogenicpressurereactions...

445

Battery Technology for Hybrid Vehicles Marshall Miller  

E-Print Network (OSTI)

Battery Technology for Hybrid Vehicles Marshall Miller May 13, 2008 H2 #12;Energy Storage Lithium-ion Batteries Battery manufact. Electrode chemistry Voltage range Ah Resist. mOhm Wh/kg W/kg 95 hydride 7.2-5.4 6.5 11.4 46 208 1.04 1.8 #12;Comparisons of Lithium Battery Chemistries Technology type

California at Davis, University of

446

Electrochemically controlled charging circuit for storage batteries  

DOE Patents (OSTI)

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

447

Metal-Air Battery - Energy Innovation Portal  

Partially alleviate gas accumulation and cathode consumption issues typical of primary alkaline batteries; Increases mechanical integrity; Suitable ...

448

Intermetallic electrodes for lithium batteries - Energy ...  

This invention relates to intermetallic negative electrode compounds for non-aqueous, electrochemical lithium cells and batteries. More specifically, ...

449

Toward a Na-Ion Battery  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

450

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

451

Battery Materials and Electrochemical Processes I - Programmaster ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Mesoscale Computational Materials Science of Energy Materials: Battery Materials and Electrochemical Processes I Sponsored by: TMS ...

452

Electrochemical Shock of Lithium Battery Materials - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Mesoscale Computational Materials Science of Energy Materials. Presentation Title, Electrochemical Shock of Lithium Battery Materials. Author(s) ...

453

Hybrids for Batteries and Fuel Cells  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Batteries and Fuel Cells Program Organizers: Andrei Jitianu, Lehman College, City ...

454

Ionic liquids for rechargeable lithium batteries  

E-Print Network (OSTI)

M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

455

Lithium Iron Phosphate Composites for Lithium Batteries  

The materials can be added at low cost without changing current scalable cathode ... Lithium Iron Phosphate Composites for Lithium Batteries ...

456

Stationery Battery Monitoring by Internal Ohmic Measurements  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a viable method of performance monitoring for stationary batteries. These measurements have demonstrated the ability to identify degraded cells and to baseline the general health of a battery. This final report presents the results of a research effort to determine if any correlation exists between battery capacity and internal ohmic measurements. Also, the project sought to provide guidance for consistently obtaining data, using and/or evaluating the data, and a...

2002-12-16T23:59:59.000Z

457

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-02-10T23:59:59.000Z

458

Survey of rechargeable battery technology  

SciTech Connect

We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

1993-07-01T23:59:59.000Z

459

DS1922/DS1923 Battery Gas Gauge  

E-Print Network (OSTI)

Abstract: Tracking remaining available energy is critical for battery-operated equipment. Energy consumption depends on the temperature and usage history of the product. With temperature loggers, this data is largely a byproduct of normal use. This application note shows how to estimate the energy consumed during a mission and how to use the OneWireViewer to maintain a battery "gas gauge " in the memory of the logger. Motivation—The Need to Know The reliability of portable equipment depends on the status of the energy source. The best equipment cannot function properly with a low battery. For rechargeable batteries as in cell phones, sophisticated battery monitors are now the norm. Is there a way to determine the remaining charge of a conventional battery? In the case of a temperature logger, how can one know whether there is enough power for the next mission? Precondition Batteries lose energy over time through self-discharge (aging) and through normal use when the equipment is switched on. Both the rate of battery self-discharge and the energy consumption of a silicon chip strongly depend on the temperature. The higher the temperature, the higher the energy consumption. If one knows the charge of a fresh battery, the temperature history, and the discharge rate during normal use, one has all the data needed to estimate the battery's remaining charge. The initial battery charge, measured in mAh, is found in battery data sheets. The challenging

unknown authors

2006-01-01T23:59:59.000Z

460

Progress in Grid Scale Flow Batteries  

E-Print Network (OSTI)

all necessary requirements for disconnecting means. Section 690-14(C) is added in a separate proposal lead-acid battery (VRLA) or any other types of sealed batteries that may require steel cases for proper reasons. This proposal does not apply to any type of valve regulated lead-acid battery (VRLA) or any other

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo in capillaries. Adv Mater 8:245­247. 24. Kim DK, et al. (2008) Spinel LiMn2O4 nanorods as lithium ion battery voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteries

Cui, Yi

462

Batteries for Vehicular Applications Venkat Srinivasan  

E-Print Network (OSTI)

Office of Technology Transfer Structurally Integrated Composite Cathodes for Lithium-Ion Batteries) to commercial equipment (e.g., backup-power systems and power tools), lithium-ion battery's Advanced Photon Source, researchers load a lithium-ion battery pouch into an insertion device x

Knowles, David William

463

Battery Model for Embedded Systems , Gaurav Singhal  

E-Print Network (OSTI)

Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet.iitd.ernet.in, nnavet@loria.fr Abstract This paper explores the recovery and rate capacity ef- fect for batteries used in embedded systems. It describes the prominent battery models with their advantages and draw- backs

Navet, Nicolas

464

Electrothermal Analysis of Lithium Ion Batteries  

DOE Green Energy (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

465

Adaptive Battery Charge Scheduling with Bursty Workloads  

E-Print Network (OSTI)

1 Adaptive Battery Charge Scheduling with Bursty Workloads Dylan Lexie , Shan Lin, and Jie Wu.wu@temple.edu Abstract--Battery-powered wireless sensor devices need to be charged to provide the desired functionality after deployment. Task or even device failures can occur if the voltage of the battery is low

Wu, Jie

466

Battery charging in float vs. cycling environments  

SciTech Connect

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

COREY,GARTH P.

2000-04-20T23:59:59.000Z

467

Application-level prediction of battery dissipation  

Science Conference Proceedings (OSTI)

Mobile, battery-powered devices such as personal digital assistants and web-enabled mobile phones have successfully emerged as new access points to the world's digital infrastructure. However, the growing gap between device capabilities and battery technology ... Keywords: application-level prediction, battery life estimation, resource-restricted devices

Chandra Krintz; Ye Wen; Rich Wolski

2004-08-01T23:59:59.000Z

468

Review of storage battery system cost estimates  

DOE Green Energy (OSTI)

Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

Brown, D.R.; Russell, J.A.

1986-04-01T23:59:59.000Z

469

Plug-In Electric Vehicle Lithium-Ion Battery Cost and Advanced Battery Technologies Forecasts  

Science Conference Proceedings (OSTI)

Batteries are a critical cost factor for plug-in electric vehicles, and the current high cost of lithium ion batteries poses a serious challenge for the competitiveness of Plug-In Electric Vehicles (PEVs). Because the market penetration of PEVs will depend heavily on future battery costs, determining the direction of battery costs is very important. This report examines the cost drivers for lithium-ion PEV batteries and also presents an assessment of recent advancements in the growing attempts to ...

2012-12-12T23:59:59.000Z

470

Battery Performance Monitoring by Internal Ohmic Measurements: Application Guidelines for Stationary Batteries  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a viable method of performance monitoring for stationary batteries. Ohmic measurements have demonstrated the ability to identify degraded cells and to baseline the general health of a battery. This report presents the results of research to correlate battery capacity with internal ohmic measurements. The report provides guidelines to assist users with the implementation of this relatively new battery test technology.

1997-12-31T23:59:59.000Z

471

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementsuch as cycle life and battery cost and battery managementof the battery. The battery size and cost will vary markedly

Burke, Andrew

2009-01-01T23:59:59.000Z

472

Phase controlled rectifier circuit for rapidly charging batteries  

SciTech Connect

An improved battery charger circuit for rapidly charging a battery by increasing the rate of battery charge acceptance through periodic battery discharge during the charging process includes a pair of first and second controlled rectifier circuits coupled to an ac source and adapted for coupling to a battery. The first controlled rectifier circuit is rendered conductive during the charging intervals to supply the battery with charge current from the ac source. The second controlled rectifier circuit is rendered conductive during battery discharge intervals to discharge the battery in a substantially lossless manner by conducting battery discharge current through the ac source, thus realizing a highly efficient battery charger.

Steigerwald, R. L.

1981-02-24T23:59:59.000Z

473

Down hole packing gland and method for long stroke pumper  

SciTech Connect

A packing gland is positioned down within an oil well hole and is held in place by elastomeric sealing and locking devices which are actuated from above the hole through a torque tube. Rotation of the torque tube in one direction lowers the tube axially relative to the elastomers and causes them to expand radially thus locking and sealing the stuffing gland assembly in the well head equipment at a depth of about 100 feet below the ground surface. Counter rotation of the torque tube allows the elastomers to retract radially thus releasing the stuffing gland assembly. Once the stuffing gland assembly is released, a union joint assembly is moved downward relative to the stuffing gland assembly and a unique spring ring slides over a cylindrical boss on the packing gland assembly to couple the union joint assembly with the packing gland assembly. The packing gland assembly then is raised above the ground surface simultaneously with lifting the polish rod from the hole. A drain port is provided between the elastomer locking and sealing devices to provide a flow passage back into the well when the packing gland is removed allowing the portion of the casing housing the wire rope to drain dry.

Hollenbeck, A.L.; De Tuerk, A.V.; Cooper, J.T.

1978-07-11T23:59:59.000Z

474

Nuclear Navy Turns 50 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Navy Turns 50 | National Nuclear Security Administration Navy Turns 50 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Navy Turns 50 Nuclear Navy Turns 50 August 01, 1998 Washington, DC Nuclear Navy Turns 50 Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft

475

Nuclear Navy Turns 50 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Navy Turns 50 | National Nuclear Security Administration Navy Turns 50 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Navy Turns 50 Nuclear Navy Turns 50 August 01, 1998 Washington, DC Nuclear Navy Turns 50 Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft

476

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

477

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

478

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

479

Redox flow batteries: a review  

Science Conference Proceedings (OSTI)

Redox flow batteries (RFBs) are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of RFBs with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

Weber, Adam Z. [Lawrence Berkeley National Laboratory (LBNL); Mench, Matthew M [ORNL; Meyers, Jeremy [University of Texas, Austin; Ross, Philip N. [Lawrence Berkeley National Laboratory (LBNL); Gostick, Jeffrey T. [McGill University, Montreal, Quebec; Liu, Qinghua [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

480

Cathode for molten salt batteries  

DOE Patents (OSTI)

A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

Mamantov, Gleb (Knoxville, TN); Marassi, Roberto (Camerino, IT)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery pack turned" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

482

Thick-thin battery jar  

Science Conference Proceedings (OSTI)

A battery jar is described comprised of side, end and bottom walls wherein the side and end walls are divided into upper, middle and lower sections with the wall thickness in each section being T, T1 and T2, respectively, wherein T2 is greater than T1 and less than T.

Hardigg, J.S.

1988-03-22T23:59:59.000Z

483

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

Wilcox, James D.

2010-01-01T23:59:59.000Z

484

Models for Metal Hydride Particle Shape, Packing, and Heat Transfer  

E-Print Network (OSTI)

A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

Kyle C. Smith; Timothy S. Fisher

2012-05-04T23:59:59.000Z

485

Hydrogen gettering packing material, and process for making same  

DOE Patents (OSTI)

A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

LeMay, James D. (Castro Valley, CA); Thompson, Lisa M. (Knoxville, TN); Smith, Henry Michael (Overland Park, KS); Schicker, James R. (Lee' s Summit, MO)

2001-01-01T23:59:59.000Z

486

Hydrogen gettering packing material and process for making same  

DOE Patents (OSTI)

A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.

1999-09-09T23:59:59.000Z

487

Fluid loss to formation stopped prior to gravel packing  

Science Conference Proceedings (OSTI)

Union Texas Petroleum has combined special techniques in offshore Louisiana gravel-packing operations to combat severe fluid loss that had jeopardized previous gravel-packed completions. By using an annulus pressure-controlled circulation valve and a crosslinked polymer gelled block, Union Texas was able to totally halt loss of fluid to a formation that had an 1,835-psi overbalanced (the hydrostatic pressure of well fluid in the treating string-to-casing annulus exceeded formation pressure by 1,835 psi). The pressure-controlled valve permitted process control without pipe movement, and the gelled block prevented fluid loss to the formation while the gravel pack was being installed. The well was perforated underbalanced, using tubing-conveyed guns, for perforation cleanup.

Quarnstrom, T.F. (Union Texas Petroleum, Houston, TX (US)); Cavender, T.W.; Shelton, G. (Vann Systems Houston, TX (US))

1989-09-25T23:59:59.000Z

488

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

489

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

490

Separators for absorbed electrolyte recombinant batteries  

SciTech Connect

Starved electrolyte gas recombinant batteries are a fast growing segment of the lead-acid market. There is a great deal of development being carried out using the recombinant technology. New batteries of this design have been commercialized this year and more will probably be introduced next year. All of these batteries are sealed so that they can operate above atmospheric pressure, and all of them contain a highly porous, and partially saturated glass microfiber separator. The separator is white, pliable, and ribless. The separator is the key element of these batteries since it permits gas recombination to take place. The recombination of gas within the battery makes it possible to seal the battery. The operation of these batteries is discussed.

Wandzy, K.J.; Taylor, G.W.

1986-07-01T23:59:59.000Z

491

Battery research at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

Thackeray, M.M.

1997-10-01T23:59:59.000Z

492

Routing Protocols to Maximize Battery Efficiency  

E-Print Network (OSTI)

In this paper we propose a routing protocol for wireless ad hoc networks whose nodes are largely battery powered. The battery capacity of the nodes is viewed as a common resource of the system and its use is to be optimized. Results from a previous study on battery management have shown that: (1) pulsed current discharge outperforms constant current discharge, (2) battery capacity can be improved by using a bursty discharge pattern due to charge recovery effects that take place during idle periods, (3) given a certain value of current drawn off the battery, higher current impulses degrade battery performance, even if the percentage of higher current impulses is relatively small. We develop a network protocol based on these findings. This protocol favors routes whose links have a low energy cost. We also distribute multihop traffic in a manner that allows all nodes a good chance to recover their battery energy reserve.

Carla F. Chiasserini; Ramesh R. Rao

2000-01-01T23:59:59.000Z

493

Packing hyperspheres in high-dimensional Euclidean spaces  

E-Print Network (OSTI)

We present a study of disordered jammed hard-sphere packings in four-, five-, and six-dimensional Euclidean spaces. Using a collision-driven packing generation algorithm, we obtain the first estimates for the packing fractions of the maximally random jammed ?MRJ ? states for space dimensions d=4, 5, and 6 to be ? MRJ?0.46, 0.31, and 0.20, respectively. To a good approximation, the MRJ density obeys the scaling form ? MRJ=c 1/2 d +?c 2d?/2 d, where c 1=?2.72 and c 2=2.56, which appears to be consistent with the highdimensional asymptotic limit, albeit with different coefficients. Calculations of the pair correlation function g 2?r ? and structure factor S?k ? for these states show that short-range ordering appreciably decreases with increasing dimension, consistent with a recently proposed “decorrelation principle, ” which, among other things, states that unconstrained correlations diminish as the dimension increases and vanish entirely in the limit d??. As in three dimensions ?where ? MRJ?0.64?, the packings show no signs of crystallization, are isostatic, and have a power-law divergence in g 2?r ? at contact with power-law exponent ?0.4. Across dimensions, the cumulative number of neighbors equals the kissing number of the conjectured densest packing close to where g 2?r ? has its first minimum. Additionally, we obtain estimates for the freezing and melting packing fractions for the equilibrium hard-sphere fluid-solid transition, ? F?0.32 and ? M ?0.39, respectively, for d=4, and ? F?0.20 and ? M ?0.25, respectively, for d=5. Although our results indicate the stable phase at high

Monica Skoge; Ar Donev; Frank H. Stillinger; Salvatore Torquato

2007-01-01T23:59:59.000Z

494

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

495

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network (OSTI)

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

496

A User Programmable Battery Charging System  

E-Print Network (OSTI)

Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system, have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard, they have to be versatile, efficient and user programmable to increase their applications in numerous battery powered systems. This is to reduce the cost of using different battery chargers for different types of battery powered applications and also to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal serial bus (USB) and an energy harvesting system. The proposed charging system consists of three main building blocks, i.e. a pulse charger, a step down DC to DC converter and a switching network system, to extend the number of applications it can be used for. The switching network system is to allow charging of a battery via an energy harvesting system, while the step down converter is used to provide an initial supply voltage to kick start the energy harvesting system. The pulse charger enables the battery to be charged from a wall outlet or a USB network. It can also be reconfigured to charge a Nickel Metal Hydride battery. The final design is implemented on an IBM 0.18µm process. Experimental results verify the concept of the proposed charging system. The pulse charger is able to be reconfigured as a trickle charger and a constant current charger to charge a Li-ion battery and a Nickel Metal Hydride battery, respectively. The step down converter has a maximum efficiency of 90% at an input voltage of 3V and the charging of the battery via an energy harvesting system is also verified.

Amanor-Boadu, Judy M

2013-05-01T23:59:59.000Z

497

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

Science Conference Proceedings (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

498

Pumpkin Power: Turning Food Waste into Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? 1.4 billion pounds of pumpkins are produced in the U.S. each year, many of which end up in landfills or compost piles after Halloween. Oakland's EBMUD collects food waste and uses microbes to convert it into methane gas that is burned to generate electricity. The Energy Department is helping to fund the development of integrated biorefineries, industrial centers dedicated to converting plant material into biofuels and other products. To commemorate National Energy Action Month, we're featuring some scarily

499

Turning Leftover Trees into Biogasoline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Leftover Trees into Biogasoline Turning Leftover Trees into Biogasoline Turning Leftover Trees into Biogasoline June 7, 2010 - 11:00am Addthis Researchers at Virginia Tech are working to show how biogasoline could potentially be created in existing petroleum refineries, instead of at new biorefineries as shown here. | File illustration Researchers at Virginia Tech are working to show how biogasoline could potentially be created in existing petroleum refineries, instead of at new biorefineries as shown here. | File illustration Joshua DeLung Could leftover Christmas trees be turned into biogasoline? That's the question researchers at Virginia Polytechnic Institute and State University have been working for three years to address. The research team says making stable biogasoline in existing refineries- from

500

Employees turn student | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

turn student Posted: April 19, 2013 - 1:05pm Y-12 offered classes at UT back in 1954. Read more At every stage of its development - from the initial floating of ideas to...