Sample records for battery interface lets

  1. From corrosion to batteries: Electrochemical interface studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

  2. Ultracapacitor/battery electronic interface development. Final report

    SciTech Connect (OSTI)

    King, R.D.; Salasoo, L.; Schwartz, J.; Cardinal, M.

    1998-06-30T23:59:59.000Z

    A flexible, highly efficient laboratory proof-of-concept Ultracapacitor/Battery Interface power electronic circuit with associated controls was developed on a cost-shared contract funded by the US Department of Energy (DOE), the New York State Energy Research and Development Authority (NYSERDA), and the General Electric Company (GE). This power electronic interface translates the varying dc voltage on an ultracapacitor with bi-directional power flow to the dc bus of an inverter-supplied ac propulsion system in an electric vehicle application. In a related application, the electronic interface can also be utilized to interface a low-voltage battery to a dc bus of an inverter supplied ac propulsion system. Variations in voltage for these two intended applications occur (1) while extracting energy (discharge) or supplying energy (charge) to an ultracapacitor, and (2) while extracting energy (discharge) or supplying energy (charge) to a low-voltage battery. The control electronics of this interface is designed to be operated as a stand-alone unit acting in response to an external power command. However, the interface unit`s control is not configured to provide any of the vehicle system control functions associated with load leveling or power splitting between the propulsion battery and the ultracapacitor in an electric or hybrid vehicle application. A system study/preliminary design effort established the functional specification of the interface unit, including voltage, current, and power ratings, to meet the program objectives and technical goals for the development of a highly efficient ultracapacitor/battery electronic interface unit; and performed a system/application study of a hybrid-electric transit bus including an ultracapacitor and appropriate electronic interface. The maximum power capability of the ultracapacitor/battery electronic interface unit is 25 kW.

  3. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  4. A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants

    E-Print Network [OSTI]

    Slatton, Clint

    A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants Pengfei Li. The battery charger employs a new control loop that relaxes comparator resolution require- ments, provides-of- charge accuracy can be obtained under worst-case conditions for a comparator offset voltage of ±5m

  5. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  6. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20T23:59:59.000Z

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  7. A SiC-Based Converter as a Utility Interface for a Battery System , Leon M. Tolbert1,2

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , simulations of a SiC- based converter working as an interface between a battery bank and a utility were of a battery bank and a converter. The battery bank is to be charged and discharged from the utility via voltage is for M = 1. For Vll = 480 V, Vdc (min) = 783.8 V. 3 2 2 dc ll V V M= (1) B. Battery Bank

  8. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES235 SEM/FIB, microstructure characterization, and local electron atom probe........................................................................................................................16 1.1 Lithium Ion Batteries

  9. How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes

    E-Print Network [OSTI]

    Leung, Kevin

    2015-01-01T23:59:59.000Z

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the "electric double layer" (EDL). We apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic lengthscales, including charge separation and interfacial dipole moments. Illustrating examples include Li(3)PO(4), Li(2)CO(3), and Li(x)Mn(2)O(4) thin-films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the "lithium cohesive energy" based voltage governing Li content widely...

  10. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16T23:59:59.000Z

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  11. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2014-03-15T23:59:59.000Z

    Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

  12. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  13. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  14. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12T23:59:59.000Z

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  15. Interface Modifications by Anion Acceptors for High Energy Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

  16. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27T23:59:59.000Z

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  17. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

  18. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  19. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20T23:59:59.000Z

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  20. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01T23:59:59.000Z

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  1. Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries

    SciTech Connect (OSTI)

    Garofalini, Stephen H

    2012-03-21T23:59:59.000Z

    The goals of the research were to understand the structural, dynamic, and chemical properties of solid electrolyte surfaces and the cathode/electrolyte interface at an atomistic and nanometer level using both computational and experimental techniques.

  2. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  3. Solid Electrolyte Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Present Li-ion Batteries Insertion compounds have limited capacity Li Air batteries are inefficient if used for electrical energy storage Li S batteries have too...

  4. Angling chromium to let oxygen through | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Angling chromium to let oxygen through Angling chromium to let oxygen through Released: September 10, 2014 New semiconducting material works at lower temperatures Scanning...

  5. Fault-tolerant battery system employing intra-battery network architecture

    DOE Patents [OSTI]

    Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

    2000-01-01T23:59:59.000Z

    A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

  6. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    battery configuration. Lead-acid batteries do not shuttleincluding lead-acid, nickel-based, and lithium-ion batteries

  7. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  8. Problem Set 3 Let's Simplex

    E-Print Network [OSTI]

    Chen, Yiling

    Problem Set 3 Let's Simplex Applied Mathematics 121 -- Spring 2011 Due 5:00 PM, Friday, February 18 linear programs using the Simplex method. Second, you will get a better understanding of linear programming through a better understanding of the Simplex method. Contents 1 Making it rain 2 2 Simplex

  9. Problem Set 3 Let's Simplex

    E-Print Network [OSTI]

    Chen, Yiling

    Problem Set 3 Let's Simplex AM121/ES121 -- Fall 2014 Due 5:00 PM, Tuesday, September 30, 2014 linear programs using the Simplex method. Second, you will get a better understanding of linear programming through a better understanding of the Simplex method. Contents 1 Making it rain 3 2 Simplex

  10. Problem Set 3 Let's Simplex

    E-Print Network [OSTI]

    Chen, Yiling

    Problem Set 3 Let's Simplex Applied Mathematics 121 -- Spring 2014 Due 5:00 PM, Friday, February 21 practice solving linear programs using the Simplex method. Second, you will get a better understanding of linear programming through a better understanding of the Simplex method. Contents 1 Making it rain 3 2

  11. Together Let Our Hearts Agree

    E-Print Network [OSTI]

    Ricketts, Clinton Michael

    2010-04-30T23:59:59.000Z

    . The communities I have been a part of offer a transient history described by communal hopes and important personal relationships. In retrospect, these relationships and shared desires define my sense of self. In the thesis exhibition titled Together Let Our Hearts...

  12. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLightingFebruary 23,C L S Thin-Film

  13. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01T23:59:59.000Z

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  14. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  15. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

  16. Summary of meeting on disposal of LET&D HEPA filters

    SciTech Connect (OSTI)

    Not Available

    1991-11-21T23:59:59.000Z

    This report is a compilation of correspondence between Westinghouse Idaho Nuclear Company and the US EPA over a period of time from 1988 to 1992 (most from 1991-92) regarding waste management compliance with EPA regulations. Typical subjects include: compliance with satellite accumulation requirements; usage of ``Sure Shot`` containers in place of aerosol cans; notice of upcoming recyclable battery shipments; disposition of batteries; HEPA filter leach sampling and permit impacts; functional and operation requirements for the spent filter handling system; summary of meeting on disposal of LET and D HEPA filters; solvent substitution database report; and mercury vapor light analytical testing.

  17. T-703: Cisco Unified Communications Manager Open Query Interface Lets

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success Stories Systems Analysis SuccessEnergy

  18. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Energy Savers [EERE]

    DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  19. NREL: Energy Storage - Battery Ownership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

  20. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  1. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  2. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  3. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  4. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14T23:59:59.000Z

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  5. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30T23:59:59.000Z

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  6. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  7. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01T23:59:59.000Z

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  8. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  9. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01T23:59:59.000Z

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  10. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  11. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  12. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012)

    E-Print Network [OSTI]

    Gerber, Edwin

    2012-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012) Published online in Wiley Online Library using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) concentrations and sea- surface temperatures (SSTs). These integrations enable the relative role of ozone

  13. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  14. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08T23:59:59.000Z

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  15. U-137: HP Performance Manager Unspecified Bug Lets Remote Users...

    Broader source: Energy.gov (indexed) [DOE]

    7: HP Performance Manager Unspecified Bug Lets Remote Users Execute Arbitrary Codes U-137: HP Performance Manager Unspecified Bug Lets Remote Users Execute Arbitrary Codes March...

  16. T-653: Linux Kernel sigqueueinfo() Process Lets Local Users Send...

    Broader source: Energy.gov (indexed) [DOE]

    Process Lets Local Users Send Spoofed Signals T-653: Linux Kernel sigqueueinfo() Process Lets Local Users Send Spoofed Signals June 23, 2011 - 4:49am Addthis PROBLEM:...

  17. V-149: Microsoft Internet Explorer Object Access Bug Lets Remote...

    Broader source: Energy.gov (indexed) [DOE]

    CDwnBindInfo Object Reuse Flaw Lets Remote Users Execute Arbitrary Code U-047: Siemens Automation License Manager Bugs Let Remote Users Deny Service or Execute Arbitrary...

  18. T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let Remote Users Conduct Bypass Attacks T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let Remote Users Conduct...

  19. U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary...

    Broader source: Energy.gov (indexed) [DOE]

    4: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands,...

  20. U-030: Apache Tomcat Lets Untrusted Web Applications Gain Elevated...

    Broader source: Energy.gov (indexed) [DOE]

    0: Apache Tomcat Lets Untrusted Web Applications Gain Elevated Privileges U-030: Apache Tomcat Lets Untrusted Web Applications Gain Elevated Privileges November 9, 2011 - 8:30am...

  1. V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated...

    Broader source: Energy.gov (indexed) [DOE]

    Tomcat FORM Authenticator Lets Remote Users Conduct Session Fixation Attacks U-084: Cisco Digital Media Manager Lets Remote Authenticated Users Gain Elevated Privileges U-233:...

  2. U-094: EMC Documentum Content Server Lets Local Administrative...

    Broader source: Energy.gov (indexed) [DOE]

    4: EMC Documentum Content Server Lets Local Administrative Users Gain Elevated Privileges U-094: EMC Documentum Content Server Lets Local Administrative Users Gain Elevated...

  3. U-010:HP Onboard Administrator Unspecified Flaw Lets Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HP Service Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access V-120: EMC Smarts Network Configuration Manager Java RMI Access Control Flaw Lets Remote Users...

  4. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid. Summary Researchers from the...

  5. Boosting batteries | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way for widespread adoption of lithium ion batteries for applications such as powering electric vehicles and storing renewable energy on the grid. The Science Rechargeable...

  6. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  7. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  8. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  9. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect (OSTI)

    Roberts, R.

    1985-06-01T23:59:59.000Z

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  10. Economic assessment of candidate materials for key components in a grid-scale liquid metal battery

    E-Print Network [OSTI]

    Parent, Michael C. (Michael Calvin)

    2011-01-01T23:59:59.000Z

    In order to satisfy the growing demand for renewable resources as a supply of electricity, much effort is being placed toward the development of battery energy storage systems that can effectively interface these new sources ...

  11. J. Electrochem. Soc., in press (1998) MicroMacroscopic Coupled Modeling of Batteries and Fuel Cells

    E-Print Network [OSTI]

    Wang, Chao-Yang

    , as well as various fuel cells, are widely used in consumer applications and electric vehicles materials and interface morphology and chemistry, has been developed for advanced batteries and fuel cells. Modeling and simulation of battery and fuel cell systems has been a rapidly expanding field, thanks in part

  12. J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells

    E-Print Network [OSTI]

    Wang, Chao-Yang

    , as well as various fuel cells, are widely used in consumer applications and electric vehicles and interface morphology and chemistry, has been developed for advanced batteries and fuel cells. Modeling and simulation of battery and fuel cell systems has been a rapidly expanding field, thanks in part

  13. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  14. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  15. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  16. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  18. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  19. First, let's recall We call this ratio

    E-Print Network [OSTI]

    ) For z Phase accumulated from z=0 to z=d Let's evaluate the phase-change and Ey COME OUT from the birefringent material OUT OF PHASE In PHASE #12;For z >d To find an expression for the fields in the region z>d, all we have to do it to account for the accumulated change of phase from z=0

  20. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013)

    E-Print Network [OSTI]

    Lee, Sukyoung

    2013-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013) Published online in Wiley Online Library Sciences, Seoul National University, Seoul, South Korea *Correspondence to: C. Yoo, Center for Atmosphere). A number of studies have shown that the MJO plays an important role in modulating the extratropical cir

  1. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  2. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  3. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  4. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  5. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  6. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  7. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  8. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  9. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  10. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  11. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  12. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  14. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  15. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

  16. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  17. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

  18. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  19. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  20. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the study could pave the way for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid....

  1. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01T23:59:59.000Z

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  2. Battery Charger Efficiency

    Office of Environmental Management (EM)

    Marine Battery Banks don't look like power tools Marine and RV Chargers Differ from Automotive Chargers * The core strategy in the CEC standard is to shut down the charger when...

  3. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01T23:59:59.000Z

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  4. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, K.O.

    1998-06-30T23:59:59.000Z

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  5. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16T23:59:59.000Z

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  6. Battery SEAB Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from

  7. A User Programmable Battery Charging System

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age...

  8. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29T23:59:59.000Z

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  9. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

    1993-01-01T23:59:59.000Z

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  10. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  11. V-202: Cisco Video Surveillance Manager Bugs Let Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TE Bugs Let Remote Users Deny Service and Remote Adjacent Authenticated Users Gain Root Shell Access V-076: Cisco Wireless LAN Controller Bugs Let Remote Users Deny Service and...

  12. U-277: Google Chrome Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code U-277: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code October 9, 2012 - 6:00am Addthis...

  13. Solar Decathlon 2013: Let the Building Begin | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Decathlon 2013: Let the Building Begin Solar Decathlon 2013: Let the Building Begin September 30, 2013 - 10:45am Addthis Day 7 Construction 1 of 22 Day 7 Construction During...

  14. U-047: Siemens Automation License Manager Bugs Let Remote Users...

    Broader source: Energy.gov (indexed) [DOE]

    U-048: HP LaserJet Printers Unspecified Flaw Lets Remote Users Update Firmware with Arbitrary Code T-699: EMC AutoStart Buffer Overflows Let Remote Users Execute Arbitrary Code...

  15. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  16. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  17. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  18. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  19. Electrocatalysts for Nonaqueous Lithium–Air Batteries:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

  20. Testimonials - Partnerships in Battery Technologies - Capstone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

  1. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01T23:59:59.000Z

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  2. Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information that can be

    E-Print Network [OSTI]

    Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information Proposals In Situ Electron Microscopy and Spectroscopy Studies of Interfaces in Advanced Li-ion Batteries Under Dynamic Operation Conditions Project start date: Spring 2008 EMSL Lead Investigator: Chongmin Wang

  3. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  4. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01T23:59:59.000Z

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  5. Continuous process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    Chern, Terry Song-Hsing (Midlothian, VA); Keller, David Gerard (Baltimore, MD); MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01T23:59:59.000Z

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  6. Continuous process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12T23:59:59.000Z

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  7. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March 31,

  8. Batteries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An error occurred. Try watching this

  9. Food Battery Competition Sponsored by

    E-Print Network [OSTI]

    Tennessee, University of

    and outstanding lithium-ion batteries, you can recognize the progress. Lithium provides good voltages and powerFood Battery Competition Sponsored by: The University of Tennessee, Materials Advantage (MA not have enough natural resources to support our growing populations and energy needs forever. Batteries

  10. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  11. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Energy Savers [EERE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  12. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

  13. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  14. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01T23:59:59.000Z

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  15. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01T23:59:59.000Z

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  16. Method and apparatus for smart battery charging including a plurality...

    Office of Scientific and Technical Information (OSTI)

    Re-direct Destination: A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger...

  17. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Energy Savers [EERE]

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  18. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407

    SciTech Connect (OSTI)

    Smith, K.

    2012-01-01T23:59:59.000Z

    Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

  19. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  20. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  1. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance...

  2. U-262: Microsoft Internet Explorer Flaw Lets Remote Users Execute...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Internet Explorer Flaw Lets Remote Users Execute Arbitrary Code PLATFORM: Internet Explorer 6, 7, 8, 9 ABSTRACT: A vulnerability was reported in Microsoft Internet...

  3. V-103: RSA Authentication Agent Lets Remote Users Bypass Authenticatio...

    Broader source: Energy.gov (indexed) [DOE]

    RSA Authentication Agent Lets Remote Users Bypass Authentication Requirements PLATFORM: RSA Authentication Agent 7.1, 7.1.1 for Microsoft Windows ABSTRACT: A vulnerability was...

  4. U-219: Symantec Web Gateway Input Validation Flaws Lets Remote...

    Broader source: Energy.gov (indexed) [DOE]

    9: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input...

  5. U-130: JBoss Operations Network LDAP Authentication Bug Lets...

    Broader source: Energy.gov (indexed) [DOE]

    Hat Enterprise MRG Messaging Qpid Bug Lets Certain Remote Users Bypass Authentication V-036: EMC Smarts Network Configuration Manager Database Authentication Bypass Vulnerability...

  6. United States Advanced Battery Consortium

    Broader source: Energy.gov (indexed) [DOE]

    of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

  7. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07T23:59:59.000Z

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  8. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03T23:59:59.000Z

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  9. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  10. Advanced battery modeling using neural networks

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  11. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  12. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage & Battery Leading the charge in battery R&D Argonne National Laboratory is a global leader in the development of advanced battery technologies and has a portfolio of...

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  14. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  15. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  16. Good upkeep adds to battery life

    SciTech Connect (OSTI)

    Jackson, D.

    1983-01-01T23:59:59.000Z

    The care and maintenance of underground mine batteries is discussed. A guide to motive power battery manufacturers in USA is included, plus a list of definitions of battery terms.

  17. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    to Thermal Rise in Lead-Acid Batteries Used in Electricon Advances in Lead-Acid Batteries, The Electrochemicalbattery market is for lead-acid batteries for SLI (starting,

  18. Sandia National Laboratories: Evaluating Powerful Batteries for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

  19. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes...

  20. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  1. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    2011Year #12;Flow Battery Research at PNNL and Sandia #12 with industries and universities New Generation Redox Flow Batteries, PNNL Developed new generation redox flow

  2. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  3. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed. In all three cases, today's batteries simply do not hold enough charge. Replacing lithium with other metals with multiple charges could greatly increase battery capacity....

  4. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  5. Upgrading the Vanadium Redox Battery | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

  6. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  7. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  8. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery...

  9. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    lithium-ion battery is the most advanced rechargeable battery technology in use today. These batteries

  10. PHEV Battery Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV Battery Cost

  11. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  12. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15T23:59:59.000Z

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  13. 19JULY 2010 Let us bring technology news to you.

    E-Print Network [OSTI]

    Greenberg, Saul

    of the prototypes require batteries to operate, which wouldn't be practical for commercial uses, according to Juels. However, produc- tion versions wouldn't necessarily need batteries, Marquardt said, The experimental chip would contain general information and enable over- the-air access by a reader, while the other

  14. Recombinant electric storage battery

    SciTech Connect (OSTI)

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10T23:59:59.000Z

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  15. Optimizing small wind turbine performance in battery charging applications

    SciTech Connect (OSTI)

    Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

    1995-05-01T23:59:59.000Z

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  16. From corrosion to batteries: Electrochemical interface studies | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)Frequently AskedofFriendsFrom Science

  17. User Interfaces 1 Command Line Interfaces

    E-Print Network [OSTI]

    Verschelde, Jan

    User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line 2013 1 / 39 #12;User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line interface to store points fitting points with polyfit of numpy 2 Encapsulation by Object

  18. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  19. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    , nickel cadmium (Nicad), nickel metal hydride, lithium ion, silver button, mercury, magnesium carbon. Recycling rechargeable batteries Rechargeable batteries are often referred to as nickel cadmium, nickel Battery Per Bag Please sort the batteries by battery type, using a separate receptacle for nickel cadmium

  20. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    battery electrolytes; we also describe a general approach toward performing fundamental in situ characterization

  1. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    CHARACTERIZATION ON HIGHLY ORIENTED PYROLYTIC GRAPHITE cator of electrode passivation in realistic battery

  2. Waste Toolkit A-Z Battery recycling

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

  3. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    (submarines) Stationary batteries 250 Wh~5 MWh Emergency power supplies, local energy storage, remote relay1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro

  4. Batteries, mobile phones & small electrical devices

    E-Print Network [OSTI]

    , mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

  5. Energy Efficiency of Handheld Computer Interfaces: Limits, Characterization and Practice

    E-Print Network [OSTI]

    Zhong, Lin

    Energy Efficiency of Handheld Computer Interfaces: Limits, Characterization and Practice Lin Zhong,jha}@princeton.edu Abstract Energy efficiency has become a critical issue for battery-driven computers. Significant work has energy re- quirements and overheads imposed by known human sensory/speed limits. We then characterize

  6. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  7. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  8. A Mathematical Model of the Lead-Acid Battery to Address the Effect of Corrosion

    E-Print Network [OSTI]

    Subramanian, Venkat

    A Mathematical Model of the Lead-Acid Battery to Address the Effect of Corrosion Vijayasekaran for the corrosion process that occurs at the interface between the active material and grid material of the positive plate. Three different modeling approaches are used to incorporate the effect of corrosion in the first

  9. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01T23:59:59.000Z

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  10. V-176: Adobe Flash Player Memory Corruption Flaw Lets Remote...

    Broader source: Energy.gov (indexed) [DOE]

    Adobe Flash Player Memory Corruption Flaw Lets Remote Users Execute Arbitrary Code PLATFORM: Adobe Flash Player 11.7.700.202 and earlier versions for Windows Adobe Flash Player...

  11. V-155: Apache Tomcat FORM Authenticator Lets Remote Users Conduct...

    Broader source: Energy.gov (indexed) [DOE]

    Apache Tomcat FORM Authenticator Lets Remote Users Conduct Session Fixation Attacks PLATFORM: Tomcat 6.0.21 to 6.0.36, 7.0.0 to 7.0.32 ABSTRACT: A vulnerability was reported in...

  12. LET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /kWh, depending on its location as well as on the size and type of PV system used (EPIA Report, 2011). InvestmentLET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY Anna CRETI JĂ©rĂ´me JOAUG Cahier n:chantal.poujouly@polytechnique.edu hal-00751743,version1-14Nov2012 #12;Let the sun shine: optimal deployment of photovoltaics in Germany

  13. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    electrochemical characterization, and battery performance ofthe battery cell for electrochemical characterization. TheBattery Highlights 13 2.3 Electrochemical Characterization ..

  14. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of VariousMiller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology and

  15. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  16. EES and Batteries: The Basics | University of Texas Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES AND BATTERIES: THE BASICS Virtually all portable electronic devices, including cell phones, PDAs and laptop computers, rely on chemical energy stored in batteries. Batteries...

  17. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  18. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  19. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  20. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  1. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  2. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  3. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

  4. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

  5. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  6. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  7. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  8. Making Li-air batteries rechargeable: material challenges. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

  9. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01T23:59:59.000Z

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  10. U-159: Red Hat Enterprise MRG Messaging Qpid Bug Lets Certain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Red Hat Enterprise MRG Messaging Qpid Bug Lets Certain Remote Users Bypass Authentication U-159: Red Hat Enterprise MRG Messaging Qpid Bug Lets Certain Remote Users Bypass...

  11. U-241: Adobe Flash Player Bugs Let Remote Users Execute Arbitrary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    41: Adobe Flash Player Bugs Let Remote Users Execute Arbitrary Code and Obtain Information U-241: Adobe Flash Player Bugs Let Remote Users Execute Arbitrary Code and Obtain...

  12. U-178: VMware vMA Library Loading Error Lets Local Users Gain...

    Broader source: Energy.gov (indexed) [DOE]

    Buffer Overflow and Null Pointer Dereference Lets Local Users Gain Elevated Privileges U-094: EMC Documentum Content Server Lets Local Administrative Users Gain Elevated Privileges...

  13. U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

    Broader source: Energy.gov (indexed) [DOE]

    7: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass Authentication and Gain Administrative Access U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

  14. U-017: HP MFP Digital Sending Software Lets Local Users Obtain...

    Broader source: Energy.gov (indexed) [DOE]

    TRACETRACK Support Lets Remote Users Obtain Potentially Sensitive Information V-002: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code...

  15. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  16. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  17. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  18. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  19. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  20. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    SciTech Connect (OSTI)

    Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id; Badrianto, Muldani D., E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2014-01-01T23:59:59.000Z

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  1. Carbon-enhanced VRLA batteries.

    SciTech Connect (OSTI)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01T23:59:59.000Z

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  2. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  3. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01T23:59:59.000Z

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  4. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31T23:59:59.000Z

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  5. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

  6. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01T23:59:59.000Z

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  7. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  8. Batteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    ;Lithium-ion battery Modern Li-ion Battery Cathode:Anode: e-e- u o b e y e- Electrolyte LiPF6 in Ethylene Electronic Li-ion Batteries Theoretical Energy Density Source: TIAX, LLC #12;Lithium-ion battery BatteryBatteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan Staff Scientist Lawrence

  9. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  10. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  11. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  12. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  13. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  14. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    of the range and charging-time issues. INTRODUCTION TO BATTERIES Several electrical energy storage be achieved by a high-energy Li-ion cell (similar to the batteries used in the Tesla Roadster).a However

  15. Batteries lose in game of thorns | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries lose in game of thorns Batteries lose in game of thorns Released: January 30, 2013 Scientists see how and where disruptive structures form and cause voltage fading Images...

  16. Hierarchically Structured Materials for Lithium Batteries. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric...

  17. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  18. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  19. FLI-1 Flightless-1 and LET-60 Ras control germ line morphogenesis in C. elegans

    E-Print Network [OSTI]

    Lu, Jiamiao; Dentler, William L., Jr; Lundquist, Erik A.

    2008-05-16T23:59:59.000Z

    for the germ line morphogenesis defect by DIC optics and DAPI staining (Figure 11A) [30,32,33]. The hypomorphic loss-of-function allele n2021 caused a ky535-like germ line defect in 44% of gonad arms, and the stronger let-60 loss-of-function alleles s1124, s...1045), let-23(sy10), lin-31(n301). LGIII: fli-1(ky535), fli-1(tm362), tnIs6 [plim-7::gfp], dpy- 17(e164), unc-32(e189), mpk-1(ku1), eT1. LGIV: let- 60(n2021), let-60(s1124), let-60(s1155), let-60(s59), let- 60(sy93), let-60(sy92), let-60(sy99), let-60(n...

  20. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  1. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    of the low power battery status until nodes start to fail. Moreover, it requires extra time and effort

  2. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24T23:59:59.000Z

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  3. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  4. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01T23:59:59.000Z

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  5. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01T23:59:59.000Z

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  6. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  7. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  8. Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March

  9. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet in embedded systems. It describes the prominent battery models with their advantages and draw- backs of the battery. With the tremendous increase in the comput- ing power of hardware and the relatively slow growth

  10. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  11. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  12. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  13. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01T23:59:59.000Z

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  14. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01T23:59:59.000Z

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  15. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  16. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  17. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  18. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  19. Advanced Calculus 2 1. The derivative: Let Rm

    E-Print Network [OSTI]

    Logan, David

    , . . . , m). (9) We assume the transformation (9) to be invertible, that is, we can for the xj as functionsAdvanced Calculus 2 1. The derivative: Let Rm have components j and x: Rm Rn by x() = x1 matrix. You can think of A as a linear function taking Rm to Rm . We denote by AB the image of B under A

  20. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

  1. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01T23:59:59.000Z

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  2. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  3. Battery research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Thackeray, M.M.

    1997-10-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  4. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25T23:59:59.000Z

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  5. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  6. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01T23:59:59.000Z

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  7. Web Interface Call Simulator

    E-Print Network [OSTI]

    Ernst, Damien

    Web Interface Call Simulator Stage Description Web Interface for VoIP Call Simulator Net) Version 1.0 ­ 3/09/2012 Page 1 of 6 #12;Web Interface Call Simulator Version 1.0 ­ 3/09/2012 Page 2 of 6 #12;Web Interface Call Simulator Document Control Version Date Notes 1.0 25/8/2012 Reviewed

  8. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28T23:59:59.000Z

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  9. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    SciTech Connect (OSTI)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03T23:59:59.000Z

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  10. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    ] " Electrical circuit model: A spice model of the lithium-ion batteries [Gold-97] " Electro-chemical model: Generic dual-foil lithium-ion battery model [Doyle-94] ! Battery Management " Discharge rate-based policyBattery-Aware Power Management Based on Markovian Decision Processes Battery-Aware Power Management

  11. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  12. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  13. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  14. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22T23:59:59.000Z

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  15. Examination of the corrosion behavior of aluminum current collectors in lithium/polymer batteries

    SciTech Connect (OSTI)

    Chen, Y.; Devine, T.M.; Evans, J.W. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Div.] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Div.; [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering; Monteiro, O.R.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States). Accelerator and Fusion Research Div.] [Lawrence Berkeley National Lab., CA (United States). Accelerator and Fusion Research Div.

    1999-04-01T23:59:59.000Z

    The corrosion behavior of aluminum, a candidate material for the current collectors of the positive electrodes of lithium-polymer batteries, in contact with a lithium polymer electrolyte was examined in both batteries and three-electrode electrochemical cells. The results indicate aluminum is resistant to uniform corrosion in the polymer electrolyte: poly(ethylene oxide)-LiN(CF{sub 3}SO{sub 2}){sub 2} but can be susceptible to pitting corrosion. Localized pitting corrosion occurs on the aluminum current collector during overcharging of the battery. Pitting corrosion only occurred in the electrochemical cells when the aluminum electrode was anodically polarized to potentials that were considerably greater than those that resulted in pitting corrosion in batteries. The greater susceptibility of the aluminum current collectors of batteries to pitting corrosion is attributed to inhomogeneous current flow through the current collector. This results in local breakdown of the passive film on aluminum at sites of locally high current density. The inhomogeneous current density that flows through the aluminum/cathode interface is caused by the presence of discrete paths through the cathode with low electrical resistance. In an effort to improve the localized corrosion behavior of aluminum electrodes, it was found that surfaces impregnated by ion implantation with {approximately}20 atom % tungsten exhibited enhanced resistance to pitting corrosion in poly(ethylene oxide)-LiN(CF{sub 3}SO{sub 2}){sub 2}.

  16. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01T23:59:59.000Z

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  17. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  18. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04T23:59:59.000Z

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  19. U-026: Cisco Small Business SRP500 Series Bug Lets Remote Users...

    Broader source: Energy.gov (indexed) [DOE]

    Lets Remote Users Inject Commands November 3, 2011 - 8:15am Addthis PROBLEM: Cisco Small Business SRP500 Series Bug Lets Remote Users Inject Commands. PLATFORM: The following...

  20. U-119: Blackberry PlayBook Unspecified WebKit Bug Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users Execute Arbitrary Code U-119: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users Execute Arbitrary Code...

  1. V-066: Adobe Acrobat/Reader Multiple Flaws Lets Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Adobe AcrobatReader Multiple Flaws Lets Remote Users Execute Arbitrary Code and Local Users Gain Elevated Privileges V-066: Adobe AcrobatReader Multiple Flaws Lets Remote...

  2. U-107: Cisco NX-OS IP Packet Processing Flaw Lets Remote Users...

    Energy Savers [EERE]

    107: Cisco NX-OS IP Packet Processing Flaw Lets Remote Users Deny Service U-107: Cisco NX-OS IP Packet Processing Flaw Lets Remote Users Deny Service February 21, 2012 - 6:00am...

  3. V-109: Google Chrome WebKit Type Confusion Error Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Google Chrome WebKit Type Confusion Error Lets Remote Users Execute Arbitrary Code V-109: Google Chrome WebKit Type Confusion Error Lets Remote Users Execute Arbitrary Code...

  4. U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...

    Office of Environmental Management (EM)

    5: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs May 9,...

  5. T-545: RealPlayer Heap Corruption Error in 'vidplin.dll' Lets...

    Energy Savers [EERE]

    T-545: RealPlayer Heap Corruption Error in 'vidplin.dll' Lets Remote Users Execute Arbitrary Code T-545: RealPlayer Heap Corruption Error in 'vidplin.dll' Lets Remote Users Execute...

  6. U-167: OpenSSL Invalid TLS/DTLS Record Processing Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: OpenSSL Invalid TLSDTLS Record Processing Lets Remote Users Deny Service U-167: OpenSSL Invalid TLSDTLS Record Processing Lets Remote Users Deny Service May 11, 2012 - 7:00am...

  7. U-121: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21: Apple iOS Bugs Let Remote Users Execute Arbitrary Code, Conduct Cross-Site Scripting Attacks, and Obtain Potentially Sensitive Information U-121: Apple iOS Bugs Let Remote...

  8. U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code May 16, 2012 - 7:00am...

  9. V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code November 9, 2012 - 6:00am...

  10. T-591: VMware vmrun Utility Lets Local Users Gain Elevated Privileges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: VMware vmrun Utility Lets Local Users Gain Elevated Privileges T-591: VMware vmrun Utility Lets Local Users Gain Elevated Privileges March 30, 2011 - 3:05pm Addthis PROBLEM: A...

  11. U-049: IBM Tivoli Netcool Reporter CGI Bug Lets Remote Users...

    Energy Savers [EERE]

    U-048: HP LaserJet Printers Unspecified Flaw Lets Remote Users Update Firmware with Arbitrary Code T-699: EMC AutoStart Buffer Overflows Let Remote Users Execute Arbitrary Code...

  12. T-699: EMC AutoStart Buffer Overflows Let Remote Users Execute...

    Broader source: Energy.gov (indexed) [DOE]

    99: EMC AutoStart Buffer Overflows Let Remote Users Execute Arbitrary Code T-699: EMC AutoStart Buffer Overflows Let Remote Users Execute Arbitrary Code August 23, 2011 - 3:35pm...

  13. U-211: EMC Celerra/VNX/VNXe Access Control Bug Lets Remote Authenticat...

    Broader source: Energy.gov (indexed) [DOE]

    11: EMC CelerraVNXVNXe Access Control Bug Lets Remote Authenticated Users Access FilesDirectories U-211: EMC CelerraVNXVNXe Access Control Bug Lets Remote Authenticated Users...

  14. V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service...

  15. EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  16. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-01-01T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  17. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-12-31T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  18. Pumping Lemma for Regular Sets: Let D = (Q, , , q0, F) be a DFA.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Pumping Lemma for Regular Sets: Let D = (Q, , , q0, F) be a DFA. Let n = |Q|. Let w L(D) s.t. |w| n. Then x, y, z s.t. the following all hold: xyz = w |xy| n |y| > 0, and k 0 (xykz L(D)) L30: Pumping Lemma CS250: Discrete Math for Computer Science #12;proof: Let w L(D), |w| n, w = w1, w2

  19. Pumping Lemma for Regular Sets: Let D = (Q, , , q0, F) be a DFA.

    E-Print Network [OSTI]

    Immerman, Neil

    Pumping Lemma for Regular Sets: Let D = (Q, , , q0, F) be a DFA. Let n = |Q|. Let w L(D) s.t. |w| n. Then x, y, z s.t. the following all hold: xyz = w |xy| n |y| > 0, and k 0 (xykz L(D)) Pumping Lemma for Regular Sets #12;proof: Let w L(D), |w| n, w = w1, w2, . . . , wn · u w = w1 w2 w3

  20. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low for using the fuzzy logic methodology for determining the SOC/SOH of an automotive SLI lead acid battery controller. Introduction Automotive start, light ignition (SLI) lead acid batteries are the most widely used

  1. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01T23:59:59.000Z

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  2. Celgard and Entek - Battery Separator Development

    Broader source: Energy.gov (indexed) [DOE]

    Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

  3. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Info (EERE)

    to: navigation, search Name: Panasonic Corporation Energy Company (formerly Matsushita Battery Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of...

  4. Batteries for energy storage: part 2

    SciTech Connect (OSTI)

    Douglas, D.L.; Birk, J.R.

    1983-02-01T23:59:59.000Z

    Explores 4 large battery RandD programs. Two are individual electrochemical systems for electric utility energy storage: zinc-chlorine and sodium sulfur. The third is a high-temperature battery, lithium-iron sulfide, which is expected to be applicable in electric vehicles. Reviews the nearer term EV battery development programs, which include zinc-nickel oxide, iron-nickel oxide, and lead-acid batteries. Suggests that batteries appear to be an ideal companion to coal- and nuclear power-derived electrical energy, to play a key role in electrical generation and distribution networks and to power vehicles. Batteries could augment solarderived electrical energy to attain continuity and reliability of power. Battery systems now under development represent a broad range of possible approaches encompassing extremes of the periodical table, a wide variety of operating temperatures, and limitless design concepts. Along with substantial international emphasis on battery development, this range of approaches suggests that one or more candidate systems can be demonstrated to have commercial viability. While commercial viability can be demonstrated, actual implementation will be deterred by high capital cost, substantial commercialization costs, and buyer reluctance. Concludes that because oil has an unstable future, legislation or regulation coupled with personal inconvenience (rationing or waiting in gas lines) can override the economics of utility battery energy storage.

  5. Coordination Chemistry in magnesium battery electrolytes: how...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited...

  6. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Dr. E. Andrew Payzant, ORNL Project ID lmp02payzant This...

  7. Sandia National Laboratories: lithium-ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion battery Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  8. Anodes for rechargeable lithium batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories News Events Find More Like This Return to Search Anodes for rechargeable lithium batteries United States Patent Patent Number: 6,528,208 Issued: March 4, 2003...

  9. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials...

  10. Sandia National Laboratories: thin-film battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March 20, 2013, in Energy Storage Systems,...

  11. Ambient Operation of Li/Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

    2010-07-01T23:59:59.000Z

    In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

  12. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High...

  13. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High...

  14. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  15. A Bayesian nonparametric approach to modeling battery health

    E-Print Network [OSTI]

    Doshi-Velez, Finale

    The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

  16. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  17. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  18. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  19. Batteries as they are meant to be seen | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries as they are meant to be seen Batteries as they are meant to be seen Released: December 26, 2013 The search for long-lasting, inexpensive rechargeable batteries...

  20. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  1. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  2. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  3. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  4. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  5. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  6. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01T23:59:59.000Z

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  7. NONLINEAR OPTICS AT INTERFACES

    E-Print Network [OSTI]

    Chen, Chenson K.

    2010-01-01T23:59:59.000Z

    N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1977) p.Research Division NONLINEAR OPTICS AT INTERFACES Chenson K.ED LBL-12084 NONLINEAR OPTICS AT INTERFACES Chenson K. Chen

  8. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  9. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  10. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  11. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  12. Factors Affecting the Battery Performance of Anthraquinone-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials....

  13. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9han2012o.pdf More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

  14. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  15. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetime and capacity, opening a path to wider use of these batteries in conjunction with renewable energy sources. Lithium ion batteries power mobile devices and electric cars and...

  16. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  17. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

  18. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  19. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  20. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  1. Batteries - Simulation software aids design ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Simulation software aids design ... Designers of safe high-performance batteries for electric vehicles are getting a hand with a new computational toolset created by a...

  2. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells...

  3. alkaline storage battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  4. alkaline storage batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  5. aerospace flight battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

  6. alkaline zinc batteries quarterly: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

  7. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  8. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  9. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

  10. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  11. advanced battery systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Systems - Part I: SOC Estimation S. J- cles and renewable energy resources is battery energy storage. Advanced battery systems represent Krstic, Miroslav 2 PDE...

  12. 2008 Annual Merit Review Results Summary - 4. Exploratory Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Exploratory Battery Research 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview4.pdf More...

  13. Overview and Progress of United States Advanced Battery Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric...

  14. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success...

  15. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

  16. Overview of the Batteries for Advanced Transportation Technologies...

    Energy Savers [EERE]

    the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the U.S....

  17. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

  18. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

  19. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  20. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  1. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  2. Fact Sheet: Vanadium Redox Flow Batteries (October 2012) | Department...

    Energy Savers [EERE]

    Batteries (October 2012) Fact Sheet: Vanadium Redox Flow Batteries (October 2012) DOE's Energy Storage Program is funding research to develop next-generation vanadium redox flow...

  3. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  4. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  5. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  6. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Material BATT and the Battery Industry Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo, Inc. Advanced cathode materials (Manthiram)...

  7. Battery Company Puts New Nanowire Technology into Production...

    Office of Environmental Management (EM)

    batteries for niche market applications. Silicon offers a number of advantages over pure graphite, the current material of choice for lithium ion batteries. In particular,...

  8. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    of the Electric Fuel Zinc-Air Battery System for EVs,of the Electric Fuel Zinc-air battery for electric vehicles,

  9. Solar Decathlon 2013: Let the Building Begin | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and| Department of: Let the

  10. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01T23:59:59.000Z

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  11. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25T23:59:59.000Z

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  12. Sandia Energy - Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalystsMolten-SaltAssessmentBattery

  13. Optima Batteries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social Jump to:OpenOptima Batteries

  14. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower SystemsRhode Island:Battery Ventures

  15. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  16. Battery requirements for urban electric vans

    SciTech Connect (OSTI)

    Patil, P.G.; Walsh, W.J.

    1986-01-01T23:59:59.000Z

    The Department of Energy (DOE) has carried out an intensive study of battery requirements for electric vans, and developed a mission-directed goals package for each of the principal battery contenders for this application. These goals were based on the assumption that vehicle range and acceleration must be fully met throughout each battery discharge. Under this assumption, the design point is the end-of-life condition, defined as the last cycle in which both power and energy requirements can be fulfilled. A light-weight, low-rolling-resistance van with an improved version of the ac powertrain being developed by Eaton was chosen as the hypothetical baseline vehicle. A modified FUDS cycle was selected along with assumptions of 3 M/sup 2/ frontal area, 0.37 drag coefficient, and a rolling resistance of 0.008. State-of-art characteristics and design interrelationships were developed for each battery technology, and the degree of advance expected by 1995 was projected. For each battery candidate, a least-cost combination of performance and operating characteristics was determined. The analysis included the peak power vs specific energy and depth-of-discharge (DOD), cycle life vs DOD, cost vs onboard energy and power, and kWh size effects. The resultant R and D goals for the electric van battery are presented, including early-in-life and end-of-life energy over the drive cycle, peak power, battery weight and volume, battery life, costs, and allowable frequency of repair.

  17. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

  18. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal...

  19. Alloys of clathrate allotropes for rechargeable batteries

    DOE Patents [OSTI]

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09T23:59:59.000Z

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  20. The BATINTREC process for reclaiming used batteries

    SciTech Connect (OSTI)

    Xia Yueqing; Li Guojian

    2004-07-01T23:59:59.000Z

    The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

  1. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11T23:59:59.000Z

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  2. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  3. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01T23:59:59.000Z

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  4. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  5. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Batteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Batterybatteries with Nano-Li4Ti5O12 electrodes, Advanced Automotive Battery and Ultracapacitor Conference, Third International Symposium on Large Lithium-ion Battery

  6. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  7. Last Revised: 10/2013 Battery Waste Collection Request

    E-Print Network [OSTI]

    Wilcock, William

    Labpack 113 ENV XX MCID: 51618 Chem Id: 317 Codes: None Lead Acid Batteries Recycle 114 ACI XX MCID: 51620 batteries into Mixed, Lithium (button batteries) or Lead Acid. We can collect all types at the same timeLast Revised: 10/2013 Battery Waste Collection Request www.ehs.washington.edu/forms/epo/1943.pdf

  8. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    -ion batteries like on the inside Anode Separator Cathode 500 nm 20 um20 um Anode: Graphite SeparatorMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

  9. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  10. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25T23:59:59.000Z

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  11. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  12. T-695: Avaya Aura Application Server Buffer Overflow in 'cstore.exe' Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Avaya Aura Application Server Buffer Overflow in 'cstore.exe' Lets Remote Users Execute Arbitrary Code.

  13. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01T23:59:59.000Z

    Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cellrevenue – cost). Peak power Battery, full function Battery,sources of distributed power; battery-EDVs, fuel cell EDVs,

  14. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  15. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01T23:59:59.000Z

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  16. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22T23:59:59.000Z

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  17. Battery Chargers | Electrical Power Conversion and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine MarchBattery

  18. 1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries

    E-Print Network [OSTI]

    Lehman, Brad

    1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries Florent Boico, Brad Lehman, Member, IEEE, and Khalil Shujaee Abstract--This paper proposes new solar battery chargers for NiMH batteries. First, it is shown that existing charge

  19. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    . Introduction Hybrid energy storage devices are more efficient than a battery in supplying the total powerCapacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge

  20. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    array on the performance for a diesel/battery/inverter/pv system. It seeks to determine whetherThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 k

  1. Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    dreisner@usnanocorp.com Abstract Automotive starting, lighting, and ignition (SLI) lead acid batteries of SLI lead acid batteries. Since 1997, Villanova University and US Nanocorp, Inc. have collaborated1 Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

  2. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  3. Brain-Computer Interfaces

    E-Print Network [OSTI]

    Aggarwal, Khushbu

    2009-01-01T23:59:59.000Z

    I \\ November 16, 2008). CNN. ’Brain’ in a dish ?ies ?ightREFERENCES Adams, Ray. Brain Computer Interfaces: Psychologyaccessed Biever, Celeste. Brain cells in a dish ?y ?ghter

  4. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    SciTech Connect (OSTI)

    NONE

    1999-09-01T23:59:59.000Z

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  5. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  6. Measuring Energy Efficiency Improvements in Industrial Battery Chargers

    E-Print Network [OSTI]

    Matley, R.

    Measuring Energy Efficiency Improvements in Industrial Battery Chargers Ryan Matley, Sr. Program Manager, Pacific Gas and Electric Company, San Francisco, CA ABSTRACT Industrial battery chargers have provided the energy requirements... to 100 GWh per year. There are three areas of energy losses in the battery and charger system: ? Power Conversion Efficiency (energy out of charger vs. energy into charger) ? Charge Return (energy out of battery vs. energy into battery): some...

  7. U-046: Apache mod_proxy/mod_rewrite Bug Lets Remote Users Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reported in Apache. A remote user can access internal servers. PLATFORM: Apache HTTP Server Service ABSTRACT: Apache modproxymodrewrite Bug Lets Remote Users Access Internal...

  8. U-045: Windows Win32k.sys Keyboard Layout Bug Lets Local Users...

    Broader source: Energy.gov (indexed) [DOE]

    Restrict access to trusted users only. Addthis Related Articles U-047: Siemens Automation License Manager Bugs Let Remote Users Deny Service or Execute Arbitrary Code U-046:...

  9. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Miller, M. , Emerging Lithium-ion Battery Technologies forCharacteristics of Lithium-ion Batteries of Variousand Simulation Results with Lithium-ion Batteries, paper

  10. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  11. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  12. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    in Secondary Lithium Batteries Guoying Chen, Karen E.protection agents in lithium batteries is relatively new,rechargeable lithium batteries with a variety of different

  13. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  14. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  15. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  16. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  17. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01T23:59:59.000Z

    for nickel metal hydride batteries including hysteresis” ,Control of Lithium-Ion Batteries”, Control Systems, IEEE,modeling of lead acid batteries”, Applied Power Electronics

  18. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  19. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  20. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  1. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01T23:59:59.000Z

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  2. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    J. Řstergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  3. The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site

    E-Print Network [OSTI]

    Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

    2009-01-01T23:59:59.000Z

    lead smelting and battery recycling. Areas near Pb recyclingof soil with lead. A battery recycling site is a locationnear an automobile battery recycling facility. The soil was

  4. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  5. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

  6. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  7. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

  8. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

  9. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

  10. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

  11. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

  12. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    E-Print Network [OSTI]

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-01-01T23:59:59.000Z

    Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

  13. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    Performance for Lithium Batteries,” J. Electrochem. Soc. ,developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of Power

  14. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  15. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01T23:59:59.000Z

    Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

  16. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01T23:59:59.000Z

    of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

  17. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

  18. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

  19. Major advances in battery and energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advances in battery and energy storage technologies play a vital role in the efforts to transform our nation's energy economy and reduce our dependence on fossil fuels in the...

  20. How Advanced Batteries Are Energizing the Economy

    Broader source: Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  1. A monolithically integrated thermo-adsorptive battery

    E-Print Network [OSTI]

    McKay, Ian Salmon

    2014-01-01T23:59:59.000Z

    A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150 kJ/L) applications. In the thermal ...

  2. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanbook is intended for lithium-ion scientists and engineersof the state of the Lithium-ion art and in this they have

  3. California Lithium Battery, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the...

  4. Composite Battery Boost | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to...

  5. Battery components employing a silicate binder

    SciTech Connect (OSTI)

    Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

    2011-05-24T23:59:59.000Z

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  6. Sexual Battery Your Rights and Services

    E-Print Network [OSTI]

    Sura, Philip

    Sexual Battery Your Rights and Services If you need support in the healing process from a sexual. · To not be asked or required to take a polygraph examination as a condition of going ahead with the investigation

  7. Sandia National Laboratories: self-charging battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    self-charging battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March 20, 2013, in Energy...

  8. Membrane-less hydrogen bromine flow battery

    E-Print Network [OSTI]

    Braff, William A.

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

  9. Intercalation dynamics in lithium-ion batteries

    E-Print Network [OSTI]

    Burch, Damian

    2009-01-01T23:59:59.000Z

    A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

  10. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H.; Wang, Chong M.; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22T23:59:59.000Z

    We demonstrate a novel electrode material?nitrogen-doped mesoporous carbon (NMC)?for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of VO2+/VO2+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple VO2+/VO2+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple VO2+/VO2+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  11. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30T23:59:59.000Z

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  12. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16T23:59:59.000Z

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  13. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01T23:59:59.000Z

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  14. Negative Electrodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01T23:59:59.000Z

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  15. High-discharge-rate lithium ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22T23:59:59.000Z

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  16. Smart Interfaces superhydrophobe Oberflchen

    E-Print Network [OSTI]

    Kohlenbach, Ulrich

    forschen 24 Smart Interfaces ­ superhydrophobe Oberflächen Superhydrophobe, selbstreinigende-Silica-Hybridteilchen ermöglichen, lang- zeitstabile superhydrophobe Oberflächen einfach herzustellen. Smart Interfaces unten). Blattes runter. Neben der Struktur auf der Mikro- meter-Skala muss das Material, aus dem die

  17. Multicell Li/SOCl/sub 2/ reserve battery

    SciTech Connect (OSTI)

    Baldwin, A.R.; Garoutte, K.F.

    1984-01-01T23:59:59.000Z

    Recent development work on reserve lithium thionyl chloride (RLTC) batteries at SNLA and Honeywell has included safety and performance evaluations. The RLTC battery is being considered for applications that have traditionally been fulfilled by state-of-the-art thermal batteries and reserve silver oxide zinc electrochemical systems. These applications typically demand a reserve battery having a rapid voltage rise, high reliability, operational safety and useful active lifetime ranging from minutes to hours. The RLTC work reported here was directed toward a power battery capable of meeting or exceeding the design requirements. Performance and safety test data indicate that the RLTC battery may be better suited than thermal batteries for some long-life applications. Table II presents a comparison between a Li(Si)/FeS/sub 2/ thermal battery and an RLTC battery, both of which were designed to fulfill the requirements.

  18. Process for the reclamation of battery acid and fluid from expended lead-acid batteries

    SciTech Connect (OSTI)

    Spitz, R.A.

    1990-11-20T23:59:59.000Z

    This patent describes a method for recycling contaminated sulfuric acid from lead acid batteries to reclaimed sulfuric acid fore reuse in the batteries by removing contaminating iron impurities. It comprises: diluting the contaminated sulfuric acid to a concentration between 150 and 230 grams per liter; filtering the sulfuric acid through a first filter means to remove solid impurities.

  19. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    components such as the PV array and PV inverters. The mainstream research is related to maxi- mum power pointBattery Management for Grid-Connected PV Systems with a Battery Sangyoung Park1, Yanzhi Wang2}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources

  20. Genomic instability and bystander effects induced by high-LET radiation Eric J Hall*,1

    E-Print Network [OSTI]

    of the radiobiological effects of high- linear energy transfer (LET) radiation is essential for radiation protectionGenomic instability and bystander effects induced by high-LET radiation Eric J Hall*,1 and Tom K, it has always been accepted that the deleterious effects of ionizing radiation, such as mutation

  1. Math 702 Problem Set #7 Due Mon., April 26, 2004 1. Let Y P1

    E-Print Network [OSTI]

    Harbater, David

    Math 702 Problem Set #7 Due Mon., April 26, 2004 1. Let Y P1 C be a G-Galois branched cover, with branch locus P1, . . ., Pr, where Pj is at x = j. Let P be a base point on the positive imaginary axis. Choose a homotopy basis 1, . . ., r of counterclockwise loops at P, where j winds once around Pj

  2. Debate response: Which rate designs provide revenue stability and efficient price signals? Let the debate continue.

    SciTech Connect (OSTI)

    Boonin, David Magnus

    2009-11-15T23:59:59.000Z

    Let's engage in further discussion that provides solutions and details, not just criticisms and assertions. Let's engage in a meaningful dialogue about the conditions where real-time pricing or critical peak pricing with decoupling or the SFV rate design with a feebate is most effective. (author)

  3. Making Li-air batteries rechargeable: material challenges

    SciTech Connect (OSTI)

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25T23:59:59.000Z

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  4. New flow battery to keep cities lit, green and safe | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New flow battery to keep cities lit, green and safe New flow battery to keep cities lit, green and safe Smaller, cheaper battery's energy density exceeds other flow batteries...

  5. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  6. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.

    2011-10-20T23:59:59.000Z

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  7. Zinc-chlorine battery plant system and method

    DOE Patents [OSTI]

    Whittlesey, Curtis C. (Birmingham, MI); Mashikian, Matthew S. (Huntington Woods, MI)

    1981-01-01T23:59:59.000Z

    A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.

  8. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  9. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01T23:59:59.000Z

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  10. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  11. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  12. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  13. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    include low cost lead-acid batteries. There are several wayscould include low cost lead-acid batteries. Establishing a

  14. SRS Interface Input

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Input 1. MOA's: The contractor has no MOA's in effect at the Tritium Operations (SRTO) level. 2. AIP's: The contractor has no AIP's in effect at the SRTO level. 3....

  15. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01T23:59:59.000Z

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  16. Comparison of various battery technologies for electric vehicles

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01T23:59:59.000Z

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing...

  17. Overview of Computer-Aided Engineering of Batteries (CAEBAT)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Overview of Computer-Aided Engineering...

  18. Microfabricated thin-film batteries : technology and potential applications

    E-Print Network [OSTI]

    Greiner, Julia

    2006-01-01T23:59:59.000Z

    High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

  19. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01T23:59:59.000Z

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  20. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Hu, Qichao

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

  1. How Advanced Batteries Are Energizing the Economy | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a 300 million grant through...

  2. Design and implementation of an automated battery management platform

    E-Print Network [OSTI]

    Toksoz, Tuna

    2012-01-01T23:59:59.000Z

    This thesis describes the design and the implementation of the hardware platform for automated battery management with battery changing/charging capability for autonomous UAV missions with persistency requirement that ...

  3. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

    1989-01-01T23:59:59.000Z

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  4. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01T23:59:59.000Z

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  5. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, T.D.

    1998-04-07T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.

  6. The Superpower behind Iron Oxyfluoride Battery Electrodes | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to drive advances in lithium-ion batteries-the state-of-the-art in rechargeable energy storage. While many different battery components contribute to their performance, the...

  7. NREL/CCSE PEV Battery Second Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2011-09-01T23:59:59.000Z

    This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

  8. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01T23:59:59.000Z

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  9. Water and Gold: A Promising Mix for Future Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

  10. Modeling the operating voltage of liquid metal battery cells

    E-Print Network [OSTI]

    Newhouse, Jocelyn Marie

    2014-01-01T23:59:59.000Z

    A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

  11. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    initial and life cycle costs of the battery. As indicatedbattery chemistries have the potential for longer cycle life which on a life cycle costLife cycle data for the Altairnano 50Ah cell (Altairnano data) Battery cost

  12. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  13. PNGV Battery Performance Testing and Analyses

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

    2002-03-01T23:59:59.000Z

    In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

  14. Solid polymer electrolytes for rechargeable batteries

    SciTech Connect (OSTI)

    Narang, S.C.; Macdonald, D.D.

    1990-11-01T23:59:59.000Z

    SRI International has synthesized novel solid polymer electrolytes for high energy density, rechargeable lithium batteries. We have systematically replaced the oxygens in PEO with sulfur to reduce the strong hard-acid hard-base interaction, while retaining the favorable helical conformation of the polymer backbone. The best polymer electrolyte produced so far is suitable for a medium power battery. In another effort, we have synthesized single ion conducting polymer electrolytes based on polyethyleneimine, polyphosphazene, and polysiloxane backbones. The single ion conducting polymer electrolytes will allow greater depth of charge and discharge by preventing dc polarization. The best conductivity so far with single ion conductors is 1.0 {times} 10{sup {minus}3} Scm{sup {minus}1} at room temperature. Further optimization of electrical and mechanical properties will allow the use of these polymer electrolytes in the fabrication of rechargeable lithium batteries. 8 tabs.

  15. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09T23:59:59.000Z

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  16. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01T23:59:59.000Z

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  17. Making better batteries with metal oxide & graphene composites

    SciTech Connect (OSTI)

    None

    2011-03-01T23:59:59.000Z

    Learn how PNNL and Princeton scientists create better materials for batteries, materials that assemble on their own into durable nanocomposites.

  18. Making better batteries with metal oxide & graphene composites

    ScienceCinema (OSTI)

    None

    2012-12-31T23:59:59.000Z

    Learn how PNNL and Princeton scientists create better materials for batteries, materials that assemble on their own into durable nanocomposites.

  19. NREL Battery Thermal and Life Test Facility (Presentation)

    SciTech Connect (OSTI)

    Keyser, M.

    2011-05-01T23:59:59.000Z

    This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

  20. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...