Powered by Deep Web Technologies
Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

2

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and...

3

NREL: Distributed Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects Photo of two NREL engineers sitting in front of two computer monitors, discussing a project. NREL engineers work on data capture for micro-grid synchronization waveforms. Photo by Dennis Schroeder, NREL. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our projects: Codes and standards Data collection and visualization Hawaii Clean Energy Initiative Microgrids Power systems modeling Solar Distributed Grid Integration (SunShot) Technology development Vehicle-to-Grid (V2G) Wind2Battery Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards

4

An Economic Analysis of Used Electric Vehicle Batteries Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Used Electric Vehicle Batteries Integrated into Commercial Building Microgrids Title An Economic Analysis of Used Electric Vehicle Batteries Integrated into...

5

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to...

6

FCT Technology Validation: Integrated Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

7

Integrated Project Team RM  

Energy.gov (U.S. Department of Energy (DOE))

The Integrated Project Team (IPT) is an essential element of the Department’s acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals...

8

Hanford Tank Integrity Project  

Jordan Follett DST Project Plan and SST Use jordan_r_follet@rl.gov Rick Rast Structural Lead richard_s_rast@rl.gov Ted Venetz SST Integrity Lead theodore_j_venetz@rl.gov

9

Integrated Project Team RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Project Team (IPT) Review Module Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM

10

NREL/CCSE PEV Battery Second Use Project (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

11

NREL/CCSE PEV Battery Second Use Project (Presentation)  

SciTech Connect

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

12

Advanced lead acid battery development project. Final report  

Science Conference Proceedings (OSTI)

This project involved laboratory and road testing of the Horizon (registered) advanced lead acid batteries produced by Electrosource, Inc. A variety of electric vehicles in the fleet operated by the Sacramento Municipal Utility District and McClellan Air Force Base were used for road tests. The project was sponsored by the Defense Advanced Research Projects Agency under RA 93-23 entitled Electric Vehicle Technology and Infrastructure. The Horizon battery is a valve regulated, or sealed, lead acid battery produced in a variety of sizes and performance levels. During the project, several design and process improvements on the Horizon battery resulted in a production battery with a specific energy approaching 45 watt-hours per kilogram (Whr/kg) capable of delivering a peak current of 450 amps. The 12 volt, 95 amp-hour (Ahr) Horizon battery, model number 12N95, was placed into service in seven (7) test vehicles, including sedans, prototype lightweight electric vehicles, and passenger vans. Over 20,000 miles have been driven to date on vehicles powered by the Horizon battery. Road test results indicate that when the battery pack is used with a compatible charger and charge management system, noticeably improved acceleration characteristics are evident, and the vehicles provide a useful range almost 20% greater than with conventional lead-acid batteries.

NONE

1997-02-01T23:59:59.000Z

13

New York Power Authority Sodium Sulfur Battery Storage Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Storage Project Yan Kishinevsky New York Power Authority LI Bus Issues LIPA Tariff Time Energy (kWh) Demand (kWmonth) I, off peak Mid-7am 0.0440 - II, peak...

14

An analysis of battery electric vehicle production projections  

E-Print Network (OSTI)

In mid 2008 and early 2009 Deutsche Bank and The Boston Consulting Group each released separate reports detailing projected Battery Electric Vehicle production through 2020. These reports both outlined scenarios in which ...

Cunningham, John Shamus

2009-01-01T23:59:59.000Z

15

HLW System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

l l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team Integrated Project Team Integrated Project Team Integrated Project Team Steve Schneider Steve Schneider Office of Engineering and Technology High Level Waste Corporate Board March 5, 2009 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. 1 Introduction Introduction Introduction Introduction Challenges and Priorities High Level Waste Strategic Initiative Results High Level Waste System Integrated

16

Update on the Battery Projects at NREL (Presentation)  

DOE Green Energy (OSTI)

NREL collaborates with industry, universities, and other national laboratories as part of the DOE integrated Energy Storage Program to develop advanced batteries for vehicle applications. Our efforts are focused in the following areas: thermal characterization and analysis, evaluation of thermal abuse tolerance via modeling and experimental analysis, and implications on battery life and cost. Our activities support DOE goals, FreedomCAR targets, the USABC Tech Team, and battery developers. We develop tools to support the industry, both through one-on-one collaborations and by dissemination of information in the form of presentations in conferences and journal publications.

Santhanagopalan, S.; Pesaran, A.

2010-10-01T23:59:59.000Z

17

Integrated thin film batteries on silicon  

E-Print Network (OSTI)

Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next ...

Ariel, Nava

2005-01-01T23:59:59.000Z

18

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

cell (Altairnano data) Battery cost considerations It is ofnot dominate the total battery cost. Note that in generala detailed lithium battery cost model that is applicable to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

19

Roxboro Integrated Automation Project  

Science Conference Proceedings (OSTI)

EPRI, Carolina Power & Light (CP&L), and ASEA Brown Boveri (ABB) formed an alliance to develop and demonstrate automation technologies at CP&LOs Roxboro Plant. This alliance is governed by a Memorandum of Understanding that allows all parties to share in the success of the products developed, and to contribute to their commercialization. This research project is intended to demonstrate the economic benefits of efficient and useful plant-wide automation technologies for the utility industry. Successful im...

1997-01-12T23:59:59.000Z

20

National Bioenergy Center Biochemical Platform Integration Project  

DOE Green Energy (OSTI)

April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

Not Available

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

22

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology andAltairnano EIG Lithium-ion battery modules available for

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

23

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oak Ridge Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated...

24

Projected integrated farm in Nepal  

SciTech Connect

A proposed integrated crop-livestock agro-processing complex to be based at Janakpur, Nepal is described. This project was proposed by the Agricultural Development Bank and is a small effort towards creating a self-sufficient rural community similar to one reported in China. The plan of the farm aims to achieve the integration of several agricultural, aquacultural, solar energy and biogas energy components with complete recycling of waste. These include biogas plants with associated slurry and storage tanks for operating a 3-kW generator, a 3.7-kW pump, providing domestic cooking, as well as energy to operate a fruit-processing plant. Energy for water heating, crop drying and refrigeration will be supplied by solar energy. Fish, livestock, fruits and vegetables will be produced by the farm.

Dhital, K.

1980-01-01T23:59:59.000Z

25

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

26

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

27

NSLS-II Integrated Project Team (IPT)  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Integrated Project Team NSLS-II Integrated Project Team DOE uses an integrated project teaming approach for managing the NSLS-II Project. This Integrated Project Team (IPT), organized and led by the NSLS-II Federal Project Director, is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NSLS-II Project will consist of members from both DOE and the contractor, Brookhaven Science Associates (BSA). The team membership will change as the project progresses from initiation to closeout to ensure the necessary skills are always represented to meet the project's needs.

28

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

29

NEDO Research Related to Battery Storage Applications for Integration of  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook.

30

Integrated Development Projects Ltd | Open Energy Information  

Open Energy Info (EERE)

Development Projects Ltd Development Projects Ltd Jump to: navigation, search Name Integrated Development Projects Ltd Place Devon, United Kingdom Zip EX18 7BL Sector Biomass Product The company's emphasis is placed on economic development in rural areas, and deplying biomass and municipal waste for electricity and CHP both in the UK and overseas. Their foundation project in North Devon includes a 40MWe biomass electricity plant. References Integrated Development Projects Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Integrated Development Projects Ltd is a company located in Devon, United Kingdom . References ↑ "Integrated Development Projects Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Integrated_Development_Projects_Ltd&oldid=347004"

31

NREL: Transmission Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Integration Study Oahu Wind Integration and Transmission SIND Toolkit Electricity Market Design Energy Imbalance Markets Flexible Energy Scheduling Tool for...

32

Lithium Ion Battery Modeling using Orthogonal Projections And Descriptor Form.  

E-Print Network (OSTI)

??This thesis focuses on computationally efficient methods to solve the equations of the Doyle Fuller Newman electrochemical battery model. The two methods used in this… (more)

Beeney, Michael

2013-01-01T23:59:59.000Z

33

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

of batteries done at Argonne National Laboratory for theon those used in a recent Argonne Lab study (References 7-about 30%. Researchers at Argonne National Laboratory (ANL)

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

34

An integrated model of the lithium/thionyl chloride battery  

DOE Green Energy (OSTI)

The desire to reduce the time and cost of design engineering on new components or to validate existing designs in new applications is stimulating the development of modeling and simulation tools. The authors are applying a model-based design approach to low and moderate rate versions of the Li/SOCl{sub 2} D-size cell with success. Three types of models are being constructed and integrated to achieve maximum capability and flexibility in the final simulation tool. A phenomenology based electrochemical model links performance and the cell design, chemical processes, and material properties. An artificial neural network model improves computational efficiency and fills gaps in the simulation capability when fundamental cell parameters are too difficult to measure or the forms of the physical relationships are not understood. Finally, a PSpice-based model provides a simple way to test the cell under realistic electrical circuit conditions. Integration of these three parts allows a complete link to be made between fundamental battery design characteristics and the performance of the rest of the electrical subsystem.

Jungst, R.G.; Nagasubramanian, G.; Ingersoll, D.; O`Gorman, C.C.; Paez, T.L. [Sandia National Labs., Albuquerque, NM (United States); Jain, M.; Weidner, J.W. [Univ. of South Carolina, Columbia, SC (United States)

1998-06-08T23:59:59.000Z

35

MHD Integrated Topping Cycle Project  

DOE Green Energy (OSTI)

This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

Not Available

1992-02-01T23:59:59.000Z

36

Integrating SOC Dependent Material Properties into Li-Ion Battery ...  

Science Conference Proceedings (OSTI)

During battery operation, Li flows into and out of electrode particles, causing microstructural changes and deformation-induced degradation. A variety of models ...

37

Virtual Project Data Integration Testbed  

Science Conference Proceedings (OSTI)

... these findings to emphasize research and development ... and more productive project delivery. These include API, ASHRAE, ASME, buildingSMART ...

2010-02-19T23:59:59.000Z

38

ESS 2012 Peer Review - Painesville Municipal Electric Power Vanadium Redox Battery Demo Project - Jodi Startari, Ashlawn Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Electric Power Vanadium Redox Battery Demonstration Project Jodi Startari Ashlawn Energy LLC Briefing Overview * Painesville Municipal Electric Power Plant Project Synopsis * Vanadium Redox Flow Battery Technology * City of Painesville Municipal Electric Plant History * Project Multiple Objectives and Additional Detail * Project Risk Analysis presented at previous Peer Review * Project to date progress * Cost Distribution * Summary/Conclusions * Future Tasks * Questions US Produced Vanadium Redox Flow Battery for Bulk Storage, Peak Shaving * 8 MW Hour redox flow battery (1MW 8 hours) * To be installed at Painesville Municipal Electric Plant (PMEP), a 32 MW coal fired facility * Most efficient PMEP operation is steady state at 26 MW (lowest emissions, lowest operating cost)

39

ARPA-E's 19 New Projects Focus on Battery Management and Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E's 19 New Projects Focus on Battery Management and Storage ARPA-E's 19 New Projects Focus on Battery Management and Storage ARPA-E's 19 New Projects Focus on Battery Management and Storage August 7, 2012 - 1:17pm Addthis Principal Deputy Director Eric Toone, former ARPA-E Director Arun Majumdar, the Honorable Bart Gordon and IBM Research Senior Director Kathleen Kingscott discuss the future of energy innovation at an ITIF event on August 2. | Energy Department photo. Principal Deputy Director Eric Toone, former ARPA-E Director Arun Majumdar, the Honorable Bart Gordon and IBM Research Senior Director Kathleen Kingscott discuss the future of energy innovation at an ITIF event on August 2. | Energy Department photo. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The 19 new ARPA-E projects span 14 states.

40

PARS II - Integrated Project Team Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Project Team Meeting Integrated Project Team Meeting John Makepeace (OECM) Ken Henderson (EES), Norm Ayers (EES) November 19, 2009 2 2 Agenda * Brief Review Last Meeting * List of Action Items * Project Milestones * Communications Channels for Deployment * Requesting Contacts for EM Group 1 & 2 Projects * Information Package to Contractor * Letter of Introduction * CPP Upload Document * Project Data Template * New Action Items * List of EM Group 1 & 2 Projects 3 Action Items Item Action Item Status 1 EES will write the marketing cover letter for the Information Package. C 2 EES will deliver the Preliminary Information Package to OECM by Monday Nov 16, close of business, for review. C 3 A placeholder of COB Tuesday Nov 17 was established for EES to give OECM the Information Package. C 4 Distribution of the package will commence after review by OECM.

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

42

Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport  

SciTech Connect

The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

2013-07-01T23:59:59.000Z

43

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

44

Salt Repository Project schedule integration  

SciTech Connect

The Nuclear Waste Policy Act of 1982 defined the process and schedule leading to construction of a nuclear repository available to accept commercial nuclear waste by 1998. The significance of the efforts reported in this paper are that technical staff become equally convinced of the merit of scheduling when time permits, or magnitude requires, that they be intimately involved in the scheduling process. This particular project was also unique in the variety of technical disciplines forced to interact in order to determine schedule constraints between groups. This required a strong and experienced task force to bring the groups together, promulgate the technical principles of the scheduling methodology, and distill the proper logic. Finally, it was a necessity to be end-date constrained, and this required that management mandate realistic scopes of work as well as aggressive assumptions regarding durations of certain critical path activities.

Kopp, H.D.; LaFountain, L.J. (Battelle Memorial Institute, Amarillo, TX (USA))

1988-01-01T23:59:59.000Z

45

Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report  

DOE Green Energy (OSTI)

This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

NONE

1996-05-30T23:59:59.000Z

46

Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage  

Science Conference Proceedings (OSTI)

GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

None

2010-10-01T23:59:59.000Z

47

Multi-Mode Transportable Battery Energy System for Salt River Project: Volume 1: Design and Installation  

Science Conference Proceedings (OSTI)

Energy storage technologies are likely to find new roles in a restructured electric utility environment. This project designed and deployed a commercial prototype of an innovative multi-mode transportable battery system capable of a broad functional role in the new business environment.

1999-06-29T23:59:59.000Z

48

Guide to Integrating Renewable Energy in Federal Construction: Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Construction to someone by E-mail Project Construction to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Project Construction on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Project Construction on AddThis.com... Home Introduction Assessing Renewable Energy Options Planning, Programming, & Budgeting

49

Planar Sodium Metal Halide Battery for Renewable Integration and ...  

Science Conference Proceedings (OSTI)

In this work we will present a sodium ß”-alumina cell designed for widespread renewable energy integration and electrical grid applications. The new generation ...

50

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

51

Update on DOE Integrated Energy Systems Projects  

E-Print Network (OSTI)

The Integrated Energy Systems Program, Office of Industrial Programs U. S. Department of Energy has responsibilities in diverse areas of Industrial Energy Conservation. These activities include Energy Analysis and Diagnostic Centers (EADC) providing energy audit support to small and medium sized manufacturing plants, technology transfer support in conjunction with industrial sector companies and trade associations, funding and direction of the Energy Integrated Farm program, administration of the Industrial Energy Efficiency Improvement Program, and the Industrial Sector Technology Use Model (ISTUM). Recent technology transfer activity with the major industrial trade associations and manufacturing firms has been for the development of industrial energy conservation guides, publication of association conservation seminar proceedings, and cooperative assistance in selected projects designed to enhance conservation in industrial manufacturing activities. This paper briefly describes specific federal industrial conservation program achievements and current and planned technology transfer and industrial conservation projects extending into 1986.

Williams, T. E., Jr.

1984-01-01T23:59:59.000Z

52

TMI-2 Vessel Investigation Project integration report  

Science Conference Proceedings (OSTI)

The Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP) was an international effort that was sponsored by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. The primary objectives of the VIP were to extract and examine samples from the lower head and to evaluate the potential modes of failure and the margin of structural integrity that remained in the TMI-2 reactor vessel during the accident. This report presents a summary of the major findings and conclusions that were developed from research during the VIP. Results from the various elements of the project are integrated to form a cohesive understanding of the vessel`s condition after the accident.

Wolf, J. R.; Rempe, J. L.; Stickler, L. A.; Korth, G. E.; Diercks, D. R.; Neimark, L. A.; Akers, D W; Schuetz, B. K.; Shearer, T L; Chavez, S. A.; Thinnes, G. L.; Witt, R. J.; Corradini, M L; Kos, J. A. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1994-03-01T23:59:59.000Z

53

Category:Smart Grid Projects - Integrated and Crosscutting Systems | Open  

Open Energy Info (EERE)

Smart Grid Projects - Integrated and Crosscutting Systems Smart Grid Projects - Integrated and Crosscutting Systems Jump to: navigation, search Smart Grid Projects - Integrated and Crosscutting Systems Pages in category "Smart Grid Projects - Integrated and Crosscutting Systems" The following 37 pages are in this category, out of 37 total. B Burbank Water and Power Smart Grid Project C Central Lincoln People's Utility District Smart Grid Project City of Anaheim Smart Grid Project City of Auburn, IN Smart Grid Project City of Fort Collins Utilities Smart Grid Project City of Leesburg, Florida Smart Grid Project City of Naperville, Illinois Smart Grid Project City of Wadsworth, OH Smart Grid Project Cuming County Public Power District Smart Grid Project D Detroit Edison Company Smart Grid Project Duke Energy Business Services LLC Smart Grid Project

54

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

Kang, Jin Sung

2012-01-01T23:59:59.000Z

55

Integral inverter/battery charger for use in electric vehicles. Final report  

SciTech Connect

The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components as a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95%, respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 hp) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92 to 94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

Thimmesch, D.

1983-09-01T23:59:59.000Z

56

An SCR inverter with an integral battery charger for electric vehicles  

SciTech Connect

A thyristor-based inverter/charger for use in electric passenger vehicles is described, and prototype charger test results are presented. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The integral charger employs the inverter commutation components as a resonant ac/dc converter rated at 3.6 kW. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25kWh propulsion battery in 8 h from a 220-V ac line. Charger efficiency and power factor at an output power of 3.6 kW are 86 and 95 percent, respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132-V propulsion battery, can provide a peak shaft power of 34 kW (45 hp) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. The combined ac inverter/charger package weighs 47 kg (103 lb).

Thimmesch, D.

1985-07-01T23:59:59.000Z

57

Major Risk Factors to the Integrated Facility Disposition Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the...

58

Projective metrizability problem and formal integrability  

E-Print Network (OSTI)

The projective metrizability problem can be formulated as follows: under what conditions the geodesics of a given spray coincide with the geodesics of some Finsler space, as oriented curves. In Theorem 3.8 we reformulate the projective metrizability problem for a spray in terms of a first order partial differential operator $P_1$ and a set of algebraic conditions on semi-basic 1-forms. We discuss the formal integrability of $P_1$ using two sufficient conditions provided by Cartan-K\\"ahler Theorem. We prove in Theorem 4.2 that the symbol of $P_1$ is involutive and hence one of the two conditions is always satisfied. In Theorem 4.3 we prove that there is only one obstruction to the second condition for the formal integrability of $P_1$, and this obstruction is due to the curvature tensor of the induced nonlinear connection. When the curvature obstruction is satisfied, the projective metrizability problem reduces to the discussion of the algebraic conditions, which as we show are always satisfied. Based on these...

Bucataru, Ioan

2011-01-01T23:59:59.000Z

59

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Action and Alternatives 2-3 Proposed Action and Alternatives 2-3 Figure 1 Proposed 230-kV Towers and Rights-of-Way Klondike III/Biglow Canyon Wind Integration Project Bonneville Power Administration Proposed Action and Alternatives 2-4 Figure 1, continued CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. 32 Figure 1. Region map of wind projects proposed for Sherman County. D e s c h u t e s Ri ver C a n y o n C o l u m b ia R i v e r Hwy 19 H w y 2 0 6 H w y 9 7 I 8 4 Grass Valley Moro Wasco Biggs Arlington Condon Fourmile Canyon McDonald Ferry Biggs Junction Deschutes River Crossing The Dalles Complex RM 15.9-16.8 RM 40 Sherman Co Wasco Co G i l l i a m C o Gilliam Co Morrow Co Rowena Plateau Historic Columbia River Highway John D a y R i v e r C a n y o n P:\B\BPAX00000324\0600INFO\GS\arcmap\figures\visiblity_tech_report\fig2_visual_resources_or.mxd January 9, 2006

60

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Integrated Project Team NEXT Integrated Project Team NEXT stands for NSLS-II Experimental Tools, a set of six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the U.S. Department of Energy (DOE). DOE uses an integrated project teaming approach for managing the NEXT Project. This Integrated Project Team (IPT) is organized and led by the NSLS-II Federal Project Director. It is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NEXT Project will consist of members from both DOE and the

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NSLS-II | ABBIX Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

ABBIX Integrated Project Team ABBIX Integrated Project Team ABBIX stands for Advanced Beamlines for Biological Investigations with X-rays, a set of three beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the National Institutes of Health. ABBIX uses DOE project management practices and systems, including an integrated project teaming management approach. This Integrated Project Team (IPT), organized and led by the ABBIX Project Manager, is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the ABBIX Project Manager in successfully executing the project. The IPT for the ABBIX Project will consist of

62

Secretarial Memorandum on Integrating Project Management with NEPA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Memorandum on Integrating Project Management with NEPA Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making June 12, 2012 - 4:14pm Addthis Declaring that "Compliance with [NEPA] is a pre-requisite to successful implementation of DOE programs and projects," the Secretary has signed a memorandum on "Improved Decision Making through the Integration of Program and Project Management with National Environmental Policy Act Compliance." The memo urges better use of existing tools and guidance, and highlights principles for strengthening NEPA compliance - for example, through Field and Headquarters teamwork, realistic schedules, and performance

63

The Technology Integration Outreach Project: Developing "Best Practices" Curriculum Units  

Science Conference Proceedings (OSTI)

The Technology Integration Outreach Project (TIOP) is a joint project between the Southeast Interactive Long Distance Learning Consortium (SILDL), and University of South Dakota School of Education's Professional Development Center (PDC) and it's Learning ...

Mary Engstrom; Rosanne Yost; Ray Thompson; Don Versteeg

2002-12-01T23:59:59.000Z

64

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

65

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery would enhance energy and economic security  

E-Print Network (OSTI)

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery of the rustbelt battery could be integrated into a smart grid--charging up when use is low, then adding of the power grid and accelerate the addition of solar and wind power supplies. The project was one of 66

Rollins, Andrew M.

66

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

2011-01-01T23:59:59.000Z

67

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

68

The Virtual Project Data Integration Testbed  

Science Conference Proceedings (OSTI)

... computer integrated construction, operations and maintenance) and supporting databases and documentation for a power plant or water treatment ...

2010-10-05T23:59:59.000Z

69

Choquet integrals as projection operators for quantified tomographic reconstruction  

Science Conference Proceedings (OSTI)

In this paper, we propose to investigate and analyze a new method for performing quantified projection and back-projection in emission tomography. This method is based on using non-summative kernels, capacities and asymmetric Choquet integral to obtain ... Keywords: Capacity, Choquet integral, Hough transform, Quantification, Radon transform, Single photon emission computed tomography

Agnès Rico; Olivier Strauss; Denis Mariano-Goulart

2009-01-01T23:59:59.000Z

70

An Experiment to Improve Cost Estimation and Project Tracking for Software and Systems Integration Projects  

E-Print Network (OSTI)

An Experiment to Improve Cost Estimation and Project Tracking for Software and Systems Integration to improve cost estimation and project tracking. 1. Introduction In order to remain competitive, ICL (as well for integration projects, to reduce time to market and to reduce costs without detriment to the quality

Henderson, Peter

71

Integrating Ecological Data: Notes from the Grasslands ANPP Data Integration Project  

E-Print Network (OSTI)

Integrating Ecological Data: Notes from the Grasslands ANPP Data Integration Project Judith B, Kansas State University, Manhattan, KS 66506, 7 South African National Parks, Scientific Services across sites. The Grasslands ANPP Data Integration (GDI) project has brought together experts in ecology

72

Second-order accurate projective integrators for multiscale problems  

Science Conference Proceedings (OSTI)

We introduce new projective versions of second-order accurate Runge-Kutta and Adams-Bashforth methods, and demonstrate their use as outer integrators in solving stiff differential systems. An important outcome is that the new outer integrators, when ... Keywords: Explicit, Multiscale, Parabolic, Stability, Stiff, Teleprojective integration

Steven L. Lee; C. William Gear

2007-04-01T23:59:59.000Z

73

A design of an integrated document system for project management  

Science Conference Proceedings (OSTI)

The paper describes a design model for an integrated document system for project management, which takes into account the key requirement of ensuring consistent and high-quality project management documentation. The model is based on structured documents ... Keywords: document system, model, project management

Iulian Intorsureanu; Rodica Mihalca; Adina Uta; Anca Andreescu

2009-06-01T23:59:59.000Z

74

Spent nuclear fuel project integrated schedule plan  

SciTech Connect

The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

Squires, K.G.

1995-03-06T23:59:59.000Z

75

The Solar-to-Battery and Community Energy Storage Project Demonstrations at SolarTAC: 2013 Results and Findings  

Science Conference Proceedings (OSTI)

Xcel Energy and EPRI are jointly researching two battery-based energy storage projects at the Solar Technology Acceleration Center (SolarTAC) in Aurora, Colorado. Each pilot aims to discern the technical and economic value of utilizing energy storage as a tool for managing growing penetrations of variable renewable resources on the grid network, particularly distributed photovoltaics (PV).The first initiative, known as the Community Energy Storage (CES) project, is demonstrating a ...

2013-12-10T23:59:59.000Z

76

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

lead to improvement in the capacity of a battery for UAVs.battery characteristics under mechanical static loading: charge/discharge capacitybattery characteristics under mechanical static loading: charge/discharge capacity

Kang, Jin Sung

2012-01-01T23:59:59.000Z

77

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumulative Impacts Analysis For Avian Cumulative Impacts Analysis For Avian Resources From Proposed Wind Projects In Sherman County, Washington CUMULATIVE IMPACTS ANALYSIS FOR AVIAN RESOURCES FROM PROPOSED WIND PROJECTS IN SHERMAN COUNTY, WASHINGTON FINAL REPORT March 2006 Prepared For: Bonneville Power Administration 905 NE 11th Avenue Portland, Oregon, 97232 Prepared By: David Young, Kimberly Bay, & Victoria Poulton Western EcoSystems Technology, Inc. 2003 Central Avenue Cheyenne, Wyoming 82001 CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. i TABLE OF CONTENTS 1.0 INTRODUCTION AND BACKGROUND ............................................................................. 1 2.0 METHODS ...............................................................................................................................

78

Photovoltaic concentrator technology development project. Sixth project integration meeting  

DOE Green Energy (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

79

PARS II - Integrated Project Team Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Makepeace (OECM) Kai Mong (EES), Ken Henderson (EES), Norm Ayers (EES) October 29, 2009 2 2 Agenda * PARS II OA & CPP Software * PARS II Deployment Timeline * Deployment Overview * Organizational Roles & Responsibilities * Project List and Schedule * Next Steps 3 PARS II OA & CPP Software * Oversight & Assessment (OA) * Web interface collects summary-level project data: status assessments, forecasts, PB, KPPs * Used by FPD, Program and OECM each month * Contractor Project Performance (CPP) * Web interface for uploading contractor's project files: earned value, schedule, variance, MR, risk * Used by contractor each month 4 PARS II Deployment Timeline 4 11/1/2009 12/1/2009 1/1/2010 2/1/2010 3/1/2010 4/1/2010 5/1/2010 6/1/2010 7/1/2010 8/1/2010 9/1/2010 10/1/2010 11/1/2010

80

Water Integration Project Science Strategies White Paper  

SciTech Connect

This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

Alan K. Yonk

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

82

The CASA Integrated Project 1 Networked Radar System  

Science Conference Proceedings (OSTI)

This paper describes the Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project 1 (IP1) weather radar network, the first distributed collaborative adaptive sensing test bed of the Engineering Research Center for Collaborative ...

Francesc Junyent; V. Chandrasekar; D. McLaughlin; E. Insanic; N. Bharadwaj

2010-01-01T23:59:59.000Z

83

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

84

NREL: Biomass Research - Projects in Integrated Biorefinery Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Integrated Biorefinery Processes Projects in Integrated Biorefinery Processes A photo of a control room with four large computer screens. A man and a woman are looking at the screens. The Thermochemical Process Development Unit is equipped with sophisticated process monitoring and operation control systems. NREL is focused on integrating all the biomass conversion unit operations. With extensive knowledge of the individual unit operations, NREL is well-positioned to link these operations together at the mini-pilot and pilot scales. Among the integrated biorefinery projects are: Sorghum to Ethanol Research Initiative Sorghum shows promising characteristics as a feedstock for biofuel production. However, little basic research data exists. NREL is performing integrated research on sorghum by studying it at every step along the

85

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

86

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

87

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

88

Dismantling (H)EV Battery Packs, an Integral Part of Umicore's ...  

Science Conference Proceedings (OSTI)

June 2012, a battery pack dismantling facility was opened in Maxton, NC based on ... Cost, Energy, Emissions, and Resource Assessment of the Production of ...

89

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

90

Major Risk Factors to the Integrated Facility Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

91

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008  

SciTech Connect

July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D. J.

2008-12-01T23:59:59.000Z

92

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009  

Science Conference Proceedings (OSTI)

January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Not Available

2009-04-01T23:59:59.000Z

93

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009  

DOE Green Energy (OSTI)

April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-08-01T23:59:59.000Z

94

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #17, October-December 2007  

DOE Green Energy (OSTI)

October to December, 2007 edition of the newsletter of the Biochemical Platform Process Integration project.

Schell, D.

2008-01-01T23:59:59.000Z

95

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

DOE Green Energy (OSTI)

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

96

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009  

DOE Green Energy (OSTI)

October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2010-01-01T23:59:59.000Z

97

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007  

DOE Green Energy (OSTI)

July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

Schell, D.

2007-07-01T23:59:59.000Z

98

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network (OSTI)

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

99

ESS 2012 Peer Review - Tehachapi Wind Energy Storage Project Using Li-Ion Batteries - Christopher Clarke, SCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tehachapi Storage Project (TSP) Tehachapi Storage Project (TSP) American Recovery and Reinvestment Act Funded Project Christopher R. Clarke - Southern California Edison (SCE) christopher.r.clarke@sce.com Examples of Wind Generation in the Tehachapi Wind Resource Area August 2012 June 2012 May 2012 February 2012 April 2012 Progress To Date * Facility construction expected to complete in September 2012 * First Power Conversion System installed September 13, 2012 * A123 to ship initial battery equipment for delivery week of September 24, 2012 Future Major Milestones * September 2012 - Completion of BESS facility * October 2012 - Initial installation * November 2012 - Installation of second Power Conversion Subsystem * Q1 2013 - Install balance of equipment and commissioning * Q2 2013 - Start of 2 year M&V testing and reporting

100

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays  

E-Print Network (OSTI)

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 harvest and storage processes. This power pack incorporates a series-wound dye- sensitized solar cell material.11,15 Compared with other integrated solar power supplies,16,17 double-sided TiO2 NTs with large

Wang, Zhong L.

102

Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline  

Science Conference Proceedings (OSTI)

This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

Gelles, C. M.; Sheppard, F. R.

2002-02-26T23:59:59.000Z

103

EWIS European wind integration study (Smart Grid Project) (Czech Republic)  

Open Energy Info (EERE)

study (Smart Grid Project) (Czech Republic) study (Smart Grid Project) (Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493°, 15.472962° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.817493,"lon":15.472962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Grid Integration of Offshore Windparks (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

of Offshore Windparks (Smart Grid Project) of Offshore Windparks (Smart Grid Project) Jump to: navigation, search Project Name Grid Integration of Offshore Windparks Country Germany Coordinates 51.165691°, 10.451526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.165691,"lon":10.451526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Integrated monitoring and surveillance system demonstration project: Phase I accomplishments  

Science Conference Proceedings (OSTI)

The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

1997-01-15T23:59:59.000Z

106

Utility Battery Storage Systems Program Report for FY92  

DOE Green Energy (OSTI)

This report documents the fiscal year 1992 activities of the, Utility Battery Storage Systems Program (UBS) of the US Department of Energy (DOE), Office of Energy Management (OEM). The UBS program is conducted by Sandia National Laboratories (SNL). UBS is responsible for the engineering development of integrated battery systems for use in utility-energy-storage (UES) and other stationary applications. Development is accomplished primarily through cost-shared contracts with industrial organizations. An important part of the development process is the identification, analysis, and characterization of attractive UES applications. UBS is organized into five projects: Utility Battery Systems Analyses; Battery Systems Engineering; Zinc/Bromine; Sodium/Sulfur; Supplemental Evaluations and Field Tests. The results of the Utility Systems Analyses are used to identify several utility-based applications for which battery storage can effectively solve existing problems. The results will also specify the engineering requirements for widespread applications and motivate and define needed field evaluations of full-size battery systems.

Butler, P.C.

1993-01-01T23:59:59.000Z

107

DOE G 413.3-18A, Integrated Project Team Guide for Formation and Implementation  

Directives, Delegations, and Requirements

The guide provides detailed guidance of the preferred processes to form and implement an Integrated Project Team (IPT) in support of proper project execution ...

2012-02-03T23:59:59.000Z

108

NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)  

Science Conference Proceedings (OSTI)

CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with permitting, scheduling, costs, stakeholders and technical issues. To meet the customer's needs and deadlines, the project was managed with conscientious discipline and application of sound project management principles in the Project Management Institute's Project Management Body of Knowledge. Several factors contributed to project success. Extensive planning and preparation were conducted, which was instrumental to contract and procurement management. Anticipating issues and risks, CH2M HILL prepared well defined scope and expectations, particularly for safety. To ensure worker safety, the project management team incorporated CH2M HILL's Integrated Safety Management System (ISMS) into the project and included safety requirements in contracting documents and baseline planning. The construction contractor DelHur Industries, Inc. adopted CH2M HILL's safety program to meet the procurement requirement for a comparable ISMS safety program. This project management approach contributed to an excellent safety record for a project with heavy equipment in constant motion and 63,555 man-hours worked. The project manager worked closely with ORP and Ecology to keep them involved in project decisions and head off any stakeholder or regulatory concerns. As issues emerged, the project manager addressed them expeditiously to maintain a rigorous schedule. Subcontractors and project contributors were held to contract commitments for performance of the work scope and requirements for quality, budget and schedule. Another element of project success extended to early and continual involvement of all interested in the project scope. Due to the public sensitivity of constructing a landfill planned for radioactive waste as well as offsite waste, there were many stakeholders and it was important to secure their agreement on scope and time frames. The project had multiple participants involved in quality assurance surveillances, audits and inspections, including the construction contractor, CH2M HILL, ORP, the Washington State Department of Ecology, and independent certified quality assurance an

MCLELLAN, G.W.

2007-02-07T23:59:59.000Z

109

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

110

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the Integrated Facility Disposition Project was conducted simultaneous to other assessments and visits. The ETR Team wishes to note the outstanding support received from all parties involved in the review, including the DOE Oak Ridge Office, the National Nuclear Security Administration Y-12 Site Office, UT-Battelle, B&W Y-12, and the Professional Project Services, Inc. (Pro2Serve). The ETR Team feels compelled to note, and

111

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.5, October-December 2004  

DOE Green Energy (OSTI)

Fifth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2005-02-01T23:59:59.000Z

112

National Bioenergy Center Sugar Platform Integration Project Quarterly Update: April/June 2004, No.3  

DOE Green Energy (OSTI)

Third issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-07-01T23:59:59.000Z

113

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update No.6, January-March 2005  

DOE Green Energy (OSTI)

Sixth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2005-04-01T23:59:59.000Z

114

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, January/March 2004, No.2  

DOE Green Energy (OSTI)

Second issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-05-01T23:59:59.000Z

115

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #7, April-June 2005  

DOE Green Energy (OSTI)

Volume 7 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2005-07-01T23:59:59.000Z

116

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, Issue No.1, October-December 2003  

DOE Green Energy (OSTI)

First issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project.

Not Available

2004-03-01T23:59:59.000Z

117

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update, July/September 2004, No.4  

DOE Green Energy (OSTI)

Fourth issue of a quarterly reporting to stakeholders on progress on the National Bioenergy Center Sugar Platform Integration Project

Not Available

2004-10-01T23:59:59.000Z

118

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #11, April-June 2006  

DOE Green Energy (OSTI)

Volume 11 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-07-01T23:59:59.000Z

119

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #8, July-September 2005  

Science Conference Proceedings (OSTI)

Volume 8 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2005-10-01T23:59:59.000Z

120

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008  

SciTech Connect

October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

DOE Green Energy (OSTI)

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

122

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005  

DOE Green Energy (OSTI)

Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D. J.

2006-01-01T23:59:59.000Z

123

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006  

DOE Green Energy (OSTI)

Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Not Available

2006-04-01T23:59:59.000Z

124

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

DOE Green Energy (OSTI)

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

125

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009  

SciTech Connect

July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

Schell, D.

2009-10-01T23:59:59.000Z

126

Site wide integration of the Rocky Flats closure project  

Science Conference Proceedings (OSTI)

The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

Burdge, L.F.; Golan, P.

1998-06-01T23:59:59.000Z

127

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01T23:59:59.000Z

128

Salt Lake City Area Integrated Projects Power Sales Rate History  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Lake City Area Integrated Projects Power Sales Rate History Updated: 9/11/2013 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) 1/ Composite (Mills/kWh) 2/ SLIP-F1 10/87-9/90 5.000 $2.09 9.92 - SLIP-F2 10/90-11/91 7.250 $3.08 14.5 - SLIP-F3 12/91-9/92 8.100 $3.44 16.2 - SLIP-F4 10/92-9/94 8.400 $3.54 16.72 - SLIP-F5 12/94-4/98 8.900 $3.83 - 20.17 SLIP-F6 4/98-9/02 8.100 $3.44 - 17.57 SLIP-F7 10/02-9/06 9.500 $4.04 - 20.72 SLIP-F8 10/06-9/08 10.430 $4.43 - 25.28 SLIP-F9 (First Step) 10/08-9/09 11.060 $4.70 - 26.80 SLIP-F9 (Second Step) 10/09-Present 12.190 $5.18 - 29.62 The Salt Lake City Area Integrated Projects is a combination of resources from the Collbran, CRSP, and Rio Grande Projects. 1/ Combined rates are calculated with a load factor which is assumed to be constant over a given period. In the SLCA/IP, the load factor is considered to be 58.2 percent.

129

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

130

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

131

EWIS European wind integration study (Smart Grid Project) (Denmark) | Open  

Open Energy Info (EERE)

Denmark) Denmark) Jump to: navigation, search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

EWIS European wind integration study (Smart Grid Project) (Portugal) | Open  

Open Energy Info (EERE)

Portugal) Portugal) Jump to: navigation, search Project Name EWIS European wind integration study Country Portugal Coordinates 39.095963°, -8.217773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.095963,"lon":-8.217773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Uranium soils integrated demonstration: Soil characterization project report  

Science Conference Proceedings (OSTI)

An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

134

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

135

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

136

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

137

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

138

The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-03T23:59:59.000Z

139

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

140

2012 SG Peer Review - Integrated Smart Distribution RD&D Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Smart Grid R&D Program Peer Review Meeting DOE - Integrated Smart Distribution RD&D Project S. S. (Mani) Venkata Alstom Grid June 7, 2012 December 2008 DOE Integrated Smart...

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

MJ Hartman; PE Dresel; JW Lindberg; DR Newcomer; EC Thornton

2000-10-18T23:59:59.000Z

142

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

1999-10-06T23:59:59.000Z

143

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

144

EWIS European wind integration study (Smart Grid Project) (Netherlands...  

Open Energy Info (EERE)

Jun 2007 Oct 2009 References EU Smart Grid Projects Map1 Overview The project aims to work with all the relevant stakeholders especially representatives of wind generation...

145

EWIS European wind integration study (Smart Grid Project) (Germany...  

Open Energy Info (EERE)

Jun 2007 Oct 2009 References EU Smart Grid Projects Map1 Overview The project aims to work with all the relevant stakeholders especially representatives of wind generation...

146

EWIS European wind integration study (Smart Grid Project) (United...  

Open Energy Info (EERE)

Jun 2007 Oct 2009 References EU Smart Grid Projects Map1 Overview The project aims to work with all the relevant stakeholders especially representatives of wind generation...

147

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #16, July-September 2007  

DOE Green Energy (OSTI)

This quarterly update contains information on the National Bioenergy Center Biochemical Platform Integration Project, R&D progress and related activities.

Schell, D.

2007-10-01T23:59:59.000Z

148

National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008  

SciTech Connect

January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

Schell, D.

2008-04-01T23:59:59.000Z

149

National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006  

SciTech Connect

Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

Schell, D.

2006-10-01T23:59:59.000Z

150

Metal-Air Battery - Energy Innovation Portal  

Partially alleviate gas accumulation and cathode consumption issues typical of primary alkaline batteries; Increases mechanical integrity; Suitable ...

151

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

152

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

153

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

Science Conference Proceedings (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

154

Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan  

SciTech Connect

The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

MITCHELL, R.L.

2000-01-10T23:59:59.000Z

155

An integrated analytic approach for Six Sigma project selection  

Science Conference Proceedings (OSTI)

Six Sigma is regarded as a well-structured methodology for improving the quality of processes and products. It helps achieve the company's strategic goal through the effective use of project-driven approach. As Six Sigma is a project-driven methodology, ... Keywords: Analytic network process (ANP), Decision Making Trial And Evaluation Laboratory (DEMATEL), Logistics company, Six Sigma project selection

Gülçin Büyüközkan; Demet Öztürkcan

2010-08-01T23:59:59.000Z

156

Field Trial of AEP Sodium-Sulfur (NAS) Battery Demonstration Project: Interim Report - Plant Design and Expected Performance  

Science Conference Proceedings (OSTI)

The first stationary power demonstration of sodium-sulfur (NAS) batteries in the United States has been hosted by the American Electric Power Company. The battery system was co-developed by the Tokyo Electric Power Company (TEPCO) and NGK Insulators, Ltd. (NGK). This report defines the NAS technology, as well as the associated power conversion system (PCS) parameters and requirements that were necessary to convert the DC power from the NAS battery modules to AC power for connection to the utility grid sy...

2003-03-27T23:59:59.000Z

157

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

158

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

159

Progress Report 15, December 1979-April 1980, and proceedings of the fifteenth Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is reported. Reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering; and operations are included. Also, a report on, and copies of visual presentations made at, the Project Integration Meeting held April 2 and 3, 1980, are included.

Not Available

1980-01-01T23:59:59.000Z

160

PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

Newbauer, J.; Pesaran, A.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

162

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement ORR Operational...

163

Review of the Sodium Bearing Waste Treatment Project - Integrated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IWTU Integrated Waste Treatment Unit LCO Limiting Condition for Operation LSS Life Safety Systems MSA Management Self-Assessment OFI Opportunity for Improvement OGC Off-Gas...

164

Integrated knowledge management model and system for construction projects  

Science Conference Proceedings (OSTI)

In the past there has been no structured approach to learning from construction projects once they are completed. Now, however, the construction industry is adapting concepts of tacit and explicit knowledge management to improve the situation. Top managers ... Keywords: COPRAS method, Construction projects management, Knowledge management, Multiple criteria and multivariant analysis, Tacit and explicit knowledge

L. Kanapeckiene; A. Kaklauskas; E. K. Zavadskas; M. Seniut

2010-10-01T23:59:59.000Z

165

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

166

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

167

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

168

Southern California Edison 32MWh Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

169

Follow-up Audit of the Department of Energy's Financial Assistance for Integrated Biorefinery Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Department of Energy's Financial Assistance for Integrated Biorefinery Projects DOE/IG-0893 September 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 September 9, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up Audit of the Department of Energy's Financial Assistance for Integrated Biorefinery Projects" BACKGROUND The Department of Energy's Bioenergy Technologies Office (Program) supports the development of biomass resources into commercially viable biofuels, bioproducts and biopower. The Program provides financial assistance for integrated biorefinery projects to assist in building

170

NSLS-II | NEXT Integrated Project Team | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT Project NEXT stands for NSLS-II Experimental Tools, a set of five or six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from...

171

Integrated Economic and Climate Projections for Impact Assessment  

E-Print Network (OSTI)

We designed scenarios for impact assessment that explicitly address policy choices and uncertainty in climate response. Economic projections and the resulting greenhouse gas emissions for the “no climate policy” scenario ...

Paltsev, Sergey

172

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

173

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

174

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

DOE Green Energy (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

175

Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices  

Science Conference Proceedings (OSTI)

This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

Cummings, P. T.

2010-02-08T23:59:59.000Z

176

Fiscal Year 2003 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the Groundwater Monitoring Project. It documents well and constituent lists for the monitoring required by the Atomic Energy Act of 1954 and its implementing orders.

Hartman, Mary J.; Dresel, P. EVAN; Lindberg, Jon W.; McDonald, John P.; Newcomer, Darrell R.; Thornton, Edward C.

2002-11-01T23:59:59.000Z

177

National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010  

DOE Green Energy (OSTI)

Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

Schell, D.

2010-12-01T23:59:59.000Z

178

US Recovery Act Smart Grid Projects - Integrated and Crosscutting Systems |  

Open Energy Info (EERE)

- Integrated and Crosscutting Systems - Integrated and Crosscutting Systems Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

179

Record of Decision - Klondike III/ Biglow Canyon Wind Integration Project - 10-25-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Klondike III/Biglow Canyon Wind Integration Project Klondike III/Biglow Canyon Wind Integration Project DECISION The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE) 1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects,

180

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sorting-free pre-integrated projected tetrahedra  

Science Conference Proceedings (OSTI)

In this paper, we present a sorting-free technique for volume rendering of an irregular volume dataset. Although the importance of our particle-based volume rendering is widely recognized, its low image quality has been pointed out. Especially when the ... Keywords: irregular volume dataset, projected tetrahedral, sorting-free, volume rendering

Naohisa Sakamoto; Takuma Kawamura; Hiroshi Kuwano; Koji Koyamada

2009-11-01T23:59:59.000Z

182

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

183

PhD Project Proposal PV-Aware Design for Reliable 3-D Integration  

E-Print Network (OSTI)

PhD Project Proposal PV-Aware Design for Reliable 3-D Integration The trend of moving from planar dimension, and of the constraints on the positions of the through-silicon-vias and their timing models - Development of (stress-aware) mobility variation timing models for 3-D interconnect integration to augment

Langendoen, Koen

184

EV Network integration (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

integration integration Country Ireland Headquarters Location Dublin, Ireland Coordinates 53.344105°, -6.267494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.344105,"lon":-6.267494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

EV Network integration (Smart Grid Project) (Ireland) | Open Energy  

Open Energy Info (EERE)

EV Network integration EV Network integration Country Ireland Coordinates 53.41291°, -8.24389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.41291,"lon":-8.24389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Project title: The silent aircraft initiative (Knowledge Integration Community)  

E-Print Network (OSTI)

to very high loads on the fan blades that go beyond the limit of current designs. A New Type of Undercarriage is Needed It is hard to believe, but the airframe of a landing aircraft is now about as noisy as the engines. The steady reduction in engine... community, the Silent Aircraft Initiative seeks to produce a truly optimised concept design that is technically feasible, economically viable and contributes to the prosperity of the UK in an environmentally sustainable way. Knowledge Integration Communities...

2009-10-13T23:59:59.000Z

187

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

188

Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2  

SciTech Connect

The objective of the task (Task 6) covered in this document was to operate the refurbished/modified test circuit of the Gravimeh Process in a continuous integrated manner to obtain the engineering and operational data necessary to assess the technical performance and reliability of the circuit. This data is critical to the development of this technology as a feasible means of producing premium clean burning fuels that meet New Source Performance Standards (NSPS). Significant refurbishments and design modifications had been made to the facility (in particular to the vacuum filtration and evaporation units) during Tasks 1 and 2, followed by off-line testing (Task 3). Two weeks of continuous around-the-clock operation of the refurbished/modified MCL test circuit were performed. During the second week of testing, all sections of the plant were operated in an integrated fashion for an extended period of time, including a substantial number of hours of on-stream time for the vacuum filters and the caustic evaporation unit. A new process configuration was tested in which centrate from the acid wash train (without acid addition) was used as the water makeup for the water wash train, thus-eliminating the one remaining process waste water stream. A 9-inch centrifuge was tested at various solids loadings and at flow rates up to 400 lbs/hr of coal feed to obtain a twenty-fold scaleup factor over the MCL integrated test facility centrifuge performance data.

Not Available

1993-02-01T23:59:59.000Z

189

Distributed Energy Resources Integration in the Smart Grid Demonstration Project  

Science Conference Proceedings (OSTI)

In an effort to answer some of the basic system architecture questions posed by members, EPRI undertook a survey to find, among members that have smart grid demonstration projects, what the basic system architecture strategy was and basic concerns that may have architectural implications for their Distributed Energy Resource (DER) deployments. To that end, a longitudinal survey was designed to determine the basic demographics of the community, e.g. number of DER devices being deployed, the basic ...

2012-11-14T23:59:59.000Z

190

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oahu Wind Integration and Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50411 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada NREL Technical Monitor: David Corbus

191

Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1993-12-31T23:59:59.000Z

192

Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

Not Available

1992-12-31T23:59:59.000Z

193

Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

Not Available

1993-12-01T23:59:59.000Z

194

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994  

Science Conference Proceedings (OSTI)

This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

Not Available

1994-08-01T23:59:59.000Z

195

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

196

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

197

Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

Not Available

1980-01-01T23:59:59.000Z

198

Low-Cost Solar Array Project. Progress report 12, January-April 1979 and proceedings of the 12th Project Integration Meeting  

DOE Green Energy (OSTI)

This report describes progress made by the Low-Cost Solar Array Project during the period January through April 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held April 4-5, 1979.

Not Available

1979-01-01T23:59:59.000Z

199

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

200

Project Brief: General Motors, LLC  

Science Conference Proceedings (OSTI)

... This project will also apply neutron detectors to study lithium transport in batteries to assess mechanisms for degradation of battery capacity and ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Duke Energy Notrees Wind Storage Demonstration Project  

Science Conference Proceedings (OSTI)

This EPRI technical update is an interim report summarizing the status of Duke Energy’s Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the 152.6-MW Notrees Wind Farm. Xtreme Power’s solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple ...

2012-12-12T23:59:59.000Z

202

INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT  

SciTech Connect

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

2008-09-01T23:59:59.000Z

203

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary S-1 Summary S-1 Summary In this Summary: * Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary covers the major points of the draft Environmental Impact Statement (EIS) prepared for the Klondike III/Biglow Canyon Wind Integration Project proposed by the Bonneville Power Administration (BPA). The project includes constructing a new double-circuit 230-kilovolt (kV) transmission line in northern Sherman County, Oregon. The new line would connect the Klondike III Wind Project and the Biglow Canyon Wind Farm to BPA's existing John Day 500-kV Substation. The project would also require expansion of BPA's existing John Day 500-kV Substation and a new 230-kV substation to integrate the two wind projects. As a federal agency, BPA is required by the National Environmental Policy Act

204

Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project  

Science Conference Proceedings (OSTI)

This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

SINCLAIR, J.C.

1999-05-03T23:59:59.000Z

205

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

206

A sodium-sulfur battery for the ETX-II propulsion system  

DOE Green Energy (OSTI)

A Canadian built 52 kWh sodium-sulphur battery is being integrated with the ETX-II powertrain. The propulsion system thus formed is being installed in a Ford Aerostar compact-size van for test and development purposes. The selection and design of the traction battery, as an integral part of the propulsion system, will be outlined in this paper along with the projected performance of the test bed vehicle under both highway and urban driving conditions. The results of a battery optimization study will also be discussed. Braking energy recovery (regeneration) is an important part of the ETX-II system capability and needs to be carefully managed when used with sodium-sulphur batteries. This will be discussed to show its effect on the system performance.

Altmejd, M. (Powerplex Technologies, Inc., Downsview, ON (Canada)); Dzieciuch, M. (Ford Motor Co., Dearborn, MI (United States))

1988-01-01T23:59:59.000Z

207

A sodium-sulfur battery for the ETX-II propulsion system  

Science Conference Proceedings (OSTI)

A Canadian built 52 kWh sodium-sulphur battery is being integrated with the ETX-II powertrain. The propulsion system thus formed is being installed in a Ford Aerostar compact-size van for test and development purposes. The selection and design of the traction battery, as an integral part of the propulsion system, will be outlined in this paper along with the projected performance of the test bed vehicle under both highway and urban driving conditions. The results of a battery optimization study will also be discussed. Braking energy recovery (regeneration) is an important part of the ETX-II system capability and needs to be carefully managed when used with sodium-sulphur batteries. This will be discussed to show its effect on the system performance.

Altmejd, M. [Powerplex Technologies, Inc., Downsview, ON (Canada); Dzieciuch, M. [Ford Motor Co., Dearborn, MI (United States)

1988-12-31T23:59:59.000Z

208

Batteries for Vehicular Applications Venkat Srinivasan  

E-Print Network (OSTI)

Office of Technology Transfer Structurally Integrated Composite Cathodes for Lithium-Ion Batteries) to commercial equipment (e.g., backup-power systems and power tools), lithium-ion battery's Advanced Photon Source, researchers load a lithium-ion battery pouch into an insertion device x

Knowles, David William

209

Tampa Electric Company Integrated Gasification Combined Cycle Project  

SciTech Connect

The proposed project will utilize commercially available gasification technology as provided by Texaco in their licensed oxygen-blown entrained-flow gasifier. In this arrangement, coal is ground to specification and slurried in water to the desired concentration (60--70% solids) in rod mills. This coal slurry and an oxidant (95 % pure oxygen) are then mixed in the gasifier burner where the coal partially combusts, in an oxygen deficient environment, to produce syngas with a heat content of about 250 BTU/SCF (LHV) at a temperature in excess of 2500{degrees}F. The oxygen will be produced from an Air Separation Unit (ASU). The gasifier is expected to achieve greater than 95% carbon conversion in a single pass. It is currently planned for the gasifier to be a single vessel feeding into one radiant syngas cooler where the temperature will be reduced from about 2500{degrees}F to about 1300{degrees}F. After the radiant cooler, the gas will then be split into two (2) parallel convective coolers, where the temperature will be cooled further to about 900{degrees}F. One stream will go to the 50% HGCU system and the other stream to the traditional CGCU system with 100% capacity. This flow arrangement was selected to provide assurance to Tampa Electric that the IGCC capability would not be restricted due to the demonstration of the HGCU system. A traditional amine scrubber type system with conventional sulfur recovery will be used. Sulfur from the HGCU and CGCU systems will be recovered in the form of H{sub 2}SO{sub 4} and elemental sulfur respectively.The key components of the combined cycle are the advanced combustion.turbine (CT), heat recovery steam generator (HRSG), and steam turbine (ST), and generators. The advanced CT will be a GE 7F operating with a firing temperature of about 2300{degrees}F.

Pless, D.E.; Black, C.R.

1992-11-01T23:59:59.000Z

210

Tampa Electric Company Integrated Gasification Combined Cycle Project  

SciTech Connect

The proposed project will utilize commercially available gasification technology as provided by Texaco in their licensed oxygen-blown entrained-flow gasifier. In this arrangement, coal is ground to specification and slurried in water to the desired concentration (60--70% solids) in rod mills. This coal slurry and an oxidant (95 % pure oxygen) are then mixed in the gasifier burner where the coal partially combusts, in an oxygen deficient environment, to produce syngas with a heat content of about 250 BTU/SCF (LHV) at a temperature in excess of 2500[degrees]F. The oxygen will be produced from an Air Separation Unit (ASU). The gasifier is expected to achieve greater than 95% carbon conversion in a single pass. It is currently planned for the gasifier to be a single vessel feeding into one radiant syngas cooler where the temperature will be reduced from about 2500[degrees]F to about 1300[degrees]F. After the radiant cooler, the gas will then be split into two (2) parallel convective coolers, where the temperature will be cooled further to about 900[degrees]F. One stream will go to the 50% HGCU system and the other stream to the traditional CGCU system with 100% capacity. This flow arrangement was selected to provide assurance to Tampa Electric that the IGCC capability would not be restricted due to the demonstration of the HGCU system. A traditional amine scrubber type system with conventional sulfur recovery will be used. Sulfur from the HGCU and CGCU systems will be recovered in the form of H[sub 2]SO[sub 4] and elemental sulfur respectively.The key components of the combined cycle are the advanced combustion.turbine (CT), heat recovery steam generator (HRSG), and steam turbine (ST), and generators. The advanced CT will be a GE 7F operating with a firing temperature of about 2300[degrees]F.

Pless, D.E.; Black, C.R.

1992-01-01T23:59:59.000Z

211

ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) |  

Open Energy Info (EERE)

ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) Jump to: navigation, search Project Name ESTER, Enel integrated System for TEsts on stoRage Country Italy Headquarters Location Livorno, Italy Coordinates 43.551876°, 10.308011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.551876,"lon":10.308011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Flow, Li-Air, and Other Batteries  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Large-scale energy storage technologies like redox flow batteries have been sought for renewable integration and smart grid applications.

213

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

214

Orion: A Software Project Search Engine with Integrated Diverse Software Artifacts  

E-Print Network (OSTI)

Abstract—Software projects produce a wealth of data that is leveraged in different tasks and for different purposes: researchers collect project data for building experimental datasets; software programmers reuse code from projects; developers often explore the opportunities for getting involved in the development of a project to gain or offer expertise. Finding relevant projects that suit one needs is however currently challenging with the capabilities of existing search systems. We propose Orion, an integrated search engine architecture that combines information from different types of software repositories from multiple sources to facilitate the construction and execution of advanced search queries. Orion provides a declarative query language that gives to users access to a uniform interface where it transparently integrates different artifacts of project development and maintenance, such as source code information, version control systems metadata, bug tracking systems elements, and metadata on developer activities and interactions extracted from hosting platforms. We have built an extensible system with an initial capability of over 100,000 projects collected from the web, featuring several types of software repositories and software development artifacts. We conducted an experiment with 10 search scenarios to compare Orion with traditional search engines, and explore the need for our approach as well as the productivity of the proposed infrastructure. The results show with strong statistical significance that users find relevant projects faster and more accurately with Orion. I.

Tegawendé F. Bissy; Ferdian Thung; David Lo; Lingxiao Jiang; Laurent Réveillère

2013-01-01T23:59:59.000Z

215

Stationery Battery Monitoring by Internal Ohmic Measurements  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a viable method of performance monitoring for stationary batteries. These measurements have demonstrated the ability to identify degraded cells and to baseline the general health of a battery. This final report presents the results of a research effort to determine if any correlation exists between battery capacity and internal ohmic measurements. Also, the project sought to provide guidance for consistently obtaining data, using and/or evaluating the data, and a...

2002-12-16T23:59:59.000Z

216

Progress report 13 for April 1979-August 1979 and proceedings of the 13th project integration meeting  

DOE Green Energy (OSTI)

This report describes progress made by the Low-Cost Solar Array Project during the period April through August 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held August 22-23, 1979.

Not Available

1979-01-01T23:59:59.000Z

217

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

218

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

219

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

220

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders (''surveillance monitoring''); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J; Dresel, P Evan; Lindberg, Jon W; Newcomer, Darrell R; Thornton, Edward C

2001-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2001-10-31T23:59:59.000Z

222

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)  

Science Conference Proceedings (OSTI)

Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

Not Available

2011-09-01T23:59:59.000Z

223

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011  

DOE Green Energy (OSTI)

Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

Schell, D. J.

2011-04-01T23:59:59.000Z

224

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010  

Science Conference Proceedings (OSTI)

April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

Schell, D.

2010-07-01T23:59:59.000Z

225

National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010  

DOE Green Energy (OSTI)

Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

Schell, D.

2011-02-01T23:59:59.000Z

226

MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991  

DOE Green Energy (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

227

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

228

Develop Standard Method of Test for Integrated Heat Pumps Research Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Standard Method of Test for Develop Standard Method of Test for Integrated Heat Pumps Research Project Develop Standard Method of Test for Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into the development of standard Method of Test (MOT) for integrated heat pumps (IHPs). No active, recognized test procedure or rating standard exists for IHPs. Generating a rating standard with supporting test procedure that is approved by the American Society of Heating, Refrigerating, and Air Conditioning (ASHRAE) and the Air Conditioning, Heating, and Refrigeration Institute (AHRI) is necessary for these products to be viably marketed. The primary market segment for IHPs is residential buildings, both single-family and small, low-rise multifamily dwellings.

229

Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390  

Science Conference Proceedings (OSTI)

The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

Chapeaux, A.; Schell, D.

2013-06-01T23:59:59.000Z

230

Attempting clairvoyance with battery performance  

E-Print Network (OSTI)

The light-weight, long-lasting, high-performance attributes of cellular phones and laptop computers, among other equally impressive portable devices currently in the marketplace, are responsible for igniting the overwhelming growth of the battery-powered electronics industry. The demand for smaller and longer lasting solutions, in fact, is only increasing, and key to this success is the battery, which can range from single-use alkaline and zinc-air to rechargeable nickel-cadmium, nickel-metal hydride, lithium-ion, and lithium-polymer technologies. Unfortunately, however, advancements in circuit and system integration have outpaced energy and power density improvements in the battery. Consequently, as batteries conform to the size constraints of portable applications, capacity and output power are necessarily compromised. Degradation in battery performance over time not only affects functionality but also operational life, proving inadequate the traditional assumption that the battery is an ideal voltage source. Including the effects of the battery on state-of-theart systems during the design phase is therefore of increasing importance for optimal life and performance. The problem is securing a suitable Cadence-compatible model. Battery Models State-of-the-art electrical models for batteries are either Thevenin-, impedance-, or runtime-based. Thevenin- and impedance-based models, shown in Figures 1(a)-(b), assume both open-circuit voltage and capacity or state-of-charge (SOC) are constant and approximate loading and ac/transient effects with an impedance network of passive devices for

A. Rincón-mora; Min Chen

2005-01-01T23:59:59.000Z

231

Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project  

E-Print Network (OSTI)

The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction technologies. Historically, the removal of “heavy” or high-freezing-point hydrocarbons from the feed to LNG plants has been characterized as “gas conditioning” and achieved using one or more distillation columns. While some attempts to provide reflux to the distillation columns marginally enhanced NGL recovery, little emphasis was placed on maximizing NGL recovery as a product from the LNG process. As such, the integration of the two processes was not a priority. Integrating state-of-the art NGL recovery technology within the CoP LNGSM Process1, formerly the Phillips Optimized Cascade LNG Process, results in a significant reduction in the specific power required to produce LNG, while maximizing NGL recovery. This corresponds to a production increase in both LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts using the integrated concept. This integrated concept has been applied to three ongoing international NGL/LNG projects using the CoP LNG Process in Iran LNG project. In this respect, simulation has been performed in THERMOFLEX software. Moreover, thermo economic analysis has been applied for economic and thermodynamic analysis of base and integrated cases through computer code has been provided here. Finally, the base and integrated case have been evaluated and comprised in view of thermodynamics, economics and environmental impacts.

Manesh, M. H. K.; Mazhari, V.

2009-05-01T23:59:59.000Z

232

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

233

Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993  

DOE Green Energy (OSTI)

This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

Not Available

1993-09-01T23:59:59.000Z

234

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

235

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

236

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

237

Energy-Harvesting Battery Charger for Self-Sustaining Portable Microelectronic Applications  

E-Print Network (OSTI)

Energy-Harvesting Battery Charger for Self- Sustaining Portable Microelectronic Applications By in the battery is limited, resulting in short lifespan. It is necessary to prolong battery life, and thus device, this energy is utilized to charge an integrated battery, resulting in a self-sustaining battery charger

Rincon-Mora, Gabriel A.

238

Nuon Magnum Integrated-Gasification -Combined-Cycle (IGCC) Project Preliminary Design Specification  

Science Conference Proceedings (OSTI)

This is the second pre-design specification (PDS) in a projected series for integrated-gasificationcombined-cycle (IGCC) plants, sponsored by EPRIs CoalFleet for Tomorrow program and involving more than 50 power industry companies. A PDS represents the level of nonproprietary information available at the feasibility study stage in the development of an IGCC project. This PDS is based on the design of the 1200-MWe Magnum IGCC plant, which Nuon Power Generation B.V. has proposed to build on the northern co...

2008-03-31T23:59:59.000Z

239

Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project  

Science Conference Proceedings (OSTI)

Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

Rieger, JoAnne T.; Hartman, Mary J.

2005-06-16T23:59:59.000Z

240

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

242

Duke Energy Notrees Wind Storage Demonstration Project: 2013 Interim Report  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update is an interim report summarizing the status of Duke Energy’s Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the152.6-MW Notrees Wind Farm. Xtreme Power’s solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple value-added utility applications. ...

2013-12-19T23:59:59.000Z

243

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

244

OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128  

SciTech Connect

To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.

VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

2012-01-25T23:59:59.000Z

245

Progress Report 16 for the period April-September 1980, and the proceedings of the 16th Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period April to September 1980, is reported in detail. Progress on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations is described. A report on, and copies of visual presentations made at, the Project Integration Meeting held September 24 and 25, 1980 are included.

McDonald, R.R.

1980-01-01T23:59:59.000Z

246

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase 2 Report: Oahu Wind Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50414 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada

247

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

248

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network (OSTI)

of integrated low-energy building design. In Cambridge, research was conducted at the BP Institute - which was set up in 1999 with an endowment from BP to research some of the fundamental scientific challenges that the oil industry encounters. In the CMI... in building design. Summary of Intended Outcomes: The objectives of the project will be to develop designs and technologies to: reduce energy costs of maintaining a comfortable environment with buildings through use of solar power, natural ventilation...

2009-07-10T23:59:59.000Z

249

On convergence of the projective integration method for stiff ordinary differential equations  

E-Print Network (OSTI)

We present a convergence proof of the projective integration method for a class of deterministic multi-dimensional multi-scale systems which are amenable to centre manifold theory. The error is shown to contain contributions associated with the numerical accuracy of the microsolver, the numerical accuracy of the macrosolver and the distance from the centre manifold caused by the combined effect of micro- and macrosolvers, respectively. We corroborate our results by numerical simulations.

John Maclean; Georg A. Gottwald

2013-01-29T23:59:59.000Z

250

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

251

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

DOE Green Energy (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

252

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

253

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

254

Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project - 14224  

SciTech Connect

In its role as the Tank Operations Contractor at the U.S. Department of Energy?s site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

Joyner, William Scott; Knight, Mark A.

2013-11-14T23:59:59.000Z

255

Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project  

SciTech Connect

A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

Brian McPherson

2010-08-31T23:59:59.000Z

256

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

257

Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint  

DOE Green Energy (OSTI)

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

Mather, B.; Neal, R.

2012-08-01T23:59:59.000Z

258

Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage  

SciTech Connect

GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

2010-10-01T23:59:59.000Z

259

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

260

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

BWRVIP-239: BWR Vessel and Internals Project, Updated Evaluation of the Integrated Surveillance Program (ISP) Capsule Withdrawal Sch edule  

Science Conference Proceedings (OSTI)

This report evaluates updated reactor pressure vessel and surveillance capsule fluence data for potential impacts on the Boiling Water Reactor Vessel and Internals Project Integrated Surveillance Program (BWRVIP ISP) capsule withdrawal schedule.

2010-07-16T23:59:59.000Z

262

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL

2011-01-01T23:59:59.000Z

263

MHD Integrated Topping Cycle Project. Seventeenth quarterly technical progress report, August 1, 1991--October 31, 1991  

Science Conference Proceedings (OSTI)

This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

Not Available

1992-07-01T23:59:59.000Z

264

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

265

Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01eis0150_cov.html[6/24/2011 2:58:48 PM] 01eis0150_cov.html[6/24/2011 2:58:48 PM] COVER SHEET Title: Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement, DOE/EIS-0150 Cooperating Agencies: U.S. Fish and Wildlife Service, the National Park Service, and the Bureau of Reclamation Lead Agency: Western Area Power Administration, U.S. Department of Energy Written comments on this environmental impact statement (EIS) should be addressed to: For general information on the U.S. Department of Energy EIS process, contact: Mr. David Sabo Western Area Power Administration Colorado River Storage Project Customer Service Office P.O. Box 11606 Salt Lake City, Utah 84147-0606 Telephone: (801) 524-5392 Ms. Carol Borgstrom, Director Office of NEPA Policy and Assistance (EH-42)

266

Integrating Wildlife Crossing into Transportation Plans and Projects in North America  

E-Print Network (OSTI)

for wildlife in future transportation projects. Traditionaleffects of existing and future transportation projects. Ourand overpasses into future transportation project, everyday

Cramer, Patricia C.; Bissonette, John

2007-01-01T23:59:59.000Z

267

MHD Integrated Topping Cycle Project. Eighteenth quarterly technical progress report, November 1, 1991--January 31, 1992  

DOE Green Energy (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

268

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

269

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

270

The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-29T23:59:59.000Z

271

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

272

BWRVIP-86, Revision 1-A: BWR Vessel and Internals Project, Updated BWR Integrated Surveillance Program (ISP) Implementation Plan  

Science Conference Proceedings (OSTI)

This report describes the boiling water reactor (BWR) Integrated Surveillance Program (ISP). Based on recommendations from BWR Vessel and Internals Project (BWRVIP) utilities, it was concluded that combining all separate BWR surveillance programs into a single integrated program would be beneficial. In the integrated program, representative materials chosen for a specific reactor pressure vessel (RPV) can be materials from another plant surveillance program or other source that better represents the ...

2012-10-01T23:59:59.000Z

273

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

274

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

275

Solid waste integrated cost analysis model: 1991 project year report. Part 2  

SciTech Connect

The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-12-31T23:59:59.000Z

276

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

277

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

278

The Domestic Battery, From A Chemical Perspective Craig Riley  

E-Print Network (OSTI)

The Domestic Battery, From A Chemical Perspective Craig Riley Physics 222 A. LaRosa Project Report Winter 2001 The battery has been used for many years as a power source for the quick application the mechanics of this source. The following paragraphs will outline the history of the battery, its anatomy

La Rosa, Andres H.

279

NETL: Oil & Natural Gas Projects - Integrated Synthesis of the Permian  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States DE-FC26-04NT15509 Goal The overall objective was to collect and synthesize available data on the hydrocarbon-bearing geological systems in the Permian Basin and distribute data in readily usable formats to scientists, engineers, managers, and decision makers in the oil and gas industry. Performer Bureau of Economic Geology, University of Texas, Austin, TX Collaborators State of Texas Background The Permian Basin is the largest producing basin in the United States, still containing as much as 30 billion barrels of remaining mobile oil. A long-standing problem for companies seeking to recover this resource has been the difficulty of access to data and the knowledge of how to use the data. No modern, integrated syntheses of Permian Basin geologic data was previously available. This project has made possible the delivery of large volumes of Permian basin reservoir and basin data and interpretations to industry, academia, and the general public.

280

MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990  

DOE Green Energy (OSTI)

The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

1992-03-01T23:59:59.000Z

282

Optimizing hourly hydro operations at the Salt Lake City Area integrated projects  

DOE Green Energy (OSTI)

The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

Veselka, T.D.; Hamilton, S. [Argonne National Lab., IL (United States); McCoy, J. [Western Area Power Administration, Salt Lake City, UT (United States)

1995-06-01T23:59:59.000Z

283

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

284

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

285

Advanced Vanadium Redox Flow Batteries with Mixed Acid ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Large-scale energy storage technologies like redox flow batteries have been sought for renewable integration and smart grid applications.

286

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

287

Optimal charging scheduling for battery electric vehicles under smart grid.  

E-Print Network (OSTI)

??M.S. A projected high penetration of battery electric vehicles (BEV s) in the market will introduce an additional load in the electricity grid. Furthermore, uncontrolled… (more)

Abd Rahman, Nur Dayana

2011-01-01T23:59:59.000Z

288

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

289

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

290

Salt Lake City Area Integrated Projects Electric Power Marketing Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary.html[6/24/2011 3:03:56 PM] Summary.html[6/24/2011 3:03:56 PM] SUMMARY S.1 DESCRIPTION OF THE PROPOSED ACTION The Western Area Power Administration (Western) proposes to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects (SLCA/IP) hydroelectric power plants. Power generated by the SLCA/IP facilities or purchased by Western from other sources is provided to Western's customers under contracts that establish the terms for how capacity (generation capacity) and energy (quantity of electrical energy) are to be sold. The contracts also specify amounts of capacity and energy that Western agrees to offer for long-term (greater than 12 months) sale to its customers. These amounts constitute Western's

291

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a federal law that serves as the basic national charter for protection of the environment. For major federal actions that may significantly affect the quality of the environment, NEPA requires federal agencies to prepare a detailed statement that includes the potential environmental impacts of the Proposed Action and reasonable alternatives. A fundamental objective of NEPA is to foster better decisionmaking by ensuring that high quality environmental information is available to public officials and members of the

292

River Protection Project Integrated safety management system phase II verification review plan - 7/29/99  

Science Conference Proceedings (OSTI)

The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

SHOOP, D.S.

1999-09-10T23:59:59.000Z

293

Develop improved battery charger (Turbo-Z Battery Charging System). Final report  

DOE Green Energy (OSTI)

The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

NONE

1999-09-01T23:59:59.000Z

294

Develop improved battery charger (Turbo-Z Battery Charging System). Final report  

SciTech Connect

The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

1999-09-01T23:59:59.000Z

295

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

296

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

2009-12-21T23:59:59.000Z

297

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

298

Research development and demonstration of a fuel cell/battery powered bus system. Interim report, August 1, 1991--April 30, 1992  

DOE Green Energy (OSTI)

This report describes the progress in the Georgetown University research, development and demonstration project of a fuel cell/battery powered bus system. The topics addressed in the report include vehicle design and application analysis, technology transfer activities, coordination and monitoring of system design and integration contractor, application of fuel cells to other vehicles, current problems, work planned, and manpower, cost and schedule reports.

Romano, S.; Wimmer, R.

1992-04-30T23:59:59.000Z

299

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

300

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

302

Final Report: Technical Support for Innovative Energy Systems the U.S. Chemical Industry -- Innovative Energy Systems Pilot Project - Chemicals Project Integrator  

SciTech Connect

The University of Illinois at Chicago Energy Resources Center (UIC/ERC) was originally selected to carry out the role of project integrator for a planned solicitation calling for proposals for innovative concepts for energy efficient systems in the chemical industry. The selection was made as a result of a DOE Announcement of Funding Opportunity issued by the DOE Golden Field Office. The U.S. DOE, due to funding constraints, decided to change the role of project integrator into one of technical support to DOE and the Vision 2020 Steering Committee in carrying out the oversight and management of the projects selected from the planned innovative concepts solicitation. This project, initiated in April, 2005, was established to provide that technical support to the U.S. DOE Innovative Energy Systems Pilot Project for the US Chemical Industry. In the late summer of 2006, and as a continuation of the baseline technology analysis conducted by UIC/ERC under this project, DOE requested that UIC/ERC assist in the development of “technology briefs” in support of the DOE Save Energy Now program. The 100 technology briefs developed under this contract were utilized by the Energy Experts as part of their Energy Saving Assessments (ESA).

John Cuttica - Principal Investigator; Dr Steffen Mueller - Lead Engineer

2008-10-30T23:59:59.000Z

303

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

304

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

305

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

306

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

307

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

308

Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993--April 15, 1997  

SciTech Connect

The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

Ruckman, M.W.; Strongin, M.; Weismann, H. [and others

1997-04-01T23:59:59.000Z

309

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

310

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

311

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

312

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

313

2012 SG Peer Review - Recovery Act: Secure Interoperable Open Smart Grid Demonstration Project - Tom Magee, ConEd NY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Demonstration Project Patricia Robison Con Edison June 8, 2012 December 2008 Smart Grid Demonstration Project Objective Life-cycle Funding FY10 - FY13 $45.4 m Technical Scope (Insert graphic here) 2 *Integrate Legacy and Smart Grid information systems *Integrate external DR into distribution grid systems: - EV/Battery storage - Building Management Systems (BMS) - Standby generation - Photovoltaic Demonstrate secure interoperable services between utility distribution systems and customer owned distributed resources (DR) December 2008 Needs and Project Targets Integrate customer owned resources into distribution operations to enable customer participation and defer capital investment *Integrate DR resources into operator platform *Implement secure communications to DR resources

314

Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries (Presentation)  

DOE Green Energy (OSTI)

This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.; Lee, K. J.

2012-05-01T23:59:59.000Z

315

Constant current, fast and float rate, variable hysteresis battery charger  

SciTech Connect

A battery charging circuit is described connected to a voltage source and the terminals of a battery for maintaining a charge on the battery comprising: input means connected to the voltage source; current regulating means connected to the input means for providing a constant current output to the battery; resistive means connected to the regulating means for selectively setting charging rate currents provided to the battery by the regulating means; switching means connected to the resistive means for controlling the operation of the resistive means; means for sensing the state of charge of the battery connected across the terminals of the battery; and integrated buffer circuit means connected between sensing means and the switching means to control the operation of the switching means in response to the state of battery charge sensed by the sensing means.

Steblay, B.J.

1987-08-11T23:59:59.000Z

316

Comparison of advanced battery technologies for electric vehicles  

DOE Green Energy (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

317

Comparison of various battery technologies for electric vehicles  

E-Print Network (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge - discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

318

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

319

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

320

Material and energy recovery in integrated waste management systems: Project overview and main results  

Science Conference Proceedings (OSTI)

Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Potential Use of Summer Rainfall Enhancement in Illinois. Part II: Integration of Factors Affecting Enhancement Projects and Future Research  

Science Conference Proceedings (OSTI)

Rain-yield findings were integrated with the average incidence of rain days and areas distribution of rain in a potential rain-modification area in Illinois to simulate regional aspects of a cloud-seeding project over a 13 000 km2 area. Potential ...

Stanley A. Changnon

1993-03-01T23:59:59.000Z

322

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement  

Science Conference Proceedings (OSTI)

The abundance of coal in the United States makes it one of our Nation's most important strategic resources in building a secure energy future. With today's prices and technology, recoverable reserves located in the United States could supply the Nation's coal consumption for approximately 250 years at current usage rates. However, if coal is to reach its full potential as an environmentally acceptable source of energy, an expanded menu of advanced clean coal technologies must be developed to provide substantially improved options both for the consumer and private industry. Before any technology can be seriously considered for commercialization, it must be demonstrated at a sufficiently large-scale to develop industry confidence in its technical and economic feasibility. The implementation of a federal technology demonstration program is the established means of accelerating the development of technology to meet national energy strategy and environmental policy goals, to reduce the risk to human health and the environment to an acceptable level, to accelerate commercialization, and to provide the incentives required for continued activity in research and development directed at providing solutions to long-range energy problems. The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA).

N /A

2002-12-13T23:59:59.000Z

323

Separation projects within the US Department of Energy`s Underground Storage Tank: Integrated Demonstration  

SciTech Connect

The greatest challenge facing the US Department of Energy is the remediation of the 1 {times} 10{sup 8} gal of high-level and low-level radioactive waste in the underground storage tanks (USTs) at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. With current technologies, this remediation will cost at least 100 billion dollars. In an effort to reduce costs, improve safety, and minimize delays, the Underground Storage Tank--Integrated Demonstration was created for demonstration, testing, and evaluation (DT&E) of promising new technologies that can be used for UST remediation. These demonstrations, which are typically at the pilot-plant scale, will determine which processes will be used in the full-scale remediation of the USTs. These DT&E studies are performed by the Characterization and Waste Retrieval Program or by the Waste Processing and Disposal Program (WPDP). This paper presents the technical progress and future plans of the WPDP projects. The 11 WPDP programs in FY 1993 focused on three problem areas, which involve the treatment of supernate, the treatment of sludge, and nitrate destruction and subsequent waste forms. In addition, a planned Request for Expression of Interest on organic destruction techniques from private industries and universities and the WPDP`s future direction and programmatic issues are discussed.

McGinnis, C.P.; Hunt, R.D. [Oak Ridge National Lab., TN (United States); Gibson, S.M. [USDOE, Germantown, MD (United States); Gilchrist, R.L. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-01T23:59:59.000Z

324

MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991  

DOE Green Energy (OSTI)

This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

Not Available

1992-02-01T23:59:59.000Z

325

Battery driven vehicle and recharging system  

SciTech Connect

A battery-driven car which has an electrical system including a minimum number of electric storage batteries as the power source, a high-voltage converter with a high-voltage capacitor bank for driving a direct current impulse motor combined with a generator for supplying current to motor/generator sets respectively integrated with the wheels of the vehicle to drive the same or for recharging the batteries in accordance with a microprocessor control system, the wheel-actuated generators providing recharging current for the batteries whenever the motor component is not being energized and in addition, said electrical system also including an air-driven turbine generator component for recharging the batteries when the vehicle reaches a predetermined speed in accordance with the microprocessor controls.

Arbisi, D. S.

1985-02-12T23:59:59.000Z

326

Development and Testing of an UltraBattery-Equipped Honda Civic  

DOE Green Energy (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

327

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

328

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

329

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

330

Financial Projection Model This spreadsheet walks you through the process of developing an integrated set of financial projections.  

E-Print Network (OSTI)

- - - - Estimated Hours Per Week 20.00 Estimated Rate Per Hour 9.00$ Instructor Cost 0 - - - Total SalariesFinancial Projection Model This spreadsheet walks you through the process of developing -$ Buildings - 20.00 years Leasehold Improvements - 7.00 years Equipment 20,000 7.00 years tractor

Jones, Michelle

331

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to… (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

332

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

333

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

334

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

335

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

336

One System Integreated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant - 14214  

SciTech Connect

The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration, and; Further development of the waste acceptance criteria.

Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

2013-12-18T23:59:59.000Z

337

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006  

DOE Green Energy (OSTI)

Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D. J.

2007-01-01T23:59:59.000Z

338

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

Analysis of California’s Electricity System:  Preliminary Results for the 2007 Integrated Energy Policy 

Budhraja, Vikram

2008-01-01T23:59:59.000Z

339

National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #14, January - March 2007  

DOE Green Energy (OSTI)

Volume 14 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

Schell, D.

2007-04-01T23:59:59.000Z

340

The application of the value-added activity model for the Mark-6 LE integration project  

E-Print Network (OSTI)

Powerful information and workflow management tools can minimize risks and maximize productivity for a project. However, a conventional task-based project management approach does not provide the kind of details necessary ...

Liang, Joanna (Joanna Jung-Yen)

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Defining assessment projects and scenarios for policy support: Use of ontology in Integrated Assessment and Modelling  

Science Conference Proceedings (OSTI)

Integrated Assessment and Modelling (IAM) provides an interdisciplinary approach to support ex-ante decision-making by combining quantitative models representing different systems and scales into a framework for integrated assessment. Scenarios in IAM ... Keywords: Collaborative approach, Integration, Knowledge management, Multi-disciplinary teams, Policy assessment

S. Janssen; F. Ewert; Hongtao Li; I. N. Athanasiadis; J. J. F. Wien; O. Thérond; M. J. R. Knapen; I. Bezlepkina; J. Alkan-Olsson; A. E. Rizzoli; H. Belhouchette; M. Svensson; M. K. van Ittersum

2009-12-01T23:59:59.000Z

342

Overview of Sandia`s Electric Vehicle Battery Program  

DOE Green Energy (OSTI)

Sandia National Laboratories is actively involved several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

Clark, R.P.

1993-12-31T23:59:59.000Z

343

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Edison (SCE) is positioned to demonstrate the effectiveness of California Edison (SCE) is positioned to demonstrate the effectiveness of lithium-ion battery and smart inverter technologies to improve grid performance and assist in the integration of variable energy resources. This project will be sited at the Tehachapi Wind Resource Area, one of the largest wind resource areas in the world, where as much as 4,500 MW of wind resources are expected to come online by 2015. An existing SCE substation located approximately 100 miles north of Los Angeles, California, will host the demonstration. Overview The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. SCE will test the BESS for 24 months to

344

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

345

CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

DOE Green Energy (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

Dr. Helen Kerr

2003-08-01T23:59:59.000Z

346

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

None

2010-09-09T23:59:59.000Z

347

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

2010-09-09T23:59:59.000Z

348

Survey of rechargeable battery technology  

SciTech Connect

We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

1993-07-01T23:59:59.000Z

349

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

350

European Integrated Project RISC-RAD Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiations  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Project RISC-RAD Integrated Project RISC-RAD Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiations Laure Sabatier 1 , L.H.F Mullenders 2 , Mike Atkinson 3 , Simon Bouffler 4 , Herwig Paretzke 5 1 Laboratory of Radiobiology and Oncology, CEA, 18 route du panorama BP6 92265 Fontenay-aux- Roses, France 2 LUMC, Department of Toxicogenetics, Postal Zone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands 3 GSF- Institute of Pathology, Ingolstädter Landstrasse 1, 85764 Neuherberg Germany 4 HPA Radiation Protection Division, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK 5 GSF- Institute of Radiation Protection, Ingolstädter Landstrasse 1, Neuherberg, D-85764 Germany In radiological protection, the risks of inducing stochastic health effects (largely cancer) by a

351

Near-term batteries for electric vehicles  

SciTech Connect

Major progress has been achieved in the lead-acid , nickel/iron and nickel/zinc battery technology development since the initiation of the Near-Term eV Battery Project in 1978. Against the specific energy goal of 56 wh/kg the demonstrated specific energies are 41 wh/kg for the improved lead-acid batteries, 48 wh/kg for the improved nickel/iron batteries, and 68 wh/kg for the improved nickel/zinc batteries. These specific energy values would allow an ETV-1 vehicle to have an urban range of 80 miles in the case of the improved lead-acid batteries, 96 miles for the improved nickel/zinc batteries, and 138 miles for the improved lead-acid batteries. All represent a significant improvement over the state-of-the-art lead-acid battery capability of about 30 wh/kg with approximately a 51 mile urban range for the ETV-1 vehicle. The project goal for specific power of 104 w/kg for 30 seconds at a 50% depth of discharge has been achieved for all of the technologies with the improved lead-acid demonstrating 111 w/kg, the improved nickel/iron demonstrating 103 w/kg, and the improved nickel/zinc demonstrating 131 w/kg. Again this is a significant improvement over the state-of-the-art lead-acid battery capability of 70 w/kg. Substantial progress has been made against the life cycle goal of 800 cycles as evidenced by the demonstrated lead-acid battery achievement of > 295 cycles in ongoing tests, the nickel/iron demonstrated capability of > 515 cycles in ongoing tests, and the nickel/zinc demonstrated capability of 179 cycles. Except for the nickel/zinc batteries, the demonstrated cycle life is better than the state-of-the-art lead-acid battery cycle life of about 250 cycles. Future program emphases will be on improving cycle life and further reductions in cost.

Christianson, C.C.; Yao, N.P.; Hornstra, F.

1981-01-01T23:59:59.000Z

352

ARPA-E Awardee PARC Aims to Change the Way We Think About Batteries |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardee PARC Aims to Change the Way We Think About Batteries Awardee PARC Aims to Change the Way We Think About Batteries ARPA-E Awardee PARC Aims to Change the Way We Think About Batteries May 23, 2013 - 1:29pm Addthis Dr. Eric Shrader, the principal investigator of PARC’s battery co-extrusion project, talks about battery innovation and the company's project with ARPA-E. | Photo courtesy of PARC. Dr. Eric Shrader, the principal investigator of PARC's battery co-extrusion project, talks about battery innovation and the company's project with ARPA-E. | Photo courtesy of PARC. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs About ARPA-E: Modeled after the successful Defense Advanced Research Projects Agency (DARPA), ARPA-E advances high-potential, high-impact energy technologies that are too early for private-sector investment.

353

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

354

Project Integration Office for the electric and hybrid vehicle R and D program. Eighth progress report, March 1982  

DOE Green Energy (OSTI)

The Project Integration Office (PIO) was established to assist the US DOE with the direction and coordination of its multiple electric vehicle and hybrid electric vehicle research programs in order to get the maximum payoff from these research efforts. In addition, the PIO performs objective independent technical and economic studies, analyses and modeling, and maintains a technical information liaison service to facilitate information exchange between the program participants and industry. Progress in each of these activities is reported. (LCL)

Not Available

1982-04-19T23:59:59.000Z

355

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

356

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

357

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

Science Conference Proceedings (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

358

Large-Format Lithium-Ion Battery Costs Analysis  

Science Conference Proceedings (OSTI)

The high cost of lithium ion batteries poses a serious problem for the competitiveness of Plug-In Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). The problem is complicated by the fact that the lithium ion battery cost projections developed by a number of apparently credible organizations over the past 5 years or so differ so much that different conclusions regarding the economic competitiveness of PHEVs (and even more so BEVs) have been stated. This situation creates confusion and...

2010-12-15T23:59:59.000Z

359

ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY  

SciTech Connect

Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

LANDI, J.T.; PLIVELICH, R.F.

2006-04-30T23:59:59.000Z

360

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

362

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

363

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

364

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

365

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

366

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

367

Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project  

SciTech Connect

Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

Gerald Sehlke

2005-03-01T23:59:59.000Z

368

EPC Constrution Project Management: Integrating PMO and MIS to Become the Beacon of Performance Growth  

Science Conference Proceedings (OSTI)

The introduction of PMO (Project Management Overnight) model in EPC general contract builds the PMO modular management of EPC contractor, which will achieve the control of the internal comsumption and the modular supervision of the EPC project process. ... Keywords: construction enterprises, contractors, EPC, PMO, modularization, informtion system

Zhang Jing-xiao; Li Hui; Zhou Tian-hua; Lu Ning

2010-06-01T23:59:59.000Z

369

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

370

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

371

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

372

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

373

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

374

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

375

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

376

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

377

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

378

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

379

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

380

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ESS 2012 Peer Review - NYSERDA Energy Storage Projects - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSERDA Energy Storage Projects NYSERDA Energy Storage Projects Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP NaS Battery at MTA Long Island Bus Depot Beacon Flywheel Plant at Stephentown, NY 4 Demonstration Project Sites 1) Beacon Flywheel Plant at Stephentown, NY * Ancillary services in NYISO 2) NaS Battery at MTA Long Island Bus Depot * Time of day load shifting to avoid TOU rates 3) Flow Battery at Niagara Falls State Park * Renewables integration/firming &

382

Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

CARTER, R.P.

1999-11-19T23:59:59.000Z

383

Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

384

Separator plate for lead-acid battery  

SciTech Connect

A separator plate for the negative electrode of a lead-acid battery comprising a molded, synthetic plastic wall or planar member of generally rectangular configuration. A pair of like separator plates are vertically oriented in the battery casing to sandwich the negative electrode therebetween including juxtaposed retention mats common in such a negative electrode assembly. The sandwich provides a clear-through channel along opposite extremities of the electrode for flow of electrolyte. The sandwich assembly is maintained by means of cooperating locking and sealing formations integral with the separator plates of the assembly. Wrapping of the positive electrode thereby is rendered unnecessary when assembling the battery and enables automated assembly of the battery using the separator plate sandwich.

Wozniak, E.

1985-11-12T23:59:59.000Z

385

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A-1 A-1 APPENDIX A CONSULTATION LETTERS This appendix includes consultation/approval letters between the U.S. Department of Energy and the U.S. Fish and Wildlife Service regarding threatened and endangered species, and between other state and Federal agencies as needed. Consultation Letters A-2 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-3 Consultation Letters A-4 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-5 Consultation Letters A-6 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-7 Consultation Letters A-8 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement B-1 APPENDIX B NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL IMPACT STATEMENT FOR THE

386

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA

387

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Public Comment Period Extended Until 10/01/13This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California's LLC (HECA's) project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program.

388

CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT  

Science Conference Proceedings (OSTI)

This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management of issues across contract boundaries is a more difficult matter. This aspect, one of a seamless systems approach to the treatment of tank wastes at the Hanford site, is the focus of the Optimization Studies. This ''big O''Optimization of Life-Cycle operations is what is meant when the term ''optimization'' is used on the River Protection Project and initiatives cited in this paper. From the early contractor centric methods and processes used to move toward an integrated solution, through extensive partnering approaches, to the current quality initiatives with multi-organizational participation, significant progress is being made towards achieving the goal of truly integrated life-cycle optimization for the Department of Energy's River Protection Project and Waste Treatment Plant.

Auclair, K. D.

2002-02-25T23:59:59.000Z

389

Research on separators for alkaline zinc batteries. Final report  

Science Conference Proceedings (OSTI)

This project is concerned with the research and development of a hybrid separator as an improved battery separator in alkaline zinc secondary batteries. Particular emphasis has been directed toward increasing the cycle life of zinc electrodes by controlling the permselectivity of the separator.

Yeo, R.S.

1985-12-01T23:59:59.000Z

390

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

Science Conference Proceedings (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

391

Progress and forecast in electric-vehicle batteries  

SciTech Connect

With impetus provided by US Public Law 94-413 (Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976), the Department of Energy (DOE) launched a major battery development program early in 1978 for near-term electric vehicles. The program's overall objective is to develop commercially viable batteries for commuter vehicles (with an urban driving range of 100 miles) and for vans and trucks (with a range of 50 miles) by the mid-1980's. Three near-term battery candidates are receiving major developmental emphasis - improved lead-acid, nickel/iron and nickel/zinc systems. Sharing the cost with the government, nine industrial firms (battery developers) are participating in the DOE battery project. They are Eltra Corp., Exide Management and Technology Co., and Globe-Union Inc., for the lead-acid battery; Eagle-Picher Industries, Inc., and Westinghouse Electric Corp. for the nickel/iron battery; and Energy Research Corp., Exide Management and Technology Co., and Gould Inc., for the nickel/zinc battery. Good progress has been made in improving the specific energy, specific power, and manufacturing processes of these three battery technologies. Current emphasis is directed toward reduction of manufacturing cost and enhancement of battery cycle life and reliability. Recently, the zinc-chloride battery was added as the fourth candidate to the near-term battery list. Testing of the zinc-chloride battery in a vehicle and evaluation of its operating characteristics are currently under way. This paper presents the development goals, the status, and the outlook for the near-term battery program.

Webster, W.H. Jr.; Yao, N.P.

1980-01-01T23:59:59.000Z

392

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

393

Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

394

Summary Report on Information Technology Integration Activities For project to Enhance NASA Tools for Coastal Managers in the Gulf of Mexico and Support Technology Transfer to Mexico  

SciTech Connect

Deliverable to NASA Stennis Space Center summarizing summarizes accomplishments made by Battelle and its subcontractors to integrate NASA's COAST visualization tool with the Noesis search tool developed under the Gulf of Mexico Regional Collaborative project.

Gulbransen, Thomas C.

2009-04-27T23:59:59.000Z

395

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

396

Battery cell configuration for organic light emitting diode display in modern smartphones and tablet-PCs  

E-Print Network (OSTI)

Battery cell configuration for organic light emitting diode display in modern smartphones- spite of power efficiency of organic light emitting diode (OLED) display nature, the integrated display

Pedram, Massoud

397

An Integrated Approach Towards Environmental Impact Assessment Of Projects And Policies  

E-Print Network (OSTI)

Monetary valuation of environmental impacts consist a highly complex matter. Several approaches and techniques have been employed over the last three decades in order to assess effectively environmental projects or policies, within the context of cost benefit analysis. The current paper demonstrates a concise description of the existing environmental impact appraisal methods and, simultaneously, a new combination of monetary valuation techniques applied in each potential receptor which intends to provide an innovative multiperspective assessment concerning future environmental projects. Key words: Environmental assessment, monetary valuation techniques, cost benefit analysis

Aravossis Konstantinos; Vassilios Karydis

2003-01-01T23:59:59.000Z

398

Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

Science Conference Proceedings (OSTI)

The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

NONE

1996-12-01T23:59:59.000Z

399

Utility Battery Storage Systems Program plan: FY 1994--FY 1998  

SciTech Connect

The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

Not Available

1994-02-01T23:59:59.000Z

400

Costs of lithium-ion batteries for vehicles  

DOE Green Energy (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

Science Conference Proceedings (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

402

How Advanced Batteries Are Energizing the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This long dormant plant was revived by a $300 million Recovery Act grant which allowed Johnson Controls

403

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

Science Conference Proceedings (OSTI)

California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

2008-07-01T23:59:59.000Z

404

Integrated land use, transportation, and environmental simulation: UrbanSim project highlights  

Science Conference Proceedings (OSTI)

The process of planning and constructing a new light rail system or freeway, setting an urban growth boundary, changing tax policy, or modifying zoning and land use plans is often politically charged. Our goal in the UrbanSim project is to provide tools ...

Alan Borning; Paul Waddell

2004-05-01T23:59:59.000Z

405

LIGHTING RESEARCH PROGRAM Project 4.5 Integrated Classroom Lighting System  

E-Print Network (OSTI)

lighting system must be flexible and able to adjust to different daylight conditions. Adding automated levels based on the amount of daylight in the classroom. The system should use a separate switch for each the ICLS that was developed in Project 4.5. - Luminaires: i. An indirect luminaire with an optical system

406

An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC  

Science Conference Proceedings (OSTI)

A user-friendly system called coastal modeling system (SMC) has been developed by the Spanish Ministry of Environment and the University of Cantabria. The system includes several numerical models specifically developed for the application of the methodology ... Keywords: Beach nourishment, Beach project design, Coastal modeling, Coastal numerical model, Littoral GUI

M. González; R. Medina; J. Gonzalez-Ondina; A. Osorio; F. J. Méndez; E. García

2007-07-01T23:59:59.000Z

407

Efficiency Projects for Office and Education Buildings Integrating Indoor Environmental Quality with Energy Efficiency  

E-Print Network (OSTI)

Purpose and Scope of this Report Many building owners and managers are under increased pressure from many circles to provide good indoor environmental quality (IEQ). There are many opportunities to advance IEQ during the course of energy projects without sacrificing energy efficiency. These opportunities

Integrating Indoor; Environmental Quality; Office Of Radiation; Indoor Air

2000-01-01T23:59:59.000Z

408

Evaluation of Emerging Battery Technologies for Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

The performance, cycle life, and cost of available batteries are key issues in determining the marketability of plug-in hybrid-electric vehicles (PHEVs). The California Air Resources Board (CARB) initiated a project to evaluate emerging lithiumion battery technologies for PHEV applications. Work initially focused on the determination of the characteristics of one of the most interesting of the emerging lithium-ion batteries, the lithium titanate battery in commercial development by Altairnano, but other ...

2009-08-24T23:59:59.000Z

409

Recommended mission directed goals for electric vehicle battery research and development. The task force on electric vehicle battery goals  

SciTech Connect

Research and development goal packages were developed for the state-of-the-art, flow-through, and bipolar lead-acid batteries, nickel/iron, nickel/zinc, nickel/cadmium, zinc/bromine, iron/air, lithium/iron sulfide, and sodium/sulfur technologies. Since each battery must satisfy mission power/energy requirements throughout every cycle of its operating life, the principal ''design point'' is the end-of-life condition. Since all batteries exhibit deteriorating performance with age, excess kWh capacity of 20 to 30 percent is required early in life. The Battery Panel first identified present state-of-the-art performance characteristics and design interrelationships for each battery technology, and projected the degree of advance expected by 1995. Near-term and 1995 design tradeoffs were modeled using the EVA computerized system developed by ANL. The next step was to target each battery system for a single range (80, 120 or 160 km), depending on its projected 1995 capabilities. For each battery, baseline calculations were carried out assuming the maximum battery weight (695 kg) to be on board. In addition to performance, life, and cost goals, development targets were also established for efficiency, maintenance, and allowable self-discharge rate. The Task Force attempted to establish battery cost requirements, assuming economic parity (in 1995) with other modes of transportation.

Not Available

1986-03-01T23:59:59.000Z

410

NSLS-II Project Pages  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Project Pages Project Management Team Project Schedule Integrated Project Team (IPT) Monthly Status Meetings Advisory Committees Project Reviews Documents NSLS-II...

411

Fluidic: Grid-Scale Batteries for Wind and Solar | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

up to 5,000 charge and discharge cycles - enough to support grid-scale integration of wind and solar power. Fluidic's battery could also help optimize electric grid performance...

412

Fact Sheet: Sodium-Beta Batteries (October 2012) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beta Batteries (October 2012) Beta Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for sodium-beta batteries (Na-beta batteries or NBBs) that will improve energy and power densities and simplify manufacturing. This project will demonstrate a planar prototype that operates at <300 degrees Celsius and will scale up the storage capacity to 5 kW, improving on the performance levels being pursued in related battery research projects. Fact Sheet: Sodium-Beta Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review and Update Meeting Advanced Materials and Devices for Stationary Electrical Energy Storage

413

ESS 2012 Peer Review - Tehachapi Wind Energy Storage Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

key issues with wind-integration andor remote generating sources, e.g. variability, transmission availability, congestion and curtailment * Reliably integrate battery...

414

Anti-Idling Battery for Truck Applications  

DOE Green Energy (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

415

Integration of project management and systems engineering: Tools for a total-cycle environmental management system  

SciTech Connect

An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ``Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.`` This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process.

Blacker, P.B.; Winston, R.

1997-10-01T23:59:59.000Z

416

Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2. Topical report for test circuit operation  

SciTech Connect

The objective of the task (Task 6) covered in this document was to operate the refurbished/modified test circuit of the Gravimeh Process in a continuous integrated manner to obtain the engineering and operational data necessary to assess the technical performance and reliability of the circuit. This data is critical to the development of this technology as a feasible means of producing premium clean burning fuels that meet New Source Performance Standards (NSPS). Significant refurbishments and design modifications had been made to the facility (in particular to the vacuum filtration and evaporation units) during Tasks 1 and 2, followed by off-line testing (Task 3). Two weeks of continuous around-the-clock operation of the refurbished/modified MCL test circuit were performed. During the second week of testing, all sections of the plant were operated in an integrated fashion for an extended period of time, including a substantial number of hours of on-stream time for the vacuum filters and the caustic evaporation unit. A new process configuration was tested in which centrate from the acid wash train (without acid addition) was used as the water makeup for the water wash train, thus-eliminating the one remaining process waste water stream. A 9-inch centrifuge was tested at various solids loadings and at flow rates up to 400 lbs/hr of coal feed to obtain a twenty-fold scaleup factor over the MCL integrated test facility centrifuge performance data.

Not Available

1993-02-01T23:59:59.000Z

417

The integrated melter off-gas treatment systems at the West Valley Demonstration Project  

SciTech Connect

The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

Vance, R.F.

1991-12-01T23:59:59.000Z

418

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

419

The Utility Battery Storage Systems Program Overview  

SciTech Connect

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

1994-11-01T23:59:59.000Z

420

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

422

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

423

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

424

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

425

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

426

River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99  

Science Conference Proceedings (OSTI)

The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

SHOOP, D.S.

1999-09-10T23:59:59.000Z

427

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

428

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

429

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

430

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

431

Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project  

SciTech Connect

A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

1992-05-01T23:59:59.000Z

432

Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

None

2010-01-01T23:59:59.000Z

433

ONE SYSTEM INTEGRATED PROJECT TEAM: RETRIEVAL AND DELIVERY OF THE HANFORD TANK WASTES FOR VITRIFICATION IN THE WASTE TREATMENT PLANT  

SciTech Connect

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant® Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

HARP BJ; KACICH RM; SKWAREK RJ

2012-12-20T23:59:59.000Z

434

One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

2012-12-20T23:59:59.000Z

435

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

436

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

437

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

438

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

439

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

440

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

442

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

443

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

Energy Research/ Energy System Integration Transmission-Research Program Energy System Integration Public InterestCommission’s PIER Energy Systems Integration program for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

444

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Draft Environmental Impact Statement  

DOE Green Energy (OSTI)

The Kentucky Pioneer IGCC Demonstration Project DEIS assesses the potential environmental impacts that would result from a proposed DOE action to provide cost-shared financial support for construction and operation of an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky. Under the Proposed Action, DOE would provide financial assistance, through a Cooperative Agreement with Kentucky Pioneer Energy, LLC, for design, construction, and operation of a 540 megawatt demonstration power station comprised of two synthesis gas-fired combined cycle units in Clark County, Kentucky. The station would also be comprised of a British Gas Lurgi (BGL) gasifier to produce synthesis gas from a co-feed of coal and refuse-derived fuel pellets and a high temperature molten carbonate fuel cell. The facility would be powered by the synthesis gas feed. The proposed project would consist of the following major components: (1) refuse-derived fuel pellets and coal receipt and storage facilities; (2) a gasification plant; (3) sulfur removal and recovery facilities; (4) an air separation plant; (5) a high-temperature molten carbonate fuel cell; and (6) two combined cycle generation units. The IGCC facility would be built to provide needed power capacity to central and eastern Kentucky. At a minimum, 50 percent of the high sulfur coal used would be from the Kentucky region. Two No Action Alternatives are analyzed in the DEIS. Under the No Action Alternative 1, DOE would not provide cost-shared funding for construction and operation of the proposed facility and no new facility would be built. Under the No Action Alternative 2, DOE would not provide any funding and, instead of the proposed demonstration project, Kentucky Pioneer Energy, LLC, a subsidiary of Global Energy, Inc., would construct and operate, a 540 megawatt natural gas-fired power station. Evaluation of impacts on land use, socioeconomics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, and environmental justice were included in the assessment.

N /A

2001-11-16T23:59:59.000Z

445

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading the Nation in Clean Energy Deployment Leading the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

446

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Nation in Clean Energy Deployment the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

447

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

448

Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode  

SciTech Connect

GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

None

2010-09-01T23:59:59.000Z

449

Battery Voltage Stability Effects on Small Wind Turbine Energy Capture: Preprint  

DOE Green Energy (OSTI)

Previous papers on small wind turbines have shown that the ratio of battery capacity to wind capacity (known as battery-wind capacity ratio) for small wind systems with battery storage has an important effect on wind turbine energy output. Data analysis from pilot project performance monitoring has revealed shortcomings in wind turbine energy output up to 75% of expected due to the effect of a''weak'' battery grid. This paper presents an analysis of empirical test results of small wind battery systems, showing the relationships among wind turbine charging rate, battery capacity, battery internal resistance, and the change in battery voltage. By understanding these relationships, small wind systems can be designed so as to minimize''dumped'' or unused energy from small wind turbines.

Corbus, D.; Newcomb, C.; Baring-Gould, E. I.; Friedly, S.

2002-05-01T23:59:59.000Z

450

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

451

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

452

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

453

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

2010-07-01T23:59:59.000Z

454

Non-targeted effects of ionising radiation (NOTE) Â… a new European Integrated project, 2006-2010  

NLE Websites -- All DOE Office Websites (Extended Search)

targeted effects of ionising radiation (NOTE) - targeted effects of ionising radiation (NOTE) - a new European Integrated project, 2006-2010 Sisko Salomaa 1 , Eric G. Wright 2 , Guido Hildebrandt 3 , Munira Kadhim 4 , Mark P. Little 5 , Kevin M. Prise 6 , and Oleg V. Belyakov 1 1 Research and Environmental Surveillance, STUK - Radiation and Nuclear Safety Authority, Helsinki FI-00881, Finland 2 University of Dundee, Division of Pathology and Neuroscience, Molecular and Cellular Pathology Laboratories, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK 3 Department of Radiotherapy and Radiooncology, University of Leipzig, Leipzig 04103, Germany 4 MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX11 ORD, UK 5 Department of Epidemiology and Public Health, Imperial College Faculty of Medicine,

455

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

456

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

457

Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities  

SciTech Connect

The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

1995-02-01T23:59:59.000Z

458

Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project  

SciTech Connect

Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded.

Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Yerace, P.J. [USDOE Fernald Area Office, Cincinnati, OH (United States)

1996-02-01T23:59:59.000Z

459

Toms Creek integrated gasification combined cycle demonstration project. Quarterly report, July 1--September 30, 1993  

SciTech Connect

The use of an upgraded version of General Electric`s Frame 6 gas turbine, which has been designated as Frame 6 (FA) will make a significant improvement to the thermal efficiency and overall economics of the Toms Creek Project. Replacing the smaller, less efficient Frame 6 (B) gas turbine with the new Frame 6 (FA) will increase the net power production from a nominal 55 MW to 105 MW. The coal feed rate will correspondingly increase from 430 tpd to 740 tpd. All process flows and equipment sizes will be increased accordingly. Selected process parameters for the original and revised Toms Creek IGCC plant configurations are compared in Table 2. There is an approximately 10% increase in net plant efficiency for the revised configuration. Using this increased plant size, the pressure vessels become larger due to an increased through-put, but are still dimensioned for shop fabrication and over-the-road shipment. The preliminary cost estimate for the enlarged demonstration plant was prepared by factoring the estimates for the original plant. Revised quotes for the larger equipment will be solicited and used to generate more accurate cost information for the revised plant.

Feher, G.

1993-11-30T23:59:59.000Z

460

A zinc-air battery and flywheel zero emission vehicle  

DOE Green Energy (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "battery integration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Batteries and Energy Storage | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

462

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

Science Conference Proceedings (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

463

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8  

Science Conference Proceedings (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

464

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

Science Conference Proceedings (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

465

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of supernovae. But this research is not only about furthering our understanding of the world around