National Library of Energy BETA

Sample records for battery energy storage

  1. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  2. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  3. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  4. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    J. Østergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  5. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies...

  6. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  7. Aalborg Universitet Single stage grid converters for battery energy storage

    E-Print Network [OSTI]

    Munk-Nielsen, Stig

    Aalborg Universitet Single stage grid converters for battery energy storage Trintis, Ionut; Munk). Single stage grid converters for battery energy storage. In 5th IET International Conference on Power from vbn.aau.dk on: juli 04, 2015 #12;SINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE I

  8. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  9. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  10. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

  11. Using Flow Batteries for Energy Storage Moses Sutton, Columbia University

    E-Print Network [OSTI]

    Lavaei, Javad

    1 Using Flow Batteries for Energy Storage Moses Sutton, Columbia University mss2197@columbia.edu Abstract - In the industry of power generation and distribution, effective energy storage devices have long that are gaining attention in the energy storage industry. I. Introduction Flow batteries are rechargeable

  12. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    D. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and EnergyJ. Østergaard, “Battery energy storage technology for power

  13. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Offices DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are...

  14. Control Algorithms for Grid-Scale Battery Energy Storage Systems

    E-Print Network [OSTI]

    and installation of the control algorithms for frequency-regulation and wind-smoothing for a 1-MW gridControl Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office

  15. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)...

  16. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Einstein, H.; Elspass, C.; Grimes, P.; Katner, E.; Malachesky, P.; Newby, K.

    1983-08-01

    The development of a utility bulk energy market has been severely limited by the lack of better energy storage batteries. Lead acid batteries presently dominate the market. However, lead acid batteries suffer various limitations in the area of cost, maintenance, etc. Design projections for zinc-bromine batteries are attractive for bulk energy storage (BES) and electric vehicle (EV) applications in terms of low manufacturing costs and good performance characteristics. Zinc-bromine battery projections compare favorably with both current lead acid batteries and other advanced battery candidates. In recent years, Exxon's zinc-bromine battery program has shown rapid progress in terms of solving system problems and demonstrating both rapid scale-up of the system and competitively low cost manufacturing techniques.

  17. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect (OSTI)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  18. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all electrochemical energy storage devices, these corrosive reactions are not always detrimental to the operation

  19. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect (OSTI)

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  20. Battery energy storage market feasibility study -- Expanded report

    SciTech Connect (OSTI)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  1. Advances in Energy Storage, Batteries, and Metal Extraction

    E-Print Network [OSTI]

    Aazhang, Behnaam

    Advances in Energy Storage, Batteries, and Metal Extraction Event Sponsors Join the MIT Enterprise Professor of Material Chemistry, MIT discuss Innovation in Electrochemical Technology from Batteries or photovoltaic solar or a solution to the problem of the carbon intensity associated with metals production

  2. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    2514 – Energy storage systems,” storage systems for time-of-use ratesand battery energy storage system, IEEE Transactions on

  3. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  4. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    photovoltaic systems with battery storages control based onthat the energy stored in the battery is bounded withinthe capacity of the battery. Eq. 3b constrains the battery

  5. Technoeconomic Modeling of Battery Energy Storage in SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven; Nelson, Austin; Lundstrom, Blake

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  6. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  7. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the...

  8. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    Tarascon, “Electrical Energy Storage for the Grid: A BatteryProgress in electrical energy storage system: A criticalD. O. Energy, “Energy Storage-A Key Enabler of the Smart

  9. Aalborg Universitet Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid

    E-Print Network [OSTI]

    Rasmussen, Peter Omand

    Aalborg Universitet Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell., Khaligh, A., & Rasmussen, P. O. (2008). Investigation of Battery/Ultracapacitor Energy Storage Rating, mass, efficiency, and battery lifetime due to the rating of the energy storage devices are presented

  10. Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

  11. NREL: Energy Storage - Isothermal Battery Calorimeters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial Analysis ToIsothermal Battery Calorimeters

  12. Aalborg Universitet Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications. In IEEE ICDCM 2015 Energy Storage Systems in Grid Support Applications Amjad Anvari-Moghaddam, Tomislav Dragicevic, Juan C the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What

  13. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  14. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    energy storage application demonstration, an integration of the printed battery with a small photovoltaic device (preferable also printable solar cell based on silicon

  15. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  16. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    Grid-connected photovoltaic systems with battery storagesfor grid-connected photovoltaic systems, IEEE Transactionshybrid photovoltaic and battery energy storage system, IEEE

  17. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart, such as the wind and the sun, large-scale electric energy storage systems are becoming extremely important

  18. Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization

    E-Print Network [OSTI]

    Subramanian, Venkat

    Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization sources such as lithium-ion batteries have had significant improvements in design, modeling, and operating

  19. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect (OSTI)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  20. Enhanced Security-Constrained OPF With Distributed Battery Energy Storage

    SciTech Connect (OSTI)

    Wen, YF; Guo, CX; Kirschen, DS; Dong, SF

    2015-01-01

    This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.

  1. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim. The harvested Li metal could then be an energy source for Li-Liquid flow batteries by using water as the cathode in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li

  2. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  3. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  4. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  5. Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011

    Broader source: Energy.gov [DOE]

    On Friday, October 21, 2011 the Department of Energy will hold a public meeting from 8:00am to 5:00pm at the Bethesda North Marriott Hotel and Conference Center in Bethesda, MD to provide information and receive comments from the public on directions for a potential research effort on batteries and energy storage.

  6. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    and load forecasts in demand side, energy bill managementforecast information. Lithium-ion batteries are not a financially viable storage technology in demand side, energy

  7. Electroville: Grid-Scale Batteries: High Amperage Energy Storage Device—Energy for the Neighborhood

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allows more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.

  8. Membraneless Hydrogen Bromine Laminar Flow Battery for Large-Scale Energy Storage

    E-Print Network [OSTI]

    Poonen, Bjorn

    Membraneless Hydrogen Bromine Laminar Flow Battery for Large-Scale Energy Storage by William Allan and examined for its potential to provide low cost energy storage using the rapid reaction kinetics of hydrogen by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David E. Hardt Chairman, Department Committee on Graduate Theses #12;2 #12;Membraneless Hydrogen Bromine

  9. Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage

    E-Print Network [OSTI]

    Chen, Yaliang

    2009-01-01

    For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

  10. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    photovoltaic systems with battery storages control based onconnected, photovoltaic-battery storage systems A. Nottrott,combined photovoltaic-battery storage system (PV+ system).

  11. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore »electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  12. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  13. Pneumatic battery : a chemical alternative to pneumatic energy storage

    E-Print Network [OSTI]

    Kojimoto, Nigel (Nigel C.)

    2012-01-01

    Pneumatic power is traditionally provided by compressed air contained in a pressurized vessel. This method of energy storage is analogous to an electrical capacitor. This study sought to create an alternative pneumatic ...

  14. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  15. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  16. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  17. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect (OSTI)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  18. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  19. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  20. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  1. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Elspass, C.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-01-01

    The design, testing, operation, and state of development of zinc-bromine batteries are discussed. (LEW)

  2. Battery concepts for high density energy storage: Principles and practice. C. Austen Angell

    E-Print Network [OSTI]

    Angell, C. Austen

    of biblical times. Currently, success in this area is critical if solar energy harnessing is to become tolerate voltages above 5V, are needed. In this area, unlike materials science, the technology developedBattery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept

  3. Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

    SciTech Connect (OSTI)

    2010-09-01

    BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

  4. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    Electrochemical Capacitor Energy Storage Using Direct WriteD. O. Energy, “Energy Storage-A Key Enabler of the Smartof storage [electric energy storage],” Power and Energy

  5. The Wide-Area Energy Storage and Management System – Battery Storage Evaluation

    SciTech Connect (OSTI)

    Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Ma, Jian; Viswanathan, Vilayanur V.

    2009-07-01

    This report presents the modeling approach, methodologies, and results of the sodium sulfur (NaS) battery evaluation study, which was conducted by Battelle for the California Energy Commission (CEC).

  6. Technoeconomic Modeling of Battery Energy Storage in SAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium-ion battery models have been integrated with photovoltaic models giving System Advisor Model (SAM) the ability to predict the performance and economic benefit of behind the...

  7. Batteries and Energy Storage Technology BEST | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWind ProjectVillage,Baton Rogue

  8. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    network applications. For grid energy storage applicationelectronics for grid energy storage applications. DedicationGrid Energy Storage..

  9. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  10. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  11. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in PNNL's lithium-air battery research. "This will greatly reduce production costs and increase the adoptability." Although the battery is achieving the highest level of energy...

  12. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    SciTech Connect (OSTI)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  13. NREL: Energy Storage - Battery Lifetime Analysis and Simulation Tool Suite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial Analysis To performNewsLinTimBattery

  14. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  15. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  16. Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,

    E-Print Network [OSTI]

    Batteries (LIB) are one of the most promising class of next generation energy storage devices, which can producing more reliable and promising LIB based clean energy storage devices. The CR-AFM (Contact Resonance

  17. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    value, objective total energy capacity of the battery array.determine optimal battery energy capacity (in the context ofconducted if the usable energy capacity of the battery is

  18. Energy Storage - Summary of the FY 2005 Batteries for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformationVulnerabilities to Climate ChangeAugust

  19. Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

    2005-03-01

    This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

  20. Japan Storage Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEA EnergyOxy

  1. Membraneless hydrogen bromine laminar flow battery for large-scale energy storage

    E-Print Network [OSTI]

    Braff, William Allan

    2014-01-01

    Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

  2. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  3. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles....

  4. NEDO Research Related to Battery Storage Applications for Integration...

    Open Energy Info (EERE)

    NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity...

  5. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  6. High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage

    E-Print Network [OSTI]

    High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large, United States *S Supporting Information ABSTRACT: Hybrid magnesium-lithium-ion batteries (MLIBs magnesium-lithium-ion batteries (MLIBs), energy storage, Coulombic efficiency, dendrite-free magnesium

  7. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. Battery Energy Storage

    E-Print Network [OSTI]

    Subramanian, Venkat

    grid is an inefficient system that wastes significant amounts of the electricity it produces because sources. Power plants typically produce more power than necessary to ensure adequate power quality | Batteries; battery energy storage systems; battery management systems; control systems; electric grid

  8. Utility Battery Storage Systems Program report for FY93

    SciTech Connect (OSTI)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  9. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  10. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  11. Thermal design requirements of a 50-kW zinc/redox flow battery for solar electrical energy storage

    SciTech Connect (OSTI)

    Selman, J.R.; Wu, H.; Hollandsworth, R.P.

    1985-01-01

    The conceptual engineering design of a large-scale zinc/redox battery for solar electrical energy storage involves the management of considerable heat flows. This is due to the large heat-of-crystallization of sodium ferrocyanide decahydrate produced during discharge, as well as the usual reversible and irreversible cell-reaction heat effects. A discussion of practical design implications is presented.

  12. Thermal design requirements of a 50-kW zinc/redox flow battery for solar electrical energy storage

    SciTech Connect (OSTI)

    Selman, J.R.; Wu, H.; Hollandsworth, R.P.

    1984-09-01

    The conceptual engineering design of a large-scale zinc/redox battery for solar electrical energy storage involves the management of considerable heat flows. This is due to the large heat-of-crystallization of sodium ferrocyanide decahydrate produced during discharge as well as the usual reversible and irreversible cell-reaction heat effects. A discussion of practical design implications is presented.

  13. The Utility Battery Storage Systems Program Overview

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  14. Utility battery storage systems program report for FY 94

    SciTech Connect (OSTI)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  15. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  16. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage...

  17. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  18. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  19. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Dai, Sheng [ORNL; Shao, Yuyan [Pacific Northwest National Laboratory (PNNL); Wang, Xiqing [ORNL; Engelhard, Mark H [Pacific Northwest National Laboratory (PNNL); Wang, Congmin [ORNL; Liu, Jun [Pacific Northwest National Laboratory (PNNL); YANG, ZHENGUO [Pacific Northwest National Laboratory (PNNL); Lin, Yuehe [ORNL

    2010-01-01

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  20. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  1. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  2. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    State Assembly Bill 2514 – Energy storage systems,” Energy Storage for the Electricity5. D. Rastler, Electric Energy Storage Technology Options: A

  3. Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01

    Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of ?"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

  4. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of PowerWhite, and R. T. Long, Lithium-Ion Batteries Hazard and Use

  5. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  6. Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage

    E-Print Network [OSTI]

    Kreutzer, Haley Maren

    2012-05-31

    A low-cost and efficient electrical energy storage system is needed to implement intermittent renewable energy sources such as solar and wind while maintaining grid reliability, and could also reduce the use of inefficient peak-load electrical...

  7. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  8. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  9. Electrical Energy Storage: Stan Whittingham

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

  10. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    E-Print Network [OSTI]

    Darling, Robert M.

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission ...

  11. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10-8 mol/s/cm2 were achieved.

  12. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    13]); (d) 48 lithium ion battery modules in Nissan Leafhighly toxic. In 1991, lithium-ion battery was introduced byThree main types of lithium ion battery have been developed

  13. Utility battery storage systems. Program report for FY95

    SciTech Connect (OSTI)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  14. Molten-Salt Batteries for Medium and Large-Scale Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Yang, Zhenguo

    2014-12-01

    This chapter discusses two types of molten salt batteries. Both of them are based on a beta-alumina solid electrolyte and molten sodium anode, i.e., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. The chapter first reviews the basic electrochemistries and materials for various battery components. It then describes the performance of state-of-the-art batteries and future direction in material development for these batteries.

  15. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    G. Corey, Energy Storage for the Electricity Grid: Benefitsthe energy storage dispatch schedule for a grid-connected,energy storage technologies as a means to integrate renewable energy resources into electric grids

  16. Development of zinc-bromine batteries for utility energy storage. Interim report, September 1978-August 1979

    SciTech Connect (OSTI)

    Putt, R.A.

    1981-03-01

    The goals in the first year of study were to build and test full-size zinc-bromide cell hardware in the form of three 8-kWh submodules and to provide a cost-design study of an 80-kWh module. Supporting studies were included for developing the basic electrochemistry of the system. The program was based on technology developed during a prior contract in which the system's design simplicity, high efficiency, long cycle life, and ease of scale-up, all of which are requirements of a battery for utility application were demonstrated. The system design which evolved during that program comprised a monopolar cell stack using titanium electrodes and a microporous separator, circulation of electrolyte through both the negative and positive sides of the cell stack, and storage of electrolyte and bromine (the latter in the form of a liquid polybromide complex) externally to the cell stack. Two monopolar, 8-kWh submodules of that design were built during the present program. Despite poor electrochemical efficiencies, one of the submodules achieved over 160 deep discharge cycles in continuous hands-off automatic cycling, indicating the inherent cyclability of the system. A major design improvement was made during the program, which has proved crucial to the successful scale-up of the zinc-bromine battery - conversion from a monopolar to a bipolar cell design. The bipolar design has been shown to be superior with respect to cost, performance, and simplicity. Conversion from the monopolar to bipolar cell design was achieved at the 8-kWh submodule level with a minimal perturbation on the hardware construction and testing schedule; one bipolar submodule was built and under test within the 12-month contract period. The 80-kWh stand-alone module will comprise 10 identical 8-kWh submodules of the bipolar electrode configuration, electrolyte circulation systems (pumps, tanks, and plumbing) for both the negative and positive electrolytes, and a bromine storage system.

  17. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    system and second-life lithium-ion battery energy storage. Atrade-off between lithium-ion battery aging and economicIncorporating an empirical lithium-ion battery capacity loss

  18. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    PV systems using storage and controls, Solar Energy 81(7) (of solar and load forecasting in demand side energy storageEnergy storage, Forecasting, Optimal scheduling, Solar power

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Electricity Storage - Sanjoy Banerjee, CUNY.pdf PDF icon ESS 2010 Update Conference - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Venkat Srinivasan,...

  20. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    grid—with advanced electricity storage,” JOM, vol. 62, no.fuel cells; (5) direct electricity storage: supercapacitors.most promising storage technologies for electricity can be

  1. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  2. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  3. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    Integration with photovoltaic cells: Research on integrationother printable photovoltaic cells and electronics. 1.2.of printable photovoltaic cell, zinc-based battery as well

  4. Energy Storage: Building a Better Battery via Public-Private Partnership |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for

  5. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  6. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    lost per hour electrical flow battery 8 thermal Not alland energy ratings of a flow battery are independent of eacha) thermal storage 11 flow battery absorption chiller solar

  7. Breakthrough materials for energy storage

    E-Print Network [OSTI]

    Breakthrough materials for energy storage November 4, 2009 #12;#12;This revolution is happening;Electronics: our early market 5 hours #12;Progress on energy density... #12;Has reached a limit #12;Battery basics Anode Cathode #12;Battery basics Anode Cathode #12;Silicon leads in energy density

  8. Matt Rogers on AES Energy Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

  9. Implementation of battery energy storage system for the electricity grid in Singapore

    E-Print Network [OSTI]

    Wu, Zhenqi, M. Eng. Massachusetts Institute of Technology

    2010-01-01

    The market of grid-level electricity storage is growing rapidly, with a predicted market value of 1.6 billion in 2012 and 8.3 billion in 2016. Electrochemical storages such as lead-acid, nickel-cadmium, sodium-sulfur and ...

  10. DC power supply for charging of a 12 KV 200 KJ energy storage capacitor battery of a 500 KA pulse system for the magnetic horn and reflectors of the CERN neutrino beam

    E-Print Network [OSTI]

    Langeseth, B

    1968-01-01

    DC power supply for charging of a 12 KV 200 KJ energy storage capacitor battery of a 500 KA pulse system for the magnetic horn and reflectors of the CERN neutrino beam

  11. OPTIMAL HOURAHEAD BIDDING IN THE REALTIME ELECTRICITY MARKET WITH BATTERY STORAGE USING APPROXIMATE DYNAMIC PROGRAMMING

    E-Print Network [OSTI]

    Powell, Warren B.

    OPTIMAL HOUR­AHEAD BIDDING IN THE REAL­TIME ELECTRICITY MARKET WITH BATTERY STORAGE USING of wind and solar energy. Energy arbitrage, the process of buying, storing, and selling electricity System Operator) require that battery storage operators place bids into an hour­ ahead market (although

  12. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    north of Los Angeles, California, will host the demonstration. Overview The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8...

  13. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H.; Wang, Chong M.; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22

    We demonstrate a novel electrode material?nitrogen-doped mesoporous carbon (NMC)?for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of VO2+/VO2+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple VO2+/VO2+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple VO2+/VO2+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  14. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  15. Characterization Studies of Materials and Devices used for Electrochemical Energy Storage

    E-Print Network [OSTI]

    Membreno, Daniel Eduardo

    2014-01-01

    Introduction and Objectives Energy storage is becoming theBatteries have been the energy storage of choice forto manufacture energy storage is becoming a necessity [2].

  16. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  17. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    for Residential Energy Management with Wireless Sensorfor residential energy management with wireless sensorsupply system for wireless sensor nodes,” Energy Conversion

  18. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  19. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  20. EK 408 Introduction to Clean Energy Generation and Storage Technologies

    E-Print Network [OSTI]

    Batteries Other storage technologies #12;7. Energy from the sun 2 weeks Solar radiation Solar collectors

  1. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    Enabling renewable energy—and the future grid—with advancedfuture smart grid system with integration of both renewable energy

  2. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    of Ultracapacitor-Battery Energy Storage Systems GainingFerdowsi, A New Battery/Ultracapacitor Energy Storage Systemthe vehicle. The energy storage and battery weight for AER

  3. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  4. Broadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter

    E-Print Network [OSTI]

    Ulukus, Sennur

    ) at the transmitter at random instants. The battery at the transmitter has a finite storage capacity, hence energy mayBroadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter Omur Ozel1 , Jing with a battery limited energy harvesting trans- mitter in a two-user AWGN broadcast channel. The transmitter has

  5. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    n/a n/a electrical flow battery I) thermal I) Flow batteriesand energy ratings of a flow battery are independent of eachthermal storage 8 IV) flow battery V) absorption chiller VI)

  6. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  7. Electrolyte for zinc bromine storage batteries

    SciTech Connect (OSTI)

    Ando, Y.; Ochiai, T.

    1985-04-09

    A negative electrolyte for electrolyte circulation-type storage batteries has a composition basically comprising zinc bromide as an active material and this active material is mixed with specified amounts of quaternary ammonium bromides of heterocyclic compounds such as morpholine, pyridine and pyrrolidine or ammonia as a bromine complexing agent and a dendrite inhibitor with or without specified amounts of Sn/sup 2 +/ and Pb/sup 2 +/.

  8. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

  9. New York Battery and Energy Storage Technology Consortium NY BEST | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,NationalJersey/Incentives <EnergyOrleansSky EnergyEnergy

  10. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  11. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    R. M. White, “A MEMS AC current sensor for residential and12] as well as MEMS current sensors [13] have been conductedMEMS piezoelectric energy harvester and a thick film micro capacitor as a power supply system for wireless sensor

  12. Energy Storage Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    merit08duong.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Battery R&D Program Energy Storage R&D Overview...

  13. Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Balsara, Nitash

    2011-06-03

    Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  14. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | InternationalLand

  15. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen PlasmaEnergy, science,

  16. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog enOffice|DOE and| Department

  17. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog enOffice|DOE and|2012) |

  18. Leading experts to speak at battery & energy storage technology conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidential EnergyOrganization » Leadership About About|

  19. Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogoFeet)Low EnergyInnovation

  20. Sodium-Beta Batteries for Grid-Scale Storage: Planar Sodium-Beta Batteries for Renewable Integration and Grid Applications

    SciTech Connect (OSTI)

    None

    2010-02-01

    Broad Funding Opportunity Announcement Project: EaglePicher is developing a sodium-beta alumina (Na-Beta) battery for grid-scale energy storage. High-temperature Na-Beta batteries are a promising grid-scale energy storage technology, but existing approaches are expensive and unreliable. EaglePicher has modified the shape of the traditional, tubular-shaped Na-Beta battery. It is using an inexpensive stacked design to improve performance at lower temperatures, leading to a less expensive overall storage technology. The new design greatly simplifies the manufacturing process for beta alumina membranes (a key enabling technology), providing a subsequent pathway to the production of scalable, modular batteries at half the cost of the existing tubular designs.

  1. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    show that Lithium- ion batteries can be a financially viablethe price at which Lithium-ion batteries become financiallyinstalled cost for Lithium-ion batteries of a) $600/kWh, $

  2. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    4 show PV+ system power flows, battery charge state and netPV+ system power flows (a,b,c), the battery charge state (d,reverse power flow (i.e. the battery is charging from the

  3. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    ratio 2 Electricity Storage Heat Storage Flow BatteryEnergy Flow Battery Power Absorption Chiller Abs.

  4. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01

    to integrate their battery storage and internal vehicleOstergaard, J. (2009). Battery energy storage technology fora far smaller battery energy storage capacity than BEVs,

  5. 2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)

    SciTech Connect (OSTI)

    None Available

    2012-02-28

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  6. 2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)

    ScienceCinema (OSTI)

    None Available

    2012-03-21

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  7. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    by the same process as fossil fuels) is a form of energy stored in chemical form. BATTERIES LEAD-ACID BATTERY Typical battery used to start a car with an internal...

  8. Energy storage, Thermal energy storage (TES)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Energy storage, Thermal energy storage (TES) Ron Zevenhoven Åbo Akademi University Thermal and Flow 8, 20500 Turku 2/32 4.1 Energy storage #12;Energy storage - motivations Several reasons motivate the storage of energy, either as heat, cold, or electricity: ­ Supplies of energy are in many cases

  9. Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

  10. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  11. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  12. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  13. Hybrid Energy Storage System Integration For Vehicles , Hai Zhou

    E-Print Network [OSTI]

    Zhou, Hai

    . Existing in-vehicle Lithium-ion battery systems are bulky, expensive, and unre- liable. Energy storage- plementary energy storage technologies, e.g., Lithium-ion batteries and ultracapacitors. Using physical-drive vehicles. Based on an ESS modeling solution that considers major run-time and long-term battery effects

  14. New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy

    E-Print Network [OSTI]

    Cui, Yi

    of the active electrode materials. KEYWORDS Energy storage, lithium-sulfur battery, mesoporous carbon, silicon, California 94305 ABSTRACT Rechargeable lithium ion batteries are important energy storage devices; howeverNew Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy Yuan Yang,,§ Matthew

  15. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    E-Print Network [OSTI]

    Ulukus, Sennur

    Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage Omur Ozel Khurram with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while

  16. Understanding the insertion of lithium into silicon electrodes for high capacity lithium-ion batteries is likely to have benefits for mobile energy storage, for both electronics and transportation. Silicon nanostructures have proven to be attractive candi

    E-Print Network [OSTI]

    -ion batteries is likely to have benefits for mobile energy storage, for both electronics and transportationUnderstanding the insertion of lithium into silicon electrodes for high capacity lithium. Silicon nanostructures have proven to be attractive candidates for electrodes because they provide less

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  18. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  19. Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations

    SciTech Connect (OSTI)

    SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

    2000-06-08

    Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

  20. Energy Storage Systems Program at Sandia National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PE Reliability FY10 SNL ESS Program Molecules to Megawatts * Testing - 1 MW Energy Storage Test Facility (ESTF) initiated - Lead Carbon, Li Ion Battery Testing to Several...

  1. Microsoft Word - Energy Storage 092209 BAR.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies to meet a given system loss-of-load probability (LOLP), the total installed capacity requirements of battery energy storage will be attractive. Since the...

  2. Role of Surface Structure on Li-ion Energy Storage Capacity of...

    Office of Scientific and Technical Information (OSTI)

    solar (fuels), energy storage (including batteries and capacitors), hydrogen and fuel cells, electrodes - solar, mechanical behavior, charge transport, materials and...

  3. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  4. Matt Rogers on AES Energy Storage

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  5. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  6. FY2013 Energy Storage R&D Progress Report

    SciTech Connect (OSTI)

    none,

    2014-02-01

    The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

  8. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  9. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  10. Novel materials for Li-ion batteries is one of the principle thrust areas of current research in energy storage. One of the major limiting factors in a Li-ion battery's performance is the low specific capacities of the active

    E-Print Network [OSTI]

    in energy storage. One of the major limiting factors in a Li-ion battery's performance is the low specific capacities of the active materials in the electrodes. Anode materials based on silicon have generated much interest of late. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical

  11. The Binary Energy Harvesting Channel with a Unit-Sized Battery

    E-Print Network [OSTI]

    Ulukus, Sennur

    by the exogenous energy harvesting process, energy storage capacity of the battery, and the past channel inputs by an external energy harvesting process, the size of the battery, and the previous channel inputs. We consider1 The Binary Energy Harvesting Channel with a Unit-Sized Battery Kaya Tutuncuoglu1 , Omur Ozel2

  12. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University demonstrations ­ Smart grid demonstrations ­ Other utility and University / HCEI research priorities · Variety Smart-grid Project 8 Altairnano (ALTI) 2 MW/333kWhr Battery Energy Storage System (BESS) #12;HELCO Wind

  13. SMARTSTORAGE: STORAGE-AWARE SMARTPHONE ENERGY SAVINGS

    E-Print Network [OSTI]

    Zhou, Gang

    SMARTSTORAGE: STORAGE-AWARE SMARTPHONE ENERGY SAVINGS DAVID T. NGUYEN. COLLEGE OF WILLIAM & MARY owners is the poor battery life. To many such users, being re- quired to charge the smartphone after of smartphone storage techniques on total energy consumption and we answer two key research questions: How does

  14. Managing the Storage and Battery Resources in an Image Capture Device (Digital Camera) using Dynamic

    E-Print Network [OSTI]

    Vahdat, Amin

    Managing the Storage and Battery Resources in an Image Capture Device (Digital Camera) using to be matched with intel- ligent image storage mechanisms that are aware of local storage and battery the consumed battery and storage resources in digital cameras. Such application aware technologies

  15. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    SciTech Connect (OSTI)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.; Kintner-Meyer, Michael CW

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.

  16. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  17. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    SciTech Connect (OSTI)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  18. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    SciTech Connect (OSTI)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in the graph.

  19. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has also been added directly to traditional VRLA batteries as an admixture in both the positive and negative plates, the latter of which has been found to result in similar improvements to battery performance under high-rate partial-state-of-charge (HRPSoC) operation. It is this latter construction, where carbon is added directly to the negative active material (NAM) that is the specific incarnation being evaluated through this program. Thus, the carbon-modified (or Pb-C) battery (termed the 'Advanced' VRLA battery by East Penn Manufacturing) is a traditional VRLA battery where an additional component has been added to the negative electrode during production of the negative plate. The addition of select carbon materials to the NAM of VRLA batteries has been demonstrated to increase cycle life by an order of magnitude or more under (HRPSoC) operation. Additionally, battery capacity increases on cycling and, in fact, exceeds the performance of the batteries when new.

  20. Center for Electrical Energy Storage Tailored Interfaces Argonne National Laboratory, University of Illinois at Urbana-Champaign, Northwestern University

    E-Print Network [OSTI]

    Kemner, Ken

    Center for Electrical Energy Storage ­ Tailored Interfaces Argonne National Laboratory, University lithium batteries. Follow us at http://www.anl.gov/energy-storage-science Autogenic reactions at high

  1. Hybrid radical energy storage device and method of making

    DOE Patents [OSTI]

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  2. Many of the key technological problems associated with alternative energies (e.g., thermoelectrics, ad-vanced batteries, hydrogen storage, etc.) may be traced back to the lack of suitable materials. Both the

    E-Print Network [OSTI]

    Kilian, Kristopher A.

    , ad- vanced batteries, hydrogen storage, etc.) may be traced back to the lack of suitable materials Motor Company, where he was group leader for the Hydrogen Storage and Nanoscale Modeling Group. He

  3. Energy Storage | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage SHARE Energy Storage Development Growing popularity and education about the benefits of alternative, sustainable transportation options-such as electric and hybrid...

  4. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  5. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  6. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect (OSTI)

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  7. 2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING

    E-Print Network [OSTI]

    Braun, Paul

    1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

  8. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  10. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  11. Department of Energy Engineering Spring 2011 Boeing #2 Mechanical Energy Storage

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy Engineering Spring 2011 Boeing #2 ­ Mechanical Energy Storage Overview The project was meant to show how well a mechanical energy storage system could compete of mechanical energy storage vs. battery storage is to provide a lower environmental impact. This would be due

  12. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  13. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  14. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    tariffs. Electrical battery storage has also considerablerenewable energies and battery storage, in EUR, C elec iscase of electricity, battery storage has also considerable

  15. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  16. Abstract--This paper discusses using the battery energy storage system (BESS) to mitigate wind power intermittency, so

    E-Print Network [OSTI]

    Peng, Huei

    penalty on wind power scheduling is included in the optimization to make the optimal control trajectory is the third largest renewable energy source after biomass and hydroelectric power [2]. While wind power has

  17. NREL Tool Finds Effective Behind-the-Meter Energy Storage Configuratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Behind-the-Meter Energy Storage Configurations Small battery systems can offer attractive return on investment March 9, 2015 The Energy Department's (DOE) National...

  18. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  19. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  20. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven applications, batteries can serve to provide firm peak-shaving for distributed PV installations. To date, however, the use of batteries from parked electric- drive vehicles (EDV) to provide buffer storage for PV

  1. Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy

    E-Print Network [OSTI]

    Milgram, Paul

    Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices materials during the charging/discharging process. However, in previous graphene based LIB battery research

  2. Short-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes

    E-Print Network [OSTI]

    Yener, Aylin

    -term throughput of an energy harvesting transmitter node with power control and a limited energy storage capacity and the energy storage capacity of the node. A discrete model with packets of energy arrivals is considered that the harvested energy can be stored up to an energy level that we shall call the battery capacity. Energy beyond

  3. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  4. Evaluating Impact of Storage on Smartphone Energy Efficiency

    E-Print Network [OSTI]

    Zhou, Gang

    are motivated to investigate the direct impact of smartphone storage techniques on total battery consumptionEvaluating Impact of Storage on Smartphone Energy Efficiency David T. Nguyen College of William.1145/2494091.2501083 Abstract We present an experimental study of how storage techniques impact energy consumption

  5. BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION

    E-Print Network [OSTI]

    by storing excess power to a battery during excess generation, and then releasing the energy when power generation diminishes. Among other considera- tions, we would like to release and store energy at a bounded States have adopted renewable portfolio standards, which require a certain percentage of electric energy

  6. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  7. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  8. Coordinated Price-Maker Operation of Large Energy Storage Units in Nodal Energy Markets

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Coordinated Price-Maker Operation of Large Energy Storage Units in Nodal Energy Markets Hamed to coordinate the operation of large, price-maker, and geographically dispersed energy storage / battery systems in a nodal transmission-constrained energy market. The energy storage units are assumed to be investor

  9. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    The energy density of electricity storage in batteries orelectricity and hydrogen as alternative fuels is in energy storage.electricity demand. This large pool of battery storage (

  10. Managing the Storage and Battery Resources in an Image Capture Device (Digital Camera) using Dynamic

    E-Print Network [OSTI]

    Ellis, Carla

    Managing the Storage and Battery Resources in an Image Capture Device (Digital Camera) using to be matched with intel- ligent image storage mechanisms that are aware of local storage and battery@cs.duke.edu ABSTRACT Advances in hardware imaging technology and user demand for convenient mobile electronic image

  11. Technical and economic assessments of electrochemical energy storage systems: Volume 6, Zinc-Bromide battery plant description, cost estimate credible accident and efficiency assessment: Part 1, Energy Research Corporation battery design: Final report for the period September 1978-May 1985

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.

    1985-06-05

    This document describes the ERC zinc-bromide battery module as the basic unit in the development of a battery load-leveling facility that will accumulate the output of base-load generation during periods of low demand and provide power for periods of high demands. (DLC)

  12. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  13. Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    1 Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage Kaya with an inefficient energy storage device, i.e., battery or capacitor, is considered, where a fraction of the stored for optimal power allocations with energy harvesting transmitters, it is observed that storage losses

  14. Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based are used as energy storage. The size of the battery depends not only on the driving range, but also Deterministic Dynamic Programming. To determine an energy management to control the power flows to the storage

  15. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  16. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    could be acquired, e.g. battery storage, the costs for whichlead/acid battery, and thermal storage, capabilities, witha) thermal storage 8 IV) flow battery V) absorption chiller

  17. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

  18. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Environmental Management (EM)

    C - C Austen Angell, AZ State ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve ESS 2012 Peer...

  19. FY 2011 Progress Report for Energy Storage R&D

    Broader source: Energy.gov [DOE]

    The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus...

  20. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are on this page; the front cover and first three sections are on the page 2013 Energy Storage R&D Progress Report, Sections 1-3. IV. Battery Testing, Analysis, and Design V....

  1. Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3...

    Broader source: Energy.gov (indexed) [DOE]

    wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary......

  2. ORNL 2012-G00810/tcc Recharging Energy Storage Devices and/or

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL 2012-G00810/tcc 10.2012 Recharging Energy Storage Devices and/or Supplying Electric Power UT energy storage devices such as the batteries in EVs and HEVs from an external power source and

  3. Battery Chargers | Electrical Power Conversion and Storage

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585 OctoberEV-- v1.0 More|

  4. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  5. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    than converted into useful energy. Battery charging systemscharging – directly useful energy or “battery energy”) –

  6. Energy Storage: Current landscape for alternative energy

    E-Print Network [OSTI]

    Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

  7. Method and apparatus for storage battery electrolyte circulation

    DOE Patents [OSTI]

    Inkmann, Mark S. (Milwaukee, WI)

    1980-09-09

    An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

  8. Exploring Adaptive Reconfiguration to Optimize Energy Efficiency in Large-Scale Battery Systems

    E-Print Network [OSTI]

    with hundreds or thousands of batteries are now widely used in electric vehicles [33], [36], energy storageExploring Adaptive Reconfiguration to Optimize Energy Efficiency in Large-Scale Battery Systems systems such as electric vehicles and smart micro-grids. For many applications, the load requirements

  9. Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study

    E-Print Network [OSTI]

    Wierman, Adam

    Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One

  10. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  11. FY2011 Annual Report for NREL Energy Storage Projects

    SciTech Connect (OSTI)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  12. Sandia Energy - Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMABasic Energy

  13. Is Energy Storage an Economic Opportunity for the Eco-Neighborhood?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Is Energy Storage an Economic Opportunity for the Eco-Neighborhood? Hélène Le Cadre MINES Paris storage; Pricing 1 Introduction In the literature, the use of energy storage systems in houses has been, such energy storage may take the form of electric vehicles equipped with lithium-ion batteries or plug

  14. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1

  15. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  16. An energy management IC for bio-implants using ultracapacitors for energy storage

    E-Print Network [OSTI]

    Sanchez, William R.

    We present the first known energy management IC to allow low-power systems, such as biomedical implants, to optimally use ultracapacitors instead of batteries as their chief energy storage elements. The IC, fabricated in ...

  17. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono, MexicoBanhamOil HomeBattery

  18. FY2012 Progress Report for Energy Storage Research & Development

    SciTech Connect (OSTI)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  19. Technical and economic assessments of electrochemical energy storage systems: Topical report on the potential for savings in load-leveling battery and balance of plant costs

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.; Consiglio, J.A.

    1985-08-31

    The battery technologies considered in this study are zinc-bromide, lead-acid, zinc-chloride and sodium sulfur. Results of the study are presented in self contained sections in the following order: Balance of Plant, Zinc-Bromide, Lead-Acid, Zinc-chloride, and Sodium-Sulfur. The balance of plant cost estimates are examined first since the results of this section are utilized in the following battery sections to generate cost reductions in the battery plant costs for each of the battery technologies.

  20. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm...

  1. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  2. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  3. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01

    and Ostergaard, J. (2009). Battery energy storage technology2001). Vehicle-to-grid power: battery, hybrid and fuel cell468. United States Advanced Battery Consortium (2010). USABC

  4. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Energy Savers [EERE]

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  5. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation energy storage research programs apply scientific understanding of battery degradation mechanisms to develop technologies to improve battery performance,...

  6. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO? nanowires, which are a promising replacement for RuO?, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm?¹, a maximum energy density of approximately 15 Jcm?³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  7. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing...

  8. Fact Sheet: Sodium-Beta Batteries (October 2012) | Department...

    Office of Environmental Management (EM)

    Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for...

  9. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  10. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    for grid-connected photovoltaic systems,” IEEE Transactionswith a rooftop photovoltaic (PV) system and second-lifeconnected, photovoltaic- battery storage systems,” Renewable

  11. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  12. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  13. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  14. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  15. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    Battery, Hybrid and Fuel Cell Electric Vehicle Symposium &progress in batteries, fuel cells, and hydrogen storage foronsite energy production (e.g. fuel cells, PV) at different

  16. Printed energy storage devices by integration of electrodes and separators into single sheets of paper

    E-Print Network [OSTI]

    Cui, Yi

    Printed energy storage devices by integration of electrodes and separators into single sheets of paper are not prob- lematic for energy storage devices such as Li-ion batteries and supercapacitors. Also, paper-based energy storage de- vices are necessary for all-paper electronics to operate. Bat

  17. Cost-Effective Design of a Hybrid Electrical Energy Storage System for Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Cost-Effective Design of a Hybrid Electrical Energy Storage System for Electric Vehicles Di Zhu1 to the successful application of hybrid electrical energy storage (HEES) systems in electric vehi- cles (EVs energy storage system comprised of Li-ion batteries only. 1. INTRODUCTION Electric vehicles (EVs) have

  18. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  19. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  20. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  1. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  2. Carbon Nanotube Films for Energy Storage Applications

    E-Print Network [OSTI]

    Kozinda, Alina

    2014-01-01

    Silicon Nanotubes and their Application to Energy Storage,&as an energy storage application of the amorphous-siliconof silicon nanowires hinders the energy storage capability [

  3. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

  4. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01

    based Materials for Energy Storage A dissertation submittedbased Materials for Energy storage by Lynn Margaret Ricewind are intermittent. Energy storage systems, then, that

  5. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    the prob- lem of seasonal storage of thermal energy (Matheyto study seasonal storage of thermal energy: winter storagewithin the Seasonal Thermal Energy Storage Program managed

  6. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

  8. Ice Bear® Storage Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Bear Storage Module Ice Bear Storage Module Thermal Energy Storage for Light Commercial Refrigerant-Based Air Conditioning Units The Ice Bear storage technology was...

  9. Test report : Raytheon / KTech RK30 energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

  10. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  11. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  12. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  13. Introduction to energy storage with market analysis and outlook

    SciTech Connect (OSTI)

    Schmid, Robert; Pillot, Christophe

    2014-06-16

    At first, the rechargeable battery market in 2012 will be described by technology - lead acid, NiCd, NiMH, lithium ion - and application - portable electronics, power tools, e-bikes, automotive, energy storage. This will be followed by details of the lithium ion battery market value chain from the raw material to the final application. The lithium ion battery market of 2012 will be analyzed and split by applications, form factors and suppliers. There is also a focus on the cathode, anode, electrolyte and separator market included. This report will also give a forecast for the main trends and the market in 2020, 2025. To conclude, a forecast for the rechargeable battery market by application for 2025 will be presented. Since energy storage plays an important role for the growing Electric Vehicle (EV) market, this EV issue is closely considered throughout this analysis.

  14. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  15. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  16. Aalborg Universitet Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    Aalborg Universitet Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems, R. E. (2014). Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems Storage Systems with Supercapacitors Cl´audio Pinto, Jorge V. Barreras, Ricardo de Castro, Erik Schaltz

  17. Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes

    E-Print Network [OSTI]

    Tutuncuoglu, Kaya

    2010-01-01

    Wireless networks with energy harvesting battery powered nodes are quickly emerging as a viable option for future wireless networks with extended lifetime. Equally important to their counterpart in the design of energy harvesting radios are the design principles that this new networking paradigm calls for. In particular, unlike wireless networks considered up to date, the energy replenishment process and the storage constraints of the rechargeable batteries need to be taken into account in designing efficient transmission strategies. In this work, we consider such transmission policies for rechargeable nodes, and identify the optimum solution for two related problems. Specifically, the transmission policy that maximizes the short term throughput, i.e., the amount of data transmitted in a finite time horizon is found. In addition, we show the relation of this optimization problem to another, namely, the minimization of the transmission completion time for a given amount of data, and solve that as well. The tra...

  18. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaff andState andStorage Storage

  19. RATIONAL MATERIALS DESIGN THROUGH THEORY AND MODELING The rational design of novel electrical energy storage (EES) systems with high energy and

    E-Print Network [OSTI]

    Bazant, Martin Z.

    energy storage (EES) systems with high energy and power density will require the development of a full breakthroughs. Although chemical energy storage (batteries) and ECs share common components such as electrodes the research directions for each are presented separately. Chemical Energy Storage Storage of electrical charge

  20. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  1. Energy Department to Launch New Energy Innovation Hub Focused...

    Office of Environmental Management (EM)

    to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy Storage Energy Department to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy...

  2. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  3. National Energy Storage Strategy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3Energy Storage Strategy

  4. C Battery Corral 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    reliability. The total consumption of lead-acid batteries in the United States reported in 2008 is $2.9 billion per year and is growing at an annual rate of 8%. The utilization of Lithium-ion battery is growing rapidly. The possibility of lithium-ion... Energy Storage Parameters ............................................................................ 25 Table 2 Case I Cost Comparison ................................................................................ 27 Table 3 PHEV Battery...

  5. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion EfficiencyEnergy

  6. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  7. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  8. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  9. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    great interest of lithium-ion battery applications. Niobiumprinciple of a lithium-ion battery (illustrated with aas Anode Material for Lithium Ion Battery, Journal of Energy

  10. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    renewable energy sources, which, due to their intermittent nature, will require energy storage devices. Batteries and

  11. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformationVulnerabilities to Climate ChangeAugustEnergy Storage

  12. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  13. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  14. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  15. FY2010 Annual Progress Report for Energy Storage Research and Development

    SciTech Connect (OSTI)

    none,

    2011-01-28

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). Over the past few years, the emphasis of these efforts has shifted from high-power batteries for HEV applications to high-energy batteries for PHEV and EV applications.

  16. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    could be acquired, e.g. battery storage, the costs for whichlead/acid battery, and thermal storage, capabilities, withis limited by battery size - Heat storage is limited by

  17. NREL Energy Storage Projects: FY2013 Annual Report

    SciTech Connect (OSTI)

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  18. Energy Harvesting Two-Way Communications with Limited Energy and Data Storage

    E-Print Network [OSTI]

    Yener, Aylin

    Energy Harvesting Two-Way Communications with Limited Energy and Data Storage Burak Varan Aylin, we study two-way communication scenarios with energy harvesting. In particular, we consider the two with finite batteries and finite data buffers. This entails iteratively solving an energy problem, which

  19. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  20. FY2009 Annual Progress Report for Energy Storage Research and Development

    SciTech Connect (OSTI)

    none,

    2010-01-19

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  1. A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage

    E-Print Network [OSTI]

    Mao, Xianwen

    The applications of electrospun carbon fiber webs to the development of energy storages devices, including both supercapacitors and lithium ion batteries (LIB) , are reviewed. Following a brief discussion of the fabrication ...

  2. Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The energy storage research and development effort within the Vehicle Technologies Office is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  3. COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES

    E-Print Network [OSTI]

    Deymier, Pierre

    . Existing storage technologies include electrochemical batteries and fuel cells, supercapacitors, thermal be operated at very low powers, to optimally utilize the output of individual PV panels. Compressed Air Energy

  4. Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage

    E-Print Network [OSTI]

    Swallow, Jessica Gabrielle

    Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit ...

  5. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  6. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    D. Todd, (1973). Heat storage Systems in the L - Temperaturements for Energy Storage Systems, Los Alamos Scientificdirector for Physi- cal Storage Systems. Under Jim are three

  7. University of Maryland NSF-MRSEC Highlight: Coaxial Nanostructures for Energy Storage

    E-Print Network [OSTI]

    Rubloff, Gary W.

    University of Maryland NSF-MRSEC Highlight: Coaxial Nanostructures for Energy Storage P. Banerjee deposition storage than the best of today's devices, meeting the growing need for storing energy derived from generation Mn in MnO2 of devices for storing electrical energy that function as supercapacitors and batteries

  8. Sandia Energy - Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied TurbulentAssessmentBattery

  9. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  10. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  11. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect (OSTI)

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

  12. Maximizing the usage of renewable energy will reduce our reliance on dwindling natural resources and environmental pollution. Batteries are an important enabling technology for renewable energy, portable

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    -Sponsored by the Nebraska Center for Materials and Nanoscience Advanced Synthesis and Characterization of Energy Storage of silicon anode nanostructures in a closed-liquid-cell battery will be presented in detail. The information

  13. Preparation of ionic membranes for zinc/bromine storage batteries

    SciTech Connect (OSTI)

    Assink, R.A.; Arnold, C. Jr.

    1991-01-01

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance. 5 refs., 6 figs., 11 tabs.

  14. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    Requirements for Products with Battery Charging Systems (Power Tools Slow Charger Battery Energy No load (stdby) FastWorkshop on Power Supply and Battery Test Procedures, San

  15. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    A New Concept in Electric Generation and Energy Storage,"A New Concept in Electric Generation and Energy Storage,"of Solar Energy for Electric Power Generation," Proceedings

  16. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

  17. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Environmental Management (EM)

    large-scale stationary potassium-air (K-O2) batteries. These batteries could support renewable energy systems by storing excess power and distributing it at times of peak...

  18. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery

    E-Print Network [OSTI]

    Henkelman, Graeme

    makes a sodium-ion rechargeable battery preferable to a lithium-ion battery for large-scale storage-scale energy storage to specific sites. Rechargeable, low-cost batteries would provide distributed electrical-energy storage. Lithium-ion batteries (LiIBs) are the leading option for this application, but the use of lithium

  19. An Energy Management IC for Bio-Implants Using Ultracapacitors for Energy Storage William Sanchez, Charles Sodini, and Joel L. Dawson

    E-Print Network [OSTI]

    Dawson, Joel

    energy storage elements. The IC, fabricated in a 0.18 m CMOS process, consists of a switched-capacitor DCAn Energy Management IC for Bio-Implants Using Ultracapacitors for Energy Storage William Sanchez tradition- ally relying on batteries as energy storage elements, there is emerging interest in using

  20. NSF Workshop on Emerging Opportunities of Nanoscience to Energy Conversion and Storage

    E-Print Network [OSTI]

    Reif, John H.

    for Fuel Cells and Batteries by Katsuyo Thornton, John Harb, and Liwei Lin Section 6: Section 5 for the attachment of a wide variety of distinct materials (including metallic particles, proteins, and other-voltaics and thermocouplers), and (ii) storage and release of energy (e.g., fuel cell and battery technology). Rather than

  1. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  2. Integrated Renewable Energy and Energy Storage Systems

    E-Print Network [OSTI]

    Integrated Renewable Energy and Energy Storage Systems Prepared for the U.S. Department of Energy and Energy Storage Systems TABLE OF CONTENTS 1 Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Hawai`i Distributed

  3. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the development of flow-assisted nickel zinc battery technology. This technology has the promise of enabling low-cost (<$250 / kWh) energy storage, while overcoming the historical poor cycle-life drawback. To date, the results have been promising, with a cycle life of 1,500 cycles demonstrated in small laboratory cells – an improvement of approximately 400%. Prior state of the art nickel zinc batteries have only demonstrated about 400 cycles to failure.

  4. Energy Storage | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for VGTechnology

  5. Charging system and method for multicell storage batteries

    DOE Patents [OSTI]

    Cox, Jay A. (Rolling Hills Estates, CA)

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  6. Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities

    E-Print Network [OSTI]

    Cao, Guozhong

    Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities By Dawei Liu, Betzaida Battalla Garcia, Qifeng Zhang, Qing Guo, Yunhuai Zhang, Saghar Sepehri and alkaline batteries for decades, is a well accepted electrode material for clean energy storage because

  7. Linkages of DOE'S Energy Storage R & D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe25,Lighting ControlLinda Stuntz Aboutof DOE's

  8. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    20) E. B. Quale. Seasonal storage of thermal energy in waterE.B. , 1976. "Seasonal Storage of Thermal Energy in Water ina truly worthwhile goal. Seasonal Storage of Thermal Energy

  9. Lithium Charge Storage Mechanisms of Cross-Linked Triazine Networks and Their Porous Carbon Derivatives

    E-Print Network [OSTI]

    2015-01-01

    K. ; Inoue, Y. A New Energy Storage Material: OrganosulfurA New Cathode Material for Batteries of High Energy Density.

  10. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  11. Battery-Aware Energy-Optimal Electric Vehicle Driving Management

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    of replacing the battery, e.g. 12,000$ for Tesla Model S 85KWh [4] and 5,500$ for Nissan Leaf S [5], extendingBattery-Aware Energy-Optimal Electric Vehicle Driving Management Korosh Vatanparvar, Jiang Wan environmental concerns, e.g. air pollution. However, EVs pose new challenges regarding their Battery Life

  12. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  13. Sandia Energy - DOE International Energy Storage Database Has...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity Home Energy Assurance Infrastructure Security Energy Surety Energy Grid...

  14. SOLID ELECTROLYTE BATTERIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Robertseere.energy.gov TimothySOLID ELECTROLYTE BATTERIES

  15. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

  16. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Energy Storage Systems 2014 Peer Review Presentations - Session 11...

  17. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS)...

  18. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Superconducting Magnetic Bearing - Mike Strasik, Boeing.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review - Day 1 morning presentations Energy Storage...

  20. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  1. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  2. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  3. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  4. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    Host for Emerging Energy Storage Systems Introduction Li-ionStorage Systems …………………………………………………………………………………………………………85Architectures for Energy Storage Systems A dissertation

  5. Energy Management and Cost Analysis in Residential Houses using Batteries

    E-Print Network [OSTI]

    Simunic, Tajana

    Energy Management and Cost Analysis in Residential Houses using Batteries Baris Aksanli and Tajana}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal patterns that can be leveraged by energy if the batteries are not used in specific configurations. I. INTRODUCTION AND RELATED WORK Residential energy

  6. An Energy Harvesting AWGN Channel with a Finite Battery

    E-Print Network [OSTI]

    O'Brien, James F.

    An Energy Harvesting AWGN Channel with a Finite Battery Varun Jog EECS, UC Berkeley Berkeley, CA: ananth@eecs.berkeley.edu Abstract--In energy harvesting communication systems, the transmitter is adapted to harvest energy per time slot. The harvested energy is either used right away or is stored in a battery

  7. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  8. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  9. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara McClintock andBasicsLeadershipSPOTLIGHT

  10. Zibo Storage Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindeyZibo Baoyun Chemical Company Ltd

  11. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    aquifers for heat storage, solar captors for heat productionZakhidov, R. A. 8 1971, Storage of solar energy in a sandy-thermal energy storage for cogeneration and solar systems,

  12. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    associat~ ed with solar thermal storage. Now this system canand R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the

  13. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  14. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  15. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  16. Advanced Energy Storage Life and Health Prognostics (INL)

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2011-11-01

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: (1) Developing a statistically robust battery life estimator tool based on both testing and simulation, (2) Developing rapid impedance spectrum measurement techniques that enable onboard power assessment, and (3) Developing an energy storage monitoring system that incorporates both passive and active measurements for onboard systems.

  17. Investigation of critical parameters in Li-ion battery electrodes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Negative Electrodes: Novel and Optimized Materials Novel and Optimized Materials Phases for High Energy Density Batteries FY 2012 Annual Progress Report for Energy Storage R&D...

  18. Phylion Battery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia, New York:

  19. Broadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter

    E-Print Network [OSTI]

    Ulukus, Sennur

    . The proposed algorithm uses directional water-filling repetitively. I. INTRODUCTION Energy harvestingBroadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter Omur Ozel1 , Jing with a battery limited energy harvesting trans- mitter in a two-user AWGN broadcast channel. The transmitter has

  20. Optimal Energy Management Strategy including Battery Health through Thermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid

  1. Addressing the Grand Challenges in Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2013-02-25

    The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

  2. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  3. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has four times the energy density of a conventional lithium-ion battery. Learn...

  4. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOE Patents [OSTI]

    Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  5. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    J. -M. Electrical energy storage for the grid: a battery ofCorey, G. Energy Storage for the Electricity Grid: Benefitsparticularly into grid-level energy storage. Chapter 10.

  6. Prieto Battery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology Jump to:PresidioPrairie, Kansas:Prieto

  7. Battery Chargers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585 OctoberEV-- v1.0 More

  8. Sandia Energy - Battery Abuse Testing Laboratory (BATLab)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMABasic EnergyBattery

  9. Category:Battery makers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation, searchsource History View New PagesBattery

  10. Ningbo Veken Battery Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources Jump to:IncVeken Battery Company

  11. Laor Batteries Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado:EnergyLaor Batteries Ltd Jump to:

  12. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPower LLC Jump to: navigation,BarBattery

  13. Coda Battery Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy ResourcesCreek,CoastalCochranCoconutBattery

  14. Battery SEAB Presentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC | Department4Bartlesville EnergyA renderingBattery SEAB

  15. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  16. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  17. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...

  18. Energy-Efficiency and Storage Flexibility in the Blue File System Edmund B. Nightingale and Jason Flinn

    E-Print Network [OSTI]

    Flinn, Jason

    Energy-Efficiency and Storage Flexibility in the Blue File System Edmund B. Nightingale and Jason connec- tivity to small, mobile devices. Portable storage, such as mobile disks and USB keychains, let to pervasive data access remain. First, power-hungry network and storage devices tax the lim- ited battery

  19. Sandia Energy - Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy StorageAshley Otero2015-10-30T01:37:25+00:00 Environmentally friendly renewable energy sources such as wind and solar are important technology platforms to help reduce power...

  20. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  1. The Role of Thermal Energy Storage in Industrial Energy Conservation 

    E-Print Network [OSTI]

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely...

  2. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Energy Storage - December 2013 Grid Energy Storage - December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy...

  3. Energy Department Releases Strategic Plan for Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Releases Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk...

  4. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01

    Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Resources Res. 14: 273-280. THERMAL STORAGE OF COLD WATER INR.C. HARE, 1972. Thermal Storage for Eco-Energy Utilities,W.J. MASICA, 1977. "Thermal Storage for Electric Utilities,"

  6. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    R. C. 1 1972 1 Thermal storage for eco=energy utilities: GE-and Harris, w. B. 0 1978 0 Thermal storage of cold water induration EXPERIMENTS Thermal storage radius (m) thickness

  7. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  8. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    time-varying solar energy inputs and thermal or powerthermal energy becomes apparent with the development of solar

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    or (2) from solar energy collectors, and to retrieve the hotof Hot Water from Solar Energy Collectors," Proceedings of

  10. Exhausting Battery Statistics Understanding the energy demands on mobile handsets

    E-Print Network [OSTI]

    Hand, Steven

    Exhausting Battery Statistics Understanding the energy demands on mobile handsets Narseo Vallina Thomson Avenue Ernst-Reuter-Platz 7 Cambridge, UK Berlin, Germany name.surname@cl.cam.ac.uk name.surname@telekom.de ABSTRACT Despite the advances in battery technologies, mobile phones still suffer from severe energy

  11. Technology Base Research Project for electrochemical energy storage

    SciTech Connect (OSTI)

    Kinoshita, Kim (ed.)

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  12. National Clean Energy Business Plan Competition | Department...

    Broader source: Energy.gov (indexed) [DOE]

    growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has four times the energy density of a conventional lithium-ion battery. Learn...

  13. National Clean Energy Business Plan Competition | Department...

    Broader source: Energy.gov (indexed) [DOE]

    battery technologies to meet the world's growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has four times the energy density of...

  14. Increasing renewable energy system value through storage

    E-Print Network [OSTI]

    Mueller, Joshua M. (Joshua Michael), 1982-

    2015-01-01

    Intermittent renewable energy sources do not always provide power at times of greatest electricity demand or highest prices. To do so reliably, energy storage is likely required. However, no single energy storage technology ...

  15. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  16. NEDO Research Related to Battery Storage Applications for Integration of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas: EnergyMyRecipeR.S.NCRC

  17. Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

  18. International Battery Presentation - Keeping The Lights On: Smart Storage

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment Interested Parties -MEASUREMENTfor a Smart Grid

  19. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for...

  20. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing...

  1. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap...

  2. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  3. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    and long life energy storage devices for many applications,portable electronics, EVs and grid-scale energy storage.2011). [28] Telcordia Energy Storage Research Group, http://

  4. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    in Electrochemical Energy Storage. Science 334, (6058), 917-with supercapacitors storage energy system. Electr. Pow.energy conversion and storage devices. Nat. Mater. 2005,

  5. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    portable electronics, EVs and grid-scale energy storage.electronics, EVs and grid-scale energy storage. v Thevehicles and smart grid energy storage, are highly dependent

  6. Energy Storage Systems 2010 Update Conference | Department of...

    Office of Environmental Management (EM)

    Energy Storage Systems 2010 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

  7. Energy Storage Activities in the United States Electricity Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Activities in the United States Electricity Grid. May 2011 Energy Storage Activities in the United States Electricity Grid. May 2011 Energy storage technologies...

  8. Energy Storage Systems 2012 Peer Review and Update Meeting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2012 Peer Review and Update Meeting Energy Storage Systems 2012 Peer Review and Update Meeting OE's Energy Storage Systems Program (ESS) conducted a peer...

  9. Fact Sheet: Energy Storage Database (October 2012) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Database (October 2012) Fact Sheet: Energy Storage Database (October 2012) DOE and Sandia National Laboratories are developing a database of energy storage projects...

  10. Energy Storage Systems 2014 Peer Review and Update Meeting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2014 Peer Review and Update Meeting Energy Storage Systems 2014 Peer Review and Update Meeting OE's Energy Storage Systems (ESS) Program conducted a peer...

  11. ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2013-01-01

    temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

  12. Nano- and Microscale Architectures for Energy Storage Systems

    E-Print Network [OSTI]

    Dudek, Lisa

    2014-01-01

    electrospun PIM-1 for energy storage applications. J. Mater.necessary for electrical energy storage on the nanoscale andnanoarchitectures for energy storage and conversion. Chem.

  13. De Novo Nanostructures and Their Applications in Energy Storage

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01

    candidates for alternative energy storage applications sincetowards high performance energy storage devices. ReferencesApplications in Energy Storage A Dissertation submitted in

  14. Hierarchical Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Wang, Xiaolei

    2013-01-01

    high power, and long life energy storage devices for manyportable electronics, EVs and grid-scale energy storage.2011). [28] Telcordia Energy Storage Research Group, http://

  15. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01

    3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

  16. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Broader source: Energy.gov (indexed) [DOE]

    Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage...

  17. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies...

  18. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  19. Rational Material Architecture Design for Better Energy Storage

    E-Print Network [OSTI]

    Chen, Zheng

    2012-01-01

    in Electrochemical Energy Storage. Science 334, (6058), 917-for electrochemical energy storage. Adv. Funct. Mater. 2009,electrochemical capacitive energy storage. Angew. Chem. Int.

  20. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  1. Energy Proportionality for Disk Storage Using Replication

    E-Print Network [OSTI]

    Kim, Jinoh

    2010-01-01

    acquisition. In particular, saving energy for storage is ofreplication can help saving energy because when a data itemFREP exploits replications, saving energy over 90% of the

  2. Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop

    E-Print Network [OSTI]

    Storage #12;Competitive Electric Market Structure Power Generation Distributed Generation Grid Management Power Mkts. & Reliability Micro-Grids Power Quality Grid Reliability Competitive State Regulated FERCGrid Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7

  3. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature,

    E-Print Network [OSTI]

    Cui, Yi

    capacity of 849 and 610 mAh/g at 2C and 4C, respectively. lithium sulfur battery | energy storage | long energy storage (1­4). To achieve a quantum leap in the batteries specific energy density, new electrodeHigh-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    2, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update...

  6. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at...

  7. High energy storage capacitor by embedding tunneling nano-structures

    DOE Patents [OSTI]

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  8. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  9. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  10. National Labs Leading Charge on Building Better Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department's Office of Science. Addthis Related Articles California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award Transformative Battery Technology...

  11. Building a Better Battery for Vehicles and the Grid | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    what happened today, as Argonne National Lab takes the reins of the newly formed Batteries and Energy Storage Hub. It'll be known as the Joint Center for Energy Storage...

  12. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow 2011Year #12;Flow Battery Research at PNNL and Sandia #12; Iron-containing "MetIL" Redox Couples for Flow Batteries, Sandia Sandia has developed

  13. Energy Storage Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizonaAugust 16,Security 40 YearsEnergyJune Energy

  14. Energy Storage Structural Composites: TONY PEREIRA

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Energy Storage Structural Composites: a Review TONY PEREIRA 1, *, ZHANHU GUO 1 , S. NiEH 2 , J: This study demonstrates the construction of a multifunctional composite structure capable of energy storage) composites were laminated with energy storage all-solid-state thin- film lithium cells. The processes

  15. Nanotubular metalinsulatormetal capacitor arrays for energy storage

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Nanotubular metal­insulator­metal capacitor arrays for energy storage Parag Banerjee1,2 , Israel be possible to scale devices fabricated with this approach to make viable energy storage systems that provide, with speeds limited only by external circuit RCs. However, energy storage is limited because only surface

  16. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  17. Battery: Collection, Storage and Shipping Procedure: 8.41 Created: 09/16/2013 Version: 1.4 Revised: 1/17/2014

    E-Print Network [OSTI]

    Jia, Songtao

    Battery: Collection, Storage and Shipping Procedure: 8.41 Created: 09/16/2013 Version: 1.4 Revised: 1/17/2014 Environmental Health & Safety Page 1 of 8 A. Purpose To ensure that all spend batteries and Columbia University Spill Prevention, Control and Countermeasures. B. Applicability/Scope 1. Use of battery

  18. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    ;Power Electronics and Motor Drives Laboratory Wind and Solar Energy Outlook The U.S. wind power industry Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics Energy Storage Integrated with Renewable Energy Energy Storage Analysis for Wind and Solar #12;Power

  19. Sandia Energy - Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhase Field modelStorage Systems

  20. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  1. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  2. Energy Storage Safety Strategic Plan - December 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient...

  3. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01

    PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CEC?s... possible by using the SCR controls. TEST PROCEDURE A test procedure was developed for the California Energy Commission?s (CEC) Codes and Standards process. This test procedure was developed with industry stakeholder input for battery and charger...

  4. Optimal control of end-user energy storage

    E-Print Network [OSTI]

    van de Ven, Peter M; Massoulie, Laurent; Salonidis, Theodoros

    2012-01-01

    An increasing number of retail energy markets exhibit price fluctuations and provide customers such as data centers and residential users the opportunity to buy energy at lower than average prices. Such cost savings however are hard to obtain in practice because they require users to observe the price fluctuations and shift their consumption to low price periods. We propose to use energy storage to allow users to satisfy demand at times when prices are high with energy previously bought during low-price periods. We investigate how to control the battery to minimize energy costs, subject to fluctuating prices and user demand. We formulate this problem as a Markov Decision Process and show that the optimal policy has a threshold structure. We then numerically compute the thresholds using real-world traces from existing energy markets. We show that energy storage using this policy leads to significant cost savings, and study the impact of the battery size on the optimal policy and the potential savings.

  5. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  6. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  7. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  8. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  9. Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell

    E-Print Network [OSTI]

    Wang, Zhong L.

    Information ABSTRACT: Energy generation and energy storage are two distinct processes that are usually, such as piezoelectric nanogenerator and Li-ion battery; the former converts mechanical energy into electricity, and the latter stores electric energy as chemical energy. Here, we introduce a fundamental mechanism

  10. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Janice Thomas; Frank Ervin

    2012-02-28

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystemsâ?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  11. Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds

    E-Print Network [OSTI]

    Arnold, Craig B.

    ) The lithium ion battery, a preferred energy storage technology, is limited by its volumetric and gravimetric. INTRODUCTION The lithium ion battery has become the energy storage me- dium of choice for almost allSilicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible

  12. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  13. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Heat Wind Power Grid Solar Power ENERGY STORAGE P2G (HES) THE NEED THE MARKET RE curtailment is a growing occurrence Storage is required not just for hours but...

  14. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Security Publications Library Energy Storage Power Electronics Advanced Modeling Grid Research Transmission Reliability Renewable Energy Integration Small Business...

  15. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    Designing new electrode materials for energy devices byTo1) - a New Cathode Material for Batteries of High- Energy

  16. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 Thanks forEnergy ScienceEnergyStorage

  17. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Info (EERE)

    Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of lithium-ion and lead-acid batteries. Coordinates: 34.738258, 135.565994 Show Map Loading...

  18. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    2007 7. Bottling Electricity: Storage as a Strategic Toolgiven at the The Electricity Storage Association Meeting,electricity for propulsion. The batteries in those vehicles are sized by the energy storage

  19. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    environmentally sound method of using thermal energy storageconcept of thermal energy of energy conversion methods tothermal energy, particularly cavern storage, appears to offer a promising near-term method

  20. PCIM, Nrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND

    E-Print Network [OSTI]

    Boyer, Edmond

    -scale storage of the type pumped hydro, compressed air, flow batteries, etc.), or even at the level of potential

  1. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

  2. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    electric energies from photovoltaic, wind, wood, biofuels and hydroelectrics to create a utility scale energy generation andgeneration and storage technologies is important for increasing the share of renewable energy sources and wider use of the plug-in electricgeneration and storage technologies are important for increas- ing the share of renewable energy sources and wider use of the plug-in electric

  3. Battery Thermal Modeling and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy and ForestBattery ChargersBattery SEABThermal

  4. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery

    E-Print Network [OSTI]

    Jo, Moon-Ho

    , such as fuel cells and secondary batteries. Here we report a coin-type Si nanowire NW half-cell Li-ion battery is the central research subject in various energy conversion systems, such as solar cells, fuel cells must be optimally coordinated.7 In this respect, Si nanowire NW arrays can serve as the high capacity

  5. Microbial battery for efficient energy recovery Xing Xiea,b

    E-Print Network [OSTI]

    Cui, Yi

    Microbial battery for efficient energy recovery Xing Xiea,b , Meng Yea , Po-Chun Hsub , Nian Liuc Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (received for review April 18, 2013) By harnessing the oxidative power of microorganisms, energy can

  6. Sandia Energy - Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin HumphreysDETLEC SSLSRecentCapabilitiesEnergy

  7. Energy Storage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Incsource History View NewRecommerceBuildingEnergy

  8. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy Storage Management for VG

  9. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  10. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  11. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01

    23) Knipp, R. "Marketing Thermal Storage," In Proceedings:1986. Tejl, D.S. , "Thermal Storage Strategies for Energy14) Ott, V,J. , "Thermal Storage Air Conditioning with

  12. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

  13. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  14. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  15. Water Heaters (Storage Electric) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE rulemakings, and enforcement of the federal energy conservation standards. waterheaterstorageelectricv1.0.xlsx More Documents & Publications Water Heaters (Storage...

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    ESS 2010 Update Conference - Seneca Advanced CAES 150 MW Plant Using an Existing Salt Cavern - James Rettberg, NYSEG.pdf More Documents & Publications Energy Storage...

  17. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  18. Electrochemical Energy Storage | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical Energy Storage Apr 16 2014 08:00 AM - 05:00 PM Multiple Speakers, in multiple disciplines, from multiple institutions ASM International, Oak Ridge Chapter,...

  19. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01

    energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

  20. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    ESS 2010 Update Conference - Dynamic Islanding, Improving Service Reliability with Energy Storage - Emeka Okafor, AEP.pdf More Documents & Publications Overview of Gridscale...