Powered by Deep Web Technologies
Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

2

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

3

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

4

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

5

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

6

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

7

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

8

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

9

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon American Battery Charging Inc Jump to: navigation, search Name American Battery Charging Inc Place...

10

Method for charging a storage battery  

SciTech Connect

A method is disclosed for charging a lead-acid storage battery, the method comprising the steps of charging the battery at an initially high rate during an initial stage of the charging cycle, monitoring the internal battery voltage, charging the battery at a lower, finishing rate after a preselected battery voltage has been monitored, and periodically interrupting the finishing charge until the battery is recharged.

Fallon, W.H.; Kirby, D.W.; Neukirch, E.O.; Schober, W.R.

1983-07-19T23:59:59.000Z

11

Method and apparatus for rapid battery charging  

SciTech Connect

A method and apparatus for charging electrical storage batteries having a known nominal amperage are described. The method consists in discharging the battery to a predetermined value and then charging the battery with a charging current initially several times greater than the nominal battery amperage. The charging current decreases exponentially from the initial charging current to a charging current much less than the nominal battery amperage when the battery is fully charged. The apparatus uses the discharge rate of an RC circuit to control the charging current applied to the battery. 3 figures, 1 table.

Samsioe, P.E.

1979-12-18T23:59:59.000Z

12

Method and apparatus for battery charging  

SciTech Connect

This patent describes a method of charging a battery and terminating the charging thereof upon determination of the existence of a prescribed condition comprising the steps of: applying charging current to the battery; measuring the battery voltage soon after the charging current is applied; determining, on the basis of the battery voltage measurement, the knee voltage of the charging characteristic of the particular battery being charged; calculating a battery voltage limit beyond which no further charging current is to be applied, the voltage limit being the point at which the instantaneous battery voltage is a pre-determined value greater than the knee voltage of the battery's charging characteristic; continued measuring of the battery voltage as the charging current is applied; and terminating the application of charging current when the battery voltage limit is reached.

Westhaver, L.A.; Ruksznis, R.E.

1987-01-27T23:59:59.000Z

13

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers` claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

14

Battery test facility hardware, software, and system operation  

SciTech Connect

Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers' claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.

Rodriguez, G.P.

1991-09-01T23:59:59.000Z

15

Charging system for nickel-zing batteries  

SciTech Connect

A source of constant current or constant power supplies charging current to a nickel-zinc battery to produce a generally S-shaped battery voltage waveform. To improve battery life, charging is terminated at the inflection point where the slope of the battery voltage changes from increasing to decreasing.

Jones, R. A.; Reoch, W. D.

1985-03-05T23:59:59.000Z

16

Battery disconnect sensing circuit for battery charging systems  

SciTech Connect

This patent describes a battery disconnect sensing circuit for battery charging systems which have a pair of cables adapted to be connected to a battery to charge it. The sensing circuit contains a first R-C circuit adapted to connect across the cables and a second R-C circuit adapted to connect across the cables. The time constant of the first R-C circuit is substantially greater than that of the second R-C circuit. Also means connected to the RC circuits produced a momentary control signal in response to disconnection of the cables from a battery being charged. Included in a battery charging system is a source of charging current whose voltage output is controlled at a predetermined value when connected to a battery. It increases to a higher value when disconnected from the battery. Controller means connected with the source activate the battery charging system automatically in response to electrical connection of the battery. The improvement consists of: means for momentarily effecting reversal of the higher voltage value, and battery disconnect sensing means connected the charging source and to the controller means for sensing the reversed higher voltage upon disconnection of the battery charger system from the battery and for responding by automatically deactivating the battery charging system.

Dattilo, D.P.

1986-01-28T23:59:59.000Z

17

Electrochemically controlled charging circuit for storage batteries  

DOE Patents (OSTI)

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

18

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

19

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

20

Adaptive Battery Charge Scheduling with Bursty Workloads  

E-Print Network (OSTI)

1 Adaptive Battery Charge Scheduling with Bursty Workloads Dylan Lexie , Shan Lin, and Jie Wu.wu@temple.edu Abstract--Battery-powered wireless sensor devices need to be charged to provide the desired functionality after deployment. Task or even device failures can occur if the voltage of the battery is low

Wu, Jie

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A User Programmable Battery Charging System  

E-Print Network (OSTI)

Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system, have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard, they have to be versatile, efficient and user programmable to increase their applications in numerous battery powered systems. This is to reduce the cost of using different battery chargers for different types of battery powered applications and also to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal serial bus (USB) and an energy harvesting system. The proposed charging system consists of three main building blocks, i.e. a pulse charger, a step down DC to DC converter and a switching network system, to extend the number of applications it can be used for. The switching network system is to allow charging of a battery via an energy harvesting system, while the step down converter is used to provide an initial supply voltage to kick start the energy harvesting system. The pulse charger enables the battery to be charged from a wall outlet or a USB network. It can also be reconfigured to charge a Nickel Metal Hydride battery. The final design is implemented on an IBM 0.18µm process. Experimental results verify the concept of the proposed charging system. The pulse charger is able to be reconfigured as a trickle charger and a constant current charger to charge a Li-ion battery and a Nickel Metal Hydride battery, respectively. The step down converter has a maximum efficiency of 90% at an input voltage of 3V and the charging of the battery via an energy harvesting system is also verified.

Amanor-Boadu, Judy M

2013-05-01T23:59:59.000Z

22

Battery charging in float vs. cycling environments  

SciTech Connect

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

COREY,GARTH P.

2000-04-20T23:59:59.000Z

23

Phase controlled rectifier circuit for rapidly charging batteries  

SciTech Connect

An improved battery charger circuit for rapidly charging a battery by increasing the rate of battery charge acceptance through periodic battery discharge during the charging process includes a pair of first and second controlled rectifier circuits coupled to an ac source and adapted for coupling to a battery. The first controlled rectifier circuit is rendered conductive during the charging intervals to supply the battery with charge current from the ac source. The second controlled rectifier circuit is rendered conductive during battery discharge intervals to discharge the battery in a substantially lossless manner by conducting battery discharge current through the ac source, thus realizing a highly efficient battery charger.

Steigerwald, R. L.

1981-02-24T23:59:59.000Z

24

Method and apparatus for providing sterile charged batteries  

SciTech Connect

A method is described of providing sterile, charged batteries for use in a sterile field comprising the steps of: sterilizing at least one battery and a battery charger, the battery and battery charger being adapted to withstand exposure to the environment present during such sterilizating step; transferring the battery and the battery charger in a sterile state to the sterile field; and charging the battery to a desired voltage with the battery charger in the sterile field.

Pascaloff, J.H.

1987-02-03T23:59:59.000Z

25

Rechargeable battery with separate charging terminal contact ring  

SciTech Connect

A generally cylindrical rechargeable battery is provided leaving a pair of power terminals for delivering energy to an energy-using device. The battery further includes a charging terminal contact spaced apart from the power terminals and extending substantially around the circumference of the battery whereby charging contact on the battery may engage a corresponding charging contact in the energy-using device to charge the battery in all rotational positions of the battery.

Beachy, R. W.

1984-12-18T23:59:59.000Z

26

State of charge indicators for a battery  

SciTech Connect

The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

Rouhani, S. Zia (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

27

Capacitive charging system for high power battery charging  

DOE Green Energy (OSTI)

This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

NONE

1998-12-31T23:59:59.000Z

28

Effect of charging methods on battery electrodes  

SciTech Connect

This paper reviews the effect of modified charging methods on the structure and behavior of several battery electrodes. These include the alkaline cadmium, zinc, silver oxide and nickel oxide electrodes. Also included are recent results obtained for pasted zinc electrodes and in acidic zinc chloride electrolytes. Modified charging methods can greatly affect electrodes perticularly when the charging reaction involving the nucleation, and growth of a new phase. Many of the observed morphological effects can be a described to nucleation and orientation effects.

McBreen, J.

1983-01-01T23:59:59.000Z

29

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network (OSTI)

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

30

NREL Battery Thermal and Life Test Facility (Presentation)  

DOE Green Energy (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

31

Lessons Learned: Battery-Electric Transit-Bus Opportunity Charging  

Science Conference Proceedings (OSTI)

This document details the results of a study of battery-electric bus opportunity charging. This document is an interim report pending conclusion of further experiments with at least one other rapid-charging system and battery type.

1999-12-10T23:59:59.000Z

32

Apparatus for monitoring and charging electric storage battery  

SciTech Connect

A charge protector is described for battery maintenance and operable to continuously monitor the battery terminal voltage of a storage battery while the latter is not in use and to control charging of the battery by controlling the supply of DC power from a battery charger to the battery in accordance with the battery terminal voltage. The battery charge protector voltage; means energizable from the battery to effect initial supply of DC power to the battery when the battery terminal voltage is sensed as being at a predetermined minimum charge voltage level; means energizable from the battery to repeatedly effect subsequent termination and resupply of DC power to the battery when the battery terminal voltage is sensed as having reached an upper trip level voltage and a lower trip level voltage, respectively, the lower trip level voltage being greater than the minimum charge voltage and the upper trip level voltage being greater than the lower trip level voltage; and timer means energizable from the battery to maintain the supply of DC power to the battery for a predetermined interval of time after the battery terminal voltage is sensed as having reached the upper trip level voltage but before it reaches a maximum charge level voltage which is greater than the upper trip level voltage.

Sloan, A.H.

1986-04-15T23:59:59.000Z

33

ARGONNE'S BATTERY POST-TEST FACILITY W  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing the LIFE of batteries ARGONNE'S BATTERY POST-TEST FACILITY W h a t h a p p e n s t o b a t t e r ie s a s t h e y a g e ? H o w c a n w e e n s u r e s a f e u s e o f b...

34

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

35

Analysis of wind power for battery charging  

DOE Green Energy (OSTI)

One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

1995-11-01T23:59:59.000Z

36

Analysis of wind power for battery charging  

Science Conference Proceedings (OSTI)

One type of wind-powered battery charging is explored which consists of a wind turbine driving a permanent magnet alternator and which operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristics of the system depend on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems are discussed. Control strategies to improve the system performance are explored.

Muljadi, E.; Drouilhet, S.; Holz, R.; Gevorgian, V.

1995-01-01T23:59:59.000Z

37

Management of electric vehicle battery charging in distribution networks.  

E-Print Network (OSTI)

??This thesis investigated the management of electric vehicle battery charging in distribution networks. Different electric vehicle fleet sizes and network locations were considered. The energy… (more)

Grau, Iñaki

2012-01-01T23:59:59.000Z

38

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

39

Advanced Lithium Ion Battery Materials for Fast Charging and ...  

Advanced Lithium Ion Battery Materials for Fast Charging and Improved Safety Technology Summary ... a great low cost substitute for cobalt, were

40

Battery charger with transducer for controlling charge rate  

SciTech Connect

Disclosed herein is an apparatus for charging a battery including a case containing at least one cell formed of a pair of electrodes immersed in an electrolyte. The apparatus includes a transducer associated with the battery and operable without sensing gas pressure in the battery case for providing a variable signal output in response to electrolyte gassing within the battery case. The apparatus also includes a control circuit arrangement coupled to the signal output for providing a variable control output in response to the signal output, and a battery charger connected to the battery electrodes and operable for charging the battery at a rate subject to the variable control output. In one embodiment of the invention, the transducer is a sound transducer, preferably a ceramic microphone, which provides a variable signal output in response to sound generated within the battery case. In another embodiment, the transducer is a fluid vibration transducer, preferably utilizing a piezo-electric element, which provides a variable signal output in response to fluid vibration in the battery electrolyte. In another embodiment , the battery charger includes a battery temperature detector, preferably utilizing a thermistor, which prevents the battery charger from charging the battery when the temperature of the battery electrolyte exceeds a predetermined upper limit or electrolyte level is low.

Krueger, W.R.

1983-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Develop improved battery charger (Turbo-Z Battery Charging System). Final report  

DOE Green Energy (OSTI)

The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

NONE

1999-09-01T23:59:59.000Z

42

Develop improved battery charger (Turbo-Z Battery Charging System). Final report  

SciTech Connect

The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

1999-09-01T23:59:59.000Z

43

Apparatus for regulating the charging of a storage battery  

SciTech Connect

An aleatory source of energy, e.g., a battery of photocells, supplies energy to a load and to a storage battery. When the source is supplying more energy than is being drawn by the load, the storage battery is charged; when the source is supplying less than the demand, the shortfall is made up by drawing energy from the storage battery. The state of charge of the storage battery is monitored by a meter (8) which governs a regulator. Once the battery is charged to a predetermined threshold, the amount of current it draws from the source is regulated, and energy supplied by the source in excess of the combined requirements of the load and of battery charging is diverted to a storage means other than the storage battery (e.g., a mains electricity supply grid). The flows of energy to both the battery and the other storage means are controlled by the regulator as a function of the state of charge of the battery.

Billot, M.; Godard, P.

1981-09-01T23:59:59.000Z

44

Understanding Li+ Battery Operation Lessens Charging Safety Concerns  

E-Print Network (OSTI)

Abstract: Due to the high energy/power density, in relation to the weight and volume of Lithium-ion (Li+) battery technology, there are some lingering safety concerns when charging and discharging the batteries. Although an already mature technology, improvements to Li+ battery operation are ongoing. This application note describes some of those improvements. It also presents various charging control schemes to ensure that the cells are properly charged using constant-current, constant-voltage (CCCV) approaches. Several charging circuits illustrate approaches for single-cell and multiple-cell Li+ chargers.

unknown authors

2007-01-01T23:59:59.000Z

45

Battery compatibility with photovoltaic charge controllers  

SciTech Connect

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

46

National Labs Leading Charge on Building Better Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Labs Leading Charge on Building Better Batteries Labs Leading Charge on Building Better Batteries National Labs Leading Charge on Building Better Batteries September 26, 2011 - 12:36pm Addthis Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as PVDF, pictured above at left in brown) in the traditional method. Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as

47

Argonne Transportation Technology R&D Center - Battery Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Test Facility Argonne researcher Lee Walker Argonne researcher Lee Walker examines a...

48

Optical state-of-charge monitor for batteries  

DOE Patents (OSTI)

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

49

Battery charger and state of charge indicator. Final report  

DOE Green Energy (OSTI)

The battery charger has a full-wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches which are programmed to actively shape the input ac line current to be a mirror image of the ac line voltage. The power circuit is capable of operating at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state-of-charge software programs. The state-of-charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictated the use of high power NPN Darlington switching transistors. The power circuit topology developed is a three switch design utilizing a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

Latos, T.S.

1984-04-15T23:59:59.000Z

50

Charging system and method for multicell storage batteries  

SciTech Connect

A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

Cox, Jay A. (Rolling Hills Estates, CA)

1978-01-01T23:59:59.000Z

51

State-of-Charge Estimations for Lead-Acid and Lithium-Ion Batteries.  

E-Print Network (OSTI)

??This thesis studies State-of-Charge (SOC) method for widely used lead-acid batteries and the most prospective lithium-ion batteries. First, the relationship between the battery capacity and… (more)

Chen, Yi-Ping

2007-01-01T23:59:59.000Z

52

Modeling, testing and economic analysis of a wind-electric battery charging station  

Science Conference Proceedings (OSTI)

Battery charging systems are very important in many developing countries where rural families cannot afford a solar-battery home system or other electricity options, but they can afford to own a battery (in some cases more than one battery) and can pay for it to be charged on a regular basis. Because the typical households that use batteries are located far from the grid, small wind battery charging stations can be a cost-competitive options for charging batteries. However, the technical aspects of charging numerous 12-volt batteries on one DC bus with a small permanent magnet alternator wind turbine suggest that a special battery charging station be developed. NREL conducted research on two different types of wind battery charging stations: a system that uses one charge controller for the entire DC bus and charges batteries in parallel strings of four batteries each, and one that uses individual charge controllers for each battery. The authors present test results for both system configurations. In addition, modeling results of steady-state time series simulations of both systems are compared. Although the system with the single charge controller for the entire bus is less expensive, it results in less efficient battery charging. The authors also include in the paper a discussion of control strategies to improve system performance and an economic comparison of the two alternative system architectures.

Gevorgian, V.; Corbus, D.A.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (US). National Wind Technology Center; Thomas, K.E. [Univ. of California, Berkeley, CA (US). Dept. of Chemical Engineering

1998-07-01T23:59:59.000Z

53

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

54

Dynamic data mining technique for rules extraction in a process of battery charging  

Science Conference Proceedings (OSTI)

Battery charging controllers design and application is a growing industry direction. Fast and efficient charging of battery packs is a problem which is difficult and often expensive to solve using conventional techniques. The majority of existing works ... Keywords: Battery charging, Control rules, Data mining, Fuzzy recurrent neural network, Genetic algorithm, Intelligent control, Soft computing

R. A. Aliev; R. R. Aliev; B. Guirimov; K. Uyar

2008-06-01T23:59:59.000Z

55

Performance of battery charge controllers: First year test report  

DOE Green Energy (OSTI)

The results of the first year of an evaluation of charge controllers for stand-alone photovoltaic (PV) systems are presented. The objectives of the test program are to positively influence the development of battery charge controllers for stand-alone PV applications and to develop design and application criteria that will improve PV system reliability and battery performance. Future goals are to expand the evaluation program to include various battery technologies and controller algorithms. Also, the information is being communicated to manufacturers to aid in the design of more effective and reliable charge controllers for PV systems. Eight different models of small (nominal 10 amp) charge controllers are being subjected to a comprehensive evaluation. These evaluations include operational tests in identical stand-alone PV systems and environmental and electrical cycling tests. Selected custom tests are also performed on the controllers to determine the response to transients, installation requirements and system design compatibilities. Data presented in this paper include measured electrical characteristics of the controllers, temperature effects on set points, and operational performance in PV systems both in the lab and in the field. A comparison is presented for four different charge controller algorithms which include array-shunt, series-interrupting, series-linear constant-voltage and series-linear-multistep constant-current. 9 refs., 11 figs., 2 tabs.

Dunlop, J. (Florida Solar Energy Center, Cape Canaveral, FL (United States)); Bower, W. (Sandia National Labs., Albuquerque, NM (United States)); Harrington, S. (Ktech Corp., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

56

Optimizing small wind turbine performance in battery charging applications  

Science Conference Proceedings (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

57

Super-iron Nanoparticles with Facile Cathodic Charge Transfer  

Science Conference Proceedings (OSTI)

Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

2011-12-31T23:59:59.000Z

58

Solar Energy for Charging Fork Truck Batteries  

E-Print Network (OSTI)

The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence exists that new technological advances and mass-production techniques have lowered the costs considerably. The U.S. Department of Energy has indicated that by the year 1990 the price per peak watt would be less than fifty U.S. cents. This paper keeps this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial material handling. Two evaluation methods were used; namely, the Payback Method, and the Modified Energy Inflation Rate Method. Neither of the methods proved to be economically favorable, but some interesting results were obtained.

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

59

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time  

E-Print Network (OSTI)

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time Yu Ru, Jan Kleissl, and Sonia Martinez Abstract-- In this paper, we study a battery sizing problem for grid-connected photovoltaic (PV) systems assuming that the battery charging/discharging limit scales linearly with its

Martínez, Sonia

60

Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report  

DOE Green Energy (OSTI)

Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

Not Available

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Rating batteries for initial capacity, charging parameters and cycle life in the photovoltaic application  

SciTech Connect

Stand-alone photovoltaic (PV) systems typically depend on battery storage to supply power to the load when there is cloudy weather or no sun. Reliable operation of the load is often dependent on battery performance. This paper presents test procedures for lead-acid batteries which identify initial battery preparation, battery capacity after preparation, charge regulation set-points, and cycle life based on the operational characteristics of PV systems.

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

62

Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries  

DOE Green Energy (OSTI)

Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

Rowlette, J.J.

1981-01-15T23:59:59.000Z

63

Rechargeable battery charger system for charging testing, rejuvenation and preventative maintenance  

SciTech Connect

The present invention is directed to a method for automatically maintaining rechargeable batteries at maximum capacity and includes the steps of detecting the presence of a battery, deep discharging the battery to a predetermined level above cell reversal, recharging the battery to its rated capacity, discharging the battery at a controlled rate while measuring battery output voltage and determining whether its capacity is above or below a selected minimum, deep discharging and recharging if the battery is below the selected minimum until reversible memory effects are removed, providing a positive indication of battery failure, maintaining the full battery capacity by trickle charging, and periodically repeating the above steps to avoid onset of battery memory.

Yefsky, S.A.

1981-11-24T23:59:59.000Z

64

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network (OSTI)

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

65

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

Liu, Jun

2010-01-01T23:59:59.000Z

66

Battery Energy Storage Test (BEST) Facility: Summary report, 1976-1986: Final report  

SciTech Connect

This report summarizes the development, operations, and contributions of the Battery Energy Storage Test Facility. Providing direction for the nation's battery technology research, the facility has generated a better understanding of the work involved in operating energy storage systems and has been instrumental in demonstrating lead-acid battery applications for utilities worldwide.

Hyman, E.A.

1986-12-01T23:59:59.000Z

67

Electrochemistry theorem based state-of-charge estimation of the lead acid batteries for electric vehicles  

Science Conference Proceedings (OSTI)

A method for the estimation of the state-of-charge in lead-acid batteries for electric vehicles is investigated. The electrochemistry theorem is introduced to measure the resistance effect of the electrode reaction and to estimate the internal energy ... Keywords: digital signal processor, electric vehicles, electrode reaction, electrolyte specific gravity, lead-acid battery, state-of-charge

Ying-Shing Shiao; Ding-Tsair Su; Jui-Liang Yang; Rong-Wen Hung

2008-10-01T23:59:59.000Z

68

Rechargeable Battery Circuit Modeling and Analysis of the Battery Characteristic in Charging and Discharging Processes.  

E-Print Network (OSTI)

??In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit… (more)

Kong, Dexinghui

2012-01-01T23:59:59.000Z

69

PV batteries and charge controllers: Technical issues, costs, and market trends  

SciTech Connect

A survey of US system integrators, charge controller manufacturers, and battery manufacturers was conducted in 1996 to determine market and application trends. This survey was sponsored by the USDOE. Results from 21 system integrators show a 1995 PV battery sales of $4.76 million. Using the survey results, a top down market analysis was conducted with a total predicted US battery market of $34.7 million and a world wide market of US $302 million. The survey also indicated that 71% (of dollars) were spent on VRLA and 29% on flooded lead-acid batteries. Eighty percent of charge controllers were ON-OFF, vs. PWM or constant voltage.

Hammond, R.L.; Turpin, J.F. [Arizona State Univ. East, Mesa, AZ (United States); Corey, G.P.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S.R. [Harrington (S.R.), Albuquerque, NM (United States)

1997-11-01T23:59:59.000Z

70

Method and apparatus for measuring the state of charge in a battery based on volume of battery components  

SciTech Connect

The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

Rouhani, S. Zia (Idaho Falls, ID)

1996-10-22T23:59:59.000Z

71

Development and Testing of Commercial Prototype Wind-Electric Battery Charging Station  

SciTech Connect

The technical aspects of charging 12-volt (V) batteries with a small permanent magnet wind-turbine generator suggested that a special battery-charging station be developed. Scientists at the National Renewable Energy Laboratory (NREL) conducted research on several possible configurations of wind-electric battery-charging stations. Based on preliminary modeling and test results, the optimal system for this application was the one with individual charge controllers. This paper presents the development efforts and test results of a commercial prototype wind-electric battery-charging station designed and manufactured by Ascension Technology, a Division of Applied Power Corporation (APC). The system, which is powered by a 3-kilowatt (kW) wind turbine, was tested at the National Wind Technology Center (NWTC). The paper discusses control strategies to improve system performance, and includes recommendations for system integrators based on the testing experience accumulated at the NWTC.

Gevorgian, V.; Corbus, D.; Kern, G.

2000-08-24T23:59:59.000Z

72

Optimal charging scheduling for battery electric vehicles under smart grid.  

E-Print Network (OSTI)

??M.S. A projected high penetration of battery electric vehicles (BEV s) in the market will introduce an additional load in the electricity grid. Furthermore, uncontrolled… (more)

Abd Rahman, Nur Dayana

2011-01-01T23:59:59.000Z

73

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

74

Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies  

Science Conference Proceedings (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

Neubauer, J.; Brooker, A.; Wood, E.

2012-07-01T23:59:59.000Z

75

Argonne CNM News: Batteries Get a Quick Charge with New Anode Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Get a Quick Charge with New Anode Technology Batteries Get a Quick Charge with New Anode Technology Tijana Rajh Argonne nanoscientist Tijana Rajh holds a strip of material created from titanium dioxide nanotubes. A team of researchers led by Tijana Rajh (Group Leader, Argonne Center for Nanoscale Materials NanoBio Interfaces Group), and Christopher Johnson (Argonne's Chemical Sciences & Engineering Division), working under a CNM user science project, discovered that nanotubes composed of titanium dioxide can switch their phase as a battery is cycled, gradually boosting their operational capacity. New batteries produced with this material can be recharged up to half of their original capacity in less than 30 seconds. By switching out conventional graphite anodes with titanium nanotube anodes, a surprising phenomenon occurs. As the battery cycles through

76

Battery and charge controller evaluations in small stand-alone PV systems  

SciTech Connect

We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

77

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Green Energy (OSTI)

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

78

Batteries - Materials Engineering Facility: Scale-Up R&D Bridges Gap  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Initial discovery amounts of battery materials are small compared to the kilo-scale amounts needed for validation of new battery technologies. Argonne researcher Sabine Gallagher Argonne researcher Sabine Gallagher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Materials Engineering Research Facility (MERF) Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for

79

A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design  

SciTech Connect

Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

Stevens, J.W.; Corey, G.P.

1996-07-01T23:59:59.000Z

80

Charging Algorithm Extends the Life of Lead-acid Batteries: 2001 R and D 100 Award Recipient  

DOE Green Energy (OSTI)

Fact sheet describing NREL's work with Recombination Technologies and Optima Batteries to develop a current interrupt charging algorithm to extend the deep life cycle of valve-regulated lead-acid batteries.

Pesaran, A.

2001-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents (OSTI)

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

Rouhani, S.Z.

1996-12-03T23:59:59.000Z

82

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

SciTech Connect

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

Rouhani, S. Zia (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

83

1999 Toyota RAV 4 EV Performance Characterization: Panasonic NiMH Battery -- Conductive Charging  

Science Conference Proceedings (OSTI)

This report characterizes the performance of the 1998 and 1999 Toyota RAV 4 conductively-charged electric vehicle models equipped with Panasonic Nickel Metal Hydride (NiMH) batteries. The tests performed were: weight certification, range, state of charge meter evaluation, sound level, acceleration, maximum speed, braking, power quality evaluation, and charger performance.

1999-12-16T23:59:59.000Z

84

1999 Toyota RAV 4 EV Performance Characterization: Panasonic NiMH Battery -- Inductive Charging  

Science Conference Proceedings (OSTI)

This report characterizes the performance of a 1999 Toyota RAV 4 inductively-charged electric vehicle equipped with Panasonic Nickel Metal Hydride (NiMH) batteries. The tests performed were weight certification, range, vehicle performance, sound level tests, power quality evaluation, state of charge meter evaluation, and charger performance.

1999-12-15T23:59:59.000Z

85

A new battery-charging method suggested by molecular dynamics simulations  

E-Print Network (OSTI)

Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a Lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li+ ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li+ ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

Hamad, Ibrahim Abou; Wipf, D; Rikvold, P A; 10.1039/b920970k

2010-01-01T23:59:59.000Z

86

HITRAP: A facility at GSI for highly charged ions  

E-Print Network (OSTI)

An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.

H. -J. Kluge; T. Beier; K. Blaum; L. Dahl; S. Eliseev; F. Herfurth; B. Hofmann; O. Kester; S. Koszudowski; C. Kozhuharov; G. Maero; W. Noertershaeuser; J. Pfister; W. Quint; U. Ratzinger; A. Schempp; R. Schuch; T. Stoehlker; R. C. Thompson; M. Vogel; G. Vorobjev; D. F. A. Winters; G. Werth

2007-10-30T23:59:59.000Z

87

System dynamic model and charging control of lead-acid battery for stand-alone solar PV system  

SciTech Connect

The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m{sup 2}. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). (author)

Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y. [New Energy Center, Department of Mechanical Engineering, National Taiwan University, Taipei (China)

2010-05-15T23:59:59.000Z

88

Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others] [and others

1996-12-01T23:59:59.000Z

89

Visualization of Charge Distribution in a Lithium Battery Electrode  

Science Conference Proceedings (OSTI)

We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode.

Liu, Jun; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Richardson, Thomas J.

2010-07-02T23:59:59.000Z

90

Design and Study on the State of Charge Estimation for Lithium-ion Battery Pack in Electric Vehicle  

Science Conference Proceedings (OSTI)

State of charge (SOC) estimation is an increasingly important issue in battery management system (BMS) and has become a core factor to promote the development of electric vehicle (EV). In addition to offering the real time display of battery parameters ... Keywords: combination algorithm, state of charge (SOC), open circuit voltage (OCV), extended Kalman filtering (EKF), ampere hour (Ah), battery management system (BMS), electric vehicle (EV)

Jie Xu; Mingyu Gao; Zhiwei He; Jianbin Yao; Hongfeng Xu

2009-11-01T23:59:59.000Z

91

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

Science Conference Proceedings (OSTI)

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

92

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network (OSTI)

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium batteries.3 A lithium-ion battery contains an electrolyte and two electrodes. Each electrode is an atomic

Suo, Zhigang

93

The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries  

E-Print Network (OSTI)

This study revealed the strong influence of carbon, Au/C, and Pt/C catalysts on the charge and discharge voltages of rechargeable Li–O[subscript 2] batteries. Li–O[subscript 2] single-cell measurements showed that Au/C had ...

Gasteiger, Hubert A.

94

Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.  

DOE Green Energy (OSTI)

Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

Hutchinson, Ronda

2004-06-01T23:59:59.000Z

95

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

96

Subject: SPPR TIP Funding - Facilities Charge Approach Debby,  

NLE Websites -- All DOE Office Websites (Extended Search)

Mike A. Gazda" Mike A. Gazda" <mike@powerauthority.org> To: CC: "Joseph W. Mulholland" , "Evelyn Magnusson" Date: 10/22/10 10:21 AM Subject: SPPR TIP Funding - Facilities Charge Approach Debby, The Arizona Power Authority is pleased with the new approach presented for the separation of charges regarding the SPPR TIP, ED-5 to Palo Verde Project. The implementation of a new Facilities Charge Contract will allow Western accounting to keep track of the funds utilized to build this new TIP Transmission improvement and allow transparency to the process. This will also allow others to join in the costs/benefits if they choose. Although the process has not been fully developed, we are supportive

97

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementsuch as cycle life and battery cost and battery managementof the battery. The battery size and cost will vary markedly

Burke, Andrew

2009-01-01T23:59:59.000Z

98

System and Battery Charge Control for PV-Powered AC Lighting Systems  

DOE Green Energy (OSTI)

This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

Kern, G.

1999-04-01T23:59:59.000Z

99

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

100

Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries  

Science Conference Proceedings (OSTI)

Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

Song, Zhiping; Xu, Terrence (Tianren); Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

2012-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

102

A one-wire'' battery monitoring system with applications to on-board charging for electric vehicles  

DOE Green Energy (OSTI)

A novel on-board charge system which utilizes a One-Wire'' system for voltage monitoring is discussed and test results obtained using the system are presented. The system consists of a 20 kHz high frequency charger, an algorithm for charging lead-acid batteries with gelled electrolyte, such that gassing is avoided, the control system to implement this charge algorithm and a one-wire battery monitoring system to provide cell/module voltage information to the battery charge controller. Prototype elements of the system have been tested and the system was installed into an EVA Pacer electric vehicle. Charge tests are performed and data taken with the system installed. All elements of the system functioned properly under user conditions. In particular, the charger demonstrated good efficiency, near unity power factor and full programmability. The charge controller functioned reliably and without flaw. The one-wire monitoring system which permits monitoring of cell/module voltages in a battery pack without an extensive conventional wire harness has proven effective and voltage measurements have taken fast enough for control of charging. It was found that for the purpose of voltage monitoring under driving conditions, the system in its present form is too slow.

Nowak, D. (Alabama Univ., Huntsville, AL (USA). Kenneth E. Johnson Research Center)

1990-10-08T23:59:59.000Z

103

Quartz resonator state-of-charge monitor for lead-acid batteries  

DOE Green Energy (OSTI)

We have demonstrated that a thickness shear mode quartz resonator can be used as a real-time, in situ monitor of the state-of-charge of lead-acid batteries. The resonator is sensitive to hanges in the density and viscosity of the sulfuric acid electrolyte. Both of these liquid parameters vary monotonically with the battery state-of-charge. This new monitor is more precise than sampling hydrometers, and since it is compatible with the Corrosive electrolyte environment, it can be used for in situ monitoring. A TSM resonator consists of gold electrodes deposited on opposite surfaces of a thin AT-cut quartz crystal. When an RF voltage is applied to the electrodes, a shear strain is introduced in the piezoelectric quartz and mechanical resonance occurs between the surfaces. A liquid in contact with one of the quartz surfaces is viscously entrained, which perturbs the resonant frequency and resonance magnitude. If the surface is smooth, the changes in both frequency and magnitude are proportional to ({rho}{eta}) {sup {1/2}}, where {rho} is the liquid density and {eta} is the viscosity.

Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O. [Sandia National Labs., Albuquerque, NM (United States); Rumpf, A.N. [Ktech Corp., Albuquerque, NM (United States)

1994-06-01T23:59:59.000Z

104

A peak power tracker for small wind turbines in battery charging applications  

Science Conference Proceedings (OSTI)

This paper describes the design, implementation and testing of a prototype version of a peak power tracking system for small wind turbines in battery charging applications. The causes for the poor performance of small wind turbines in battery charging applications are explained and previously proposed configurations to increase the power output of the wind turbines are discussed. Through computer modeling of the steady-state operation the potential performance gain of the proposed system in comparison with existing systems is calculated. It is shown that one configuration consisting of reactive compensation by capacitors and a DC/DC converter is able to optimally load the wind turbine and thus obtain maximum energy capture over the whole range of wind speeds. A proof of concept of the peak power tracking system is provided by building and testing a prototype version. The peak power tracking system is tested in combination with a typical small wind turbine generator on a dynamometer. Steady-state operating curves confirming the performance improvement predicted by calculations are presented.

De Broe, A.M.; Drouilhet, S.; Gevorgian, V.

1999-12-01T23:59:59.000Z

105

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy densitypresent study. The lithium-ion battery technology used for

Burke, Andrew

2009-01-01T23:59:59.000Z

106

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

defined as when the battery capacity decreases by 20% fromdiscern a decrease in battery capacity (decrease in range)capacity. The test results, which are summarized in Table 7, indicate that both battery

Burke, Andrew

2009-01-01T23:59:59.000Z

107

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

108

Evaluation of Opportunities for Load Shifting With Fast Charging at Del Monte Foods  

Science Conference Proceedings (OSTI)

Fast charging of forklift batteries in warehouse facilities may allow companies to benefit from the load-leveling initiatives of electric suppliers.

2005-10-27T23:59:59.000Z

109

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

110

Utility Cycle Testing of a 500-kWh Zinc Chloride Battery at the Battery Energy Storage Test (BEST) Facility  

Science Conference Proceedings (OSTI)

A 500-kWh zinc chloride battery test system completed an entire schedule of 80 simulated utility and customer application cycles--the most diverse and severe known to be successfully performed by any advanced battery system. Encouraged by these results, researchers plan to have a 2-MW demonstration battery system ready for testing in 1986.

1985-10-09T23:59:59.000Z

111

Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries  

Science Conference Proceedings (OSTI)

Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

2009-01-19T23:59:59.000Z

112

Observation of State of Charge Distributions in Lithium-ion Battery Electrodes  

Science Conference Proceedings (OSTI)

Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.

Remillard, Jeffrey [Ford Research and Advanced Engineering, Ford Motor Company; O'Neil, Ann E [Ford Research and Advanced Engineering, Ford Motor Company; Bernardi, Dawn [Ford Research and Advanced Engineering, Ford Motor Company; Ro, Tina J [Massachusetts Institute of Technology (MIT); Miller, Ted [Ford Motor Company; Neitering, Ken [Ford Research and Advanced Engineering, Ford Motor Company; Go, Joo-Young [SB Limotive, Korea; Nanda, Jagjit [ORNL

2011-01-01T23:59:59.000Z

113

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

114

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

115

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

116

Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries  

Science Conference Proceedings (OSTI)

Nano-structured vanadium oxide (V2O5) is fabricated via facile thermal-decomposition of a vanadium precursor and vanadyl oxalate produced by reacting micro-sized V2O5 with oxalic acid. The V2O5 nanorods produced by this method exhibit much better electrochemical performance than commercial micro-sized V2O5. The optimized-nanorod electrodes with a high density of (001) planar defects give the best specific discharge capacities of 270 mAh g-1 at C/2 (147 mA g-1) coupled with good cycle stability with only 0.32% fading per cycle. Even at a high rate of 4C (1176 mA g-1), the nanorod electrode still delivers 198 mAh g-1. These results suggest that the nanostructured V2O5 is a good cathode for high-rate, lithium-ion battery applications.

Pan, Anqiang; Zhang, Jiguang; Nie, Zimin; Cao, Guozhong H.; Arey, Bruce W.; Li, Guosheng; Liang, Shu-quan; Liu, Jun

2010-04-23T23:59:59.000Z

117

A FAILURE ACCOMMODATING BATTERY MANAGEMENT SYSTEM WITH INDIVIDUAL CELL EQUALIZERS AND STATE OF CHARGE OBSERVERS.  

E-Print Network (OSTI)

??Lithium-ion batteries are the most commonly chosen power source for many portable applications. Advantages like high energy density, high nominal voltage, less maintenance, and low… (more)

Annavajjula, Vamsi Krishna

2007-01-01T23:59:59.000Z

118

TransForum - Special Issue: Batteries - August 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

119

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

120

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,ion batteries in the Hybrid Vehicle Propulsion System Lab atIn the case of plug-in hybrid vehicles, there is much design

Burke, Andrew

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

122

Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric Vehicle  

Science Conference Proceedings (OSTI)

Based on fuzzy clustering and multi-model support vector regression, a novel lithium-ion battery state of charge (SOC) estimating model for electric vehicle is proposed. Fuzzy C-means and Subtractive clustering combined algorithm is employed to implement ...

Xiaosong Hu; Fengchun Sun

2009-08-01T23:59:59.000Z

123

Cathode limited charge transport and performance of thin-film rechargeable lithium batteries  

DOE Green Energy (OSTI)

Several types of thin-film rechargeable batteries based on lithium metal anodes and amorphous V{sub 2}O{sub 5} (aV{sub 2}O{sub 5}), LiMn{sub 2}O{sub 4}, and LiCoO{sub 2} cathodes have been investigated in this laboratory. In all cases, the current density of these cells is limited by lithium ion transport in the cathodes. This paper, discusses sources of this impedance in Li-aV{sub 2}O{sub 5} and Li-LiMn{sub 2}O{sub 4} thin-film cells and their effect on cell performance.

Bates, J.B.; Hart, F.X.; Lubben, D.; Kwak, B.S.; van Zomeren, A.

1994-11-01T23:59:59.000Z

124

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

125

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

126

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

127

Battery Cahrging at the EVRS  

NLE Websites -- All DOE Office Websites (Extended Search)

ETA-NTP008 Revision 4 Effective December 1, 2004 Battery Charging Prepared by Electric Transportation Applications Prepared by: Date:...

128

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

129

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

130

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

131

Utilities and offsites design baseline. Outside Battery Limits Facility 6000 tpd SRC-I Demonstration Plant. Volume 1  

SciTech Connect

As part of the overall Solvent Refined Coal (SRC-1) project baseline being prepared by International Coal Refining Company (ICRC), the RUST Engineering Company is providing necessary input for the Outside Battery Limits (OSBL) Facilities. The project baseline is comprised of: design baseline - technical definition of work; schedule baseline - detailed and management level 1 schedules; and cost baseline - estimates and cost/manpower plan. The design baseline (technical definition) for the OSBL Facilities has been completed and is presented in Volumes I, II, III, IV, V and VI. The OSBL technical definition is based on, and compatible with, the ICRC defined statement of work, design basis memorandum, master project procedures, process and mechanical design criteria, and baseline guidance documents. The design basis memorandum is included in Paragraph 1.3 of Volume I. The baseline design data is presented in 6 volumes. Volume I contains the introduction section and utility systems data through steam and feedwater. Volume II continues with utility systems data through fuel system, and contains the interconnecting systems and utility system integration information. Volume III contains the offsites data through water and waste treatment. Volume IV continues with offsites data, including site development and buildings, and contains raw materials and product handling and storage information. Volume V contains wastewater treatment and solid wastes landfill systems developed by Catalytic, Inc. to supplement the information contained in Volume III. Volume VI contains proprietary information of Resources Conservation Company related to the evaporator/crystallizer system of the wastewater treatment area.

None

1984-05-25T23:59:59.000Z

132

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

133

Systems approach to rechargeable batteries  

SciTech Connect

When selecting a rechargeable battery for an application, consideration must be given to the total system. Electrical load requirements, mechanical restrictions, environmental conditions, battery life, and charging must be considered to assure satisfactory battery performance. Meeting the electrical requirements involves selecting a battery that will deliver adequate voltage, run time and power. The mechanical aspects are largely a matter of resolving volume and weight. The charger must be capable of returning the battery to full charge in an allotted time. But of greater importance, the charge control method should be chosen carefully to maximize the operational life of the battery. 4 refs.

Mullersman, F.H.

1980-09-01T23:59:59.000Z

134

Scenes from Argonne's Materials Engineering Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs...

135

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

136

Abstract--The State Of Charge Indicator (SOCI) for the Lithium Poly Carbon Monoflouride (Li/CFx) battery has a wide  

E-Print Network (OSTI)

datasets from the Battery Design Studio are presented for the Lithium Ion battery. The working model). Currently, the research effort is based on recorded data for the widely used Lithium Ion (Li/Ion) battery Networks. A. Li/Ion Batteries Lithium Ion batteries are one of the most common batteries in portable

Manic, Milos

137

Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers  

E-Print Network (OSTI)

Requirements for Products with Battery Charging Systems (Power Tools Slow Charger Battery Energy No load (stdby) FastWorkshop on Power Supply and Battery Test Procedures, San

Webber, Carrie; Korn, David; Sanchez, Marla

2007-01-01T23:59:59.000Z

138

Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes  

DOE Green Energy (OSTI)

The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

2011-04-15T23:59:59.000Z

139

Floor Sweeper-Scrubbers: Demonstration of Advanced Lead-Acid Batteries and High-Power Charging in Commercial Warehouse Operations  

Science Conference Proceedings (OSTI)

Electric walk-behind and riding floor scrubbers are in widespread and growing use in the commercial and industrial building sectors. This demonstration indicates that the weight, bulk, and battery capacity of existing equipment could be significantly reduced in equipment used for certain "spot-cleaning" and other limited use duty-cycles. Further, results show that for sealed lead-acid batteries, recharge rates on the same order as discharge rates are sufficient for extending peak daily run-time to 200 pe...

2001-07-11T23:59:59.000Z

140

Means for controlling battery chargers  

SciTech Connect

A battery charger control device is described that senses the placement of a battery across control terminals and utilizes the voltage thereof to place into conduction a transistor which actuates a relay which turns on a battery charger, which thereafter, monitors the the charge condition of the battery as determined by the voltage supplied to a voltage following circuit from the control terminals, and which actuates an electronic switch after the elapse of a predetermined period of time after the battery has attained a fully charged condition as determined by the voltage of the battery as presented to the voltage following circuit.

Ballman, G.C.

1980-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility." After fabrication, the prototype cells are then evaluated for performance, battery life and safety in Argonne's state-of-the-art battery testing facilities....

142

The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities  

DOE Green Energy (OSTI)

This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now known as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.

Jeffrey Wishart

2012-02-01T23:59:59.000Z

143

Modeling of species and charge transport in Li-Ion batteries based on non-equilibrium thermodynamics  

Science Conference Proceedings (OSTI)

In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the ...

Arnulf Latz; Jochen Zausch; Oleg Iliev

2010-08-01T23:59:59.000Z

144

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

145

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

146

Battery monitoring and charger control system  

SciTech Connect

A battery cell controlled charging system, consisting of a display unit, battery cell probes, a battery charger and circuitry for controlling the charger, monitors the specific gravity, electrolyte level and temperature control of each cell in a multi-cell lead-acid battery and uses the information to automatically charge the battery when a cell or cells become out of specification while restricting overcharging which is damaging to cells.

Barry, G.H.; Dahl, E.A.

1983-06-14T23:59:59.000Z

147

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

148

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

149

Study fo Ni-MH Battery Capacity Management.  

E-Print Network (OSTI)

??The topic of this study is to develop a battery capacity management system. The main purpose is to monitor the state of battery during charging… (more)

Chang, Chiung-jen

2005-01-01T23:59:59.000Z

150

Attention to maintenance is key to longer battery life  

SciTech Connect

A unique way for battery maintenance on electric truck is described. This system is involved in multi-shift operation entailing battery changing, charging, and programed maintenance.

1975-08-01T23:59:59.000Z

151

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

152

System and apparatus for monitoring or controlling secondary battery operation  

SciTech Connect

The terminal current of a main secondary battery is continuously monitored throughout charging and discharging by a system having a monitor cell, such as a metal gas battery, and having circuitry for conforming monitor cell terminal current in sense, and proportionally in magnitude, to the main battery terminal current. Apparatus responsive to the monitor cell state of charge may provide sensible output indication of main battery state of charge or control charging/discharging of the main battery.

Klein, M.G.

1980-06-10T23:59:59.000Z

153

Charge  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Review of the Atmospheric Radiation Measurement (ARM) Climate Research Facility February 3-4, 2005 American Geophysical Union, Washington, D.C. June 2005 W.R. Ferrell Climate Change Research Division Pacific Northwest National Laboratory Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0502 CONTENTS 1. INTRODUCTION .................................................................................................................. 1 2. SUMMARY OF ACRF INFRASTRUCTURE REVIEW PANEL COMMENTS................ 3 2.1 Management.................................................................................................................... 3 2.2 Research Support ............................................................................................................

154

Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery  

DOE Green Energy (OSTI)

Lithium-ion batteries are prone to failure, because both their capacity and rate capability decrease with cycling. Side reactions, which decrease the cell's cyclable lithium content, can be responsible for capacity fade. An increase in cyclable lithium content is also possible, but is limited by the initial overall lithium content. Formation of a solid electrolyte interphase film on the carbonaceous anode not only consumes cyclable lithium, but also increases the anode resistance, thus reducing the rate capability of the cell, as demonstrated via computer simulation of a lithium-ion cell. Simulations also suggest that the use of cutoff potentials may not effectively prevent undesired irreversible side reactions on overcharge or overdischarge.

Christensen, J.; Newman, J.

2003-04-10T23:59:59.000Z

155

Battery testing for photovoltaic applications  

SciTech Connect

Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

Hund, T.

1996-11-01T23:59:59.000Z

156

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

157

Optimal management of batteries in electric systems  

DOE Patents (OSTI)

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

158

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-02-10T23:59:59.000Z

159

Control circuit for automatic battery chargers  

SciTech Connect

An improved battery charger apparatus having a control circuit providing different charging periods which are automatically correlated with the type of battery connected to the charge for charging the connected battery to a preselected full charge state. The apparatus has a charging circuit for charging the battery, a sensing circuit for sensing the state of the battery during charging thereof by the charging circuit and a circuit for determining first and second predetermined reference voltage/current states. The apparatus causes the charging of the battery at a preselected initial charging level for an initial time period and establishes a first finish time period. The apparatus further determines a first time at which the state of the battery reaches the first predetermined referenced voltage/current state during the initial time period, and causes the charging circuit to continue to charge the battery at a preselected first charging level after the determination of the first time for a first finish time period. The apparatus further establishes a second finish time period and determines a second time at which the state of the battery reaches the second predetermined referenced voltage/current state during the first finish time period. The apparatus terminates charging of the battery if the state of the battery does not reach the second predetermined referenced voltage/current state during the first finish time period, and causes the charging circuit to continue to charge the battery at a preselected second charging level after the determination of the second time for a second finish time period.

Lambert, F.J.; Bosack, D.J.; Johansen, D.K.

1984-05-22T23:59:59.000Z

160

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network (OSTI)

This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

Toksoz, Tuna

162

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

163

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

164

Exact Sizing of Battery Capacity for Photovoltaic Systems  

E-Print Network (OSTI)

Exact Sizing of Battery Capacity for Photovoltaic Systems Yu Rua , Jan Kleisslb , Sonia Martinezb a study battery sizing for grid-connected photovoltaic (PV) systems. In our setting, PV generated, it is stored in a battery (as long as the battery is not fully charged), which has a fixed maximum charging

Martínez, Sonia

165

New Developments in Battery Chargers  

E-Print Network (OSTI)

Abstract: Electronic equipment is increasingly becoming smaller, lighter, and more functional, thanks to the push of technological advancements and the pull from customer demand. The result of these demands has been rapid advances in battery technology and in the associated circuitry for battery charging and protection. For many years, nickel-cadmium (NiCd) batteries have been the standard for small electronic systems. A few larger systems, such as laptop computers and high-power radios, operated on "gel-cell " lead-acid batteries. Eventually, the combined effects of environmental problems and increased demand on the batteries led to the development of new battery technologies: nickel-metal hydride (NiMH), rechargeable alkaline, lithium ion (Li+), and lithium polymer. These new battery technologies require more sophisticated charging and protection circuitry to maximize performance and ensure safety. NiCd and NiMH Batteries NiCd has long been the preferred technology for rechargeable batteries in portable electronic equipment, and in some ways, NiCd batteries still outperform the newer technologies. NiCd batteries have less capacity than Li+ or NiMH types, but their low impedance is attractive in applications that require high current for short periods. Power tools, for example, will continue to use NiCd battery packs indefinitely.

unknown authors

2011-01-01T23:59:59.000Z

166

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

167

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

168

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

169

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

170

Conceptual design of electrical balance of plant for advanced battery energy storage facility. Annual report, March 1979. [20-MW, 100 MWh  

SciTech Connect

Large-scale efforts are in progress to develop advanced batteries for utility energy storage systems. Realization of the full benefits available from those systems requires development, not only of the batteries themselves, but also the ac/dc power converter, the bulk power interconnecting equipment, and the peripheral electric balance of plant equipment that integrate the battery/converter into a properly controlled and protected energy system. This study addresses these overall system aspects; although tailored to a 20-MW, 100-MWh lithium/sulfide battery system, the technology and concepts are applicable to any battery energy storage system. 42 figures, 14 tables. (RWR)

1980-01-01T23:59:59.000Z

171

Facile synthesis and electrochemical characterization of Sn{sub 4}Ni{sub 3}/C nanocomposites as anode materials for lithium ion batteries  

SciTech Connect

Sn{sub 4}Ni{sub 3}/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn{sub 4}Ni{sub 3}/C powders deliver an initial charge capacity of 525.2 mA h g{sup -1}, 400 mA h g{sup -1} over 10 cycles at 36 mA g{sup -1}, >300 mA h g{sup -1} after 40 cycles at 72 mA g{sup -1} and maintain 240 mA h g{sup -1} for 40 cycles at 150 mA g{sup -1}. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment. - Graphical abstract: TEM image of the annealed Sn{sub 4}Ni{sub 3}/C nanocomposites reveals that the crystallized Sn{sub 4}Ni{sub 3} nanoparticles are dispersed in the carbon layer. The synergetic effect of ductile Ni and carbon layer is beneficial to buffer the volume change of Sn during discharge/charge process, thus improving the electrochemical performance when used as anode materials for lithium ion batteries. Highlights: Black-Right-Pointing-Pointer Sn{sub 4}Ni{sub 3} nanoparticles well dispersed in carbon matrix were successfully fabricated. Black-Right-Pointing-Pointer Stable cycling property was achieved due to the synergetic effect of Ni and carbon. Black-Right-Pointing-Pointer The cycling process did not change the structure and crystallinity of the materials.

Ma, Ruguang [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Lu, Zhouguang, E-mail: zglucsu@gmail.com [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China) [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Yang, Shiliu; Xi, Liujiang; Wang, Chundong; Wang, H.E.; Chung, C.Y. [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

2012-12-15T23:59:59.000Z

172

DS1922/DS1923 Battery Gas Gauge  

E-Print Network (OSTI)

Abstract: Tracking remaining available energy is critical for battery-operated equipment. Energy consumption depends on the temperature and usage history of the product. With temperature loggers, this data is largely a byproduct of normal use. This application note shows how to estimate the energy consumed during a mission and how to use the OneWireViewer to maintain a battery "gas gauge " in the memory of the logger. Motivation—The Need to Know The reliability of portable equipment depends on the status of the energy source. The best equipment cannot function properly with a low battery. For rechargeable batteries as in cell phones, sophisticated battery monitors are now the norm. Is there a way to determine the remaining charge of a conventional battery? In the case of a temperature logger, how can one know whether there is enough power for the next mission? Precondition Batteries lose energy over time through self-discharge (aging) and through normal use when the equipment is switched on. Both the rate of battery self-discharge and the energy consumption of a silicon chip strongly depend on the temperature. The higher the temperature, the higher the energy consumption. If one knows the charge of a fresh battery, the temperature history, and the discharge rate during normal use, one has all the data needed to estimate the battery's remaining charge. The initial battery charge, measured in mAh, is found in battery data sheets. The challenging

unknown authors

2006-01-01T23:59:59.000Z

173

Mining Electrification: Data Collection of Battery Operated Mining Equipment  

Science Conference Proceedings (OSTI)

The mining industry has used electrically powered equipment for decades. However, problems related to battery charging and changing have prevented purchase and use of electric equipment in some sectors of the industry. Currently, mines use "conventional" chargers that have long charge times and that decrease optimal use of battery-powered equipment. The batteries most commonly used in underground mining operations are 128 volts, a range not yet adopted by fast-charge battery technology. Developing and in...

2011-12-16T23:59:59.000Z

174

Understanding Nature's Choreography in Batteries | U.S. DOE Office of  

Office of Science (SC) Website

Understanding Nature's Choreography in Batteries Understanding Nature's Choreography in Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Understanding Nature's Choreography in Batteries Charge-discharge chemistry for lithium ion batteries elucidated by theoretical calculations. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Sandia National Laboratories (Left) An electrolyte molecule (ethylene carbonate: C3H4O3) weakly binds

175

Constant current, fast and float rate, variable hysteresis battery charger  

SciTech Connect

A battery charging circuit is described connected to a voltage source and the terminals of a battery for maintaining a charge on the battery comprising: input means connected to the voltage source; current regulating means connected to the input means for providing a constant current output to the battery; resistive means connected to the regulating means for selectively setting charging rate currents provided to the battery by the regulating means; switching means connected to the resistive means for controlling the operation of the resistive means; means for sensing the state of charge of the battery connected across the terminals of the battery; and integrated buffer circuit means connected between sensing means and the switching means to control the operation of the switching means in response to the state of battery charge sensed by the sensing means.

Steblay, B.J.

1987-08-11T23:59:59.000Z

176

9. annual battery conference on advances and applications  

SciTech Connect

The developments in batteries reported at the 9th Annual Battery Conference on Advances and Applications, are discussed. It was sponsored by the Electrical Engineering Department of California State University, Long Beach, CA, with IEEE-AESS cooperation. Previous well-funded battery research had been directed toward getting low weight in spacecraft batteries, which had to be boosted into orbit with expensive rockets. Ni-H{sub 2} batteries, even though costly, won the race. Their demonstrated life, like 30,000 charge-discharge cycles, gives an earth-orbiting satellite decades of usable life. Other types of batteries discussed are: aircraft batteries; electric vehicle batteries; Ni-Cd cells; Zn-Br batteries; industrial Pb-acid batteries; rechargeability; computer controlled charging; and small rechargeable and primary batteries.

Oman, H.

1994-04-01T23:59:59.000Z

177

Rechargeable Batteries: Basics, Pitfalls, and Safe Recharging Practices  

E-Print Network (OSTI)

Abstract: This overview of charging methods and current battery technologies gives you a better understanding of the batteries used in portable devices. Nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li+) battery chemistries are discussed. The article also describes a product that protects single-cell lithium-ion and lithium-polymer batteries.

unknown authors

2005-01-01T23:59:59.000Z

178

Food Battery Competition (New for 2011) Sponsored by  

E-Print Network (OSTI)

Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology'S RESOURCESTOWORK FORYOU Lithium-ion Battery Research page 8 Minister of Science and Technology Visits Argonne page Agency, the Tesla Roadster can travel 244 miles on a single charge of its lithium- ion battery pack

Tennessee, University of

179

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network (OSTI)

Automated Battery Swap and Recharge to Enable Persistent UAV Missions Tuna Toksoz , Joshua Redding introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a buffer of 8 batteries in a novel dual-drum structure that enables a "hot" battery

How, Jonathan P.

180

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

182

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

183

Argonne's Advanced Battery Materials Synthesis and  

E-Print Network (OSTI)

Ges ................ Scalable process R&D is essential to support domestic battery manufacturing and to enable the transition. Argonne has established battery materials scale-up facilities to foster the development of production-ready processes for electrode and electrolyte materials. These new facilities are equipped to run a wide range

Kemner, Ken

184

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

185

Automotive Battery State-of-Health Monitoring Methods.  

E-Print Network (OSTI)

??Effective vehicular power management requires accurate knowledge of battery state, including state-of-charge (SOC) and state-of-health (SOH). An essential functionality of automotive batteries is delivering high… (more)

Grube, Ryan J.

2008-01-01T23:59:59.000Z

186

ESS 2012 Peer Review - Carbon Enhanced VRLA Batteries - David...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced VRLA Batteries Pb-Acid batteries are inexpensive, but have a poor cycle life when subjected to high-rate, partial state of charge (HRPSoC) operating conditions. ...

187

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy....

188

Energy-Harvesting Battery Charger for Self-Sustaining Portable Microelectronic Applications  

E-Print Network (OSTI)

Energy-Harvesting Battery Charger for Self- Sustaining Portable Microelectronic Applications By in the battery is limited, resulting in short lifespan. It is necessary to prolong battery life, and thus device, this energy is utilized to charge an integrated battery, resulting in a self-sustaining battery charger

Rincon-Mora, Gabriel A.

189

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

lead to improvement in the capacity of a battery for UAVs.battery characteristics under mechanical static loading: charge/discharge capacitybattery characteristics under mechanical static loading: charge/discharge capacity

Kang, Jin Sung

2012-01-01T23:59:59.000Z

190

Measuring Energy Efficiency Improvements in Industrial Battery Chargers  

E-Print Network (OSTI)

Industrial battery chargers have provided the energy requirements for motive power in industrial facilities for decades. Their reliable and durable performance, combined with their low energy consumption relative to other industrial processes, has left the core charger technology unchanged since its introduction to the market. Recent improvements in charger technology have led to a new generation of high frequency chargers on the market that can provide energy efficiency improvements over existing Silicon Controlled Rectifier (SCR) and Ferroresonant charger technologies. We estimate there are approximately 32,000 three phase chargers in use within Pacific Gas & Electric Company’s service area, using roughly 750 to 1,000 GWh per year. A 10 percent efficiency improvement on every charger would save about 75 to 100 GWh per year. There are three areas of energy losses in the battery and charger system: • Power Conversion Efficiency (energy out of charger vs. energy into charger) • Charge Return (energy out of battery vs. energy into battery): some amount of overcharge is necessary for battery health, but chargers vary in the degree which they overcharge • Standby losses when no battery is connected. PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CEC’s Codes and Standards process, specifies test conditions during active charge, maintenance charge and standby modes. The results from this testing are expected to provide independent confirmation of vendor claims of energy efficiency improvements during all modes of charger operation, and will form the foundation of data for utility energy efficiency programs. Initial test results of one battery charger from each technology type show the Hybrid and High Frequency technology as the top performers when compared to the SCR and Ferroresonant chargers. Multiple chargers from each technology group will be tested in the first half of 2009 to determine an average performance for each technology type. The full set of results will be available in summer 2009.

Matley, R.

2009-05-01T23:59:59.000Z

191

Combination field chopper and battery charger  

DOE Patents (OSTI)

A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.

1979-08-13T23:59:59.000Z

192

Combination field chopper and battery charger  

SciTech Connect

A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

Steigerwald, Robert L. (Scotia, NY); Crouch, Keith E. (Pittsfield, MA); Wilson, James W. A. (Scotia, NY)

1981-01-01T23:59:59.000Z

193

Field investigation of the relationship between battery size and PV system performance  

SciTech Connect

Four photovoltaic-powered lighting systems were installed in a National Forest Service campground in June of 1991. These systems have identical arrays, loads and charge controllers. The only difference was in the rated capacity of the battery bank for each system. The battery banks all use the same basic battery as a building block with the four systems utilizing either one battery, two batteries, three batteries or four batteries. The purpose of the experiment is to examine the effect of the various battery sizes on the ability of the system to charge the battery, energy available to the load, and battery lifetime. Results show an important trend in system performance concerning the impact of charge controllers on the relation between array size and battery size which results in an inability to achieve the days of battery storage originally designed for.

Stevens, J.; Kratochvil, J. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S. [Ktech Corp., Albuquerque, NM (United States)

1993-07-01T23:59:59.000Z

194

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

195

Attempting clairvoyance with battery performance  

E-Print Network (OSTI)

The light-weight, long-lasting, high-performance attributes of cellular phones and laptop computers, among other equally impressive portable devices currently in the marketplace, are responsible for igniting the overwhelming growth of the battery-powered electronics industry. The demand for smaller and longer lasting solutions, in fact, is only increasing, and key to this success is the battery, which can range from single-use alkaline and zinc-air to rechargeable nickel-cadmium, nickel-metal hydride, lithium-ion, and lithium-polymer technologies. Unfortunately, however, advancements in circuit and system integration have outpaced energy and power density improvements in the battery. Consequently, as batteries conform to the size constraints of portable applications, capacity and output power are necessarily compromised. Degradation in battery performance over time not only affects functionality but also operational life, proving inadequate the traditional assumption that the battery is an ideal voltage source. Including the effects of the battery on state-of-theart systems during the design phase is therefore of increasing importance for optimal life and performance. The problem is securing a suitable Cadence-compatible model. Battery Models State-of-the-art electrical models for batteries are either Thevenin-, impedance-, or runtime-based. Thevenin- and impedance-based models, shown in Figures 1(a)-(b), assume both open-circuit voltage and capacity or state-of-charge (SOC) are constant and approximate loading and ac/transient effects with an impedance network of passive devices for

A. Rincón-mora; Min Chen

2005-01-01T23:59:59.000Z

196

Experimental Study on the Environment Adapatability of LYP Battery  

Science Conference Proceedings (OSTI)

In this paper, the charge-discharge characteristics experiment of LYP (rare earth yttrium lithium power) battery under the specific temperature was researched, and 1/3C charge-discharge curves of voltage at six specific temperature among-40°C to ... Keywords: LYP battery, charge-discharge performance, high and low-temperature performance, hybrid vehicles

Shishun Zhu, Jianwei Cheng, Daowei Zhu, Shiliang Yan

2012-07-01T23:59:59.000Z

197

Universal connector for rechargeable and non-rechargeable batteries  

SciTech Connect

In an electrical product having battery recharging means and a load adapted for energization from a battery, a battery connector is described which consists of: terminal means adapted to contact the output terminals of either a non-rechargeable battery having a first physical configuration or a rechargeable battery having a second physical configuration, the terminal means coupled to the load of the product such that the load may be energized from either the non-rechargeable battery or the rechargeable battery; circuit means coupling the terminal means and the battery recharging means, the circuit means including a switch having an open state preventing charging through the circuit means of a battery coupled to the terminal means and a closed state permitting charging through the circuit means of a battery coupled to the terminal means; and biased actuating means coupled to the switch for moving the switch between its closed and open sites, the actuating means adapted to coact with the first physical configuration of a non-rechargeable battery to move the switch against a bias to its open state and adapted to coact with the second physical configuration of a rechargeable battery to allow the switch to move with the bias to its closed state; whereby the physical configurations of a battery connected to the battery connector determines whether or not the battery will be charged.

Mundschenk, G.R.; Decker, R.C.

1986-07-22T23:59:59.000Z

198

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

199

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

200

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

202

Solid Electrolyte Developed for Safer Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Feb 19, 2013 ... Today's lithium-ion batteries rely on a liquid electrolyte to conduct ions between the negatively charged anode and positive cathode.

203

Solar radiation powered battery reclaimer and charger  

SciTech Connect

A solar powered battery reclaiming and charging circuit is provided having a high frequency section (a bistable multi-vibrator, relaxation blocking bistable multi-vibrator or an oscillator inverter circuit) which is solar powered and output coupled by a close coupled RF transformer to the battery connected output section. The transformer has a secondary winding producing a current-voltage full wave output sharply defined through a two diode rectifying circuit to a multi-frequency 10 KHz to 100 KHz pulse output. The sharp pulse outputs with RF content in the 2--10 megahertz frequency range have specific frequencies equal to natural resonant frequencies of the specific electrolytes used in respective batteries. These resulting high frequency RF output signals in each pulse envelope structure are capable of reclaiming, maintaining and charging batteries that possess a liquid electrolyte or jell electrolyte and are beneficial to dry cell batteries as well in extending battery life. 9 figs.

Gali, C.E.

1994-01-04T23:59:59.000Z

204

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

205

Routing Protocols to Maximize Battery Efficiency  

E-Print Network (OSTI)

In this paper we propose a routing protocol for wireless ad hoc networks whose nodes are largely battery powered. The battery capacity of the nodes is viewed as a common resource of the system and its use is to be optimized. Results from a previous study on battery management have shown that: (1) pulsed current discharge outperforms constant current discharge, (2) battery capacity can be improved by using a bursty discharge pattern due to charge recovery effects that take place during idle periods, (3) given a certain value of current drawn off the battery, higher current impulses degrade battery performance, even if the percentage of higher current impulses is relatively small. We develop a network protocol based on these findings. This protocol favors routes whose links have a low energy cost. We also distribute multihop traffic in a manner that allows all nodes a good chance to recover their battery energy reserve.

Carla F. Chiasserini; Ramesh R. Rao

2000-01-01T23:59:59.000Z

206

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

207

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

208

The Inside Story of the Lithium Ion Battery  

E-Print Network (OSTI)

The Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel. #12;Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additives with charging and discharging a lithium ion battery · Research available devices · Test device to verify

Sze, Lawrence

209

NREL: Awards and Honors - Current Interrupt Charging Algorithm for  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Interrupt Charging Algorithm for Lead-Acid Batteries Current Interrupt Charging Algorithm for Lead-Acid Batteries Developers: Matthew A. Keyser, Ahmad A. Pesaran, and Mark M. Mihalic, National Renewable Energy Laboratory; Robert F. Nelson, Recombination Technologies; Elizabeth D. Sexton and John Olson, Optima Batteries, Inc. The current interrupt charging algorithm is a simple approach for recharging lead-acid batteries that extends the cycle life of the batteries by 300% to 400%. Lead-acid batteries used in electric vehicles have, up until now, lasted only about 150 to 200 deep discharge cycles. This is primarily because the batteries have been charged using a constant current and voltage. In contrast, NREL and its partners devised a new and much more efficient way to charge batteries. Their method involves applying a current

210

Primer on lead-acid storage batteries  

DOE Green Energy (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

211

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

212

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

213

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

214

Cover: PNNL's Photovoltaic array produces electricity for our super-computing facility and adjacent car charging stations. IN THIS REPORT  

E-Print Network (OSTI)

#12;Cover: PNNL's Photovoltaic array produces electricity for our super-computing facility agencies, universities, and industry. Interdisciplinary teams at PNNL address many of America's most: 143 kBtu/ft2 ) · At least 7.5% of electricity use from renewable sources by 2013 and thereafter

215

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

216

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

217

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

218

Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries  

E-Print Network (OSTI)

In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

Ramakrishnan, S; Jeyakumar, A Ebenezer

2010-01-01T23:59:59.000Z

219

Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes  

E-Print Network (OSTI)

-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy evidence of facile transport of lithium ions, which are both desirable properties for enhanced battery

Li, Teng

220

Accelerated Degradation Assessment of 18650 Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Power fade of lithium cells due to accelerated factors of temperature and charging-discharging rate was assessed. A lithium-ion battery aging model for predicting the power fade of 18650-size cells was applied, and then statistically accelerated degradation ... Keywords: accelerated degradation test, lithium-ion battery aging, power fade, state of charge (SOC)

Kuan-Jung Chung; Chueh-Chien Hsiao

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Maxim> App Notes> Battery Management Power-Supply Circuits  

E-Print Network (OSTI)

APPLICATION NOTE 680 How to design battery charger applications that require external microcontrollers and related system-level issues Abstract: Notebook computers increasingly require complex battery charging algorithms and systems. This article provides information and background on lithium-ion (Li+), nickel-cadmium (NiCd), and nickel-metal-hydride (NiMH) batteries and related system-level switch-mode and linear battery chargers. These voltage regulators and current regulators are controlled by external microprocessors like the 8051 or Microchip PIC, and examples are provided with these controllers. An overview of requirements for charging common battery chemistries with Maxim battery charger ICs is provided, along with a discussion of system-level trade-offs and firmware design tips, and a list of World Wide Web engineering resources. The previous issue of Maxim's Engineering Journal (Vol. 27) discussed new developments in stand-alone battery chargers. This second article of a two-part series explores the system-level issues in applying battery-charger ICs. Over the past five years, market pressures on portable equipment have transformed the simple battery charger into a sophisticated switch-mode device capable of charging an advanced battery in 30 minutes. This development also marks a departure from the selfcontained, stand-alone charger ICs of only a few years ago. Some of those ICs included considerable intelligence: enough to handle the complex task of fast charging advanced batteries.

unknown authors

2002-01-01T23:59:59.000Z

222

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

223

Extended shelf-life battery  

SciTech Connect

A lead-acid battery having extended shelf-life is described comprising: a battery housing containing positive and negative lead-acid electrode elements and separators; sulfuric acid electrolyte contained within the housing in a quantity sufficient to maintain the electrode elements in a damp, but not flooded, condition; a desiccant within the housing located out of contact with the elements and in a position to absorb water vapor present in the housing the desiccant being located in container at least a portion of water is permeable to water vapor; the electrode positive and negative materials being formed - that a charge exists on the battery and so that self-discharge reactions will occur within the housing producing water vapor; the electrolyte having a specific gravity ranging from about 1.015 to about 1.320 and the quantity of the desiccant being sufficient to absorb the water vapor created during the self-discharge reactions to maintain the specific gravity of the electrolyte within the range. A method for extending the storage life of a lead-acid battery comprising the steps of: preparing a formed, lead-acid battery including electrode elements and a flooding quantity of sulfuric acid electrolyte; removing from the battery a substantial quantity of the electrolyte to leave damp elements; placing in the battery a quantity of desiccant in a container, at least a portion of which is permeable to water vapor, the container being in a position to absorb water vapor generated in the battery during self-discharge and at a location out of contact with the electrode elements; and controlling the specific gravity of the electrolyte remaining in the battery after the removal step within a range of about 1.015 and 1.320 during discharge reactions by absorbing water vapor produced thereby in the desiccant.

Bullock, N.K.; Symumski, J.S.

1993-06-15T23:59:59.000Z

224

Development of the Zinc-Chloride Battery for Utility Applications  

Science Conference Proceedings (OSTI)

This report reviews progress in Phase 2 (April 1978-March 1980) of a program to develop the zinc-chloride battery for utility load-leveling applications. Tasks in this phase included refurbishment of a 45-kWh module to increase capacity and efficiency, cycle testing of a 1.7-kWh battery, and development of a 50-kWh module to serve as the building block for the 4-MWh battery for the Battery Energy Test Facility.

1980-05-01T23:59:59.000Z

225

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

226

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

227

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

228

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

229

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network (OSTI)

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

230

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

231

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

232

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

Science Conference Proceedings (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

233

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

234

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

235

Battery discharge characteristics of wireless sensor nodes: An experimental analysis  

E-Print Network (OSTI)

Abstract — Battery life extension is the principal driver for energy-efficient wireless sensor network (WSN) design. However, there is growing awareness that in order to truly maximize the operating life of battery-powered systems such as sensor nodes, it is important to discharge the battery in a manner that maximizes the amount of charge extracted from it. In spite of this, there is little published data that quantitatively analyzes the effectiveness with which modern wireless sensor nodes discharge their batteries, under different operating conditions. In this paper, we report on systematic experiments that we conducted to quantify the impact of key wireless sensor network design and environmental parameters on battery performance. Our testbed consists of MICA2DOT Motes, a commercial lithiumcoin battery, and a suite of techniques for measuring battery performance. We evaluate the extent to which known electrochemical phenomena, such as rate-capacity characteristics, charge recovery and thermal effects, can play a role in governing the selection of key WSN design parameters such as power levels, packet sizes, etc. We demonstrate that battery characteristics significantly alter and complicate otherwise well-understood trade-offs in WSN design. In particular, we analyze the non-trivial implications of battery characteristics on WSN power control strategies, and find that a battery-aware approach to power level selection leads to a 52 % increase in battery efficiency. We expect our results to serve as a quantitative basis for future research in designing battery-efficient sensing applications and protocols. I.

Chulsung Park; Kanishka Lahiri

2005-01-01T23:59:59.000Z

236

A Facile synthesis of flower-like Co{sub 3}O{sub 4} porous spheres for the lithium-ion battery electrode  

Science Conference Proceedings (OSTI)

The porous hierarchical spherical Co{sub 3}O{sub 4} assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co{sub 3}O{sub 4} nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 deg. C are 72.5 m{sup 2} g{sup -1} and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity. - Graphical abstract: The flower-like Co{sub 3}O{sub 4} porous spheres with hierarchical structure have been successfully prepared via a simple calcination process using cobalt hydroxide as precursor.

Zheng Jun; Liu Jing; Lv Dongping; Kuang Qin [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Jiang Zhiyuan, E-mail: zyjiang@xmu.edu.c [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Xie Zhaoxiong; Huang Rongbin; Zheng Lansun [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

2010-03-15T23:59:59.000Z

237

Comparison of advanced battery technologies for electric vehicles  

DOE Green Energy (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

238

Comparison of various battery technologies for electric vehicles  

E-Print Network (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge - discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

239

Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report  

SciTech Connect

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOE’s FreedomCAR and Vehicle Technologies Program.

J. Francfort; D. Karner

2005-07-01T23:59:59.000Z

240

The FESAC Subcommittee formed to address the DOE Office of Science charge on proposed scientific user facilities invites community input in the form of short, directed white papers. The  

E-Print Network (OSTI)

user facilities invites community input in the form of short, directed white papers. The instructions for composing these white papers are given below. The final report for this charge must be delivered to DOE the DUE DATE FOR WHITE PAPERS IS THURSDAY, FEB 14. Documents pertaining to this call for white papers

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Post-Test Facility Battery Post-Test Facility Ira Bloom Argonne scientist Ira Bloom prepares to open a lithium-ion cell in the Post-Test Facility. Prior to opening the cell, a thermocouple is attached to provide information on its temperature. Nancy Dietz Rago Argonne scientist Nancy Dietz Rago analyzes results in the Post-Test Facility. After a battery sample is characterized in the large glove box, it is transferred without exposure to air to the scanning-electron microscope for detailed, microstructural characterization. Argonne's new Battery Post-Test Facility (PTF) allows the laboratory's renowned researchers to dissect, harvest and analyze battery materials from used and previously tested battery cells in order to identify for developers and manufacturers the exact mechanisms that limit the life of

242

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

243

Methods for thermodynamic evaluation of battery state of health  

SciTech Connect

Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

2013-05-21T23:59:59.000Z

244

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

245

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

246

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

247

Battery testing at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

248

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

249

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

250

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

251

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

252

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery would enhance energy and economic security  

E-Print Network (OSTI)

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery of the rustbelt battery could be integrated into a smart grid--charging up when use is low, then adding of the power grid and accelerate the addition of solar and wind power supplies. The project was one of 66

Rollins, Andrew M.

253

T-675: Apple Laptop Battery Interface Lets Local Users Deny Service |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7:03am 7:03am Addthis PROBLEM: A vulnerability was reported in the battery interface used in Apple laptop models. A local user can cause denial of service conditions. PLATFORM: Mac OS X ABSTRACT: Apple Laptop Battery Interface Lets Local Users Deny Service reference LINKS: SecurityTracker Alert ID: 1025831 Apple Article: HT1222 Forbes Article IMPACT ASSESSMENT: Medium Discussion: The battery microcontroller interfaces uses common API keys. A local user with knowledge of the keys can control the microcontroller functions. This can be exploited to prevent the battery from being charged, interfere with battery heat regulation, or cause the battery to stop functioning. Impact: A local user can prevent the battery from charging, interfere with the battery heat regulation, or cause the battery to become unusable. Modern

254

T-675: Apple Laptop Battery Interface Lets Local Users Deny Service |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3:15pm 3:15pm Addthis PROBLEM: A vulnerability was reported in the battery interface used in Apple laptop models. A local user can cause denial of service conditions. PLATFORM: Mac OS X ABSTRACT: Apple Laptop Battery Interface Lets Local Users Deny Service reference LINKS: SecurityTracker Alert ID: 1025831 Apple Article: HT1222 Forbes Article IMPACT ASSESSMENT: Medium Discussion: The battery microcontroller interfaces uses common API keys. A local user with knowledge of the keys can control the microcontroller functions. This can be exploited to prevent the battery from being charged, interfere with battery heat regulation, or cause the battery to stop functioning. Impact: A local user can prevent the battery from charging, interfere with the battery heat regulation, or cause the battery to become unusable. Modern

255

Phase Field Model of Li-Plating in Lithium Ion Battery  

Science Conference Proceedings (OSTI)

Abstract Scope, Li plating limits the maximum safe charging rate of Li-ion batteries, and thus the amount of energy that can be captured by regenerative braking.

256

(V2O5) Films for Li-ion Battery and Supercapacitor Applications  

Science Conference Proceedings (OSTI)

These binder and carbon free films are characterized electrochemically for Li-ion battery applications with impedance, and galvanostatic charge-discharge cyclic ...

257

Simplified Electrode Formation using Stabilized Lithium Metal Powder (SLMP) Doping of Lithium Ion Battery Electrodes  

lithium ion battery electrode formation that can boost a cell’s charge capacity and lower its cost while improving reliability and safety.

258

Progress on Technology of Redox Flow Battery and Its Application in ...  

Science Conference Proceedings (OSTI)

Electrochemical Charge/Discharge Behavior of Li-Mg Alloy Anodes for High Capacity Lithium Batteries · Electronic Conductivity Enhancement of CNT Dispersed ...

259

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

260

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Extending lifetime of portable systems by battery scheduling  

E-Print Network (OSTI)

Multi-battery power supplies are becoming popular in electronic appliances of the latest generations, due to economical and manufacturing constraints. Unfortunately, a partitioned battery subsystem is not able to deliver the same amount of charge as a monolithic battery with the same total capacity. In this paper, we de ne the concept of battery scheduling, we investigate policies for solving the problem of optimal charge delivery, and we study the relationship of such policies with di erent con gurations of the battery subsystem. Results, obtained for di erent workloads, demonstrate that the choice of the proper scheduling can make, in the best case, system lifetime as close as 1 % of that guaranteed by a monolithic battery of equal capacity. 1

L. Benini; G. Castelli Z; A. Macii Z

2001-01-01T23:59:59.000Z

262

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

263

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

264

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

265

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

266

Argonne Transportation Technology R&D Center - Research Facilities - APRF,  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Research Facilities Transportation Research Facilities Argonne provides a wide range of facilities and laboratories for conducting cutting-edge transportation research and testing. The facilities offer state-of-the-art equipment and capabilities. APRF Advanced Powertrain Research Facility Battery Post-Test Facility Battery Post-Test Facility Battery testing at the EADL Electrochemical Analysis and Diagnostics Laboratory Engine Research Facility Engine Research Facility Fuel cell research Fuel Cell Test Facility Materials Engineering Research Facility Materials Engineering Research Facility Transportation APS Beamline Transportation Beamline at Argonne's Advanced Photon Source tribology lab Tribology Laboratory TRACC Transportation Research and Analysis Computing Center

267

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

268

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

269

Definition: Vehicle to Grid Charging Station | Open Energy Information  

Open Energy Info (EERE)

charging station that can also deliver AC power to the utility power system from the DC electricity stored in the plug-in electric vehicle batteries. Such a charging station...

270

Design and control of photoflash capacitor charging circuits  

E-Print Network (OSTI)

This thesis develops an optimal strategy for charging photoflash capacitors. Photoflash capacitors need to be charged to voltages as high as 350V in low-voltage battery-powered portable devices. With the decreasing size ...

Negrete, Michael G. (Michael George), 1980-

2004-01-01T23:59:59.000Z

271

Argonne TTRDC - TransForum v10n1 - Taking PHEVs Farther on a Single Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Every six months, we're reminded to change the batteries in our household appliances: smoke alarms, flashlights and radios. But what if you had to change the battery in your plugin hybrid electric vehicle (PHEV) just as often? Fortunately, researchers at Argonne may have found a way to exponentially increase the calendar and cycle lifetimes of lithium-ion batteries. Electric double-layer capacitors- typically referred to as ultracapacitors-have an energy density thousands of times greater than conventional capacitors and a power density hundreds of times greater than

272

Fluidic: Grid-Scale Batteries for Wind and Solar | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

up to 5,000 charge and discharge cycles - enough to support grid-scale integration of wind and solar power. Fluidic's battery could also help optimize electric grid performance...

273

Investigation on Operating Characteristics of Individual Cell among Battery Pack.  

E-Print Network (OSTI)

??Due to the discrepancy among series-connected cells in a lead-acid battery pack, the restored capacities may not be the same during the charging/discharging processes. Through… (more)

Chen, Wen-Chih

2006-01-01T23:59:59.000Z

274

Survey of rechargeable battery technology  

SciTech Connect

We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

1993-07-01T23:59:59.000Z

275

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

Paris-Sud XI, Université de

276

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1  

E-Print Network (OSTI)

. #12;Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additivesThe Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel with charging and discharging a lithium ion battery · Research available devices · Test device to verify

Kofinas, Peter

277

Mar 24th 2011 | from the print edition 0 40Like Battery technology  

E-Print Network (OSTI)

Mar 24th 2011 | from the print edition 0 40Like Battery technology Highly charged A powerful experimental battery that can be recharged completely in minutes ENGINEERS have long dreamed of shortening the time it takes to recharge batteries. Currently, that can be hours. For applications like motor vehicles

Braun, Paul

278

Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery  

E-Print Network (OSTI)

Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery J. S February 2010 We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery and charge of the battery, we introduce a reaction free energy diagram and identify possible origins

Thygesen, Kristian

279

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

280

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

282

Battery Researchers Go With the Flow | U.S. DOE Office of Science...  

Office of Science (SC) Website

Battery Researchers Go With the Flow Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences...

283

Watching Ions Hop in Next Generation Battery Materials | U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

BES Home BES Science Highlights 2013 Watching Ions Hop in Next Generation Battery Materials Basic Energy Sciences (BES) BES Home About BES BES Research BES Facilities...

284

Dismantling (H)EV Battery Packs, an Integral Part of Umicore's ...  

Science Conference Proceedings (OSTI)

June 2012, a battery pack dismantling facility was opened in Maxton, NC based on ... Cost, Energy, Emissions, and Resource Assessment of the Production of ...

285

Catching Lithium Ions in Action in a Battery Electrode | U.S...  

Office of Science (SC) Website

Catching Lithium Ions in Action in a Battery Electrode Basic Energy Sciences (BES) BES Home About BES Research Facilities Science Highlights Benefits of BES Funding Opportunities...

286

New Materials for High-Energy, Long-Life Rechargeable Batteries...  

Office of Science (SC) Website

New Materials for High-Energy, Long-Life Rechargeable Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding...

287

Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)  

DOE Green Energy (OSTI)

Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2011-11-01T23:59:59.000Z

288

Battery/Charger Load Switch Approximates Ideal Diode  

E-Print Network (OSTI)

Abstract: Two circuits are described. The first uses external MOSFETs driven by the Power OK (POK) output of a Li-cell charger IC (MAX8814), to switch a load between battery and charging source without intervention from a microcontroller or system software. For charger ICs without a POK output (such as the MAX1507), the second circuit does the same switching using MOSFETs and a comparator (MAX920). A similar version of this article appeared in the July 19, 2010 issue of Electronic Design magazine. Most rechargeable battery-powered systems include a switch that connects the load either to the battery or to a source of charging power. Without it, a system with depleted battery may not operate immediately when plugged in. A switching circuit also allows the system to operate on adapter power while the battery is charging. The simplest and lowest-cost method for this battery/adapter power handoff is a diode-OR connection. The load connects to each power source (battery and adapter) through separate Schottky diodes, so power is applied by the higher voltage—battery or adapter. The drawback to this approach is the power loss (P D = I BATTERYV DIODE) and voltage drop (V DIODE = 0.350V at 0.5A, from the PMEG2010AEH data sheet) incurred when the battery services the load. Such losses may not be significant for high-voltage multicell batteries, but for 1-cell Li+ batteries or 2–4 cell NiMh batteries, the percentages of power loss and diode drop across the blocking diode are considerable. The circuit of Figure 1 switches loads with a voltage drop of only 45mV at 0.5A, which is a head-room improvement of 350mV-

Budge Ing; Hubert Bugajski

2011-01-01T23:59:59.000Z

289

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

Science Conference Proceedings (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

290

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

291

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to… (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

292

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

293

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

294

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

batteries are currently used in a variety of applications, ranging from automotive batteries are currently used in a variety of applications, ranging from automotive starting batteries to storage for renewable energy sources. Lead-acid batteries form deposits on the negative electrodes that hinder their performance, which is a major hurdle to the wider use of lead-acid batteries for grid-scale energy storage. The formation of deposits is exacerbated under the operating conditions required by many large-scale energy storage systems, which cycle at a high electrical current while remaining in a partially charged state (high-rate, partial state of charge operation, or HRPSoC). In 1997, researchers made two important advancements to lead-acid batteries. First, the Japan Storage Battery Company showed that adding carbon to the battery dramatically

295

USABC electric vehicle Battery Test Procedures Manual. Revision 2  

DOE Green Energy (OSTI)

This manual summarizes the procedural information needed to perform the battery testing being sponsored by the United States Advanced Battery Consortium (USABC). This information provides the structure and standards to be used by all testing organizations, including the USABC developers, national laboratories, or other relevant test facilities.

NONE

1996-01-01T23:59:59.000Z

296

Nanotechnology in Li-ion Batteries  

DOE Green Energy (OSTI)

This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

297

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

298

Battery Life Prediction Method for Hybrid Power Applications: Preprint  

Science Conference Proceedings (OSTI)

Batteries in hybrid power applications that include intermittent generators, such as wind turbines, experience a very irregular pattern of charge and discharge cycles. Because battery life is dependent on both depth and rate of discharge (and other factors such as temperature, charging strategy, etc.), estimating battery life and optimally sizing batteries for hybrid systems is difficult. Typically, manufacturers give battery life data, if at all, as cycles to failure versus depth of discharge, where all discharge cycles are assumed to be under conditions of constant temperature, current, and depth of discharge. Use of such information directly can lead to gross errors in battery lifetime estimation under actual operating conditions, which may result in either a higher system cost than necessary or an undersized battery bank prone to early failure. Even so, most current battery life estimation algorithms consider only the effect of depth of discharge on cycle life. This paper will discuss a new battery life prediction method, developed to investigate the effects of two primary determinants of battery life in hybrid power applications, varying depths of discharge and varying rates of discharge. A significant feature of the model is that it bases its analysis on battery performance and cycle life data provided by the manufacturer, supplemented by a limited amount of empirical test data, eliminating the need for an electrochemical model of the battery. It performs the analysis for a user-prescribed discharge profile consisting of a series of discharge events of specified average current and duration. Sample analyses are presented to show how the method can be used to select the most economical battery type and size for a given hybrid power system application.

Drouilhet, S.; Johnson, B. L.

1997-01-01T23:59:59.000Z

299

Consumer Acceptance and Public Policy Charging Infrastructure Group E Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Group E Charging Infrastructure Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Infrastructure Scenarios * Domicile & Workplace Charging: Being available were vehicles spend a lot of time (Level 1/2) * Gas Station model * Fast charging * Battery Swap * Flow Batteries: Electrolyte swap for long distance traveling * Dynamic Wireless Charging * Strategically placed and visible * Widespread and visible Charging Infrastructure (Group E) July 30, 2012 Breakout Session #2 - Refine Consumer Acceptance Concepts and Infrastructure Scenarios * DOE Actions for Fast Charging Scenario: * R&D on power transfer rates for batteries * Energy storage research to minimize grid impacts and demand charges

300

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Poneman to Speak at Nissan Advanced Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN May 25, 2010 - 12:00am Addthis May 25, 2010 WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN Smyrna, TN - On Wednesday, May 26, 2010, U.S. Deputy Secretary of Energy Daniel Poneman will speak at the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. In January, the Department of Energy closed its $1.4 billion loan agreement with Nissan North America, Inc. to retool their Smyrna, Tennessee factory

302

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

303

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

304

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

305

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

306

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

307

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

308

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

309

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

310

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

311

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

312

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

313

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

314

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

315

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

316

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

317

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

318

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

319

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

320

Scientists Create Worlds Smallest Battery | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of the contemporary electronic age, powering everything from cell phones and laptop computers to hybrid electric vehicles. But while superior to many alternatives for electrical energy storage, Li-ion batteries are not optimal in every respect. Despite much progress over the years, their

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Argonne TTRDC - TransForum v10n1 - New Molecule for Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

New Molecule Could Help Make Batteries Safer, Less Expensive New Molecule Could Help Make Batteries Safer, Less Expensive Charge transfer mechanism for Li-ion battery overcharge protection Charge Transfer Mechanism for Li-ion Battery Overcharge Protection. When the battery is overcharged, the redox shuttle (bottom molecule) will be oxidized by losing an electron to the positive electrode. The radical cation formed (top molecule) will then diffuse back to the negative electrode, causing the cation to obtain an electron and be reduced. The net reaction is to shuttle electrons from the positive electrode to the negative electrode without causing chemical damage to the battery. Safety, life and cost are three of the major barriers to making commercially-viable lithium-ion batteries for plug-in hybrid electric

322

Studies of the Charge Storage Properties of Poly(bithiophene) and Amorphous Carbon Nitride.  

E-Print Network (OSTI)

??The charge storage properties of several potential materials for battery applications have been investigated. Poly(bithiophene) films were prepared by potentiostatic and potentiodynamic electropolymerization methods. These… (more)

Forristal, Timothy Adam

2013-01-01T23:59:59.000Z

323

Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

None

2010-01-01T23:59:59.000Z

324

Advanced Intermediate-Temperature Na-S Battery  

Science Conference Proceedings (OSTI)

In this study, we reported an intermediate-temperature (~150°C) sodium-sulfur (Na-S) battery. With a reduced operating temperature, this novel battery can potentially reduce the cost and safety issues associated with the conventional high-temperature (300~350°C) Na-S battery. A dense ?"-Al2O3 solid membrane and tetraglyme were utilized as the electrolyte separator and catholyte solvent in this battery. Solubility tests indicated that cathode mixture of Na2S4 and S exhibited extremely high solubility in tetraglyme (e.g., > 4.1 M for Na2S4 + 4 S). CV scans of Na2S4 in tetraglyme revealed two pairs of redox couples with peaks at around 2.22 and 1.75 V, corresponding to the redox reactions of polysulfide species. The discharge/charge profiles of the Na-S battery showed a slope region and a plateau, indicating multiple steps and cell reactions. In-situ Raman measurements during battery operation suggested that polysulfide species were formed in the sequence of Na2S5 + S ? Na2S5 + Na2S4? Na2S4 + Na2S2 during discharge and in a reverse order during charge. This battery showed dramatic improvement in rate capacity and cycling stability over room-temperature Na-S batteries, which makes it attractive for renewable energy integration and other grid related applications.

Lu, Xiaochuan; Kirby, Brent W.; Xu, Wu; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo (Gary)

2013-01-01T23:59:59.000Z

325

EV Charging Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Infrastructure Charging Infrastructure JOHN DAVIS: Virtually anywhere in the U.S. you can bring light to a room with the flick of a finger. We take it for granted, but creating the national electric grid to make that possible took decades to accomplish. Now, in just a few years, we've seen the birth of a new infrastructure that allows electric vehicles to quickly recharge their batteries at home, work, or wherever they may roam. But this rapid growth has come with a few growing pains. Starting with less than 500 in 2009, there are now over 19,000 public-access charging outlets available to electric vehicles owners at commuter lots, parking garages, airports, retail areas and thousands of

326

SUBMARINE LEAD-ACID BATTERY PERFORMANCE To appear in the (refereed) proceedings of the Mathematics-in-Industry  

E-Print Network (OSTI)

SUBMARINE LEAD-ACID BATTERY PERFORMANCE To appear in the (refereed) proceedings of the Mathematics and Basil Benjamin2 The lead-acid batteries used to power conventional submarines while they are submerged to calculate state of charge and to predict the per- formance of these batteries. Three models are considered

McGuinness, Mark

327

Context-aware Battery Management for Mobile Phones Nishkam Ravi, James Scott**, Lu Han* and Liviu Iftode*  

E-Print Network (OSTI)

Context-aware Battery Management for Mobile Phones Nishkam Ravi, James Scott**, Lu Han* and Liviu,iftode}@cs.rutgers.edu} Abstract In this paper, we propose a system for context- aware battery management that warns the user when it detects that the phone battery can run out before the next charging opportunity is encountered

Iftode, Liviu

328

Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Ziga, Angel Abusleme and Daniel Soto  

E-Print Network (OSTI)

transport costs. Keywords: solar energy, battery charge, photovoltaic. 1 Introduction Although rangeBattery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Zúñiga, Angel-capacity batteries, it is still difficult to develop an economically viable and socially acceptable EV for massive

Rudnick, Hugh

329

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

330

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

331

Battery Voltage Stability Effects on Small Wind Turbine Energy Capture: Preprint  

DOE Green Energy (OSTI)

Previous papers on small wind turbines have shown that the ratio of battery capacity to wind capacity (known as battery-wind capacity ratio) for small wind systems with battery storage has an important effect on wind turbine energy output. Data analysis from pilot project performance monitoring has revealed shortcomings in wind turbine energy output up to 75% of expected due to the effect of a''weak'' battery grid. This paper presents an analysis of empirical test results of small wind battery systems, showing the relationships among wind turbine charging rate, battery capacity, battery internal resistance, and the change in battery voltage. By understanding these relationships, small wind systems can be designed so as to minimize''dumped'' or unused energy from small wind turbines.

Corbus, D.; Newcomb, C.; Baring-Gould, E. I.; Friedly, S.

2002-05-01T23:59:59.000Z

332

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping  Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

333

Implications of NiMH Hysteresis on HEV Battery Testing and Performance  

SciTech Connect

Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

2002-08-01T23:59:59.000Z

334

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

335

Advanced lead acid battery development project. Final report  

Science Conference Proceedings (OSTI)

This project involved laboratory and road testing of the Horizon (registered) advanced lead acid batteries produced by Electrosource, Inc. A variety of electric vehicles in the fleet operated by the Sacramento Municipal Utility District and McClellan Air Force Base were used for road tests. The project was sponsored by the Defense Advanced Research Projects Agency under RA 93-23 entitled Electric Vehicle Technology and Infrastructure. The Horizon battery is a valve regulated, or sealed, lead acid battery produced in a variety of sizes and performance levels. During the project, several design and process improvements on the Horizon battery resulted in a production battery with a specific energy approaching 45 watt-hours per kilogram (Whr/kg) capable of delivering a peak current of 450 amps. The 12 volt, 95 amp-hour (Ahr) Horizon battery, model number 12N95, was placed into service in seven (7) test vehicles, including sedans, prototype lightweight electric vehicles, and passenger vans. Over 20,000 miles have been driven to date on vehicles powered by the Horizon battery. Road test results indicate that when the battery pack is used with a compatible charger and charge management system, noticeably improved acceleration characteristics are evident, and the vehicles provide a useful range almost 20% greater than with conventional lead-acid batteries.

NONE

1997-02-01T23:59:59.000Z

336

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

337

Monitoring apparatus and method for battery power supply  

SciTech Connect

A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

Martin, Harry L. (Knoxville, TN); Goodson, Raymond E. (West Lafayette, IN)

1983-01-01T23:59:59.000Z

338

Battery control strategy Diesel generator Fuel consumption Hybrid system  

E-Print Network (OSTI)

Standalone diesel generators (DGs) are widely utilized in remote areas in Indonesia. Some areas use microhydro (MH) systems with DGs backup. However, highly diesel fuel price makes such systems become uneconomical. This paper introduces hybrid photovoltaic (PV)/MH/DG/battery systems with a battery control strategy to minimize the diesel fuel consumption. The method is applied to control the state of charge (SOC) level of the battery based on its previous level and the demand load condition to optimize the DG operation. Simulation results show that operations of the hybrid PV/MH/DG/battery with the battery control strategy needs less fuel consumption than PV/MH/DG and MH/DG systems.

Ayong Hiendro; Yohannes M. Simanjuntak

2012-01-01T23:59:59.000Z

339

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

340

Optimal deployment of charging stations for electric vehicular networks  

Science Conference Proceedings (OSTI)

In a smart city environment, we look at a new, upcoming generation of vehicles running on electric power supplied by on-board batteries. Best recharging options include charging at home, as well as charging at public areas. In this setting, electric ... Keywords: charging infrastructure deployment, electric vehicles, urban mobility modeling, vanets

Andrea Hess; Francesco Malandrino; Moritz Bastian Reinhardt; Claudio Casetti; Karin Anna Hummel; Jose M. Barceló-Ordinas

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

342

Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint  

SciTech Connect

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2012-10-01T23:59:59.000Z

343

Hysteresis in Thin-Film Rechargeable Lithium Batteries  

SciTech Connect

Discharge - charge cycling of thin-film rechargeable lithium batteries with an amorphous or nanocrystalline LiXMn2.Y04 cathode reveals evidence for a true hysteresis in the lithium insertion reaction. This is compared with an apparent hysteresis attributed to a kinetically hindered phase transition near 3 V for batteries with either a crystalline or a nanocrystalline LiJ@Yo4 cathode.

Bates, J.B.; Dudney, N.J.; Evans, C.D.; Hart, F.X.

1999-04-25T23:59:59.000Z

344

Smartgrid EV Communication module (SpEC) SAE DC Charging Digital Communication Controller  

One of the major drawbacks of electric vehicles (EVs) is the long period of time required to recharge EV batteries. While regular Alternating Current (AC) charging systems are sufficient for overnight charging of these vehicles at home or at the ...

345

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

346

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

347

Amp-hour counting charge control for photovoltaic hybrid power systems  

SciTech Connect

An amp-hour counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based photovoltaic hybrid charge controller. This work included extensive laboratory and field testing of the charge algorithm on vented lead-antimony and valve regulated lead-acid batteries. The test results have shown that with proper setup amp-hour counting charge control is more effective than conventional voltage regulated sub-array shedding in returning the lead-acid battery to a high state of charge.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-10-01T23:59:59.000Z

348

Battery Technology Life Verification Testing and Analysis  

DOE Green Energy (OSTI)

A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

2007-12-01T23:59:59.000Z

349

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

350

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

351

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

352

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

353

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

354

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

355

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

356

Battery Jobs Coming to Michigan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Coming to Michigan Jobs Coming to Michigan Battery Jobs Coming to Michigan March 22, 2010 - 3:01pm Addthis Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Joshua DeLung A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act grant from the U.S. Department of Energy in August that will help implement the company's strategy for the construction of lithium-ion battery manufacturing facilities in the U.S., with the first location being constructed in Livonia, Mich. This is the first step in the company's overarching goal of creating a complete battery manufacturing industry in

357

An Update on Advanced Battery Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

358

The Lithium-Ion Cell: Model, State Of Charge Estimation  

E-Print Network (OSTI)

The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

Schenato, Luca

359

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

360

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

362

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

363

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

364

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

365

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

366

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

367

Charge! for Scientists  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge! for Scientists Charge! for Scientists This show can be adapted for grades 2-8. Materials This equipment is located in the Lederman Science Center. Please talk to Susan Dahl. Balloons PVC pipe and wool Electroscope (glass jar with wire hanging from top and two small pieces of aluminum foil hanging from wire) Van de Graaff generator Bar magnets with opposite ends painted blue and red Circular magnets and pencils Compass Iron filings Battery, wire and nail Things kids can do at home Olga's overheads David Christian's PowerPoint Demos Balloons - Ask for a few volunteers and have them rub a balloon on their head or shirt. PVC pipe and wool - Pour a bunch of pieces of various material onto the table in the front of the room, including pieces of aluminum foil, styrofoam peanuts, paper clips, staples. Have a student rub the wool on the

368

Scientists Create World's Smallest Battery | U.S. DOE Office of Science  

Office of Science (SC) Website

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image shows distortion of nanowire electrode during charging Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of

369

Method of making a mat-immobilized-electrolyte battery  

SciTech Connect

A method is described of assembling and preparing a mat-immobilized-electrolyte, Pb-acid storage battery for service comprising the steps of: alternatively stacking a plurality of positive and negative polarity electrodes together so as to provide a cell element having an inter-electrode gap between adjacent electrodes during the operation of the battery; positioning a separator in each said gap, said separator comprising a mat of randomly oriented, resilient glass fibers and a binder holding said mat in a stressed state at a compressed thickness which is at least about 10 percent less than said gap, said mat, in its uncompressed state, having a thickness greater than said gap, and said binder comprising a resin which is substantially insoluable in the battery's electrolyte but is sufficiently degradable therein under battery formation conditions as to free said mat from said stressed state during formation; positioning the stacked electrodes and separators in a battery container; introducing said electrolyte into said container such that it quickly flows between said electrodes substantially unencumbered by said compressed mat; allowing said battery to stand for a time sufficient to pickle said electrodes; and thereafter electrolytically forming said battery so as to initially charge said battery and so degrade said binder that said mat expands into tight engagement with the electrodes adjacent thereto.

Willmann, N.L.; Eisenhut, N.R.; Limbert, J.L.

1993-08-31T23:59:59.000Z

370

Test Protocol for System Compatibility of Single-Phase Battery Chargers for Electric Vehicles (SC-320)  

Science Conference Proceedings (OSTI)

This document defines procedures for performing comparisons of 240 V, single-phase residential battery chargers suitable for charging electric vehicles. The protocol describes methods for evaluating the charging characteristics, response to supply-side voltage variations, effects on supply-side power quality, and protection features of these charging devices.

1997-02-03T23:59:59.000Z

371

Test Protocol for System Compatibility of Three-Phase Battery Chargers for Electric Vehicles (SC-330)  

Science Conference Proceedings (OSTI)

This document defines procedures for performing comparisons of 480 V, three-phase battery chargers suitable for charging electric vehicles (EVs). The protocol describes methods for evaluating the charging characteristics, response to supply-side voltage variations, effects on supply-side power quality, and protection features of these charging devices.

1997-02-03T23:59:59.000Z

372

Evaluation of prediction error effects in wind energy-based electric vehicle charging  

Science Conference Proceedings (OSTI)

This paper first presents a battery operation scheduler for the sake of practical integration of wind energy generation and electric vehicle charging, and then measures its performance mainly focusing on the effect of wind speed prediction errors. The ... Keywords: battery operation scheduler, electric vehicle charging, renewable energy gain, smart grid, wind energy

Junghoon Lee, Gyung-Leen Park, Il-Woo Lee, Wan Ki Park

2013-10-01T23:59:59.000Z

373

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

374

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

375

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 30, 2009 [Facility News] November 30, 2009 [Facility News] ARM Joins Global Reference Upper-Air Network Bookmark and Share Similar to a standard radiosonde, the frost point hygrometer is a digitally-controlled instrument attached to a weather balloon. As it rises through the air, atmospheric data collected by the sensor is recorded on the ground. This photo shows the computer chips, battery pack, and connector that make up the instrument package. Similar to a standard radiosonde, the frost point hygrometer is a digitally-controlled instrument attached to a weather balloon. As it rises through the air, atmospheric data collected by the sensor is recorded on the ground. This photo shows the computer chips, battery pack, and connector that make up the instrument package. One of the largest challenges from a global climate observations

376

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

377

Modeling of lead-acid battery capacity loss in a photovoltaic application  

SciTech Connect

The authors have developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system components. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. One focus of this research is to model battery state of charge and battery capacity as a function of time. The capacity damage effect that occurs during deep discharge is introduced via a non-positive function of duration and depth of deep discharge events. Because the form of this function is unknown and varies with battery type, the authors model it with an artificial neural network (ANN) whose parameters are to be trained with experimental data. The battery capacity loss model will be described and a numerical example will be presented showing the predicted battery life under different PV system use scenarios.

JUNGST,RUDOLPH G.; URBINA,ANGEL; PAEZ,THOMAS L.

2000-04-12T23:59:59.000Z

378

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

379

Status of the DOE Battery and Electrochemical Technology Program V  

SciTech Connect

The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

Roberts, R.

1985-06-01T23:59:59.000Z

380

A new battery energy storage system control method based on SOC and variable filter time constant  

Science Conference Proceedings (OSTI)

Because of large fluctuations and strong randomness of active power generated by renewable energy resources, taking into account the constraints such as battery life cycle, a new battery energy storage system control method based on real-time state-of-charge ...

Li Guo; Ye Zhang; Cheng Shan Wang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network (OSTI)

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

382

Lessons Learned from the Puerto Rico Battery Energy Storage System  

DOE Green Energy (OSTI)

The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

1999-08-11T23:59:59.000Z

383

Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications  

SciTech Connect

BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

2010-10-01T23:59:59.000Z

384

In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries  

E-Print Network (OSTI)

] .......................................................................................................... 8 1.1.4 Separator .......................................................................................... 12 1.1.6.2 VRLA batteries.................................................................................... 105 3.6 ANALYZING EVOLUTION OF SEPARATED STATES OF CHARGE OF NEGATIVE AND POSITIVE ELECTRODES USING

Wang, Chao-Yang

385

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

386

Substation battery-maintenance procedures  

SciTech Connect

The frequency of substation battery failures is gratifyingly low. One trouble spot appears to be extraneous short circuits that drain an otherwise healthy battery. Use of the lead--calcium battery promises to reduce substantially the amount of maintenance that substation batteries need.

Timmerman, M.H.

1976-05-15T23:59:59.000Z

387

Electrochemical processes (i.e. inter-conversion between electric energy and chemical energy) are essential for rechargeable battery materials. Many  

E-Print Network (OSTI)

) are essential for rechargeable battery materials. Many conversions between structural phases in the electrodes rechargeable battery cell. Both sensitivity and resolution are expected to be improved significantly with our in situ Li ion motion in a battery cell during the charge/discharge process, thus to understand ionic

Weston, Ken

388

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI '13) 57 eDoctor: Automatically Diagnosing Abnormal Battery Drain  

E-Print Network (OSTI)

) 57 eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on Smartphones Xiao Ma , Peng increase in Abnormal Battery Drain (ABD) prob- lems that can be caused by software defects or miscon- figuration. Such issues can drain a fully-charged battery within a couple of hours, and can potentially

Zhou, Yuanyuan

389

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Scale Energy Storage Demonstration Using Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) More Documents & Publications

390

Facile Synthesis of a-Fe2O3 Nanorods Derived from a-FeOOH ...  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and Supercapacitors II. Presentation Title, Facile Synthesis of a-Fe2O3 Nanorods Derived ...

391

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

392

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

393

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

394

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

395

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

396

Nickel-metal hydride battery development. Final technical report  

SciTech Connect

Rechargeable batteries are used as the power source for a broad range of portable equipment. Key battery selection criteria typically are weight, volume, first cost, life cycle cost, and environmental impact. Rechargeable batteries are favored from a life cycle cost and environmental impact standpoint over primary batteries. The nickel-metal hydride (Ni-MH) battery system has emerged as the battery of choice for many applications based on its superior characteristics when judged on the above criteria against other battery types. In most cases commercial Ni-MH batteries are constructed with coiled electrodes in cylindrical metal containers. Electro Energy, Inc. (EEI) has been developing a novel flat bipolar configuration of the Ni-MH system that offers weight, volume, and cost advantages when compared to cylindrical cells. The unique bipolar approach consists of fabricating individual flat wafer cells in conductive, carbon-filled, plastic face plates. The individual cells contain a nonconductive plastic border which is heat sealed around the perimeter to make a totally sealed unit cell. Multi-cell batteries are fabricated by stacking the individual wafer cells in such a way that the positive face of one cell contacts the negative face of the adjacent cell. The stack is then contained in an outer housing with end contacts. The purpose of this program was to develop, evaluate, and demonstrate the capabilities of the EEI Ni-MH battery system for consumer applications. The work was directed at the development and evaluation of the compact bipolar construction for its potential advantages of high power and energy density. Experimental investigations were performed on various nickel electrode types, hydride electrode formulations, and alternate separator materials. Studies were also directed at evaluating various oxygen recombination techniques for low pressure operation during charge and overcharge.

1995-06-01T23:59:59.000Z

397

10Charge Inc | Open Energy Information  

Open Energy Info (EERE)

10Charge Inc 10Charge Inc Jump to: navigation, search Name 10Charge Inc Place Dallas, Texas Zip 75001 Product Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name Aerospatiale Batteries (ASB) Place France Product Research, design and manufacture of Thermal Batteries. References...

399

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

400

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1...

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research to someone by E-mail Share Vehicle Technologies Office: Applied Battery Research on Facebook Tweet about Vehicle Technologies Office: Applied Battery...

402

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents...

403

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

get the new available battery capacity that can be assignedof expected lifetime of 1% battery capacity in minutes. Forof energy supply (battery capacity) and demand on cell

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

404

What's Next for Batteries? - Energy Innovation Portal  

What's Next for Batteries? July 30, 2013. What will batteries look like in the future? How will they work? Argonne National Laboratory battery research experts ...

405

Batteries Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

models (trailers with engine or battery for long drives) "Out-of-the-Box" Ideas * High voltage packs> 600V Packs (getting rid of high current components) * Cars driven on...

406

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

407

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

408

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

409

Electrochemical Experiments Used to Study Li-ion Batteries  

DOE Green Energy (OSTI)

This is the third of three talks on nanostructures for Li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

410

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

411

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

DOE Green Energy (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

412

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

413

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

414

Optical State-of-Change Monitor for Lead-Acid Batteries  

DOE Patents (OSTI)

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cdl or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D.

1998-07-24T23:59:59.000Z

415

Impact of increased electric vehicle use on battery recycling infrastructure  

DOE Green Energy (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

416

High power battery test methods for hybrid vehicle applications  

DOE Green Energy (OSTI)

Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

1997-11-01T23:59:59.000Z

417

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

418

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

419

Battery testing at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

420

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

422

Understanding human-smartphone concerns: a study of battery life  

Science Conference Proceedings (OSTI)

This paper presents a large, 4-week study of more than 4000 people to assess their smartphone charging habits to identify timeslots suitable for opportunistic data uploading and power intensive operations on such devices, as well as opportunities to ... Keywords: android, autonomous logging, battery life, large-scale study, smartphones

Denzil Ferreira; Anind K. Dey; Vassilis Kostakos

2011-06-01T23:59:59.000Z

423

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

424

Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries  

Science Conference Proceedings (OSTI)

Single crystal Ni"5Sb"2 nanowires array is synthesized by direct-current electrodeposition technique. The initial specific discharge and charge capacity of the as-produced Ni"5Sb"2 nanowires array electrode as an anode material for lithium-ion batteries ... Keywords: Anode, Array structure, Charge/discharge capacity, Lithium-ion batteries, Nanowires

You-Wen Yang; Tian-Ying Li; Fei Liu; Wen-Bin Zhu; Xue-Liang Li; Yu-Cheng Wu; Ming-Guang Kong

2013-04-01T23:59:59.000Z

425

Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers  

SciTech Connect

External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

Webber, Carrie; Korn, David; Sanchez, Marla

2007-02-28T23:59:59.000Z

426

Section 5.8.5 Photovoltaics: Greening Federal Facilities; Second...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Battery storage systems to drive AC loads have a charge controller and an inverter (which changes DC to AC) to power connected AC loads. Hybrid sys- tems may have one...

427

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

428

Progress in the development of recycling processes for electric vehicle batteries  

SciTech Connect

Disposition of electric vehicle (EV) batteries after they have reached the end of their useful life is an issue that could impede the widespread acceptance of EVs in the commercial market. This is especially true for advanced battery systems where working recycling processes have not as yet been established. The DOE sponsors an Ad Hoc Electric Vehicle Battery Readiness Working Group to identify barriers to the introduction of commercial EVs and to advise them of specific issues related to battery reclamation/recycling, in-vehicle battery safety, and battery shipping. A Sub-Working Group on the reclamation/recycle topic has been reviewing the status of recycling process development for the principal battery technologies that are candidates for EV use from the near-term to the long-term. Recycling of near-term battery technologies, such as lead-acid and nickel/cadmium, is occurring today and it is believed that sufficient processing capacity can be maintained to keep up with the large number of units that could result from extensive EV use. Reclamation/recycle processes for midterm batteries are partially developed. Good progress has been made in identifying processes to recycle sodium/sulfur batteries at a reasonable cost and pilot scale facilities are being tested or planned. A pre-feasibility cost study on the nickel/metal hydride battery also indicates favorable economics for some of the proposed reclamation processes. Long-term battery technologies, including lithium-polymer and lithium/iron disulfide, are still being designed and developed for EVs, so descriptions for prototype recycling processes are rather general at this point. Due to the long time required to set up new, full-scale recycling facilities, it is important to develop a reclamation/recycling process in parallel with the battery technologies themselves.

Jungst, R.G.; Clark, R.P.

1994-08-01T23:59:59.000Z

429

ESS 2012 Peer Review - Carbon Enhanced VRLA Batteries - David Enos, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon-Enhanced VRLA Carbon-Enhanced VRLA Batteries September 27, 2012 David G. Enos, Summer R. Ferreira Sandia National Laboratories Rod Shane East Penn Manufacturing SAND2012-7857C Carbon Enhanced VRLA Batteries  Pb-Acid batteries are inexpensive, but have a poor cycle life when subjected to high-rate, partial state of charge (HRPSoC) operating conditions.  The addition of some carbon materials have been demonstrated to dramatically improve the cycle life, enabling use of VRLA batteries under HRPSoC conditions.  Some additions enhance, others detract... not clear why.  The overall goal of this work is to quantitatively define the role that carbon plays in extending the cycle life of a VRLA battery. 2 The Advanced VRLA Battery  Recently, there have been several manners in which carbon has been added to a Pb-

430

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

431

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

432

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

433

Circulating current battery heater  

SciTech Connect

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

434

Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations  

SciTech Connect

Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

2000-06-08T23:59:59.000Z

435

Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations  

DOE Green Energy (OSTI)

Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

2000-06-08T23:59:59.000Z

436

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

437

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

438

Battery conditioning system having communication with battery parameter memory means in conjunction with battery conditioning  

SciTech Connect

In an exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor and battery conditioning system memory are permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters. In the case of a non-portable conditioning system, two-way communication may be established with a memory associated with the portable unit so that the portable unit can transmit to the conditioning system information concerning battery parameters (e.g. rated battery capacity) and/or battery usage (e.g. numbers of shallow discharge and recharge cycles), and after a conditioning operation, the conditioning system can transmit to the portable unit a measured value of battery capacity, for example. 27 figs.

Koenck, S.E.

1994-01-11T23:59:59.000Z

439

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

440

Safe battery solvents  

SciTech Connect

An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling ...

442

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

443

Paintable Battery Neelam Singh1  

E-Print Network (OSTI)

Paintable Battery Neelam Singh1 , Charudatta Galande1 , Andrea Miranda1 , Akshay Mathkar1 , Wei Gao Belgium. If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary

Ajayan, Pulickel M.

444

Seal for sodium sulfur battery  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

1980-01-01T23:59:59.000Z

445

Battery switch for downhole tools  

Science Conference Proceedings (OSTI)

An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

Boling, Brian E. (Sugar Land, TX)

2010-02-23T23:59:59.000Z

446

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

447

System and method for charging electrochemical cells in series  

DOE Patents (OSTI)

A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.

DeLuca, William H. (Naperville, IL); Hornstra, Jr, Fred (St. Charles, IL); Gelb, George H. (Rancho Palos Verdes, CA); Berman, Baruch (Rancho Palos Verdes, CA); Moede, Larry W. (Manhattan Beach, CA)

1980-01-01T23:59:59.000Z

448

Electric and Magnetic Fields Associated with Electric Vehicle Charging: EMF from EV Charging  

Science Conference Proceedings (OSTI)

Electric vehicles (EVs) are becoming increasingly common.  On a routine basis, it is necessary to charge the batteries within these vehicles.  Electric and magnetic fields (EMF) are produced as a direct result of charging, but they have not been measured in a systematic manner in order to gain a better understading of their characteristics.  This study, performed at Southern California Edison’s Electric Vehicle Test Center (EVTC) in Pomona, CA, was conducted to address ...

2013-11-07T23:59:59.000Z

449

The research bench meets industry: New facility scales up production...  

NLE Websites -- All DOE Office Websites (Extended Search)

data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared,...

450

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

451

Microsoft Word - PHEV Charge Demand - Tacomo Power INL_EXT-10...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility. This report provides results from charging of several PHEVs at the Tacoma Power facility as a preliminary assessment of how PHEVs will impact the electricity grid....

452

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

453

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

454

Analysis of performance capabilities of redox-flow storage batteries  

SciTech Connect

Major physical performance parameters and economic factors of a generalized redox-flow storage battery system are analyzed. The system is divided into power-related and energy-related subsystems. The economic factors include plant capital (and other) costs, electrical energy lost by the storage-cycle inefficiency, and a penalty term for failures. Relationships are formulated for the overall system efficiency and system performance parameters (voltages, current density, state-of-charge of the storage liquid, and parasitic losses). Equations for sizing and costing of the battery and the storage tank subsystems are given. Directions for needed research are indicated.

Roy, A.S.; Kaplan, S.I.

1978-01-01T23:59:59.000Z

455

Current balancing for battery strings  

SciTech Connect

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

456

Zinc alkaline secondary battery  

SciTech Connect

A zinc alkaline secondary battery with improved service life in which a multi-layer separator is interposed between the negative and positive electrodes and the quantity of the alkaline electrolyte in the layer of the separator adjacent to the negative electrode is less than that of the electrolyte in the layer of the separator adjacent to the positive electrode.

Furukawa, N.; Nishizawa, N.

1983-03-29T23:59:59.000Z

457

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

458

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

459

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

460

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

DOE Green Energy (OSTI)

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charging facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

SciTech Connect

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O' Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

462

Remote Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Facilities Remote Facilities Remote Facilities October 16, 2013 - 4:55pm Addthis Renewable Energy Options for Renovations in Remote Areas Photovoltaics (PV) Small Wind Daylighting Solar Water Heating Passive Solar Design Biomass Heating When a Federal building or facility is located away from existing power lines, many renewable energy technologies including photovoltaics and wind become cost-effective options when compared to extending utilities or transporting fuel for onsite generators. Photovoltaics Photovoltaics (PV) are often cost-effective in remote power applications. In these circumstances, the system is coupled with batteries and can provide complete facility power. Proper system design is critical and must account for the building electrical loads and be sized to meet that load

463

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2011 [Education, Facility News] 25, 2011 [Education, Facility News] Remote Schools Welcome Much-Needed Resources Bookmark and Share Students at the Children's Academy Centre in Lorengau gather as Jacklyn Soko, Teacher-in-Charge at the school, gratefully receives the donation of a new copier. Students at the Children's Academy Centre in Lorengau gather as Jacklyn Soko, Teacher-in-Charge at the school, gratefully receives the donation of a new copier. Seven schools on Manus Island recently welcomed new copiers donated through ARM's Education and Outreach program. Hymson Waffi, officer-in-charge for the ARM's Tropical Western Pacific site on Manus Island, enjoyed the happy task of delivering the equipment to the various schools, including elementary, primary, secondary, and an academy. Each copier was accompanied

464

Charges / Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

2013 Related Exascale presentation .pdf file (5.8MB) (referenced in charge letter) March 2013 ASCAC Response to Facilities Charge Transmittal Letter .pdf file (70KB) Response .pdf...

465

Rechargeable thin-film lithium batteries  

SciTech Connect

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

1993-08-01T23:59:59.000Z

466

Simulation of Mobile Wireless Networks with Accurate Modelling of Non-linear Battery Effects  

E-Print Network (OSTI)

For the simulation of protocols and algorithms of mobile devices, an ideal energy source, i.e. a battery with linear charge and discharge characteristics, is often assumed. However, real batteries like lithium-ion cells show nonlinear behavior, taking Rate Capacity Effect and Recovery Effect into account. The battery model presented by Rakhmatov and Vrudhula models non-linear battery behavior and can be utilized for lifetime optimization strategies since it provides a formal cost metric. A drawback of this lifetime optimization algorithm is that the load profile of the battery has to be known completely in advance. An estimation of battery lifetime at simulation runtime is not feasible. We present an algorithm for a runtime estimation of battery lifetime of lithium-ion cells. Our algorithm allows the integration of a non-linear battery model into network simulation environments for mobile devices. As an example, we describe the integration of our algorithm for battery lifetime estimation into a popular network simulation tool.

D. Timmermann

2003-01-01T23:59:59.000Z

467

Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint  

DOE Green Energy (OSTI)

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

2012-08-01T23:59:59.000Z

468

Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems  

E-Print Network (OSTI)

. Experimental results for an HEES system comprising of banks of batteries and supercapacitors demonstrate a migration efficiency improvement up to 51.3%, for su- percapacitor to battery and supercapacitor to supercapacitor charge migration. 1. INTRODUCTION Electrical energy usage changes over time due to the types

Pedram, Massoud

469

Review on Current State of Li-ion Batteries  

DOE Green Energy (OSTI)

This is an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

Mukaibo, Hitomi (University of Florida, Martin Research Group)

2010-06-04T23:59:59.000Z

470

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing composit