Powered by Deep Web Technologies
Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Conservation Standards for Battery Chargers and External Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and External Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies. Below is a list of topics that Apple discussed with DOE. Apple_ex_parte_communication.pdf More Documents & Publications Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

2

Measuring Energy Efficiency Improvements in Industrial Battery Chargers  

E-Print Network [OSTI]

&E is sponsoring this test work as a direct result of the energy saving opportunity that is available in the installed base of forklift battery chargers in our service territory. It is estimated that 32,000 three phase chargers and 12,500 single phase chargers...) website in summer 2009: ESL-IE-09-05-32 Proceedings of the Thirty-First Industrial Energy Technology Conference, New Orleans, LA, May 12-15, 2009 www.etcc-ca.com There are a number of elements that make up battery charger energy efficiency...

Matley, R.

3

Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy  

Broader source: Energy.gov [DOE]

Ex parte guidance for Association of Home Appliance Manufacturers on battery charger energy efficiency standards

4

Remember the Batteries - and Maybe a Charger? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? December 21, 2010 - 11:20am Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Happy holidays, everyone! No matter what holidays you observe in December, chances are you are getting gifts for someone. Yes, okay, that's a little crude-there's a whole lot more to any of the holidays than gifts-but chances are, you got something, or got something for someone. And some of those somethings probably need batteries. Back when I was much younger, batteries were one of the crucial elements of Christmas. We'd get a ton of toys, and then someone would have to have the foresight to buy a bunch of batteries. And while my family is blessed with someone who plans so thoroughly that we had a mighty stockpile of every

5

Energy Conservation Standards for Battery Chargers and External...  

Broader source: Energy.gov (indexed) [DOE]

Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent...

6

Meeting on Battery Chargers and External Power Supplies | Department...  

Energy Savers [EERE]

for Energy Conservation Standards for Battery Chargers and External Power Supplies, BatteriesandExternalPowerSupplies.pdf More Documents & Publications Ex Parte Communication...

7

Battery Chargers | Electrical Power Conversion and Storage  

Broader source: Energy.gov (indexed) [DOE]

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

8

Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers  

SciTech Connect (OSTI)

External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

Webber, Carrie; Korn, David; Sanchez, Marla

2007-02-28T23:59:59.000Z

9

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

10

Memorandum to DOE re Battery Chargers  

Broader source: Energy.gov [DOE]

We are following up on our meeting with DOE on August 7, 2014. During the meeting, several topics were identified as warranting further investigation as related to battery chargers, including...

11

HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies Hewlett-Packard Company (HP) appreciates the opportunity to comment on the new DOE rulemaking for Battery Chargers and External Power Supplies. Thank you for taking the time to speak with us. HP believes that existing voluntary Market Access Requirements, such as EPEAT and ENERGY STAR, are the most effective mechanism for improving energy efficiency of IT products, but we understand the approach of regulating mandatory minimum efficiencies to address poor performing products. HP_Ex_Parte_Memo.pdf More Documents & Publications HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

12

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

13

2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice...  

Broader source: Energy.gov (indexed) [DOE]

Test Procedures for Battery Chargers; Notice of Data Availability 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability This document is a...

14

Webinar: Test Procedure for Battery Chargers; Notice of Data Availability  

Broader source: Energy.gov [DOE]

DOE is conducting a public meeting and webinar for the notice of data availability regarding test procedures for battery chargers. 79 FR 27774 (May 15, 2014). For more information, please visit...

15

Meeting regarding DOE Energy Conservations Standards for Battery  

Broader source: Energy.gov [DOE]

Discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers.The DOE battery charger efficiency regulations cover only consumer...

16

2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of data availability regarding test procedures for battery chargers, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 8, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

17

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger concerning the electrical machine control. This paper deals with the control of this drive [1], focusing

Paris-Sud XI, Université de

18

Pulse width modulation inverter with battery charger  

DOE Patents [OSTI]

An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

Slicker, James M. (Union Lake, MI)

1985-01-01T23:59:59.000Z

19

Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers  

SciTech Connect (OSTI)

The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers have been tested by the Tennessee Valley Authority. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0 percent and a specific power of 87.4 W/kg (39.7 W/lb). Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0 percent and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4 percent, and electromagnetic interference was observed on AM radio.

Reese, R.W.; Driggans, R.L.; Keller, A.S.

1984-04-01T23:59:59.000Z

20

Test and evaluation of the Chloride Spegel S1P108/30 electric vehicle battery charger  

SciTech Connect (OSTI)

The Chloride Spegel Model S1P108/30 electric vehicle battery charger was tested by the Tennessee Valley Authority (TVA) as an account of work sponsored by the Electric Power Research Institute (EPRI). Charger input/output voltage, current, and power characteristics and input waveform distortion were measured; and induced electromagnetic interference was evaluated as the charger recharged a lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital-storage oscilloscope, and a spectrum analyzer. THe Chloride charger required 8.5 hours to recharge a 216V tubular plate lead-acid battery from 100 percent depth of discharge (DOD). Energy efficiency was 83 percent, specific power was 37.4 W/kg (17.0 W/lb), input current distortion varied from 22.4 to 34.1 percent, and electromagnetic interference was observed on AM radio. Tests were conducted with the battery at initial DOD of 100, 75, 50, and 25 percent. Charge factor was 1.14 from 100-percent DOD, increasing to 1.39 from 25-percent DOD.

Driggans, R.L.; Keller, A.S.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Abstract--A novel, accurate, compact, and power efficient Lith-ium-Ion (Li-Ion) battery charger designed to yield maximum  

E-Print Network [OSTI]

1 Abstract-- A novel, accurate, compact, and power efficient Lith- ium-Ion (Li-Ion) battery charger battery, linear charger, switching charger. I. INTRODUCTION ITHIUM-ION (Li-Ion) batteries are widely used of Li-Ion batteries to over-charged voltages im- poses stringent charge requirements on the design

Rincon-Mora, Gabriel A.

22

Battery-assisted and Photovoltaic-sourced Switched-inductor CMOS Harvesting ChargerSupply  

E-Print Network [OSTI]

Battery-assisted and Photovoltaic-sourced Switched-inductor CMOS Harvesting Charger­Supply Rajiv-scale photovoltaic (PV) cells harness a diminutive fraction of light and artificial lighting avails a small 25 mV at 10 ­ 80 kHz and with 77% ­ 89% efficiency. Index Terms--Harvester, photovoltaic (PV

Rincon-Mora, Gabriel A.

23

Reactive Power Operation Analysis of a Single-Phase EV/PHEV Bidirectional Battery Charger  

E-Print Network [OSTI]

--More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced, charger, electric vehicle, EV, PHEV, reactive power, V2G. I. INTRODUCTION According to the international of the electric grid by supplying ancillary services such as reactive power compensation, voltage regulation

Tolbert, Leon M.

24

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

25

WBG Converters and Chargers  

Broader source: Energy.gov (indexed) [DOE]

* Finish - FY16 * 38 % complete * Reducing onboard battery charger and dc-dc converter cost, weight, and volume * Achieving high efficiency * Overcoming limitations of present...

26

DOE - BCS TSD comments | Department of Energy  

Office of Environmental Management (EM)

with DOE and Navigant Consulting on Battery Charger Energy Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Energy Storage R&D - Thermal Management...

27

EMI and Charger procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Revision 3 Effective February 1, 2008 Measurement and Evaluation of Electric Vehicle Battery Charger Performance Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Nick Fengler Approved by: ______________________________________________ Date: _______________ Donald B. Karner ETA-NTP010 Revision 3 2 TABLE OF CONTENTS 1.0 Objective 3 2.0 Purpose 3 3.0 Documentation 3 4.0 Prerequisites 3 5.0 Charger Operation 4 6.0 Battery Charger Evaluation 7 7.0 Out Of Service Endurance 8 8.0 Charging Efficiency 8 9.0 Glossary 9

28

Electrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications  

E-Print Network [OSTI]

, low duty-cycle task multiplex- ing, and smart power-aware networks, the energy stored in micro- scaleElectrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications Erick O micro-systems like biomedical implants and ad-hoc wireless transceiver micro-sensors continue

Rincon-Mora, Gabriel A.

29

EMI and Charger procedure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Revision 1 Effective June 2008 Battery Charger Performance Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett P. Beauregard Approved by: ______________________________________________ Date: _______________ Donald B. Karner ETA-GTP005 Revision 1 2 Table of Contents 1 Objective ................................................................................................................................. 3 2 Purpose.................................................................................................................................... 3 3 Documentation........................................................................................................................

30

Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Level 2 chargers, DC fast chargers and Superchargers. Level 1 chargers are not included. Source: U.S. Department of Energy, Alternative Fuels Data Center. Data are as of October 21...

31

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

32

Technology to Extend Battery Life Coming Soon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology to Extend Battery Life Coming Soon Technology to Extend Battery Life Coming Soon Technology to Extend Battery Life Coming Soon December 7, 2009 - 9:46am Addthis Joshua DeLung What are the key facts? A firm in Albany, New York is developing a clean source of energy -- fuel cells -- for portable electronics. A cost-sharing award through the Recovery Acy will help MTI demonstrate a commercially viable, methanol fuel cell-powered charger for the consumer electronics market. Many Americans across the country rely on handheld devices each day to get their jobs done or stay in touch with friends and family, and now some companies are pushing technologies that power that hardware from concept to reality faster than ever. One such firm in Albany, N.Y., has developed a clean source of energy for portable electronics designed for anybody

33

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response  

Science Journals Connector (OSTI)

Abstract In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50kW which allows a typical passenger vehicle to be 80% charged in 1015min, compared with 68h for a 6.6kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges. Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.

Donald McPhail

2014-01-01T23:59:59.000Z

34

1262 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 6, NOVEMBER 2003 A Constant-Power Battery Charger With Inherent  

E-Print Network [OSTI]

1262 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 6, NOVEMBER 2003 A Constant-Power Battery. Pong, Senior Member, IEEE, and Chi K. Tse, Senior Member, IEEE Abstract--A battery charging circuit power throughout the charging process, the cir- cuit reduces the size of thermal installation which

Tse, Chi K. "Michael"

35

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

36

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

37

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

38

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

39

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

supplies but rely on batteries or battery charging systems.is 100%; cameras with batteries or battery chargers aresystems include rechargeable batteries or battery packs, and

Sanchez, Marla

2010-01-01T23:59:59.000Z

40

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

(NOPR) for Energy Conservation Standards for for Battery Chargers and External (NOPR) for Energy Conservation Standards for for Battery Chargers and External Power Supplies (R1N: 1904-AB57) Program or Field Office:EERE- Buildings Technology Program Location{sl (City/County/State): Nationwide Proposed Action Description: DOE proposes amended energy conservation standards for Class A external power supplies (EPS) and to develop new energy conservation standards for non-Class A EPSs and battery chargers. The proposed standards for EPS are the minimum average efficiency in active mode and the maximum power consumption in no-load mode expressed as a function of the nameplate output power. The proposed standards for battery chargers consist of a set of maximum annual energy consumption levels expressed as a function of battery energy. These proposed standards, if

42

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

43

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

44

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

45

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

46

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

47

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

48

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

49

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

50

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

51

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

52

A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles  

SciTech Connect (OSTI)

In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2014-01-01T23:59:59.000Z

53

Docket No. EERE-2008-BT-STD-0005. RIN 1904-AB57 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2008-BT-STD-0005. RIN 1904-AB57 2008-BT-STD-0005. RIN 1904-AB57 Docket No. EERE-2008-BT-STD-0005. RIN 1904-AB57 This memorandum for the record provides a summary of a February 13, 2013 meeting with U.S. Department of Energy staff concerning DOE's proposed rulemaking regarding amended energy conservation standards for Class A external power supplies (EPSs) and new energy conservation standards for non-Class A EPSs and battery chargers. CEA Ex Parte Discussion_02212013.pdf More Documents & Publications Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

54

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

55

On Energy Harvesting Module for Scalable Cognitive Autonomous Nondestructive Sensing Network (SCANSn  

E-Print Network [OSTI]

energy harvesting from both solar and thermal sources to recharge the lithium-ion battery of the system, solar, thermal electric generator, battery charging, SHM 1. INTRODUCTION Structural Health Monitoring to the battery charger. Since the output voltages and currents of the solar and thermal energy harvesters vary

Ha, Dong S.

56

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

57

Smart Charger Technology Development  

Broader source: Energy.gov (indexed) [DOE]

Charger Technology Charger Technology Development Presented by: Frank Tuffner Pacific Northwest National Laboratory Smart Grid R&D Peer Review November 4, 2010 Golden, CO Project Team: Michael Kintner-Meyer, PI Krishnan Gowri Richard Pratt Nathan Tenney Frank Tuffner PNNL-SA-75999 Analysis and Development Grid Capabilities for the Electrification of Transportation Goals and Objectives Funding Summary ($K) FY09 FY10 FY11 $350 $500 $500 Technical Scope GOAL: * Assure grid can support electrification of transportation * Assure that EVs/PHEVs will not create new peaks (locally or regionally) or electricity prices will not support large adoption of EVs/PHEVs Objectives: * Assess grid benefits and impacts of electrification of transportation * Technology demonstration * Actively engage in codes and standards

58

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

59

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

60

NREL: Energy Storage - Isothermal Battery Calorimeters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Batteries and Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

63

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

691 - 23700 of 28,905 results. 691 - 23700 of 28,905 results. Download WA_01_013_DEERE_AND_COMPANY_Waiver_of_Domestic_and_Foreign_R.pdf http://energy.gov/gc/downloads/wa01013deereandcompanywaiverofdomesticandforeignrpdf Download Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Ex parte guidance for Association of Home Appliance Manufacturers on battery charger energy efficiency standards http://energy.gov/gc/downloads/ex-parte-meeting-doe-and-navigant-consulting-battery-charger-energy Download Guidance Concerning Applicable Sampling Plan for Certification of Consumer Product The Energy Policy and Conservation Act of 1975, as amended, authorizes the Department of Energy to enforce compliance with the energy conservation standards established for certain consumer...

64

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

65

Examination of a PHEV Bidirectional Charger System for V2G Reactive Power Compensation  

E-Print Network [OSTI]

. Keywords - PHEV; charger; V2G; reactive power; battery I. INTRODUCTION Today, hybrid electric vehicles to power the vehicle for a daily commute. PHEVs provide electricity- only drive option up to a specified which is valuable to the electric power grid. The possibility of using battery-powered vehicles

Tolbert, Leon M.

66

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

68

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

69

Request for Information on Evaluating New Products for the Battery...  

Broader source: Energy.gov (indexed) [DOE]

and External Power Supply Rulemaking - Ex Parte Communication List of topics that Apple Inc. discussed with DOE RFIEvaluating New ProductsBattery Chargers & External Power...

70

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81 - 12290 of 26,764 results. 81 - 12290 of 26,764 results. Download Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making- Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies. Below is a list of topics that Apple discussed... http://energy.gov/gc/downloads/energy-conservation-standards-battery-chargers-and-external-power-supplies-proposed Article Summary of Decisions- September 17, 2012 - September 21, 2012 Decisions were issued on: - Application for Exception http://energy.gov/oha/articles/summary-decisions-september-17-2012-september-21-2012 Article DOE Awards Management and Operating Contract for DOE's Waste Isolation Pilot Plant

71

Leading experts to speak at battery & energy storage technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leading experts to speak at battery & energy storage technology conference adipex for sale Speakers from US Department of Energy, academia and industry to meet November 5th in...

72

Stable Separator Identified for High-Energy Batteries | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Functional Materials for Energy Stable Separator Identified for High-Energy Batteries November 04, 2014 A combination of carbon coating and cryo-STEM technique enables atomic level...

73

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

74

MEMORANDUM TO: John Cymbalsky, U.S. Department of Energy, Office of Building  

Broader source: Energy.gov (indexed) [DOE]

TO: John Cymbalsky, U.S. Department of Energy, Office of Building Technologies FROM: Ginger Willson, Director, Nebraska Energy Office DATE: December 12, 2011 RE: Meeting regarding DOE Energy Conservations Standards for Battery Chargers Following the Friday, December 2, 2011 meeting, please find below participants and discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers. The following participated in the meeting: (1) Ginger Willson, Director of the Nebraska Energy Office (2) Luke Prussa, Director of Sales and Marketing for Lester Electrical, Inc. (3) Spencer Stock, Product Marketing Manager for Lester Electrical, Inc. Request: Classify Golf Cars as Non-Consumer Products

75

Thermal Modelling of Powerful Traction Battery Charger  

Science Journals Connector (OSTI)

In this paper, the author presents survey of the modern approaches in the thermal analysis of power electronic systems. The improvement and the new methods are applied to the real engineering problem. The ther...

R. Vlach

2012-01-01T23:59:59.000Z

76

Control Algorithms for Grid-Scale Battery Energy Storage Systems  

E-Print Network [OSTI]

Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

77

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

78

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

79

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

80

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

82

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 8040 of 26,764 results. 31 - 8040 of 26,764 results. Download Meeting regarding DOE Energy Conservations Standards for Battery Discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers. The DOE battery charger efficiency regulations cover only consumer... http://energy.gov/gc/downloads/meeting-regarding-doe-energy-conservations-standards-battery Download Fossil Energy Today- First Quarter, 2012 Here are just some of the stories featured in this issue: CT Scanners Give Energy Researchers a Core Understanding of Marcellus Shale; Large-Scale CO2 Injection Begins; SPR Completes Drawdown of 30 Million Barrels; and, Methane Hydrate Technology to be Tested on Alaska's North Slope. http://energy.gov/fe/downloads/fossil-energy-today-first-quarter-2012

83

Comparing the Energy Content of Batteries, Fuels, and Materials  

Science Journals Connector (OSTI)

Comparing the Energy Content of Batteries, Fuels, and Materials ... Whereas the literature contains numerous comparisons of the specific energy of battery technologies and hydrocarbons typically found in fuel, the methodology used to obtain these values is usually not specified. ... The calculated specific energies are based on standard Gibbs free energy of formation of the elements and compounds of interest. ...

Nitash P. Balsara; John Newman

2013-03-29T23:59:59.000Z

84

NREL: Energy Storage - Innovative Way to Test Batteries Fills...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prototypes to a commercial product," said Ahmad Pesaran, manager of NREL's Battery and Energy Storage Research Group. "NETZSCH has a proven track record of developing and...

85

US Advanced Battery Consortium USABC | Open Energy Information  

Open Energy Info (EERE)

US Advanced Battery Consortium USABC US Advanced Battery Consortium USABC Jump to: navigation, search Name US Advanced Battery Consortium (USABC) Place Southfield, Michigan Zip 48075 Sector Vehicles Product Michigan-based, research consortium focused on R&D of advanced energy systems for electric vehicles. References US Advanced Battery Consortium (USABC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Advanced Battery Consortium (USABC) is a company located in Southfield, Michigan . References ↑ "US Advanced Battery Consortium (USABC)" Retrieved from "http://en.openei.org/w/index.php?title=US_Advanced_Battery_Consortium_USABC&oldid=352587" Categories: Clean Energy Organizations

86

SINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE  

E-Print Network [OSTI]

in the power system network such as wind and solar is still a challenge in our days. Energy storage systemsSINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE I. Trintis*, S. Munk-Nielsen*, R presents power converters for battery energy storage systems (BESS) which can interface medium- voltage

Munk-Nielsen, Stig

87

KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition  

Office of Energy Efficiency and Renewable Energy (EERE)

KAir Battery, a student team from Ohio State University, won the Southwest region of the Energy Departments National Clean Energy Business Plan Competition for their innovative potassium-air stationary batteries that could be used for renewable energy systems.

88

Contour Energy Systems formerly CFX Battery | Open Energy Information  

Open Energy Info (EERE)

Contour Energy Systems formerly CFX Battery Contour Energy Systems formerly CFX Battery Jump to: navigation, search Name Contour Energy Systems (formerly CFX Battery) Place Azusa, California Zip 91702 Product California-based battery maker which claims to have developed novel fluorine-based battery chemistries, nano-materials science and manufacturing processes. Coordinates 34.13361°, -117.905879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.13361,"lon":-117.905879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Vanadium Flow Battery for Energy Storage: Prospects and Challenges  

Science Journals Connector (OSTI)

Vanadium Flow Battery for Energy Storage: Prospects and Challenges ... Her work involves investigating the strategy to improve the stability of electrolytes for the vanadium flow battery. ... Dr. Huamin Zhang currently is a tenured Professor at Dalian Institute of Chemical Physics, Chinese Academy of Science; he serves as the head of the energy storage division and chief scientist of the 973 National Project on Flow Battery. ...

Cong Ding; Huamin Zhang; Xianfeng Li; Tao Liu; Feng Xing

2013-03-28T23:59:59.000Z

90

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

91

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

92

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

93

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Energy Costs with Better Batteries Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's (DOE's) goals is to fund research that will revolutionize the performance of next-generation batteries. In honor of DOE's supercomputing month, we are highlighting some of the

94

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

95

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Integrated Dynamic Electron Solutions, Inc. Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory 333 likes Integrated Dynamic Electron Solutions, Inc., based in Belmont, California, uses Dynamic Transmission Electron Microscopes (DTEM) to enable imaging of nanoscale objects, such as proteins, thin films and nanoparticles at unprecedented time scales and frame rates. By utilizing a laser-driven electron source, DTEMs are able to produce short bursts of electrons that can form an image with nanometer resolution in as little as 10 nanoseconds. This enables observation of dynamics in material systems that play an important role in a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. Integrated Dynamic Electron Solutions uses technology

96

Battery Jobs Coming to Michigan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jobs Coming to Michigan Jobs Coming to Michigan Battery Jobs Coming to Michigan March 22, 2010 - 3:01pm Addthis Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Joshua DeLung A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act grant from the U.S. Department of Energy in August that will help implement the company's strategy for the construction of lithium-ion battery manufacturing facilities in the U.S., with the first location being constructed in Livonia, Mich. This is the first step in the company's overarching goal of creating a complete battery manufacturing industry in

97

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

98

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

99

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Electric Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

102

Novel green illumination energy for LED with ocean battery materials  

Science Journals Connector (OSTI)

This paper launches novel materials of LED with ocean battery. Ocean battery employs sea water existing by the nature as energy materials to drive LED lamp lighting. The analysing methods are thermal-, electric- and illumination-performance experiments to discuss the novel green illumination techniques. Ocean battery and LED are all DC components, there is no energy loss of current converter between them, and the ocean battery has more electricity in LED illumination. Vapour chamber (VC) and aluminium (AL) materials are assigned to be the LED PCBs. Results show that the effective thermal conductivity of the VCPCB is many times higher than that of the ALPCB, proving that it can effectively reduce the temperature of the LED and obtain more uniform luminance. And the output voltage and LED lighting start unstable resulting from the air bubble of ocean battery slight vibration.

Jung-Chang Wang

2012-01-01T23:59:59.000Z

103

Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers  

Broader source: Energy.gov (indexed) [DOE]

More Than 1,800 Electric Vehicle Chargers More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act May 13, 2011 - 12:00am Addthis LOS ANGELES - As part of the Obama Administration's comprehensive plan to address rising gas prices and reduce oil imports one-third by 2025, U.S. Energy Secretary Steven Chu today announced that to date, more than 1,800 electric vehicle chargers have been installed under the Recovery Act. Coulomb Technologies, ECOtality, General Motors and others have been moving forward to install the charging stations as part of the Administration's investments in U.S. electric vehicle manufacturing and alternative vehicle infrastructure. Secretary Chu made the announcement at an event today in

104

Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers  

Broader source: Energy.gov (indexed) [DOE]

Chu Highlights More Than 1,800 Electric Vehicle Chargers Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act May 13, 2011 - 12:00am Addthis LOS ANGELES - As part of the Obama Administration's comprehensive plan to address rising gas prices and reduce oil imports one-third by 2025, U.S. Energy Secretary Steven Chu today announced that to date, more than 1,800 electric vehicle chargers have been installed under the Recovery Act. Coulomb Technologies, ECOtality, General Motors and others have been moving forward to install the charging stations as part of the Administration's investments in U.S. electric vehicle manufacturing and alternative vehicle infrastructure. Secretary Chu made the announcement at an event today in

105

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January...

106

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell  

E-Print Network [OSTI]

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept such as the lithium-air battery, and the more advanced zinc-air battery in which only the source needs to be "bottled

Angell, C. Austen

107

Fact #607: January 25, 2010 Energy and Power by Battery Type  

Broader source: Energy.gov [DOE]

Batteries are made from many different types of materials. The chart below shows the energy to power ratio for different battery types (a range is shown for each battery). An increase in specific...

108

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

109

Definition: Lead-acid battery | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lead-acid battery Jump to: navigation, search Dictionary.png Lead-acid battery A type of battery that uses plates made of pure lead or lead oxide for the electrodes and sulfuric acid for the electrolyte.[1] View on Wikipedia Wikipedia Definition Related Terms Battery, electrolyte References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Lead-acid_battery&oldid=487934" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

110

An Update on Advanced Battery Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

111

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

USABC Battery Separator Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es007smith2010o.pdf More Documents & Publications USABC Battery Separator Development Celgard...

115

Battery Factory Bringing Jobs to Jacksonville | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Factory Bringing Jobs to Jacksonville Factory Bringing Jobs to Jacksonville Battery Factory Bringing Jobs to Jacksonville April 30, 2010 - 2:10pm Addthis A rendering of Saft’s lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft A rendering of Saft's lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy The Saft lithium-ion battery plant under construction in Jacksonville, Fla., is expected to pump hundreds of high-paying jobs into the city's economy while boosting its green credentials. Construction on the factory is expected to wrap up in 2012 and cost $191 million. Saft was awarded $95.5 million in Recovery Act funds and $20.2 million in financial incentives from Jacksonville and the state.

116

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

D. O. Energy, Energy Storage-A Key Enabler of the Smartof storage [electric energy storage], Power and EnergyJ. stergaard, Battery energy storage technology for power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

117

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2014-07-01T23:59:59.000Z

118

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2013-07-09T23:59:59.000Z

119

Batteries - Lithium-ion - Developing Better High-Energy Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material. Researcher Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material, a key element of the material licensed to NanoeXa. Argonne's an internationally recognized leader in the development of lithium-battery technology. "Our success reflects a combined effort with a materials group and a technology group to exploit the concept to tackle key safety and energy problems associated with conventional technology," said Argonne's Michael Thackeray. Recently, Argonne announced a licensing agreement with NanoeXa (see

120

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

side hybrid photovoltaic and battery energy storage system,to combined photovoltaic and battery energy storage systemsphotovoltaic systems, IEEE Transactions on Sustainable Energy (

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

develop the high energy high power cathode materials for LIBNew Cathode Material for Batteries of High- Energy Density.High Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

122

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A molecule of fulvalene diruthenium, seen in diagram, changes its configuration when it absorbs heat, and later releases heat when it snaps back to its original shape. Image: Jeffrey Grossman Broadly speaking, there have been two approaches to capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a turbine, or use the heat directly for hot water or home

123

Energy Harvesting Enabled Wireless Sensor Networks: Energy Model and Battery Dimensioning  

E-Print Network [OSTI]

, Battery Dimensioning 1. INTRODUCTION Advances in micro-electro-mechanical systems (MEMS) as a technologyEnergy Harvesting Enabled Wireless Sensor Networks: Energy Model and Battery Dimensioning Raul to the required energy for the communication process creates the necessity of temporal storage. Unfortu- nately

Politècnica de Catalunya, Universitat

124

Axion Battery Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Axion Battery Products Inc Place Woodbridge, Ontario, Canada Zip L4L 5Y9 Product Subsidiary of Axion Power International, which is to run three lead acid battery fabrication lines. Coordinates 38.660595°, -77.247875° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.660595,"lon":-77.247875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program  

Broader source: Energy.gov [DOE]

This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

126

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

127

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

128

Department of Energy Will Hold a Batteries and Energy Storage Information  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 October 2, 2011 - 11:46am Addthis On Friday, October 21, 2011 the Department of Energy will hold a public meeting from 8:00am to 5:00pm at the Bethesda North Marriott Hotel and Conference Center in Bethesda, MD to provide information and receive comments from the public on directions for a potential research effort on batteries and energy storage. Learn more about this meeting Registration Information Agenda Learn more about OE's Energy Storage program Addthis Related Articles Energy Department Seeks Public Comment on Standby Support Provisions of Energy Policy Act of 2005

129

LEESS Battery Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es139mcgrath2012p.pdf More Documents & Publications Development of Advanced Energy Storage Systems for High Power, Lower Energy Energy Storage System (LEESS) for Power...

130

Bee Cool Inc | Open Energy Information  

Open Energy Info (EERE)

North Ferrisburg, Vermont Zip: Vt 05473 Sector: Solar Product: Producer of polysilicon solar panels and solar trackers, and solar battery chargers. References: Bee Cool Inc1...

131

Innergy Power Corporation Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 92154 Sector: Solar Product: US manufacturer of rechargeable sealed-lead batteries and solar charger for off-grid use. References: Innergy Power Corporation Inc1...

132

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energys Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

133

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery  

Broader source: Energy.gov (indexed) [DOE]

Grid-Scale Energy Storage Demonstration Using Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) More Documents & Publications

134

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

135

FY2001 Progress Report for the Batteries for Advanced Transportation Technologies (High-Energy Battery)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOR ADVANCED FOR ADVANCED TRANSPORTATION TECHNOLOGIES (HIGH-ENERGY BATTERY) 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Lawrence Berkeley National Laboratory, to Argonne National Laboratory, and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the

136

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

01 - 5910 of 26,764 results. 01 - 5910 of 26,764 results. Download Book3 http://energy.gov/management/downloads/book3 Download Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking- Ex Parte Communication List of topics that Apple Inc. discussed with DOE http://energy.gov/gc/downloads/request-information-evaluating-new-products-battery-chargers-and-external-power-supply Rebate CT Solar Loan The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered... http://energy.gov/savings/ct-solar-loan Rebate Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program Orange and Rockland Utilities provides rebates for residential customers

137

A High-Energy Solid State Battery with an Extremely Long Cycle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stories Contact Us Index Home | ORNL | Highlights SHARE Functional Materials for Energy A High-Energy Solid State Battery with an Extremely Long Cycle Life October 15, 2014...

138

FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)  

SciTech Connect (OSTI)

Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

2014-09-01T23:59:59.000Z

139

The Paper Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Company Inc Paper Battery Company Inc Jump to: navigation, search Logo: The Paper Battery Company Inc Name The Paper Battery Company Inc Address 45 ferry St Place Troy, New York Zip 12180 Sector Buildings Product Scalable energy storage sheet Year founded 2008 Number of employees 1-10 Phone number 5182669027 Website http://www.paperbatteryco.com/ Coordinates 42.7278621°, -73.6927106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7278621,"lon":-73.6927106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Fluoride based cathodes and electrolytes for high energy thermal batteries  

SciTech Connect (OSTI)

A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

Briscoe, J.D.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fact Sheet: Sodium-Beta Batteries (October 2012) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Beta Batteries (October 2012) Beta Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for sodium-beta batteries (Na-beta batteries or NBBs) that will improve energy and power densities and simplify manufacturing. This project will demonstrate a planar prototype that operates at <300 degrees Celsius and will scale up the storage capacity to 5 kW, improving on the performance levels being pursued in related battery research projects. Fact Sheet: Sodium-Beta Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review and Update Meeting Advanced Materials and Devices for Stationary Electrical Energy Storage

142

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect (OSTI)

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

143

Energy Storage in Lead-Acid Batteries: The Faraday Way to Sustainability [and Discussion  

Science Journals Connector (OSTI)

...research-article Energy Storage in Lead-Acid Batteries: The Faraday Way...examines how lead-acid batteries might assist the transition...emphasis is placed on the advances in materials and cell...that are required for battery performance to meet...

1996-01-01T23:59:59.000Z

144

Optimized Charger Deployment for Wireless Rechargeable Sensor Ji-Hau Liao () Wei-Ting So() Jehn-Ruey Jiang()  

E-Print Network [OSTI]

)(Radiant Energy) (Mechanical Energy) 2 [11] 2: [11] (Sola Power): (Photovoltaic Effect) - P-N (Ambient Sensor Network, WRSN)[2] (Energy Harvesting) (Radio Frequency, RF)(Converter) (DC) : I. (Intensive Energy Harvesting): (Wireless Charger) (Power Receiver) (Wireless Charging) [3] II. (Non-Intensive Energy

Jiang, Jehn-Ruey

145

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7AC Technologies, Inc. 7AC Technologies, Inc. National Renewable Energy Laboratory 498 likes 7AC Technologies, based in Woburn, Massachusetts, is developing Liquid Desiccant HVAC systems for Commercial and Industrial buildings using technology from the National Renewable Energy Laboratory. These Liquid Desiccant HVAC systems deliver a 50 to 75 percent reduction in energy usage over conventional HVAC units. The system consists of a membrane conditioner responsible for drying and cooling the air and a heat-driven regenerator. The liquid desiccant design allows for the utilization of solar or waste heat sources, paving the way for net-zero energy retrofits to existing buildings with costs comparable to conventional HVAC. Learn More Borla Performance Industries, Inc. Oak Ridge National Laboratory

146

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

147

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

148

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

149

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

150

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

151

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

152

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

153

Modelling challenges for battery materials and electrical energy storage  

Science Journals Connector (OSTI)

Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrodeelectrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .

Richard P Muller; Peter A Schultz

2013-01-01T23:59:59.000Z

154

Solar Energy for Charging Fork Truck Batteries  

E-Print Network [OSTI]

this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial...

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

155

Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance  

E-Print Network [OSTI]

Energy Conversion Efficiency of Nanofluidic Batteries: Hydrodynamic Slip and Access Resistance Yu and concentration polarization) on the energy conversion efficiency of pressure-driven electrolyte flow through battery system is its low energy conversion efficiency. Up to now, the energy conversion efficiencies have

Chang, Hsueh-Chia

156

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Inc. Element One, Inc. National Renewable Energy Laboratory 191524 likes Element One, based in Boulder, Colorado, has created the only available coatings that change color when detecting hydrogen and other hazardous gas leaks, either reversibly or non-reversibly, to provide both current and historical information about leaks. Element One's patented gas indicators and sensors use catalyzed thin films or nanoparticles of a transition metal oxide to create very low cost sensors for use in industrial and consumer environments, greatly reducing the potential for undetected leaks and their cost and safety implications. This technology is also being integrated for use in refineries, industry gas and fuel cells systems and was developed using technology from the National Renewable Energy Laboratory.

157

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

158

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

159

4/5/2014 Micro-windmill Charger | DailyHome Decor Ideas http://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 1/4  

E-Print Network [OSTI]

://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 1/4 Daily Home Decor Ideas Micro-windmill Charger VersiCharge EV Charger usa Blowout Sale #12;4/5/2014 Micro-windmill Charger | DailyHome Decor Ideas http://www.dailyhomedecorideas.com/stunning-ideas/micro-windmill-charger/ 4/4 Wireless EV Charging Stations Hiding As Manhole Covers Implantable Piezoelectric Nano- ribbon

Chiao, Jung-Chih

160

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Converter Topologies for Wired and Wireless Battery Chargers  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

162

Converter Topologies for Wired and Wireless Battery Chargers  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

163

Converter Topologies for Wired and Wireless Battery Chargers  

Broader source: Energy.gov (indexed) [DOE]

proprietary, confidential, or otherwise restricted information 2011 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

164

Converter Topologies for Wired and Wireless Battery Chargers  

Broader source: Energy.gov (indexed) [DOE]

proprietary, confidential, or otherwise restricted information 2012 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

165

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

166

Ultralife Corporation formerly Ultralife Batteries Inc | Open Energy  

Open Energy Info (EERE)

Corporation formerly Ultralife Batteries Inc Corporation formerly Ultralife Batteries Inc Jump to: navigation, search Name Ultralife Corporation (formerly Ultralife Batteries Inc.) Place Newark, New Jersey Zip NY 14513 Product New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References Ultralife Corporation (formerly Ultralife Batteries Inc.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ultralife Corporation (formerly Ultralife Batteries Inc.) is a company located in Newark, New Jersey . References ↑ "Ultralife Corporation (formerly Ultralife Batteries Inc.)" Retrieved from "http://en.openei.org/w/index.php?title=Ultralife_Corporation_formerly_Ultralife_Batteries_Inc&oldid=352474"

167

Shida Battery Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co, Ltd Place: China Product: Shida is a China-based maker of NiMH and Li-Poly batteries with applications that include e-bikes. References: Shida Battery Technology Co,...

168

Zhuhai Hange Battery Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a stub. You can...

169

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Abuse Testing of High Power Batteries Abuse Testing of High Power Batteries Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25,...

170

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network [OSTI]

??Batteries are used on-board vehicles for broadly two applications starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

171

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

172

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

173

Abuse Testing of High Power Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

174

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...long research and development path. Fig. 4...the anode and a cathode consisting of...lithium battery cathodes . J. Electrochem...tetrahydroxybenzoquinone: Toward the development of a sustainable...battery research and development . J. Electrochem...Rechargeable alkali-ion cathode-flow battery...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

175

Energy and Environmental Impacts of Lithium Production for Automotive Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. Dunn and Linda Gaines B. Dunn and Linda Gaines Center for Transportation Research Argonne National Laboratory Energy and Environmental Impacts of Lithium Production for Automotive Batteries American Chemical Society New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

176

Design and Assessment of a Battery-Supercapacitor Hybrid Energy Storage System for Remote Area Wind Power Systems.  

E-Print Network [OSTI]

??Recent advances in innovative energy storage devices such as supercapacitors have made battery-supercapacitor hybrid energy storage systems technically attractive. However the field of hybrid energy (more)

Gee, A

2012-01-01T23:59:59.000Z

177

Pushing the Boundaries in Energy Technbology: Materials Design for Battery Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pushing the Boundaries in Energy Technology: Materials Design for Battery Applications" Pushing the Boundaries in Energy Technology: Materials Design for Battery Applications" Co-Organizers: Elena Shevchenko (CNM), Mitra Taheri (Drexel University), and Mali Balasubramanian (APS) Batteries are a key element for storing and supplying energy. Transformational battery technologies require tailoring novel materials and/or incorporating new chemical processes. Energy storage devices are intrinsically complex with the relevant materials processes covering time-scales from picoseconds to years and length-scales from angstroms to millimeters. Advanced x-ray and electron microscopy methods have opened a new window by which vital structural and electronic properties of battery materials can be obtained at the appropriate spatio- temporal scales using spectroscopic, scattering and imaging techniques under real world

178

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

179

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network [OSTI]

High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying February 2001 Abstract All solid state, thin-®lm batteries with the cell con®guration of VOx, no binder) cathode consisted of a dense ®lm of vanadium oxide (200 nm thick), deposited on aluminum foil

Sadoway, Donald Robert

180

How Advanced Batteries Are Energizing the Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This long dormant plant was revived by a $300 million Recovery Act grant which allowed Johnson Controls

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

183

Battery Thermal Modeling and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf More Documents & Publications NREL Battery Thermal and Life Test Facility...

184

High-Energy Cathode Materials (Li2MnO3LiMO2) for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

High-Energy Cathode Materials (Li2MnO3LiMO2) for Lithium-Ion Batteries ... Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries ... Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. ...

Haijun Yu; Haoshen Zhou

2013-03-28T23:59:59.000Z

185

Energy-E cient Design of Battery-Powered Embedded Systems Tajana Simunicy Luca Benini Giovanni De Micheliy  

E-Print Network [OSTI]

Quality portable design demands high performance with low thermal dissipation and long battery lifeEnergy-E cient Design of Battery-Powered Embedded Systems Tajana Simunicy Luca Benini Giovanni De Bologna, ITALY 40136 Abstract Energy-e cient design of battery-powered embedded sys- tems demands

Simunic, Tajana

186

INL Efficiency and Security Testing of EVSE, DC Fast Chargers...  

Broader source: Energy.gov (indexed) [DOE]

on where and when you measure it: 23% to 99.7% 5 EVSE Testing - Conductive Li-Ion ESS Controls System Load Bank Smart Grid Emulator Charger ACDC J1772 Conductive EVSE...

187

Team Led by Argonne National Lab Selected as DOE's Batteries and Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Led by Argonne National Lab Selected as DOE's Batteries and Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub November 30, 2012 - 12:15pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - U.S. Secretary of Energy Steven Chu was joined today by Senator Dick Durbin, Illinois Governor Pat Quinn, and Chicago Mayor Rahm Emanuel to announce that a multi-partner team led by Argonne National Laboratory has been selected for an award of up to $120 million over five years to establish a new Batteries and Energy Storage Hub. The Hub, to be known as the Joint Center for Energy Storage Research (JCESR), will combine the R&D firepower of five DOE national laboratories, five universities, and four private firms in an effort aimed at achieving revolutionary advances

188

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Broader source: Energy.gov (indexed) [DOE]

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

189

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

190

Driving Battery Production in Ohio | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Battery Production in Ohio Battery Production in Ohio Driving Battery Production in Ohio November 1, 2010 - 6:19pm Addthis Randy Turk, Elyria Site Manager; Rep. Betty Sutton (OH); Frank Bozich, President Catalysts, BASF and Patrick Davis, DOE Program Manager participate in groundbreaking ceremony for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Randy Turk, Elyria Site Manager; Rep. Betty Sutton (OH); Frank Bozich, President Catalysts, BASF and Patrick Davis, DOE Program Manager participate in groundbreaking ceremony for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager Last week, I traveled to Elyria, Ohio (not far from Cleveland and the Rock

191

Energy efficiency of Li-ion battery packs re-used in stationary power applications  

Science Journals Connector (OSTI)

Abstract The effects of capacity fade, energy efficiency fade, failure rate, and charge/discharge profile are investigated for lithium-ion (Li-ion) batteries based on first use in electric vehicles (EVs) and second-use in energy storage systems (ESS). The research supports the feasibility of re-purposing used Li-ion batteries from \\{EVs\\} for use in ESS. Based on data extrapolation from previous studies with a low number of charge/discharge cycles, it is estimated that the EV battery loses 20% of its capacity during its first use in the vehicle and a further 15% after its second use in the ESS over 10years. As energy efficiency decreases with increased charge/discharge cycles, a capacity fade model is used to approximate the effect of the relationship between cycles and capacity fade over the life of the battery. The performance of the battery in its second use is represented using a model of degradation modes, assuming a 0.01% cell failure rate and a non-symmetric charge/discharge profile. Finally, an accurate modeling of battery performance is used to examine energy savings and greenhouse gas (GHG) emission reduction benefits from using a Li-ion battery first in an EV and then in an ESS connected to the Ontario electrical grid.

Leila Ahmadi; Michael Fowler; Steven B. Young; Roydon A. Fraser; Ben Gaffney; Sean B. Walker

2014-01-01T23:59:59.000Z

192

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

193

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

194

The operating schedule for battery energy storage companies in electricity market  

Science Journals Connector (OSTI)

This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak ... shaving and spinning reserve services in the electricity markets under increasing wind penetrati...

Shengqi Zhang; Yateendra Mishra

2013-12-01T23:59:59.000Z

195

Progress in research on the performance and service life of batteries membrane of new energy automotive  

Science Journals Connector (OSTI)

Batteries membrane materials are widely used in new energy automotives such as hybrid vehicles, fuel cell vehicles, and pure electric vehicles. Membrane consists of two categories: fuel cell membrane (power unit)...

Yong Li; Jian Song; Jie Yang

2012-11-01T23:59:59.000Z

196

Energy Management Using Storage Batteries in Large Commercial Facilities Based on Projection of Power Demand  

Science Journals Connector (OSTI)

This study provides three methods for projection of power demand of large commercial facilities planned for construction, ... the operation algorithm of storage batteries to manage energy and minimize power costs...

Kentaro Kaji; Jing Zhang; Kenji Tanaka

2013-01-01T23:59:59.000Z

197

High-Energy Redox-Flow Batteries with Hybrid Metal Foam Electrodes  

Science Journals Connector (OSTI)

A nonaqueous redox-flow battery employing [Co(bpy)3]+/2+ and [Fe(bpy)3]2+/3+ redox couples is proposed for use in large-scale energy-storage applications. ... We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. ... By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. ...

Min-Sik Park; Nam-Jin Lee; Seung-Wook Lee; Ki Jae Kim; Duk-Jin Oh; Young-Jun Kim

2014-06-06T23:59:59.000Z

198

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

199

EaglePicher Horizon Batteries LLC | Open Energy Information  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC EaglePicher Horizon Batteries LLC Jump to: navigation, search Name EaglePicher Horizon Batteries, LLC Place Dearborn, Michigan Zip MI 48126 Product Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery. Coordinates 39.520064°, -94.770486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.520064,"lon":-94.770486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Nanomaterials for Energy Storage: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Batteries and fuel cells are important power sources today (Berger, 1997; Georgano, 1996; Ondrey, et al., 1999) and will continue to be used in a wide variety of consumer, industrial and military applications in ...

2003-01-01T23:59:59.000Z

203

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

204

Union Suppo Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Suppo Battery Co Ltd Suppo Battery Co Ltd Jump to: navigation, search Name Union Suppo Battery Co Ltd Place Shenyang, China Zip 110015 Product Liaoning-based manufacturer of rechargeable NiMH batteries. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage  

E-Print Network [OSTI]

energy and utility applications, such as pump hydro, compressed air, y-wheel and electrochemicalRoom-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart

Wang, Wei Hua

206

Methodology for the optimal design of PEV charging systems with multiple chargers and distributed resources  

E-Print Network [OSTI]

Increased penetration of plug-in electric vehicles (PEVs) will necessitate deployment of numerous PEV chargers. Pairing these chargers with renewable distributed generation (DG) and storage can potentially alleviate negative ...

Gunter, Samantha Joellyn

207

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network [OSTI]

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

208

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Broader source: Energy.gov [DOE]

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

209

Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries  

E-Print Network [OSTI]

). More envi- ronmentally benign and sustainable energy-storage systems are desired for future power for high-energy lithium battery applications. 1. Introduction Energy storage and conversion have sources.1­6 Lithium-ion batteries are considered to be the most promising energy-storage systems

Cao, Guozhong

210

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

211

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another, which either stores or discharges energy, depending on the direction of the flow. They can employ several different chemistries, each offering distinct benefits and limitations. Despite their success in mobile applications, Li-ion technologies have not demonstrated

212

NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.  

SciTech Connect (OSTI)

The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

2006-03-01T23:59:59.000Z

213

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

214

Advanced Lead Acid Battery Consortium | Open Energy Information  

Open Energy Info (EERE)

Lead Acid Battery Consortium Lead Acid Battery Consortium Jump to: navigation, search Name Advanced Lead-Acid Battery Consortium Place Durham, North Carolina Zip 27713 Sector Vehicles Product The ALABC is a research consortium of more than 50 battery-related companies that was originally formed in 1992 to advance the capabilities of the valve-regulated lead acid battery to help electric vehicles become a reality. Coordinates 45.396265°, -122.755099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.396265,"lon":-122.755099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Energy Storage in Lead-Acid Batteries: The Faraday Way to Sustainability [and Discussion  

Science Journals Connector (OSTI)

15 July 1996 research-article Energy Storage in Lead-Acid Batteries: The Faraday Way...ability to continue supplying itself with the energy that it has grown to need. This energy is derived mainly from fossil fuels and must...

1996-01-01T23:59:59.000Z

216

Short-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes  

E-Print Network [OSTI]

for energy recharge. Under the assumption of an increasing concave power-rate relationship, the short completion time of a given amount of data were found for an energy harvesting node under the assumptionShort-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes Kaya Tutuncuoglu

Yener, Aylin

217

Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries  

E-Print Network [OSTI]

Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries Matt Pharr, Cambridge, Massachusetts 02138, United States ABSTRACT: We have measured the fracture energy of lithiated, the fracture energy at a second state of charge (at small concentrations of lithium) is measured by determining

Suo, Zhigang

218

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect (OSTI)

High temperature (250-350C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

219

Batteries May Fade, But Research Can Revitalize | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries May Fade, But Research Can Revitalize Batteries May Fade, But Research Can Revitalize Batteries May Fade, But Research Can Revitalize November 9, 2012 - 4:04pm Addthis The Transmission Electron Microscope (TEM) at the William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is used to image metals, ceramics, minerals, nanostructured materials, and biological-related materials and tissues at atomic-bond-length resolution. | Photo of Pacific Northwest National Laboratory The Transmission Electron Microscope (TEM) at the William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is used to image metals, ceramics, minerals, nanostructured materials, and biological-related materials and tissues at

220

Energy Saver Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 23, 2010 December 23, 2010 What Do You Think of Your LED Holiday Lights? Learn more about LED light strings for their holiday decorations. December 21, 2010 Remember the Batteries - and Maybe a Charger? For the holiday gift-giving season take a look at the ENERGY STAR® list of certified rechargeable batteries. December 20, 2010 Tax Credits, Appliance Rebates, and the End of 2010 Confused about the tax credits and appliance rebates? Here's the straight story on what is going on and when: December 16, 2010 How Do You Reduce Energy Use from Computers and Electronics? How do you reduce energy use from computers and electronics? December 14, 2010 Deck Those Halls! Preparing to decorate your home for the holiday season? Consider LED lighting as an energy-efficient option.

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chapter 16 - Lithium Battery Energy Storage: State of the Art Including LithiumAir and LithiumSulfur Systems  

Science Journals Connector (OSTI)

Abstract Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E0=?3.045V), provides very high energy and power densities in batteries. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) have conquered the markets for portable consumer electronics and, recently, for electric vehicles. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. As lithium metal reacts violently with water and can thus cause ignition, modern lithium-ion batteries use carbon negative electrodes and lithium metal oxide positive electrodes. Rechargeable lithium-ion batteries should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This chapter covers all aspects of lithium battery chemistry that are pertinent to electrochemical energy storage for renewable sources and grid balancing.

Peter Kurzweil

2015-01-01T23:59:59.000Z

222

Chapter 3 - Potential of Sodium-Sulfur Battery Energy Storage to Enable Further Integration of Wind  

Science Journals Connector (OSTI)

Abstract Wind generation is the leading alternative for environmentally responsible power generation and for energy independence in the future. However, wind power output cannot be controlled same as conventional generation, and wind is not necessarily available to serve peak load. In this chapter, the use of a Sodium Sulfur battery directly coupled with a wind farm to provide generation shifting for serving peak demand and for limiting the wind farm power output ramp-rate is discussed. Results from field operation of a 1 MW, 7.2 \\{MWh\\} Sodium Sulfur battery coupled with an 11.55 MW wind farm were provided to validate the batterys ability to successfully carry out both the tasks. It is shown that the two tasks could be combined to achieve maximum benefit. Value addition from shifting wind generation to on-peak is calculated and the optimal ratio storage to wind ratio is discussed.

Saurabh Tewari

2015-01-01T23:59:59.000Z

223

Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the potential to shift this dynamic, revolutionizing how our grid uses and distributes energy. Reliable, high-performing storage technologies could provide a considerable amount of power on very short demand, lowering costs to utilities and consumers alike. These powerful technologies would enable renewable sources of energy -

224

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...traced to the rechargeable behavior demonstrated in a nonaqueous...Initially, a two-phase liquid is formed because...chlorine (Zn/Cl) hydrate battery. As...involve, for example, phase transformations...Assessment (Report SAND 2010-0815, Sandia...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

225

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...foreseeable strategy for battery processing...demonstrated with the development of renewable...anode and a cathode consisting...experience in the development of products...an essential development in order...an aqueous cathode operating in a...The design strategy presented here...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

226

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

227

Development of Lithium?ion Battery as Energy Storage for Mobile Power Sources Applications  

Science Journals Connector (OSTI)

In view of the need to protect the global environment and save energy there has been strong demand for the development of lithium?ion battery technology as a energy storage system especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium?ion battery development is toward the high power and energy density cheaper in price and high safety standard. In our laboratory the research and development of lithium?ion battery technology was mainly focus to develop high power density performance of cathode material which is focusing to the Li?metal?oxide system LiMO 2 where M=Co Ni Mn and its combination. The nano particle size material which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition we also developed variety of sizes of lithium?ion battery prototype including (i) small size for electronic gadgets such as mobile phone and PDA applications (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC SIRIM Berhad will be discussed in this paper.

Mohd Ali Sulaiman; Hasimah Hasan

2009-01-01T23:59:59.000Z

228

Potential use of geothermal energy sources for the production of lithium-ion batteries  

Science Journals Connector (OSTI)

The lithium-ion battery is one of the most promising technologies for energy storage in many recent and emerging applications. However, the cost of lithium-ion batteries limits their penetration in the public market. Energy input is a significant cost driver for lithium batteries due to both the electrical and thermal energy required in the production process. The drying process requires 4557% of the energy consumption of the production process according to a model presented in this paper. The model is used as a base for quantifying the energy and temperatures at each step, as replacing electric energy with thermal energy is considered. In Iceland, it is possible to use geothermal steam as a thermal resource in the drying process. The most feasible type of dryer and heating method for lithium batteries would be a tray dryer (batch) using a conduction heating method under vacuum operation. Replacing conventional heat sources with heat from geothermal steam in Iceland, we can lower the energy cost to 0.008USD/Ah from 0.13USD/Ah based on average European energy prices. The energy expenditure after 15 years operation could be close to 2% of total expenditure using this renewable resource, down from 12 to 15% in other European countries. According to our profitability model, the internal rate of return of this project will increase from 11% to 23% by replacing the energy source. The impact on carbon emissions amounts to 393.4215.1g/Ah lower releases of CO2 per year, which is only 25% of carbon emissions related to battery production using traditional energy sources.

Gudrun Saevarsdottir; Pai-chun Tao; Hlynur Stefansson; William Harvey

2014-01-01T23:59:59.000Z

229

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

230

1 Measurements of the Fracture Energy of Lithiated Silicon Electrodes 2 of Li-Ion Batteries  

E-Print Network [OSTI]

1 Measurements of the Fracture Energy of Lithiated Silicon Electrodes 2 of Li-Ion Batteries 3 Matt University, Cambridge, Massachusetts 02138, United States 5 ABSTRACT: We have measured the fracture energy parallel. The stress in the electrodes is measured during 10 electrochemical cycling by the substrate

231

Grid regulation services for energy storage devices based on grid frequency  

DOE Patents [OSTI]

Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

2014-04-15T23:59:59.000Z

232

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

233

Electric Storage Partners / GeoBATTERY | Open Energy Information  

Open Energy Info (EERE)

Storage Partners / GeoBATTERY Storage Partners / GeoBATTERY Jump to: navigation, search Name Electric Storage Partners / GeoBATTERY Address P.O. Box 3321 Place Austin, Texas Zip 78764 Sector Efficiency Product Manufacturer and developer of utility-scale bulk grid storage systems for the electric utilities Website http://www.geobattery.com/ Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

235

Modeling, Estimation, and Control in Energy Systems: Batteries & Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Modeling, Estimation, and Control in Energy Systems: Batteries & Demand Response Scott Moura Assistant Professor Civl & Environmental Engineering University of California, Berkeley EETD | LBNL Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 1 Source: Vaclav Smil Estimates from Energy Transitions Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 2 Energy Initiatives Denmark 50% wind penetration by 2025 Brazil uses 86% renewables China's aggressive energy/carbon intensity reduction EV Everywhere SunShot Green Button Zero emissions vehicle (ZEV) 33% renewables by 2020 Go Solar California Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 3 Energy Systems of Interest Energy storage Smart Grids (e.g., batteries) (e.g., demand response) Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 4 Energy

236

Standards and Test Procedures | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Standards and Test Procedures Standards and Test Procedures Standards and Test Procedures The Department of Energy (DOE) establishes energy efficiency standards for certain appliances and equipment, and currently covers more than 50 different products. Authority to undertake this effort was granted by Congress, and DOE follows a four phase process when reviewing existing and developing new standards. Each Product page provides information on recent updates, current standards and test procedures, waivers, exceptions, and exemptions, statutory authority, and historical information. For information on current Rulemakings, visit Current Rulemaking and Notices. Consumer Products Battery Chargers and External Power Supplies Ceiling Fans Central Air Conditioners and Heat Pumps Clothes Dryers

237

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Title High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Publication Type Journal Article Year of Publication 2012 Authors Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan Journal Journal of the Electrochemical Society Volume 159 Issue 11 Pagination A1806 - A1815 Date Published 01/2012 ISSN 0013-4651 Keywords hydrogen/bromine, redox flow battery Abstract The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability.

238

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy  

E-Print Network [OSTI]

of the active electrode materials. KEYWORDS Energy storage, lithium-sulfur battery, mesoporous carbon, silicon. Current cathode materials, such as those based on transition metal oxides and phosphates, have an inherent T. McDowell,,§ Ariel Jackson,,§ Judy J. Cha, Seung Sae Hong, and Yi Cui*, Department of Materials

Cui, Yi

239

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network [OSTI]

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

240

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

242

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials ... The electrochemically inert layered defect-rocksalt compound Li2MnO3 has been structurally integrated with more electrochemically active layered compounds in order to enhance Li-ion-battery cathode stability. ... Cathodes of the material had a discharge capacity of 200 mA-h/g, based on the mass of the Li-Mn oxide; an electrode capacity of >140 mA-h/g was achieved on cycling in a room-temp. ...

R. Benedek; M. M. Thackeray; A. van de Walle

2008-08-06T23:59:59.000Z

243

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

244

ESS 2012 Peer Review - Painesville Municipal Electric Power Vanadium Redox Battery Demo Project - Jodi Startari, Ashlawn Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Electric Power Vanadium Redox Battery Demonstration Project Jodi Startari Ashlawn Energy LLC Briefing Overview * Painesville Municipal Electric Power Plant Project Synopsis * Vanadium Redox Flow Battery Technology * City of Painesville Municipal Electric Plant History * Project Multiple Objectives and Additional Detail * Project Risk Analysis presented at previous Peer Review * Project to date progress * Cost Distribution * Summary/Conclusions * Future Tasks * Questions US Produced Vanadium Redox Flow Battery for Bulk Storage, Peak Shaving * 8 MW Hour redox flow battery (1MW 8 hours) * To be installed at Painesville Municipal Electric Plant (PMEP), a 32 MW coal fired facility * Most efficient PMEP operation is steady state at 26 MW (lowest emissions, lowest operating cost)

245

Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes  

Science Journals Connector (OSTI)

Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes ... By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 0.23) qIPC + (4.62 0.10) eV, where q is the electron charge. ...

Charles Kiseok Song; Brian J. Eckstein; Teck Lip Dexter Tam; Lynn Trahey; Tobin J. Marks

2014-10-20T23:59:59.000Z

246

Recent atomistic modelling studies of energy materials: batteries included  

Science Journals Connector (OSTI)

...in functional materials for energy conversion and storage technologies...addressing the global challenge of green sustainable energy. This article aims to demonstrate...addressing the global challenge of green sustainable energy. This article aims to demonstrate...

2010-01-01T23:59:59.000Z

247

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

248

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

249

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery would enhance energy and economic security  

E-Print Network [OSTI]

technologies ­ two of ARPA-E's goals. The key is a new battery architecture that enables greater energy storage and compressed air systems, which require large water supplies and land with mixed elevations, or access downhill through turbines that produce electricity. Compressed air stations pump air into caverns when

Rollins, Andrew M.

250

Energy Management and Cost Analysis in Residential Houses using Batteries  

E-Print Network [OSTI]

consumption constitutes 38% of the total energy consumption in the US, with millions of individual customers}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal patterns that can be leveraged by energy, like smart metering, allow residential energy consumption to be monitored and managed more effectively

Simunic, Tajana

251

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

SciTech Connect (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

252

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...represent an excellent energy storage technology for the integration of renewable resources. Their...available for grid applications, with...issues facing the integration of energy storage into the...identify their challenges, and provide...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

253

Batteries for Efficient Energy Extraction from a Water Salinity Difference  

Science Journals Connector (OSTI)

Salinity-gradient power; mixing entropy; sodium intercalation; energy harvesting ... The entropic energy created by the difference in water salinities is normally dissipated when river water flows into the sea. ... Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. ...

Fabio La Mantia; Mauro Pasta; Heather D. Deshazer; Bruce E. Logan; Yi Cui

2011-03-17T23:59:59.000Z

254

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...and integrate energy storage. The...characteristics of the grid as a supply chain...electric power infrastructure functions largely...a majority of energy is generated...as plug-in hybrids (PHEVs), provided...stability, high-energy density, safety...automotive and grid applications...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

255

New York Battery and Energy Storage Technology Consortium NY BEST | Open  

Open Energy Info (EERE)

Storage Technology Consortium NY BEST Storage Technology Consortium NY BEST Jump to: navigation, search Name New York Battery and Energy Storage Technology Consortium (NY-BEST) Place Albany, New York Zip 12203 Product Albany-based project of NYSERDA promoting battery and energy storage in New York. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

257

KAir Battery Wins Southwest Regional Clean Energy Business Plan...  

Office of Environmental Management (EM)

to Final Round Unified Solar's integrated circuit solution helps reduce energy loss for solar panels. The student team from Massachusetts Institute of Technology won the MIT...

258

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

Lithium Ion Batteries", Materials Science and Engineering R,Ion Batteries", as it appears in Materials Science and EngineeringIon Batteries", as it appears in Materials Science and Engineering

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

259

Simulation-based design of energy management system with storage battery for a refugee shelter in Japan  

SciTech Connect (OSTI)

Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

2013-12-10T23:59:59.000Z

260

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network [OSTI]

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

262

Creating systems that effectively convert energy, such as efficient solar cells and electrochemical batteries, has been a  

E-Print Network [OSTI]

SEMTE abstract Creating systems that effectively convert energy, such as efficient solar cells stimuli, the solar energy from sunlight, and the mechanical motion is commonplace, indeed fundamental and electrochemical batteries, has been a longstanding scientific pursuit, especially given the global energy

Reisslein, Martin

263

Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We  

E-Print Network [OSTI]

Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an architecture for wireless ATM and a novel MAC protocol that achieves a good energy, and to synchronise the mobile and the base-station. The protocol is able to provide near- optimal energy efficiency

Havinga, Paul J.M.

264

This Month on Energy Savers: December 2010 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 2010 December 2010 This Month on Energy Savers: December 2010 December 28, 2010 - 2:43pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory We've been busy all through the holiday season on EnergySavers.gov. Here are some highlights. What's New or Noteworthy on Energy Savers 2010 marks the end of some tax credits for energy efficiency, while others are going strong through 2016. In addition, we're keeping a close eye on additional tax credits for 2011 - stay tuned to find out more. Our Stay Warm, Save Money seasonal site has been updated with winter tips for keeping warm! On the Blog, In Case You Missed It... This Month New TV Guide - EnergyGuide, That Is Remember the Batteries - and Maybe a Charger? Tax Credits, Appliance Rebates, and the End of 2010

265

Efficient, sustainable production of molecular hydrogen -a promising alternative to batteries in terms of energy storage -is still an unsolved problem. Implementation of direct water splitting  

E-Print Network [OSTI]

in terms of energy storage - is still an unsolved problem. Implementation of direct water splitting usingEfficient, sustainable production of molecular hydrogen - a promising alternative to batteries

Ku?el, Petr

266

Special issue to ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore  

Science Journals Connector (OSTI)

The Symposium F on Nanostructured Materials for Electrochemical Energy Systems: Lithium Batteries, Supercapacitors and Fuel Cells provided an excellent opportunity for interdisciplinary ... (cathodes and anodes...

Palani Balaya; San Ping Jiang; Atsuo Yamada

2010-10-01T23:59:59.000Z

267

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

268

Utility Accrual Real-Time Scheduling with Energy Bounds In this paper, we consider timeliness and energy optimization in battery-powered, dynamic  

E-Print Network [OSTI]

. An important technique used for optimizing the energy consumption of real-time embedded systems is dynamic in the physical world). Further, they are energy-critical, as they must operate on battery, with finite energy and minimizing the system's energy consumption, and not just the CPU's energy consumption. Moreover, such systems

Ravindran, Binoy

269

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

270

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

271

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect (OSTI)

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

272

Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program  

Broader source: Energy.gov (indexed) [DOE]

Energizer Battery Manufacturing, Inc 25225 Detroit Rd. Westlake, OH 44145 Energizer Comments On DOE Verification Testing in Support of ENERGY STAR 1. In the "Conditions and Criteria for Recognition of Certification Bodies for the ENERGY STAR® Program" document on page 3 it states in 3.a.i.2.a that "Annually test at least 10% of all ENERGY STAR qualified models the CB has certified or for which it has received qualified product data". Does the 10% of qualified models pertain to all products the lab has certified or is it 10% of each companies product? This is unclear, please add sufficient detail. 2. On page 7 under program funding, it states "For products tested by DOE under the ENERGY STAR verification program, DOE pays all costs for obtaining and testing products. Verification programs administered by CBs are

273

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

71 - 30480 of 31,917 results. 71 - 30480 of 31,917 results. Download CX-007848: Categorical Exclusion Determination Direct Final Rule (DFR) and Accompanying Notice of Proposed Rulemaking (NOPR) for Amended Energy Conservation Standards for Residential Dishwashers CX(s) Applied: B5.1 Date: 01/09/2012 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-007848-categorical-exclusion-determination Download CX-007849: Categorical Exclusion Determination Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies CX(s) Applied: B5.1 Date: 01/05/2012 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-007849-categorical-exclusion-determination

274

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 15250 of 26,764 results. 41 - 15250 of 26,764 results. Article Secretaries Chu and Clinton Praise Energy Cooperation Across the Americas in Joint Op-Ed http://energy.gov/articles/secretaries-chu-and-clinton-praise-energy-cooperation-across-americas-joint-op-ed Download http://edocsrpts.doe.gov:80/edocsreports/SingleItem.rpt http://energy.gov/management/downloads/httpedocsrptsdoegov80edocsreportssingleitemrpt Download Nuclear Energy Research Advisory Committee (NERAC) agenda 11/3/03 http://energy.gov/downloads/nuclear-energy-research-advisory-committee-nerac-agenda-11303 Download DOE Excepted Personnel By Duty Station As of April 7, 2011 http://energy.gov/downloads/doe-excepted-personnel-duty-station Download HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies

275

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

276

Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island  

Science Journals Connector (OSTI)

Abstract This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 2948% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote areas.

Tao Ma; Hongxing Yang; Lin Lu

2014-01-01T23:59:59.000Z

277

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

278

A stand-alone wind power supply with a Li-ion battery energy storage system  

Science Journals Connector (OSTI)

Abstract The improved structure of stand-alone wind power system which is presented in this paper based on a doubly fed induction generator (DFIG) and permanent magnet synchronous machine (PMSM). A Li-ion battery energy storage system is used to compensate the inherent power fluctuations (excess or shortage) and to regulate the overall system operation based on a power management strategy. The modeling and the control of a DFIG for stand-alone power applications are detailed. However, the magnitude and frequency of the DFIG stator output voltage are controlled under variable mechanical speed. This task is ensured via the control of d and q components of the rotor flux by means of a back-to-back pulse width modulation (PWM) converter connected to the rotor side of the DFIG. The PMSM is coupled mechanically to the wind turbine and supplies a required power to the PWM converter in order to regulate the dc bus voltage to the desired value. In order to validate the proposed stand-alone wind power supply structure both a theoretical system analysis and a complete simulation of the overall wind energy conversion system (WECS) with Li-ion battery energy storage system is carried out to prove the performances of the control strategy.

Tedjani Mesbahi; Ahmed Ouari; Tarak Ghennam; El Madjid Berkouk; Nassim Rizoug; Nadhir Mesbahi; Moudrik Meradji

2014-01-01T23:59:59.000Z

279

Practical and commercial issues in the design and manufacture of vanadium flow batteries  

Science Journals Connector (OSTI)

The vanadium flow battery has emerged as one of the most favourable types of flow batteries for a number of reasons, including the lack of cross-contamination that troubled many earlier systems such as the Fe/Cr flow battery. Because the vanadium flow battery employs the same metal ion in both electrolytes, albeit in different oxidation states, there is no cumulative loss in performance, just an effective reversible self-discharge current. The self discharge that occurs in the vanadium flow batteries is limited to the electrolyte volume in the cells. However it can become substantial under low load conditions. The pumps also use power from the battery and may be considered as another source of self discharge. Taking these and maintenance considerations into account the layout of a 10kW, 100kWh, 48V vanadium flow battery was designed as a Multi-Stage-Operation system to provide maximum performance at all levels of load, ease of use and optimum maintenance conditions. Experimental A complete energy storage system with 10kW in power and 100kWh in energy was designed. It consists of a vanadium flow battery with smart controller and configurable power electronics housed in a weatherproof housing. The battery can be charged and discharged at up to 10kW and provides up to 100kWh of energy. The smart controller ensures that the battery operates at maximum efficiency at all times and allows remote observation of various battery parameters, including a reliable state of charge (SOC) measurement. The option of different arrangements of power electronics gives almost complete freedom in specification of electrical output (dc, single or three-phase ac). The battery can also be connected to photovoltaic, wind turbine, diesel/petrol/gas/biogas generators, fuel cells and water turbines to form discrete autonomous power supplies or to be part of a micro-, mini- or smart-grid. The FB10/100 battery for Multi-Stage-Operation is comprised of 5 strings of 3640 cells each in 3 separate fluid circuits. The first fluid circuit, containing a single string, is always actively pumped with electrolyte and electrically connected to the charger and load. The second and third fluid circuits contain 2 strings each and are only actively pumped and electrically connected when the voltage reaches preset limits. When the circuits are in standby, i.e. not actively pumped and electrically connected, the self discharge is limited to the small volume of electrolyte in the cells. There is also a significant saving of pumping energy, because 3 pairs of small pumps are used in place of 1 pair of more powerful pumps. Results In Multi-Stage-Operation mode, the overall battery performance is improved significantly. This is very important in off-grid installations, where loads are typically small compared to the power levels necessary for charging; i.e. a solar powered telemetric station may use 500W continuous power but requires fast charging due to the narrow time window when solar energy is available. In example, at a 1kW load the battery provides 25% more energy when operated in Multi-Stage-Operation mode compared to all stacks in operation. Since 2008, several power station have been equipped with FB10/100 storage units and put into operation. Within the presentation a report on the latest results including technical performance and cost issues will be given.

Martha Schreiber; Martin Harrer; Adam Whitehead; Herbert Bucsich; Matthias Dragschitz; Ernst Seifert; Peter Tymciw

2012-01-01T23:59:59.000Z

280

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Positive Energy From rechargeable batteries to fuel cells: electrochemical energy as one  

E-Print Network [OSTI]

of the fascinating and green alternatives to combustion engines Yaakov Vilenchik1 , David Andelman2 and Emanuel such as rechargeable batteries and fuel cells, which in the future could replace the combustion engine. We equally with oxygen in the air), which in turn is used to heat water into steam. Steam under high pressure has large

Andelman, David

282

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Vincent Battaglia, LBNL  

Broader source: Energy.gov (indexed) [DOE]

H H 2 /Br 2 Flow Battery for Grid-Scale Energy Storage Venkat Srinivasan, Adam Weber, & Vince Battaglia Lawrence Berkeley National Laboratory * DOE ESS Review * Washington, DC * September 26, 2012 vsbattaglia@lbl.gov Purpose Develop a low-cost, energy-storage system with high power density at 80% efficiency Use H 2 and Br 2 in a flow battery Future Plans Modeling Funding from ARPA-E GRIDS, USDOE LBNL: Kyu Taek Cho (Cell studies); Paul Ridgway (Catalysis studies); Sophia Haussener (Transport modeling) Bosch: Paul Albertus (Cost Modeling); Roel Sanchez-Carrera and Boris Kozinsky (Catalyst theory)

283

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

of the Layered, Li-Excess Lithium-Ion Battery Electrodeof the Layered, "Li-Excess" Lithium-Ion Battery ElectrodeCATION MIGRATION IN LITHIUM EXCESS NICKEL MANGANESE OXIDES

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

284

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

285

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

lithium battery cathode. Electrochemical and Solid Statebattery performance of LiMn2O4 cathode. Solid State Ionics,

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

286

OPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE  

E-Print Network [OSTI]

of both the installed PV power and storage capacity (lead-acid battery technology for purposes). Keywords: Battery storage and control, Lifetime simulation, PV system. 1. INTRODUCTION Given the sizable-averaged renewable output. The battery state of charge (SOC), which determines the efficiency during charging

Paris-Sud XI, Université de

287

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

288

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network [OSTI]

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

289

Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage  

Science Journals Connector (OSTI)

Abstract The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DCDC boost converter, an isolated bidirectional DCDC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance.

Hurng-Liahng Jou; Yi-Hao Chang; Jinn-Chang Wu; Kuen-Der Wu

2015-01-01T23:59:59.000Z

290

Development and testing of 100-kW/ 1-minute Li-ion battery systems for energy storage applications.  

SciTech Connect (OSTI)

Two 100 kW min{sup -1} (1.67 kW h{sup -1}) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h{sup -1} and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

Doughty, Daniel Harvey; Clark, Nancy H.

2004-07-01T23:59:59.000Z

291

Reverse power management in a wind diesel system with a battery energy storage  

Science Journals Connector (OSTI)

The subject of this paper is to present the modeling of a Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the consumer Load, a NiCd Battery based Energy Storage System (BESS) and a Distributed Control System (DCS). All the models of the previously mentioned components are presented and the performance of the WDHS is tested through simulation. Simulation results with graphs for frequency and voltage of the isolated power system, active powers generated/absorbed by the different elements and the battery voltage/current/state of charge are presented for negative load and wind speed steps. The negative load step reduces the load consumed power to a level less than the WTG produced power, so that to balance active powers a negative DG power is needed (DG reverse power). As the DG speed governor cannot control system frequency in a DG reserve power situation, it is shown how the DCS orders the BESS to load artificially the system until the DG power falls in a positive power interval. The negative wind step decreases the WTG produced power, returning the power system to a situation where the needed DG power returns to positive, so that the BESS is not needed to load the system.

R. Sebastin

2013-01-01T23:59:59.000Z

292

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Broader source: Energy.gov (indexed) [DOE]

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

293

10 Questions for a Batteries Expert: Daniel Abraham | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Questions for a Batteries Expert: Daniel Abraham 10 Questions for a Batteries Expert: Daniel Abraham 10 Questions for a Batteries Expert: Daniel Abraham August 11, 2011 - 3:56pm Addthis Dan Abraham | Image Courtesy of Argonne National Laboratory Dan Abraham | Image Courtesy of Argonne National Laboratory Angela Hardin Media Specialist at Argonne National Laboratory "Almost every cell phone contains a lithium-ion battery; they are also in our cameras, camcorders, and computers. Our goal is to get the batteries into our cars - into the next generation of plug-in hybrid and electric vehicles." Dan Abraham, Batteries Expert Ed. note: This is a cross-post from Argonne National Laboratory. In the latest 10 Questions, Daniel Abraham, a leading scientist at Argonne National Laboratory, shares his work on lithium-ion batteries and why he

294

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

295

A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine  

Science Journals Connector (OSTI)

Abstract This paper presents the use of a Support Vector Machine load predictive energy management system to control the energy flow between a solar energy source, a supercapacitor-battery hybrid energy storage combination and the load. The supercapacitor-battery hybrid energy storage system is deployed in a solar energy system to improve the reliability of delivered power. The combination of batteries and supercapacitors makes use of complementary characteristic that allow the overlapping of a batterys high energy density with a supercapacitors high power density. This hybrid system produces a straightforward benefit over either individual system, by taking advantage of each characteristic. When the supercapacitor caters for the instantaneous peak power which prolongs the battery lifespan, it also minimizes the system cost and ensures a greener system by reducing the number of batteries. The resulting performance is highly dependent on the energy controls implemented in the system to exploit the strengths of the energy storage devices and minimize its weaknesses. It is crucial to use energy from the supercapacitor and therefore minimize jeopardizing the power system reliability especially when there is a sudden peak power demand. This study has been divided into two stages. The first stage is to obtain the optimum SVM load prediction model, and the second stage carries out the performance comparison of the proposed SVM-load predictive energy management system with conventional sequential programming control (if-else condition). An optimized load prediction classification model is investigated and implemented. This C-Support Vector Classification yields classification accuracy of 100% using 17 support vectors in 0.004866s of training time. The Polynomial kernel is the optimum kernel in our experiments where the C and g values are 2 and 0.25 respectively. However, for the load profile regression model which was implemented in the K-step ahead of load prediction, the radial basis function (RBF) kernel was chosen due to the highest squared correlation coefficient and the lowest mean squared error. Results obtained shows that the proposed SVM load predictive energy management system accurately identifies and predicts the load demand. This has been justified by the supercapacitor charging and leading the peak current demand by 200ms for different load profiles with different optimized regression models. This methodology optimizes the cost of the system by reducing the amount of power electronics within the hybrid energy storage system, and also prolongs the batteries lifespan as previously mentioned.

Yen Yee Chia; Lam Hong Lee; Niusha Shafiabady; Dino Isa

2015-01-01T23:59:59.000Z

296

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21 - 6830 of 28,905 results. 21 - 6830 of 28,905 results. Download CX-005105: Categorical Exclusion Determination Replace Battery Charger for Fire Annunciator Panel Located in Control Room CX(s) Applied: B1.3 Date: 01/13/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office http://energy.gov/nepa/downloads/cx-005105-categorical-exclusion-determination Download CX-005036: Categorical Exclusion Determination Wisconsin BRAIN Program - Kwik Trip CX(s) Applied: B5.1 Date: 01/12/2011 Location(s): Portage, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-005036-categorical-exclusion-determination Download CX-005101: Categorical Exclusion Determination Chloride Determination by Titration

297

ESS 2012 Peer Review - Solid State Li Metal Batteries for Grid-Scale Energy Storage - Mohit Singh, Seeo  

Broader source: Energy.gov (indexed) [DOE]

Annual Review 2012 Annual Review 2012 Mohit Singh, VP R&D and Engineering Funded in part by the Energy Storage Systems Program from the Department of Energy through the National Energy Technology Laboratory Copyright ©2012 Seeo Inc. All rights reserved Conventional Li Ion Seeo Battery Li Foil Anode Dry Solid Separator Dry Polymer Cathode Composite Al Current Collector Cu Current Collector Porous Graphite Anode Composite Porous Separator Porous Cathode Composite Al Current Collector Element Li Ion Seeo Seeo Benefits Electrolyte Liquid Solid Safety: Non-reactive and non-flammable Energy: Superior specific energy (Wh/kg) Reliability: High temp stability, minimal fade Anode Porous Solid Cathode Porous Solid Seeo's solid polymer battery

298

Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage  

SciTech Connect (OSTI)

Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350C) due to poor wettability of sodium on the surface of ?"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150C. The cells can even operate at 95C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

2014-08-01T23:59:59.000Z

299

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the nucleus of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

300

$\\beta$ Energy Loss Analysis in ${15}^P$: Application to Nuclear Batteries  

E-Print Network [OSTI]

Using radioactive nuclei for electricity generation in Microelectromechanical Systems (MEMS) is important research as needs for longer life batteries increase. There are many applications developed in recent years, however there are limitations still to overcome before a final product can be produced. One of the important issue is the low power output. This research addresses this issue with a new method in fabrication for powering MEMS sensors. We have proposed to fabricate $^{63}Ni$ nano-particle $\\beta^-$source in a glassy phosphorous type sphere which creates scintillation and phosphorescent photons. The micro-spheres will be doped in our semiconductor. Since $^{63}^Ni$ is a pure $\\beta^-$ emitter, in this report the energy loss $dE/dx$ of $\\beta^-$ in our scintillation material (phosphorus $^{15}P$) is modelled using C++ coding with GEANT4 and furthermore the particle distributions in two different source geometries (circular and square structure) is studied using Finite Element Analysis (FEA). We have s...

Mirfayzi, Seyed Reza

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries  

Science Journals Connector (OSTI)

The harvesting of ambient energy to power small electronic components has received tremendous attention over the last decade. The research goal in this field is to enable self-powered electronic components for use particularly in wireless sensing and measurement applications. Thermal energy due to temperature gradients, solar energy and ambient vibrations constitute some of the major sources of energy that can be harvested. Researchers have presented several papers focusing on each of these topics separately. This paper aims to develop a hybrid power generator and storage system using these three sources of energy in order to improve both structural multifunctionality and system-level robustness in energy harvesting. A multilayer structure with flexible solar, piezoceramic, thin-film battery and metallic substructure layers is developed (with the overhang dimensions of 93 mm ? 25 mm ? 1.5 mm in cantilevered configuration). Thermal energy is also used for charging the thin-film battery layers using a 30.5 mm ? 33 mm ? 4.1 mm generator. Performance results are presented for charging and discharging of the thin-film battery layers using each one of the harvesting methods. It is shown based on the extrapolation of a set of measurements that 1 mA h of a thin-film battery can be charged in 20 min using solar energy (for a solar irradiance level of 223 W m?2), in 40 min using thermal energy (for a temperature difference of 31 C) and in 8 h using vibrational energy (for a harmonic base acceleration input of 0.5g at 56.4 Hz).

P Gambier; S R Anton; N Kong; A Erturk; D J Inman

2012-01-01T23:59:59.000Z

302

Grid Friendly(tm) Charger Controller - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or municipal charging station. Wireless signals exchange information between the automobile and a residential charging station regarding the amount of electricity needed,...

303

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

304

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Broader source: Energy.gov [DOE]

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

305

25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org352 Tanks for the BatteriesThe need to store energy from wind, solar, and other renewable energy sources  

E-Print Network [OSTI]

from wind, solar, and other renewable energy sources could spark a revival of a dormant battery25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org352 Tanks for the BatteriesThe need to store energy technology NEWSFOCUS CREDIT:MATTBEARDSLEY/SLACNATIONALACCELERATORLABORATORY EVERY LARGE-SCALE ENERGY SOURCE

Cui, Yi

306

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries  

Science Journals Connector (OSTI)

Abstract Lithium-sulfur (Li-S) batteries have attracted great attention as next-generation high specific energy density storage devices. However, the low sulfur loading in the cathode for Li-S battery greatly offsets its advantage in high energy density and limits the practical applications of such battery concepts. Flexible energy storage devices are also becoming increasingly important for future applications but are limited by the lack of suitable lightweight electrode materials with robust electrochemical performance under cyclic mechanical strain. Here, we proposed an effective strategy to obtain flexible Li-S battery electrodes with high energy density, high power density, and long cyclic life by adopting graphene foam-based electrodes. Graphene foam can provide a highly electrically conductive network, robust mechanical support and sufficient space for a high sulfur loading. The sulfur loading in graphene foam-based electrodes can be tuned from 3.3 to 10.1mgcm?2. The electrode with 10.1mgcm?2 sulfur loading could deliver an extremely high areal capacity of 13.4mAhcm?2, much higher than the commonly reported Li-S electrodes and commercially used lithium cobalt oxide cathode with a value of ~34mAhcm?2. Meanwhile, the high sulfur-loaded electrodes retain a high rate performance with reversible capacities higher than 450mAhg?1 under a large current density of 6Ag?1 and preserve stable cycling performance with ~0.07% capacity decay per cycle over 1000 cycles. These impressive results indicate that such electrodes could enable high performance, fast-charging, and flexible Li-S batteries that show stable performance over extended charge/discharge cycling.

Guangmin Zhou; Lu Li; Chaoqun Ma; Shaogang Wang; Ying Shi; Nikhil Koratkar; Wencai Ren; Feng Li; Hui-Ming Cheng

2015-01-01T23:59:59.000Z

307

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Integration with photovoltaic cells: Research on integrationpower harvesting using photovoltaic cells for lower-powerof printable photovoltaic cell, zinc-based battery as well

Wang, Zuoqian

2013-01-01T23:59:59.000Z

308

Department of Energy awards up to $120 million for battery hub...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combine the R&D firepower of five DOE national laboratories, five universities, and four private firms in an effort aimed at achieving revolutionary advances in battery...

309

All General Counsel Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2012 9, 2012 FINAL CA IOU Comment Letter RFI Regulatory Burden This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. June 19, 2012 Docket No. EERE- 2008-BT-STD-0005, RIN 1904-AB57 Ex parte communication DOE Meeting of June 13, 2012 This memorandum for the record provides a summary of a June 13, 2012, meeting with U.S. Department of Energy staff concerning DOE's proposed rulemaking regarding amended energy conservation standards for Class A external power supplies (EPSs) and new energy conservation standards for non-Class A EPSs and battery chargers.

310

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

311

Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithiumsulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithiumsulfur (LiS) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91wt% as the high energy density cathode material for LiS battery. The sulfur nanospheres with diameter of 400500nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91wt% sulfur shows a reversible initial capacity of 970mAhg?1 and an average columbic efficiency>96% over 100 cycles at a rate of 0.2C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density LiS batteries.

Ya Liu; Jinxin Guo; Jun Zhang; Qingmei Su; Gaohui Du

2015-01-01T23:59:59.000Z

312

EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand fourth manufacturing facility Company has seen 55 percent increased in full-time salaried staffing "We really do like Indiana as an operating environment because it's pro business," says Jeff Seidel. And for Mt. Comfort, Ind., that's good news. Seidel is the CFO of Ener1, the parent company of EnerDel, which makes

313

R&D 100: Battery Technology Goes Viral | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Battery Technology Goes Viral Battery Technology Goes Viral R&D 100: Battery Technology Goes Viral July 24, 2013 - 3:55pm Addthis By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs

314

R&D 100: Battery Technology Goes Viral | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Battery Technology Goes Viral Battery Technology Goes Viral R&D 100: Battery Technology Goes Viral July 24, 2013 - 3:55pm Addthis By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs

315

Building a Better Battery for Vehicles and the Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid November 30, 2012 - 12:28pm Addthis Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

316

All General Counsel Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 27, 2012 June 27, 2012 Electrolux: Proposed Penalty (2012-CE-1901) DOE alleged in a Notice of Proposed Civil Penalty that Electrolux failed to certify a certain dishwasher as compliant with the applicable energy conservation standards. June 26, 2012 Sears: Noncompliance Determination (2011-SE-1418) DOE issued a Notice of Noncompliance Determination to Sears, Roebuck & Co. finding that Kenmore-brand model number 255.19502010 ("19502") and Kenmore-brand model number 255.19702010 ("19702"), compact chest freezers, do not comport with the energy conservation standards. June 20, 2012 Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the

317

Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects  

Science Journals Connector (OSTI)

This paper deals with the feasibility of a Renewable Energy Sources (RES)-based stand-alone system for electricity supply based on a Flywheel Energy Storage System (FESS) located on the Greek Island of Naxos. The innovative use of flywheels in parallel connection with electrochemical batteries, as an integrated storage device in the same power plant, was selected to be simulated as it is a necessary buffer covering the load of a typical house. The optimal configuration for the electromechanical connection between the electrochemical batteries and flywheels is also considered in this study. Operational characteristics of the new storage systems were estimated and used in the simulations, while the financial aspects of the projects finalized using hand-made calculations and the HOMER software was used only for the energy calculations. It was found that an off-grid project using advanced and totally green technologies is possible and comparable to more conventional RES-based systems, in terms of energy and economical feasibility. Finally, it can be concluded that systems with low price flywheels are equivalent to those with electrochemical batteries.

George N. Prodromidis; Frank A. Coutelieris

2012-01-01T23:59:59.000Z

318

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

319

Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid  

Science Journals Connector (OSTI)

Abstract Energy storage systems (ESS) are designed to accumulate energy when production exceeds demand and to make it available at the users request. They can help match energy supply and demand, exploit the variable production of renewable energy sources (e.g. solar and wind), increase the overall efficiency of the energy system and reduce CO2 emissions. This paper presents a unit commitment formulation for micro-grid that includes a significant number of grid parallel PEM-Fuel Cell Power Plants (PEM-FCPPs) with ramping rate and minimum up and down time constraints. The aim of this problem is to determine the optimum size of energy storage devices like hydrogen, thermal energy and battery energy storages in order to schedule the committed units output power while satisfying practical constraints and electrical/thermal load demand over one day with 15min time step. In order to best use of multiple PEM-FCPPs, hydrogen storage management is carried out. Also, since the electrical and heat load demand are not synchronized, it could be useful to store the extra heat of PEM-FCPPs in the peak electrical load in order to satisfy delayed heat demands. Due to uncertainty nature of electrical/thermal load, photovoltaic and wind turbine output power and market price, a two-stage scenario-based stochastic programming model, where the first stage prescribes the here-and-now variables and the second stage determines the optima value of wait-and-see variables under cost minimization. Quantitative results show the usefulness and viability of the suggested approach.

Sirus Mohammadi; Ali Mohammadi

2014-01-01T23:59:59.000Z

320

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reveals Links Among Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that "preconditioning" a vehicle- achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term. One of the most significant barriers to widespread deployment of electric vehicles is range anxiety-a driver's uncertainty about the vehicle's ability to reach a destination before fully

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries  

SciTech Connect (OSTI)

Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

2014-03-15T23:59:59.000Z

322

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Patterning of micro-scale conductive networks using reel-to-wireless sensor network field, micro-batteries are needed todevices[13] and micro-scale conductive networks[14]. 2.3.

Wang, Zuoqian

2013-01-01T23:59:59.000Z

323

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries  

SciTech Connect (OSTI)

We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

2014-12-03T23:59:59.000Z

324

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

325

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

326

ESS 2012 Peer Review - Iron-Air Rechargeable Battery for Grid-Scale Energy Storage - Sri Narayan, USC  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Lead: University of Southern California, Loker Hydrocarbon Research Institute Sub-Awardee: Jet Propulsion Laboratory, California Institute of Technology ARPA-E GRIDS Program Advantages of the Iron-Air Battery * Extremely Low Cost Materials * Environmentally friendly * Abundant raw materials all over the world * High Theoretical Specific Energy, 764 Wh/kg * Iron electrode is robust to cycling Desired Characteristic State-of-Art Performance Target Round trip energy efficiency 50% 80% Cycle life, cycles 1000-2000 5000 Year Key Milestones & Deliverables Year 1 *Complete design of iron electrode *Demonstrate feasibility bi-functional air electrode materials Year 2 *Complete selection of additives and catalysts *Complete characterization of CO

327

2014-07-28 Issuance: Energy Conservation Standard for Computer and Battery Backup Systems; Extension of Public Comment Period  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register extension of the public comment period regarding Energy Conservation Standards for Computer and Battery Backup Systems, as issued by the Deputy Assistant Secretary for Energy Efficiency on July 28, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

328

ESS 2012 Peer Review - Demonstration of a Sodium Ion Battery for Grid Level Applications - Ted Wiley, Aquion Energy  

Broader source: Energy.gov (indexed) [DOE]

Progress Report Progress Report Smart Grid Demonstration Program Ted Wiley, Jay Whitacre Department of Energy Peer Review 26 September, 2012 Confidential Information of Aquion Energy, Inc. 2 Thanks to Our Supporters Confidential Information of Aquion Energy, Inc. 3 About Aquion Energy Founded on the belief that stationary energy storage must be: * Safe: Non-toxic and immune to catastrophic failure events * Reliable: Long lasting and capable of operating in abusive environments * Affordable: Made from abundant, simple materials via a scalable manufacturing process This principle demands a new type of energy storage: Aqueous Hybrid Ion Batteries Designed for stationary, long-duration applications * Utilities-various grid services * Microgrids-telco, mining, commercial/residential solar, military,

329

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

330

Standardized Templates for Reporting Test Results | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Appliance & Equipment Standards » Implementation, Certification, & Appliance & Equipment Standards » Implementation, Certification, & Enforcement » Standardized Templates for Reporting Test Results Standardized Templates for Reporting Test Results The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Standardized DOE Testing Templates Residential Product Templates Automatic Commercial Ice Makers - September 17, 2012 Battery Chargers - June 13, 2011 Beverage Vending Machines - October 25, 2012 Central Air Conditioners and Central Air Conditioning Heat Pumps -

331

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

332

Challenges and Prospects of LithiumSulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

333

High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Due to well-known JahnTeller distortion in spinel LiMn1.5Ni0.5O4, it can only be reversibly electrochemically cycled between 3 and 4.8V with a limited reversible capacity of ?147mAhg?1. This study intends to embed the layer-structured Li2MnO3 nanodomains into LiMn1.5Ni0.5O4 spinel matrix so that the JahnTeller distortion can be suppressed even when the average Mn oxidation state is below+3.5. A series of xLi2MnO3(1?x)LiMn1.5Ni0.5O4 where x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 are synthesized by co-precipitation method. The composites with intermediate values of x=0.1, 0.2, 0.3, 0.4 and 0.5 exhibit both spinel and layered structural domains in the particles and show greatly improved cycle stability than that of the pure spinel. Among them, 0.3Li2MnO30.7LiMn1.5Ni0.5O4 delivers the highest and almost constant capacity after a few conditional cycles and shows superior cycle stability. Ex-situ X-ray diffraction results indicate that no JahnTeller distortion occurs during the cycling of the 0.3Li2MnO30.7LiMn1.5Ni0.5O4 composite. Additionally, 0.3Li2MnO30.7LiMn1.5Ni0.5O4 possesses a high energy density of ?700Whkg?1, showing great promise for advanced high energy density lithium-ion batteries.

Jia Lu; Ya-Lin Chang; Bohang Song; Hui Xia; Jer-Ren Yang; Kim Seng Lee; Li Lu

2014-01-01T23:59:59.000Z

334

Getting Excited Again Over Energy  

E-Print Network [OSTI]

reason why these projects are being fostered. The value of the engineer proposing the project to their superiors as a "keeper" is rising. After all, these hard chargers are getting tough with their energy suppliers. They are demonstrating the kind...

Gilbert, J. S.

335

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and External Power Supplies Battery Chargers and External Power Supplies Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) does not currently regulate battery chargers. Energy conservation standards have been in place for external power supplies since 2007. Battery chargers charge batteries for consumer products, including battery chargers embedded in other consumer products. Examples of this product include chargers for cell phone or laptop computer batteries. External power supplies convert household electric current into direct current or lower-voltage alternating current to operate a consumer product such as a laptop computer or digital picture frame. Currently only Class A external power supplies are covered by standards.

336

High Energy Density Cathode for Lithium Batteries: From LiCoO_(2) to Sulfur  

E-Print Network [OSTI]

addressed, i.e. the safety hazard resulted from the Li dendrite formation on the Li metal anode and the poor cyclability arising from the polysulfides shuttle. Firstly, to overcome the safety issue, this dissertation reported a lithiated Si-S (LSS) battery...

Pu, Xiong

2014-05-29T23:59:59.000Z

337

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

338

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

339

From: Nicholas Ammann [mailto:nammann@apple.com]  

Broader source: Energy.gov (indexed) [DOE]

Wednesday, June 20, 2012 8:12 AM Wednesday, June 20, 2012 8:12 AM To: Exparte Communications Subject: Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies. Below is a list of topics that Apple discussed with DOE. - Discussion regarding Battery Charger product Class 8 and that it does not scale with battery capacity. Class 8 is for DC-DC battery chargers. - Timeline for the effective date of the DOE battery charger efficiency regulation and the external power supply regulation. - Flexibility of DOE Battery Charger efficiency mark to be placed on the retail

340

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

AC Resonant charger with charge rate unrelated to primary power frequency  

DOE Patents [OSTI]

An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

Watson, Harold (Torrance, CA)

1982-01-01T23:59:59.000Z

342

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

343

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

344

Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2005-03-01T23:59:59.000Z

345

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Todays technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

346

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

347

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

348

A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded Microgrid  

Science Journals Connector (OSTI)

Abstract This paper presents a method for determining optimal size of a battery energy storage system (BESS) for primary frequency control of a Microgrid. A Microgrid is assumed to be portion of a low voltage distribution feeder including sources such as microturbine, diesel generator, fuel cell and photovoltaic system with slow response for frequency control. A BESS due to its very fast dynamic response can play an important role in restoring balance between supply and demand. In this paper, overloading capacity of the BESS is employed for fast handling of the primary frequency control of a MG. To achieve this purpose, by considering overloading characteristics and limitations of the state of charge (SOC) of battery, a control scheme of dc/ac converter for the BESS is developed. Based on this scheme, overloading capacity of the BESS and its permissible duration for participating in primary frequency control is determined. Simulation studies are carried out using PSCAD/EMTDC software package to evaluate the performance of the proposed control scheme.

Mohammad Reza Aghamohammadi; Hajar Abdolahinia

2014-01-01T23:59:59.000Z

349

The battle of batteries: a history of innovation in alternative energy cars  

Science Journals Connector (OSTI)

The paper gives a global view on the historical development of electrical cars. It is a history described in five major waves; the first one starting about 1835 and the last one ending about 2000. With two cases, important aspects of the two last waves are described in detail. The cases are the French VEL car and the Norwegian Think car. They have had their more specific setbacks. Problems in electrochemistry have caused important limitations, as they have through the whole history of electrical cars. This is the background for the paper title: The Battle of Batteries.

Karl G. Hoyer

2007-01-01T23:59:59.000Z

350

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

351

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

352

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

353

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

354

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect (OSTI)

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

355

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

356

Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

Johns, William H.

2013-11-01T23:59:59.000Z

357

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

358

Role of Recycling in the Life Cycle of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

359

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

360

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

362

Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act, OAS-RA-L-12-05  

Broader source: Energy.gov (indexed) [DOE]

Follow-up on the Department of Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act OAS-RA-L-12-05 July 2012 Department of Energy Washington, DC 20585 July 10, 2012 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act" BACKGROUND Under the American Recovery and Reinvestment Act of 2009, the Department of Energy's Advanced Batteries and Hybrid Components Program (Advanced Batteries Program) received

363

SECONDARY BATTERIES LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E=3.045V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

364

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

365

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

366

Battery energy storage system for frequency support in microgrids and with enhanced control features for uninterruptible supply of local loads  

Science Journals Connector (OSTI)

Abstract This paper proposes a battery energy storage system (BESS) to support the frequency control process within microgrids (MG) with high penetration of renewable energy sources (RES). The solution includes features that enhance the systems stability and security of supply. The BESS can operate connected to MG or islanded and the transition between the two states is seamlessly coordinated by an original method. The BESS active power response is governed by an improved frequency controller on two layers, namely primary and secondary. It responds to frequency deviations by combining a conventional droop control method with a virtual inertia function to improve the systems stability. The proposed BESS may also compensate the power of the local loads, so that the MG frequency transients can be reduced and, depending on the remaining inverter capacity, voltage support in the point of common coupling with the MG may be provided. If the MG power quality degrades in terms of the voltage and frequency, the BESS and the local load are disconnected from the MG and continue operating islanded. The BESS is reconnected to the MG after a smoothly resynchronization of the local voltage with the MG, without disturbing the local loads supply. Simulation and experimental results assesses the proposed control solutions.

I. Serban; C. Marinescu

2014-01-01T23:59:59.000Z

367

Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

NONE

1996-01-29T23:59:59.000Z

368

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and External Power Supplies Energy Conservation Standard Battery Chargers and External Power Supplies Energy Conservation Standard Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is amending the current energy conservation standards for Class A external power supplies and establishing new energy conservation standards for battery chargers and non-Class A external power supplies. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). This Rulemaking is related to the Battery Chargers and External Power Supplies Standard and Test Procedure. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for battery chargers and external power supplies. 78 FR 18253 (March 26, 2013).

369

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

370

Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery.  

E-Print Network [OSTI]

??In the past decade, rechargeable batteries attracted the attention from the researchers in search for renewable and sustainable energy sources. Up to date, lithium-ion battery (more)

Kim, Baejung

2013-01-01T23:59:59.000Z

371

Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage  

SciTech Connect (OSTI)

i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

Wang, Wei; Choi, Daiwon; Yang, Zhenguo

2013-01-01T23:59:59.000Z

372

Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications.  

E-Print Network [OSTI]

??As wind energy penetration levels increase, there is a growing interest in using storage devices to aid in managing the fluctuations in wind turbine output (more)

Chahwan, John A.

2007-01-01T23:59:59.000Z

373

Development of High Energy Cathode for Li-ion Batteries | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es056zhang2010p.pdf More Documents & Publications Phase Behavior and Solid State Chemistry in Olivines Development of High Energy Cathode Materials Interfacial Processes -...

374

Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure  

Science Journals Connector (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Jing Dong; Zhenhong Lin

2012-01-01T23:59:59.000Z

375

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

376

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

377

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

378

Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries  

E-Print Network [OSTI]

Rechargeable lithium-air batteries have the potential to provide ?3 times higher specific energy of fully packaged batteries than conventional lithium rechargeable batteries. However, very little is known about the oxygen ...

Gasteiger, Hubert A.

379

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

380

A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers  

SciTech Connect (OSTI)

We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

Barcellan, L.; Carugno, G. [INFN Section, Padua (Italy); Berto, E.; Galet, G.; Galeazzi, G. [Department of Physics, University of Padua (Italy); Borghesani, A. F. [INFN Section, Padua (Italy); CNISM Unit, Department of Physics, University of Padua (Italy)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Graphene-based nanocomposites have been synthesized and tested as electrode materials for high power lithium-ion batteries. In the synthesis of such nanocomposites, graphene is generally introduced by either thermally or chemically reduced graphite oxide (GO), which has poorer electric conductivity and crystallinity than mechanically exfoliated graphene. Here, we prepare few-layer graphene sheet (FLGS) with high electric conductivity, by sonicating expanded graphite in DMF solvent, and develop a simple one-pot hydrothermal method to fabricate monodispersed and ultrasmall Co3O4 nanocubes (about 4nm in size) on the FLGS. This composite, consisting of homogeneously assembled and high crystalline Co3O4 nanocubes on the FLGS, has shown higher capacity and much better cycling stability than counterparts synthesized using GO as a precursor. The products in different synthesis stages have been characterized by TEM, FTIR and XPS to investigate the nanocube growth mechanism. We find that Co(OH)2 initially grew homogeneously on the graphene surface, then gradually oxidized to form Co3O4 nanoparticle seeds, and finally converted to Co3O4 nanocubes with caboxylated anion as surfactant. This work explores the mechanism of nanocrystal growth and its impact on electrochemical properties to provide further insights into the development of nanostructured electrode materials for high power energy storage.

Junming Xu; Jinsong Wu; Langli Luo; Xinqi Chen; Huibin Qin; Vinayak Dravid; Shaobo Mi; Chunlin Jia

2015-01-01T23:59:59.000Z

382

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents [OSTI]

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

383

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

384

Lithium-Based Batteries for Efficient Energy Storage: Nanotechnology and Its Implications  

Science Journals Connector (OSTI)

Demand for energy overshadows all other problems mankind will face during the next half century. With more countries achieving higher economic development, this demand will continue rising dramatically. Plagui...

Jiajia Tan

2011-01-01T23:59:59.000Z

385

Optimal Energy Management of Automotive Battery Systems Including Thermal Dynamics and Aging  

Science Journals Connector (OSTI)

Hybrid-electric vehicles (HEV) has been the subject of intensive research as a field of application of optimal control in the past decade. In particular, researchers have proven that energy management (or supe...

Antonio Sciarretta; Domenico di Domenico

2014-01-01T23:59:59.000Z

386

PDE Estimation Techniques for Advanced Battery Management Systems -Part I: SOC Estimation  

E-Print Network [OSTI]

- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part I: SOC Estimation S. J and renewable energy research, including advanced batteries, under the American Recovery and Rein- vestment Act

Krstic, Miroslav

387

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

388

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

389

A comprehensive power loss, efficiency, reliability and cost calculation of a 1MW/500kWh battery based energy storage system for frequency regulation application  

Science Journals Connector (OSTI)

Abstract Battery based energy storage system (ESS) has tremendous diversity of application with an intense focus on frequency regulation market. An ESS typically comprised of a battery and a power conversion system. A calculation of performance parameters is performed in this research. The aim is to formulate an in-depth analysis of the ESS in terms of power losses of the semiconductor and electrical devices, efficiency, reliability and cost which would foster various research groups and industries around the globe to improve their future product. In view of this, a relation between the operating conditions and power losses is established to evaluate the efficiency of the system. The power loss calculation presented in this paper has taken into account the conduction and switching losses of the semiconductor devices. Afterwards, the Arrhenius Life Stress relation is adopted to calculate the reliability of the system by considering temperature as a covariate. And finally, a cost calculation is executed and presented as a percentage of total cost of the ESS. It has been found that the power loss and efficiency of the ESS at rated power is 146kW and 85% respectively. Furthermore, the mean time between failures of the ESS is 8 years and reliability remains at 73% after a year. The major cost impact observed is for battery and PCS as 58% and 16% respectively. Finally, it has been determined that further research is necessary for higher efficient and lower cost system for high penetration of energy storage system in the market.

Md Arifujjaman

2015-01-01T23:59:59.000Z

390

October 29 ESTAP Webinar: Flow Battery Basics (Part 2)  

Broader source: Energy.gov [DOE]

On Wednesday, October 29, 2014 from 1 - 2:30 p.m. ET, Clean Energy State Alliance will host the second in a series of webinars on flow batteries. OE's Imre Gyuk, Energy Storage Program Manager, will present an introduction to flow battery technology, and Dan Borneo of Sandia National Laboratories will discuss flow battery testing and technological readiness.

391

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithiumsulfur (LiS) batteries with a high theoretical energy density of ?2500 Wh kg1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

392

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

393

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network [OSTI]

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

394

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

395

2012 ARPA-E Energy Innovation Summit: Profiling City University of New York (CUNY): Reinventing Batteries for Grid Storage (Performer Video)  

ScienceCinema (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are Sanjoy Banerjee, Director of CUNY Energy Institute and Dan Steingart (Assistant Professor of Chemical Engineering, CUNY). The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

None Available

2012-03-21T23:59:59.000Z

396

Shenzhen Sumoncle Solar Energy Industrial Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sumoncle Solar Energy Industrial Co Ltd Sumoncle Solar Energy Industrial Co Ltd Jump to: navigation, search Name Shenzhen Sumoncle Solar Energy Industrial Co Ltd Place Shenzhen, Guangdong Province, China Zip 518040 Sector Solar Product Produces a-Si thin-film solar cells for application in consumer products like calculators, watches, LCD apparatus, battery re-chargers, thermometers and so on. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It all began in 2001, when three NREL researchers took their thin-film It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers knew that lithium batteries tended to degrade quickly because the fragile lithium metal anode was on the top of the battery, where any cracks in the encapsulant could lead to rapid failure. The team developed the concept of building the battery in reverse order, depositing first the solid-state electrolyte, made of lithium phosphorous oxynitride (LiPON), then the cathode, a metal oxide. Lithium is typically intercalated (chemically trapped) within the cathode material. Placing an initial charge on the battery causes the lithium ions to migrate out of the cathode

398

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

399

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

400

Vorbeck Materials Licenses Graphene-based Battery Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America Energy Storage Energy Storage Return to Search Vorbeck Materials Licenses Graphene-based Battery Technologies Pacific Northwest National Laboratory Testing materials in...

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States  

Science Journals Connector (OSTI)

Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis.

Paul Kruger; Jonathan D. Leaver

2010-01-01T23:59:59.000Z

402

Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting  

Science Journals Connector (OSTI)

Abstract A battery storage dispatch strategy that optimizes demand charge reduction in real-time was developed and the discharge of battery storage devices in a grid-connected, combined photovoltaic-battery storage system (PV+system) was simulated for a summer month, July 2012, and a winter month, November 2012, in an operational environment. The problem is formulated as a linear programming (LP; or linear optimization) routine and daily minimization of peak non-coincident demand is sought to evaluate the robustness, reliability, and consistency of the battery dispatch algorithm. The LP routine leverages solar power and load forecasts to establish a load demand target (i.e., a minimum threshold to which demand can be reduced using a photovoltaic (PV) array and battery array) that is adjusted throughout the day in response to forecast error. The LP routine perfectly minimizes demand charge but forecasts errors necessitate adjustments to the perfect dispatch schedule. The PV+system consistently reduced non-coincident demand on a metered load that has an elevated diurnal (i.e., daytime) peak. The average reduction in peak demand on weekdays (days that contain the elevated load peak) was 25.6% in July and 20.5% in November. By itself, the PV array (excluding the battery array) reduced the peak demand on average 19.6% in July and 11.4% in November. PV alone cannot perfectly mitigate load spikes due to inherent variability; the inclusion of a storage device reduced the peak demand a further 6.0% in July and 9.3% in November. Circumstances affecting algorithm robustness and peak reduction reliability are discussed.

R. Hanna; J. Kleissl; A. Nottrott; M. Ferry

2014-01-01T23:59:59.000Z

403

PDE Estimation Techniques for Advanced Battery Management Systems -Part II: SOH Identification  

E-Print Network [OSTI]

vehi- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part II: SOH Identification S examines identification algorithms for state- of-health (SOH) related parameters in advanced batteries

Krstic, Miroslav

404

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

SciTech Connect (OSTI)

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States)] [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)] [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

405

ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES  

SciTech Connect (OSTI)

FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

Yakovleva, Marina

2012-12-31T23:59:59.000Z

406

Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries  

Science Journals Connector (OSTI)

Abstract We facilely fabricate hierarchical 3D microspheres consisting of 2D V2O5 (vanadium pentoxide) nanosheets by a low temperature hydrothermal method and use it to structure hierarchical 3D micro-/nano-LIBs (lithium ion batteries) cathode. This is a template-free and facile method easy for scale-up production of hierarchical 3D micro-/nano-structured V2O5 spheres beneficial for high performance \\{LIBs\\} applications. Such a facile method resulted hierarchical 3D micro-/nano-V2O5 possess many unique features good for LIBs: (1) 2D V2O5 nanosheets facilitate the Li+ diffusions and electron transports; (2) hierarchical 3D micro-/nano-cathode structure built up by V2O5 nanosheet spheres will lead to the close and sufficient contact between electrolytes and activate materials and at the same time will create buffer volume to accommodate the volume change during discharging/charging process; and (3) micro-scale V2O5 spheres are easy to result in high cell packing density beneficial for high power battery. As revealed by the experimental results, the micro-/nano-V2O5 electrode demonstrates high initial discharge and charge capacities with no irreversible loss, high rate capacities at different currents and long-lasting lifespan. The high-energy and high-power performances of the micro-/nano-V2O5 electrode is ascribed to the unique hierarchical micro-/nano-structure merits of V2O5 spheres as abovementioned. In view of the advantages of facile fabrication method and unique features of 3D micro-/nano-V2O5 spheres for high power and high energy LIB battery, it is of great significance to beneficially broaden the applications of high-energy and high-power \\{LIBs\\} with creating novel hierarchical micro-/nano-structured V2O5 cathode materials.

Hongwei Bai; Zhaoyang Liu; Darren Delai Sun; Siew Hwa Chan

2014-01-01T23:59:59.000Z

407

2014-07-09 Issuance: Energy Conservation Standards for Computer and Battery Backup Systems; Notice of Public Meeting and Availability of Framework Document  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of public meeting and availability of framework document for computer and battery backup systems, as issued by the Deputy Assistant Secretary for Energy Efficiency on July 9, 2014. Though it is not inteded or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

408

Photon Science for Renewable Energy  

E-Print Network [OSTI]

and durability of lithium-ion batteries to maintain per-Sunlight to fuel Batteries Fuel cells CO 2 capture &15 (2008). ] Energy Storage: Batteries Batteries give us the

Hussain, Zahid

2010-01-01T23:59:59.000Z

409

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

410

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

411

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

412

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

413

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

414

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Broader source: Energy.gov (indexed) [DOE]

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

415

Quantification of Artifacts in Scanning Electron Microscopy Tomography: Improving the Reliability of Calculated Transport Parameters in Energy Applications such as Fuel Cell and Battery Electrodes  

Science Journals Connector (OSTI)

Abstract Focused ion beam and scanning electron microscopy tomography (FIB-SEMt) is commonly used to extract reactant transport relevant parameters from nano-porous materials in energy applications, such as fuel cells or batteries. Here we present an approach to virtually model the errors in FIB-SEMt which are caused by the FIB cutting distance. The errors are evaluated in terms of connectivity, solid volume fraction (SVF), conductivity, diffusivity, as well as mean grain and pore sizes. For state-of-the-art FIB-SEMt experiments, where a hydrogen fuel cell catalyst layer with 60 nm mean grain size and 40 % SVF is sectioned with a cutting distance of 15 nm, the error in our simulation ranges up to 51 % (conductivity), whereas other parameters remain largely unaffected (Laplace diffusivity, 4 %). We further present a method, employing virtual coarsening and back interpolation, to reduce FIB cutting distance errors in all investigated parameters. Both error evaluation and correction are applicable to sphere based porous materials with relevance for the energy conversion and storage sector such as polymer electrolyte membrane fuel cell catalyst layer (PEMFC CL), battery carbon binder domain (CBD) or supercapacitor electrodes.

Matthias Klingele; Roland Zengerle; Simon Thiele

2014-01-01T23:59:59.000Z

416

SECONDARY BATTERIES LITHIUM RECHARGEABLE SYSTEMS LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

417

ARPA-E Announces $43 Million for Transformational Energy Storage...  

Energy Savers [EERE]

batteries. Unlike other Department of Energy efforts to push the frontiers of battery chemistry, AMPED is focused on maximizing the potential of existing battery chemistries. These...

418

Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging  

E-Print Network [OSTI]

to hierarchical structures found in energy materials such as battery electrodes, fuel cells, and catalytic systems Science Highlight ­ July 2011 Better Batteries through Nanoscale 3D Chemical Imaging Concerns battery technology. Although Li-ion batteries, crucial in the boom of portable electronics, stand

Wechsler, Risa H.

419

file:///E|/ev/test/evbc.shtml  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chargers Chargers A constant voltage is applied and the current flows into the battery (high current when the battery is discharged, low current when the battery is nearly charged.) A constant current is applied until the battery voltage reaches a set value. The charge cycle starts with a high constant current until the voltage reaches a set value, then changes to a constant voltage control. A series of very high current and voltage pulses are applied until the battery voltage reaches a set value. Battery chargers replenish the energy used by an electric vehicle much like a gasoline pump refills a gas tank. One significant difference is that an electric vehicle operator can fully charge the vehicle overnight, at home, rather than refueling at a gasoline station. The battery charger is a device which

420

ESS 2012 Peer Review - Flow Battery Solution for Smart Grid Renewable Energy Applications - Sheri Nevins, Raytheon & Ron Moss, EnerVault  

Broader source: Energy.gov (indexed) [DOE]

2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 1 Sheri Nevins Raytheon Ktech Ron Mosso EnerVault Corporation DEMONSTRATION OF ENERGY STORAGE USING A BREAKTHROUGH REDOX FLOW BATTERY TECHNOLOGY v. 1-0 Copyright ©2012, Raytheon Proprietary and EnerVault Corporation, All Rights Reserved. 2 Disclaimer This material is partially based upon work supported by NYSERDA under PON1200 Project 15880 NYSERDA has not reviewed the information contained herein, and the opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York. This material is partially based upon work supported by the Department of Energy under Award Number DE-OE0000225. This report was prepared as an account of work sponsored by an agency of the United States

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Technologies Office: Applied Battery Research  

Broader source: Energy.gov [DOE]

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

422

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

423

Washington: Battery Manufacturer Brings Material Production Home...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be...

424

APPLICATIONS PORTABLE | Military: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrical power supply is a critical issue for all parts of modern armies, including today's and future foot soldiers. Batteries are the fundamental source of energy supply. However, where today mainly primary batteries are used in battlefield operations, future scenarios will more likely use secondary batteries in combination with fuel cells for recharging. Thereby, two lines of development are currently being pursued: larger recharging units in the range of 250W carried by entire squads and smaller fuel cells in the range of 25W carried by individual soldiers most likely as part of a soldier energy network.

C. Cremers; J. Tbke; M. Krausa

2009-01-01T23:59:59.000Z

425

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodiumsulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

426

Ab initio prediction of thermodynamics in alkali metal-air batteries  

E-Print Network [OSTI]

Electric vehicles ("EVs") require high-energy-density batteries with reliable cyclability and rate capability. However, the current state-of-the-art Li-ion batteries only exhibit energy densities near ~150 Wh/kg, limiting ...

Kang, ShinYoung

2014-01-01T23:59:59.000Z

427

Ex Parte Communication Memorandum re Computer and Battery Back...  

Energy Savers [EERE]

of the Department of Energy to discuss coverage of computers and backup batteries. Ex Parte Memo re Computers More Documents & Publications Ex Parte Communication...

428

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

429

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

430

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

431

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

SciTech Connect (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

432

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

433

Maximizing the usage of renewable energy will reduce our reliance on dwindling natural resources and environmental pollution. Batteries are an important enabling technology for renewable energy, portable  

E-Print Network [OSTI]

electrodes and enhance the capacity and life of batteries. Bio Meng Gu received his B.S. degree (2008) in materials science in the University of California Davis. His Ph.D. research centered on the growth as a senior analytical scientist since February 2014 focusing on Cryo-TEM study of soft materials and solar

Tsymbal, Evgeny Y.

434

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

State Assembly Bill 2514 Energy storage systems, Energy Storage for the Electricity5. D. Rastler, Electric Energy Storage Technology Options: A

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

435

ex parte communication between the US DOE, ITI and select ITI member companies  

Broader source: Energy.gov [DOE]

On Wednesday June 25th, energy efficiency experts held a meeting with representatives of the US Department of Energy (DOE) to discuss DOEs Notice of Data Availability (NODA) for battery chargers.

436

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

minimum efficiency standards on several products, including battery chargers, televisions and automatic after reviewing all current policies. more or less in pursuing conservation and renewable energy. p planning or implementation of the Council's power plan. Brian Dekiep, Montana's Energy Analyst

437

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect (OSTI)

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

438

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

439

Taking Battery Technology from the Lab to the Big City  

SciTech Connect (OSTI)

Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

2013-07-29T23:59:59.000Z

440

ESS 2012 Peer Review - Tehachapi Wind Energy Storage Project Using Li-Ion Batteries - Christopher Clarke, SCE  

Broader source: Energy.gov (indexed) [DOE]

Tehachapi Storage Project (TSP) Tehachapi Storage Project (TSP) American Recovery and Reinvestment Act Funded Project Christopher R. Clarke - Southern California Edison (SCE) christopher.r.clarke@sce.com Examples of Wind Generation in the Tehachapi Wind Resource Area August 2012 June 2012 May 2012 February 2012 April 2012 Progress To Date * Facility construction expected to complete in September 2012 * First Power Conversion System installed September 13, 2012 * A123 to ship initial battery equipment for delivery week of September 24, 2012 Future Major Milestones * September 2012 - Completion of BESS facility * October 2012 - Initial installation * November 2012 - Installation of second Power Conversion Subsystem * Q1 2013 - Install balance of equipment and commissioning * Q2 2013 - Start of 2 year M&V testing and reporting

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Recent advances in lithiumsulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithiumsulfur (LiS) batteries have attracted much attention lately because they have very high theoretical specific energy (2500Whkg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for LiS batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of LiS batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in LiS cells, but also we cover some of our proposals for engineering of LiS cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance LiS batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

442

TransForum - Special Issue: Batteries - August 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

443

Design of a thermophotovoltaic battery substitute  

Science Journals Connector (OSTI)

Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity lower weight and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

Edward F. Doyle; Frederick E. Becker; Kailash C. Shukla; Lewis M. Fraas

1999-01-01T23:59:59.000Z

444

NREL: News Feature - Award-Winning Battery's Secret is 'Buried'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Award-Winning Battery's Secret is 'Buried' Award-Winning Battery's Secret is 'Buried' September 11, 2009 Photo of three men in a laboratory. In the background is a glovebox. NREL scientists Ed Tracy, left, Roland Pitts, right, and Dane Gillaspie, rear, pose in the lab where they continue to work on improving the award-winning buried-anode battery. Credit: Joe Poellot An innovative microbattery based on a National Renewable Energy Laboratory team's inspired digression is already bringing home major awards. But those involved with the buried anode thin-film rechargeable battery's ongoing development say the technology holds greatest promise as a building block for big batteries powering automobiles and storing power generated by wind, solar and other renewable energy systems. The PowerPlane UX, a coin-cell-sized battery produced by Planar Energy

445

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

446

California Energy Commission FREQUENTLY ASKED QUESTIONS  

E-Print Network [OSTI]

the Appliance Efficiency Program of the Energy Commission via email at: appliances@energy.state.ca.us. IS THE EFFECTIVE DATE FOR BCS'S FOR PROFESSIONAL PRODUCTS THAT UTILIZE INDUCTIVE CHARGER SYSTEMS JANUARY 1, 2017? ............................................................ 7 7. MUST THE BRANDHOLDER REGISTER THE PRODUCT & SIGN THE DECLARATION, OR CAN THIS TASK

447

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

the on-peak and off-peak energy markets. Price arbitrage isin the time-of-use energy market, but its success as aEnergy Storage for the Electricity Grid: Benefits and Market

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

448

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

449

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

450

ADAPTIVE PDE OBSERVER FOR BATTERY SOC/SOH ESTIMATION Scott J. Moura  

E-Print Network [OSTI]

durability, thereby unlock- ing the full potential of battery energy storage. SOC/SOH esti- mation, including advanced batteries, under the American Recovery and Reinvestment Act (ARRA) of 2009. As such, battery management systems within these advanced trans- portation and energy infrastructures must have

Krstic, Miroslav

451

Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries  

Science Journals Connector (OSTI)

These energy densities are competitive for grid-scale energy storage; they are on par with those of flow battery(2, 46, 47) and lead-acid(2, 48) systems. ... Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M.Progress in Flow Battery Research and Development J. Electrochem. ... Progress in Flow Battery Research and Development ...

Nicholas S. Hudak

2014-02-20T23:59:59.000Z

452

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 Fellow  

E-Print Network [OSTI]

NANOMATERIALS FOR HIGH CAPACITY LI-ION BATTERIES Taylor Grieve, Iowa State University, SURF 2009 energy storage devices continues to grow. Lithium-ion (Li-ion) secondary, or renewable, batteries are of interest due to their high energy and power characteristics. Performance enhancements of Li- ion batteries

Li, Mo

453

Degradation of Li/S Battery Electrodes Studied Using X-ray Phase Contrast Tomography  

E-Print Network [OSTI]

the Li-ion battery market. This can be explained by their high energy density, high operating voltage1 Degradation of Li/S Battery Electrodes Studied Using X-ray Phase Contrast Tomography L. Zielkea. Zengerlea,f and S. Thielea,g Lithium/sulphur batteries are promising candidates for future energy storage

Schmidt, Volker

454

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations View program in brief » View the Conference Booklet with program (pdf) » Plenary Sessions 4th US - China Electric Vehicle and Battery Technology Workshop, Dave Howell, US Department of Energy (pdf) U.S. Department of Energy Vehicle Technologies Program Overview, Henry Kelly, US DOE Energy Efficiency and Renewable Energy (pdf) EcoPartnerships: A model for US-China Energy Collaboration, David Fleshler, Case Western Reserve University and QIN Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) Lishen Advanced Battery Development for EV and ESS, Qin Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) EV R&D in CAERI, Xiaochang Ren, China Automotive Engineering Research Institute (pdf) Roundtable 1: Joint Battery Technology Roadmapping

455

Fact Sheet: Vanadium Redox Flow Batteries (October 2012) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Vanadium Redox Flow Batteries (October 2012) Vanadium Redox Flow Batteries (October 2012) Fact Sheet: Vanadium Redox Flow Batteries (October 2012) DOE's Energy Storage Program is funding research to develop next-generation vanadium redox flow batteries (VRBs) that reduce costs by improving energy and power densities, widening the operating temperature window, and simplifying and optimizing stack/system designs. These efforts build on Pacific Northwest National Laboratory research that has developed new redox electrolytes that enable increased VRB operating temperatures and energy storage capabilities. Fact Sheet: Vanadium Redox Flow Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 2 Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

456

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) | Department  

Broader source: Energy.gov (indexed) [DOE]

Carbon-Enhanced Lead-Acid Batteries (October 2012) Carbon-Enhanced Lead-Acid Batteries (October 2012) Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) DOE's Energy Storage Program is funding research and testing to improve the performance and reduce the cost of lead-acid batteries. Research to understand and quantify the mechanisms responsible for the beneficial effect of carbon additions will help demonstrate the near-term feasibility of grid-scale energy storage with lead-acid batteries, and may also benefit other battery chemistries. Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) More Documents & Publications Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2

457

Multi-scale Characterization Studies of Aged Li-ion Battery Materials for Improved Performance.  

E-Print Network [OSTI]

?? Among various electrical energy storage devices the recent advances in Li-ion battery technology has made this technology very promising. Li-ion batteries can be used (more)

Nagpure, Shrikant C.

2012-01-01T23:59:59.000Z

458

Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes  

E-Print Network [OSTI]

Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

Hasan, Mohammed Fouad

2014-04-23T23:59:59.000Z

459

Argonne and CalBattery strike deal for silicon-graphene anode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Return to Search Argonne and CalBattery strike deal for silicon-graphene anode material Argonne National Laboratory CalBattery has worked with Argonne for...

460

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries  

E-Print Network [OSTI]

Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

Oh, Dahyun

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Power Generation Using Graphene and Silver Nano Composite Based Paper Battery  

Science Journals Connector (OSTI)

This paper gives a detailed insight on a revolutionizing and gratifying solution of energy storage through Paper Batteries and provides an in-depth analysis of the same. A Paper Battery is a flexible, ultrathi...

Suman; Prashant Shukla; Meeta Gera; Vinod Kumar Jain

2014-01-01T23:59:59.000Z

462

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

463

Like this post? Subscribe to our RSS feed and stay up to date. Navy Develops Battery that Runs on Mud  

E-Print Network [OSTI]

by Joshua S Hill Published on April 20th, 2010 in Energy & Fuel 1 Comment 5/4/2010 Navy Develops Battery and efficient reliable alternative battery avoiding the harmful impact that standard batteries and fuels have underwater vehicle that will settle on the seafloor and recharge its batteries using this fuel cell approach

Lovley, Derek

464

Energy Department Awards Nearly $7 Million for Research to Reduce Costs of  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Awards Nearly $7 Million for Research to Reduce Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development funding that will help to reduce the current costs of electric vehicle chargers by 50 percent over the next three years. With support from the Energy Department, manufacturers in California, New Jersey, New York and Pennsylvania will work to improve the development and design of charging equipment. This research will promote "smart"

465

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

466

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

467

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

468

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

469

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

470

Batteries - Beyond Lithium Ion Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

471

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

472

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 | Tags: Materials Science, Science Gateways Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize next-generation battery performance. This collaboration-dubbed the Joint Center for Energy Storage Research (JCESR)-will receive $120 million over five years to establish a new Batteries and Energy Storage Hub led by Argonne National Laboratory (ANL)

473

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

474

Development of Novel Nanomaterials Based on Silicon and Graphene for Lithium Ion Battery Applications.  

E-Print Network [OSTI]

??Electrochemical energy storage is one of the important strategies to address the strong demand for clean energy. Rechargeable lithium ion batteries (LIBs) are one of (more)

Hu, Yuhai

2014-01-01T23:59:59.000Z

475

Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions.  

E-Print Network [OSTI]

??Lithium ion (Li-ion) batteries have been gaining recognition as the primary technology for energy storage in motive applications due to their improved specific energy densities, (more)

Bhatia, Padampat Chander

2013-01-01T23:59:59.000Z

476

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

batteries are currently used in a variety of applications, ranging from automotive batteries are currently used in a variety of applications, ranging from automotive starting batteries to storage for renewable energy sources. Lead-acid batteries form deposits on the negative electrodes that hinder their performance, which is a major hurdle to the wider use of lead-acid batteries for grid-scale energy storage. The formation of deposits is exacerbated under the operating conditions required by many large-scale energy storage systems, which cycle at a high electrical current while remaining in a partially charged state (high-rate, partial state of charge operation, or HRPSoC). In 1997, researchers made two important advancements to lead-acid batteries. First, the Japan Storage Battery Company showed that adding carbon to the battery dramatically

477

Energy A. Interconversion of energy  

Science Journals Connector (OSTI)

Energy A. Interconversion of energy ... This simple device demonstrates the interconversion of energy from a battery to a light bulb, motor, and the electrolysis of water. ...

Hubert N. Alyea

1966-01-01T23:59:59.000Z

478

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

479

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

480

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "battery charger energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Rubber meets the road with new ORNL carbon, battery technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries that provide power to plug-in electric vehicles and store energy produced by wind and solar, say researchers at the Department of Energy's Oak Ridge National Laboratory....

482

High performance organic photovoltaic cells with blade-coated active layers Siew-Lay Lim a  

E-Print Network [OSTI]

-weight and versatile products, such as portable battery chargers and window shades in building integrated photovoltaic

483

Powering a Ventricular Assist Device (VAD) With the  

E-Print Network [OSTI]

, electronic toothbrushes, induction cookers, and electric car battery chargers. However, none of these ap

Hochberg, Michael

484

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

485

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

486

The Utility Battery Storage Systems Program Overview  

SciTech Connect (OSTI)

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

487

Troy, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

in Troy, New York Rensselaer Incubation Program Registered Energy Companies in Troy, New York Evident Technologies Inc Paper Battery Co The Paper Battery Company Inc References...

488

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

489

Fact Sheet: Sodium-Beta Batteries (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Sodium-Beta Batteries Sodium-Beta Batteries Improving the performance and reducing the cost of sodium-beta batteries for large-scale energy storage Sodium-beta batteries (Na-beta batteries or NBBs) use a solid beta-alumina (ß˝-Al 2 O 3 ) electrolyte membrane that selectively allows sodium ion transport between a positive electrode (e.g., a metal halide) and a negative sodium electrode. NBBs typically operate at temperatures near 350˚C. They are increasingly used in renewable storage and utility applications due to their high round-trip efficiency, high energy densities, and energy storage capacities ranging from a few kilowatt-hours to multiple megawatt-hours. In fact, U.S. utilities

490

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

491

ESS 2012 Peer Review - Flow Battery Modeling - Mario Martinez, SNL  

Broader source: Energy.gov (indexed) [DOE]

Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Flow Battery Modeling Energy Storage Systems Peer Review September 26-28, 2012 MJ Martinez (PI), J Clausen, SM Davison, HK Moffat Flow Battery Modeling Schematic of a Flow Battery PURPOSE: The flow battery modeling task seeks to improve fundamental understanding and enable high-performing, low-cost designs of flow batteries through

492

Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

493

Energy Department Awards Nearly $7 Million for Research to Reduce Costs of  

Broader source: Energy.gov (indexed) [DOE]

Nearly $7 Million for Research to Reduce Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development funding that will help to reduce the current costs of electric vehicle chargers by 50 percent over the next three years. With support from the Energy Department, manufacturers in California, New Jersey, New York and Pennsylvania will work to improve the development and design of charging equipment. This research will promote "smart"

494

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries  

E-Print Network [OSTI]

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly to their high-energy density, Li ion batteries (LIBs) are attractive for these applications, and all-solid-state

Rubloff, Gary W.

495

Using Transient Electrical Measurements for Real-Time Monitoring of Battery State-of-Charge  

E-Print Network [OSTI]

system. I. INTRODUCTION Future energy-storage systems are likely to use lithium- ion batteries because regulate efficiency and power availability in battery-based systems, it is important to have a robust realUsing Transient Electrical Measurements for Real-Time Monitoring of Battery State

Nasipuri, Asis

496

Comparing batteries to generators as power sources for use with mobile robotics Drew G. Logan a  

E-Print Network [OSTI]

/range and the greater energy density of liquid fuel sources compared to batteries. For example, diesel fuel hasComparing batteries to generators as power sources for use with mobile robotics Drew G. Logan Available online 13 April 2012 Keywords: Robot Allometry Generator Battery a b s t r a c t This paper

Brennan, Sean

497

Chapter 11 - Operation of Independent Large-Scale Battery-Storage Systems in Energy and Reserve Markets  

Science Journals Connector (OSTI)

Abstract In this chapter, we consider a scenario where a group of investor-owned independently-operated storage units seek to offer energy and reserve in the day-ahead market and energy in the hour-ahead market. We are particularly interested in the case where a significant portion of the power generated in the grid is from wind and other intermittent renewable energy resources. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. We show that the formulated stochastic program can be converted to a convex optimization problem to be solved efficiently. Our simulation results also show that our design can assure profitability of the private investment on storage units. We also investigate the impact of various design parameters, such as the size and location of the storage unit on increasing the profit.

Hossein Akhavan-Hejazi; Hamed Mohsenian-Rad

2015-01-01T23:59:59.000Z

498

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 22, NO. 2, 2007 457 Effects of Battery Buffering on the  

E-Print Network [OSTI]

--For a planar solid-oxide fuel cell (PSOFC)-based power system, the differences in the response times), distributed generation (DG), energy buffering, load transient, mitigation, pla- nar solid-oxide fuel cell.1109/TEC.2006.876420 PSOFC Planar solid-oxide fuel cell. PSOFCS Planar solid-oxide fuel cell stack. Q Heat

Mazumder, Sudip K.

499

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Broader source: Energy.gov (indexed) [DOE]

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

500

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Broader source: Energy.gov (indexed) [DOE]

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell