National Library of Energy BETA

Sample records for battery capacity test

  1. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle...

  2. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  3. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  4. : Measurement of Battery Capacity in Mobile Robot Systems

    E-Print Network [OSTI]

    Breu, Ruth

    . These enhancements pose demanding operation conditions on the battery, emphasizing the importance of this com- ponentRoBM2 : Measurement of Battery Capacity in Mobile Robot Systems Nestor Lucas1 , Cosmin Codrea1. With battery driven robot systems performing very sophisti- cated tasks, increasing demands on the power supply

  5. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee,...

  6. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full ion battery-super capacitor hybrid system is preferred over a lithium ion battery for higher rates ion battery ($100 W/kg). Also, since the inter- nal resistance of the super capacitor is smaller than

  7. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  8. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  9. High Capacity Graphite Anodes for Li-Ion battery applications

    E-Print Network [OSTI]

    Popov, Branko N.

    High Capacity Graphite Anodes for Li-Ion battery applications using Tin microencapsulation Basker range 1.6V to 0.01V at 0.05 mV/s Physical characterization SEM, EDAX and XRD #12;SEM images of Bare

  10. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Pantier, Earl A. (Penn Hills, PA)

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  11. Exploratory battery technology development and testing report for 1989

    SciTech Connect (OSTI)

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  12. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  13. Review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  14. NO. REV. NO. LSPE THERMAL BATTERY TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

  15. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

  16. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

    E-Print Network [OSTI]

    Zhu, Ting

    Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

  17. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  18. Overview and Progress of the Battery Testing, Analysis, and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  19. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  20. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Braatz, Richard D.

    Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

  1. Journal of Power Sources 150 (2005) 229239 Analysis of capacity fade in a lithium ion battery

    E-Print Network [OSTI]

    2005-01-01

    Journal of Power Sources 150 (2005) 229­239 Analysis of capacity fade in a lithium ion battery determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery; Lithium ion batteries 1. Introduction and motivation Theoverallperformanceofbatteriesdeterioratesovertime

  2. AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS

    E-Print Network [OSTI]

    Peng, Huei

    AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS electrochemical properties and aging status. INTRODUCTION With the widespread use of lithium-ion batteries the com- plex battery physical behavior during the lithium-ion intercalac- tion/deintercalation process

  3. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven applications, batteries can serve to provide firm peak-shaving for distributed PV installations. To date, however, the use of batteries from parked electric- drive vehicles (EDV) to provide buffer storage for PV

  4. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  5. A Novel Behavioral Test Battery to Assess Global Drug Effects Using the Zebrafish

    E-Print Network [OSTI]

    Echevarria, David J.; Hammack, Catherine M.; Pratt, Drew W.; Hosemann, John D.

    2008-01-01

    A Novel Behavioral Test Battery to Assess Global Druga novel behavioral battery of tests aimed at identifyingof this three-tiered test battery, fish were individually

  6. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  7. Battery testing at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1993-03-25

    Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  8. Abuse Testing of High Power Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

  9. SnO2 Filled Mesoporous Tin Phosphate High Capacity Negative Electrode for Lithium Secondary Battery

    E-Print Network [OSTI]

    Cho, Jaephil

    SnO2 Filled Mesoporous Tin Phosphate High Capacity Negative Electrode for Lithium Secondary Battery insulators, and optics.1-6 On the other hand, their applications to electrode materials in lithium secondary batteries have received little attention because of the very limited candidates.7,8 Recently

  10. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  11. Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries

    E-Print Network [OSTI]

    Davis, Robin M. (Robin Manes)

    2005-01-01

    Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

  12. Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System

    E-Print Network [OSTI]

    Saif, A.

    A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

  13. Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

  14. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  15. Potential use of battery packs from NCAP tested vehicles.

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.

    2013-10-01

    Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

  16. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (Batteries tested -manufacturers, technology, and characteristics Manufacturer K2 EIG A123 Technology type Iron phosphate Iron phosphate Iron phosphate Iron Phosphate Graphite/

  17. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    liquids in lithium-ion battery test systems J. Salminen a,a detrimental effect on battery performance. Introductionat 25 o C, sufficient for battery applications. The measured

  18. A review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-08-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

  19. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  20. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. AVTA: Battery Testing - Best Practices for Responding to Emergency...

    Broader source: Energy.gov (indexed) [DOE]

    Idaho National Laboratory. Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards: A Report on Full-Scale Testing Results - June 2013...

  2. Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo

    E-Print Network [OSTI]

    Suo, Zhigang

    Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

  3. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

  4. High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

  5. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  6. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  7. Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOE’s FreedomCAR and Vehicle Technologies Program.

  8. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq

    E-Print Network [OSTI]

    Peng, Huei

    On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium-ion and life cycle. In this paper, we focus on the identification of Li-ion battery capacity fading

  9. Online Estimation of the Remaining Energy Capacity in Mobile Systems Considering System-Wide Power Consumption and Battery Characteristics

    E-Print Network [OSTI]

    Pedram, Massoud

    Online Estimation of the Remaining Energy Capacity in Mobile Systems Considering System-Wide Power on estimating the remaining battery energy in Android OS-based mobile systems. This paper proposes to instrument for the whole system. Next, while ac- counting for the rate-capacity effect in batteries, the total power

  10. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction

    E-Print Network [OSTI]

    Pinson, Matthew B

    2012-01-01

    Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by th...

  11. Test Series 2: seismic-fragility tests of naturally-aged Class 1E Exide FHC-19 battery cells

    SciTech Connect (OSTI)

    Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J.; Tulk, J. D.; Janis, W. J.; Black, D. A.; Paulsen, G. D.; Aucoin, B. D.

    1985-03-01

    The seismic-fragility of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and their thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the ''end-of-life'' of a battery if subjected to a seismic event. This report, the second in a test series of an extensive seismic research program, covers the testing of 10-year old lead-calcium Exide FHC-19 cells from the Calvert Cliffs Nuclear Power Station operated by the Baltimore Gas and Electric Company. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, both rigidly and loosely mounted; and multicell (three-cell) tests, mounted in a typical battery rack. A total of six electrically active cells was used in the two different cell configurations.

  12. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Pantier, Earl A. (Penn Hills, PA)

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  13. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  14. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  15. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  16. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  17. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  18. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  19. AVTA: Battery Testing- Electric Drive and Advanced Battery and Components Testbed

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The AVTA runs the Electric Drive and Advanced Battery and Components Testbed to capture batteries’ real-world performance. The Testbed simulates battery charging as well as on-road driving. Researchers run the Testbed on a daily basis on cycles that represent typical driving and charging patterns. This research was conducted by Idaho National Laboratory.

  20. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  1. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  2. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap

    E-Print Network [OSTI]

    2013-01-01

    preclinical cognitive test battery to parallel the Nationalneuropsychological test battery. Brain Res Cogn Brain Res.CFB, cognitive function battery; DNMP/DNMS, delayed non-

  3. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  4. Webinar: Test Procedure for Battery Chargers; Notice of Data Availability

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the notice of data availability regarding test procedures for battery chargers. 79 FR 27774  (May 15, 2014). For more information, please visit...

  5. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery

    E-Print Network [OSTI]

    Jo, Moon-Ho

    , such as fuel cells and secondary batteries. Here we report a coin-type Si nanowire NW half-cell Li-ion battery is the central research subject in various energy conversion systems, such as solar cells, fuel cells must be optimally coordinated.7 In this respect, Si nanowire NW arrays can serve as the high capacity

  6. Selected test results from the neosonic polymer Li-ion battery.

    SciTech Connect (OSTI)

    Ingersoll, David T.; Hund, Thomas D.

    2010-07-01

    The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

  7. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  8. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  9. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Suo, Zhigang

    Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume strength. © 2011 American Institute of Physics. doi:10.1063/1.3525990 Lithium-ion batteries

  10. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    in commercial lithium-ion batteries for both cathodes e.g., LiCoO2 and anodes e.g., graphite . By contrastInelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume

  11. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O$_2$ battery capacity

    E-Print Network [OSTI]

    Burke, Colin M; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-01-01

    Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li...

  12. Testing three 90Whr Dell Batteries for Latitude E6410 I have been able, for complicated reasons, to test three batteries sold as 9cell 90Whr batteries for

    E-Print Network [OSTI]

    Sloman, Aaron

    Testing three 90Whr Dell Batteries for Latitude E6410 I have been able, for complicated reasons, to test three batteries sold as 9cell 90Whr batteries for the Dell Latitude E6410 computer, one made battery was fully charged then allowed to discharge while the laptop was on, and not doing very much

  13. Test Report : GS battery, EPC power HES RESCU.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

  14. Test series 1: seismic-fragility tests of naturally-aged Class 1E Gould NCX-2250 battery cells

    SciTech Connect (OSTI)

    Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J. S.; Tulk, J. D.; Janis, W. J.; Black, D A; Paulsen, G. D.; Aucoin, B. D.

    1984-09-01

    The seismic-fragility response of naturally-aged, nuclear station, safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds; and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the end-of-life of a battery, given a seismic event. This report covers the first test series of an extensive program using 12-year old, lead-calcium, Gould NCX-2250 cells, from the James A. Fitzpatrick Nuclear Power Station operated by the New York Power Authority. Seismic tests with three cell configurations were performed using a triaxial shake table: single-cell tests, rigidly mounted; multi-cell (three) tests, mounted in a typical battery rack; and single-cell tests specifically aimed towards examining propagation of pre-existing case cracks. In general the test philosophy was to monitor the electrical properties including discharge capacity of cells through a graduated series of g-level step increases until either the shake-table limits were reached or until electrical failure of the cells occurred. Of nine electrically active cells, six failed during seismic testing over a range of imposed g-level loads in excess of a 1-g ZPA. Post-test examination revealed a common failure mode, the cracking at the abnormally brittle, positive lead bus-bar/post interface; further examination showed that the failure zone was extremely coarse grained and extensively corroded. Presently accepted accelerated-aging methods for qualifying batteries, per IEEE Std. 535-1979, are based on plate growth, but these naturally-aged 12-year old cells showed no significant plate growth.

  15. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J.edu Abstract A combined simulation and testing approach has been developed to evaluate battery packs in real accelerates battery development cycle, and enables innovative battery design and optimization. Several

  16. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  17. Sandia Energy - Battery Abuse Testing Laboratory (BATLab)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMABasic EnergyBattery

  18. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity

    Broader source: Energy.gov [DOE]

    Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

  19. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variouselectrodes for lithium-ion batteries, Journal of MaterialsAdvances in Lithium-Ion Batteries (Chapter 4), Kluwer

  20. X-Ray Tools for Battery Development and Testing: Case Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Tools for Battery Development and Testing: Case Studies Case studies of the use of X-ray techniques for battery development and testing at the Advanced Photon Source PDF icon...

  1. Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

  2. High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage

    E-Print Network [OSTI]

    High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large, United States *S Supporting Information ABSTRACT: Hybrid magnesium-lithium-ion batteries (MLIBs magnesium-lithium-ion batteries (MLIBs), energy storage, Coulombic efficiency, dendrite-free magnesium

  3. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

    E-Print Network [OSTI]

    Thygesen, Kristian

    -O2 batteries V. Viswanathan, K. S. Thygesen, J. S. Hummelshøj, J. K. Nørskov, G. Girishkumar et al limitations in non-aqueous Li-O2 batteries V. Viswanathan,1 K. S. Thygesen,2 J. S. Hummelshøj,3 J. K. Nørskov energy density battery couple. Such cells, however, show sudden death at capacities far below

  4. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries

    E-Print Network [OSTI]

    Oh, Dahyun

    Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

  5. Batteries put to test in PV plan The technology could help utilities absorb

    E-Print Network [OSTI]

    Batteries put to test in PV plan The technology could help utilities absorb more power and assist to see whether battery technology can be effectively used to open the utility's grid to greater amounts statewide, investigating how battery technology can be used to overcome limits on the amount of intermittent

  6. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  7. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  8. Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns*, Ruthvik Basavaraj**, Venkatasailanathan Ramadesigan***, Folarin Latinwo**, Ravi N. Methekar***,

    E-Print Network [OSTI]

    Subramanian, Venkat

    Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns- + 6C LixC6 Lithium-ion battery, chemistry and reactions Electric motor Engine Fuel tank Electric, military, mobile applications, and space. Lithium-ion chemistry has been identified as the preferred

  9. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  11. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  12. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  13. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  14. Psychrometric Testing Facility Restoration and Cooling Capacity Testing 

    E-Print Network [OSTI]

    Cline, Vincent E.

    2010-10-12

    The Psychrometric Testing Facility at the Riverside Energy Efficiency Laboratory at Texas AandM University has not been operational for several years. The goal of this project was to restore the testing facility to a fully ...

  15. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  16. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng; Mu, Linqin; Liu, Jue; Yang, Zhenzhong; Yu, Xiqian; Gu, Lin; Hu, Yong -Sheng; Li, Hong; Yang, Xiao -Qing; Chen, Liquan; et al

    2015-08-06

    In this study, aqueous sodium-ion batteries have shown desired properties of high safety characteristics and low-cost for large-scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel-type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium-ion batteries. However, the low achievable capacity hinders its practical applications. Here we report a novel sodium rich tunnel-type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2. The tunnel-type structure of Na0.44MnO2 obtained for this compound was confirmed by XRD and atomic-scale STEM/EELS.more »When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1M Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g-1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium-ion batteries.« less

  17. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  18. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  19. Vehicle Technologies Office Merit Review 2014: Battery Safety Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  20. Vehicle Technologies Office Merit Review 2015: Battery Safety Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  1. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap

    E-Print Network [OSTI]

    Fortin, Norbert J.

    Review A preclinical cognitive test battery to parallel the National Institute of Health Toolbox that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery

  2. Battery Thermal Modeling and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy and ForestBattery ChargersBattery SEABThermal

  3. Battery systems performance studies - HIL components testing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy and ForestBattery ChargersBattery

  4. Best X-Ray Tools for Battery Development and Testing | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best X-Ray Tools for Battery Development and Testing Argonne's Advanced Photon Source has a suite of best-in-class X-ray techniques and lab space to tackle the most difficult...

  5. Key results of battery performance and life tests at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1991-01-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R D programs, compare battery technologies, and provide basic data for modeling and continuing R D to battery users, developers, and program managers.

  6. Key results of battery performance and life tests at Argonne National Laboratory

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1991-12-31

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory`s & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  7. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Power Management 101 ! Motivation and principle of operation " Rationale: Power and Smart BatteriesBattery Characteristics and Smart Batteries ! Nonlinear characteristics of batteries " Rate capacity effect # The total energy capacity that a battery can deliver during its lifetime depends

  8. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    E-Print Network [OSTI]

    McGaughey, Alan

    investment for reducing US gasoline consumption Scott B. Peterson a , Jeremy J. Michalek a,b,n a Dept per gal than oil premium estimates. c Current subsidies are misaligned with fuel savings. We discuss increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium

  9. Zinc-bromine battery technology

    SciTech Connect (OSTI)

    Bellows, R.; Grimes, P.; Malachesky, P.

    1983-01-01

    Some progress in the field of zinc-bromine batteries is reviewed, and a number of successes and some difficulties are related. The direction of work includes, among other areas, testing of parametric and large batteries. The program includes the control of electrode planarity through electrode thickness and electrode support, improved cathode activation coatings to increase and maintain performance near the end of battery capacity, reduced retention of bromine in the battery cell stock at shutdown to lower capacity loss and improve sealing techniques. Projected factory cost should be competitive with lead-acid batteries. Progress has been demonstrated in scale-up and performance, as well as improving the life of the system. (LEW)

  10. NREL Battery Thermal and Life Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen LichvarAREVA NOPRDepartmentof4NREL Battery

  11. Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes

    SciTech Connect (OSTI)

    Han, W.

    2011-05-18

    Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

  12. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  13. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    value, objective total energy capacity of the battery array.determine optimal battery energy capacity (in the context ofconducted if the usable energy capacity of the battery is

  14. As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted great deal of attention in recent years. Advanced

    E-Print Network [OSTI]

    Doctoral Defense Mechanics of Silicon Electrodes in Lithium Ion Batteries Yonghao An Advisor: Prof. Hanqing ion batteries, silicon has attracted great deal of attention in recent years. AdvancedAs one of the most promising materials for high capacity electrode in next generation of lithium

  15. Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and

    E-Print Network [OSTI]

    polymeric binders for Lithium-ion battery anode Tianxiang Gao Advisor: Dr. Ximin He April 20, 2015; 2:00 PMTin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries polymeric structure can offer the pathway for Lithium ion transfer between the anode and electrolyte

  16. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  17. One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability

    SciTech Connect (OSTI)

    Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

    2014-02-15

    Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup ?1} at a current density of 50 mA g{sup ?1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

  18. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed for studying battery failures points to a potential next step in extending lithium ion battery lifetime and capacity, opening a path to wider use of these batteries...

  19. Utility Battery Storage Systems Program report for FY93

    SciTech Connect (OSTI)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  20. AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an experimental vehicle not for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  1. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  2. Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards

    SciTech Connect (OSTI)

    Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

    2011-10-19

    Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

  3. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium, with a specific discharge capacity of 260 mAh gÀ1 and no capacity fading over 100 cycles at 100 mA gÀ1 . The excellent cyclic stability and high specific discharge capacity of the material are attributed to the novel

  4. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    photovoltaic systems with battery storages control based onthat the energy stored in the battery is bounded withinthe capacity of the battery. Eq. 3b constrains the battery

  5. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    their use in lithium-ion batteries. However, applications atFor rechargeable lithium-ion batteries, it is required that

  6. Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium ion batteries

    SciTech Connect (OSTI)

    Shim, Joongpyo; Striebel, Kathryn A.

    2002-12-02

    The effect of electrode thickness and density for unpressed and pressed natural graphite electrodes were studied using electrochemical characterization. Pressing the graphite electrode decreases the reversible capacity and the irreversible capacity loss during formation. As electrode density increased, the capacity retention at high rate increased until 0.9g/cm{sup 3}, and then decreased. The cycle performances of the pressed graphite electrodes were more stable than the unpressed one. Pressing graphite electrode affected on its electrochemical characterization such as irreversible capacity loss, high rate cycling and cycle performance.

  7. Vehicle Technologies Office Merit Review 2015: Low?Cost, High?Capacity Lithium Ion Batteries through Modified Surface and Microstructure

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low?cost, high?capacity...

  8. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low of these batteries can be improved by using the concept of a smart battery system (SBS). In a SBS, battery data from

  9. Fe{sub 2}O{sub 3} nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries

    SciTech Connect (OSTI)

    Angelucci, Marco; Frau, Eleonora; Betti, Maria Grazia [Dipartimento di Fisica, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Mura, Francesco [Department of Fundamental and Applied Sciences for Engineering, Universita di Roma La Sapienza, Via A. Scarpa 14/16, I - 00161 Roma (Italy); Panero, Stefania [Dipartimento di Chimica, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Mariani, Carlo [Dipartimento di Fisica, CNISM, CNIS, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy)

    2014-06-19

    Iron Oxides nanostructures are very promising systems for new generation of anode material for Lithium-Ion batteries because of their high capacity associated to their surface area. A core-level photoemission study of Fe{sub 2}O{sub 3} nanowires deposited on highly-oriented pyrolitic graphite (HOPG) under Li exposure is presented. The Fe-2p, Fe-3p, and Li-1s core-level lineshape evolution upon Li exposure in ultra-high-vacuum conditions clearly brings to light the Fe ion reduction from fully trivalent to prevalently divalent at saturation. Furthermore, the graphite substrate allows allocation of a large amount of Li ions surrounding the iron-oxide nanowires, opening a new scenario towards the use of graphene for improving the ionic charge exchange.

  10. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower volume, their battery packs are much larger with capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of Batteries Sold and Battery Capacity Sold...

  11. U.S. Battery R&D Progress and Plans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Failure Mitigation Advanced Battery Development Performance Optimization Cost Reduction Cell Design & Electrochemistry Optimization Power & Capacity...

  12. Design of a testing device for quasi-confined compression of lithium-ion battery cells

    E-Print Network [OSTI]

    Roselli, Eric (Eric J.)

    2011-01-01

    The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

  13. Expansion capacity of an SX unit in uranium process pilot tests

    SciTech Connect (OSTI)

    Courtaud, B.; Auger, F.; Morel, P.

    2008-07-01

    The rising price of uranium has led uranium producers to increase their plant capacity. The new project proposed to increase capacity is based on processing low-grade uranium by heap leaching. It is necessary to modify the plant, particularly the solvent extraction unit, to handle the increased flow. The goal of our study is to determine the minimal changes necessary to process the whole flow. Several stages have been carried out (i) thermodynamic modelling of the solvent extraction process to determine the capacities of the SX plant and the impact of the modification and (ii) pilot tests at the plant of the different configurations proposed by modelling. This paper presents results of the pilot tests performed at the plant. (authors)

  14. Understanding the insertion of lithium into silicon electrodes for high capacity lithium-ion batteries is likely to have benefits for mobile energy storage, for both electronics and transportation. Silicon nanostructures have proven to be attractive candi

    E-Print Network [OSTI]

    -ion batteries is likely to have benefits for mobile energy storage, for both electronics and transportationUnderstanding the insertion of lithium into silicon electrodes for high capacity lithium. Silicon nanostructures have proven to be attractive candidates for electrodes because they provide less

  15. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  16. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  17. First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System

    SciTech Connect (OSTI)

    Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

    2011-07-28

    Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

  18. Response of Lithium Polymer Batteries to Mechanical Loading

    E-Print Network [OSTI]

    Petta, Jason

    Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 #12;Outline · Motivation · Battery Structure · Testing and Results · Conclusions #12;Motivation · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery

  19. Novel materials for Li-ion batteries is one of the principle thrust areas of current research in energy storage. One of the major limiting factors in a Li-ion battery's performance is the low specific capacities of the active

    E-Print Network [OSTI]

    in energy storage. One of the major limiting factors in a Li-ion battery's performance is the low specific capacities of the active materials in the electrodes. Anode materials based on silicon have generated much interest of late. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical

  20. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    of the battery’s total energy capacity is used—known as theto total available energy capacity divided by CD range. Thecategories: power, energy capacity, life, cost, and safety (

  1. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    of the battery’s total energy capacity is used—known as theto total available energy capacity divided by CD range. Thecategories: power, energy capacity, life, cost, and safety (

  2. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    of the battery’s total energy capacity is used—known as theto total available energy capacity divided by CD range. Thecategories: power, energy capacity, life, cost, and safety (

  3. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  4. Battery Cathode Developed by Argonne Powers Plug-in Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacities than conventional cathode materials, resulting in batteries with higher energy density. Because the batteries can store more energy, manufacturers can either use...

  5. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    SciTech Connect (OSTI)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  6. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    system and second-life lithium-ion battery energy storage. Atrade-off between lithium-ion battery aging and economicIncorporating an empirical lithium-ion battery capacity loss

  7. Testing of Supercapacitors: Capacitance, Resistance, and Energy Energy and Power Capacity

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    and Energy Energy and Power Capacity Andrew Burke Institute of Transportation Studies University of California-

  8. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap

    E-Print Network [OSTI]

    2013-01-01

    attention task N/A Key: CFB, cognitive function battery;Function Battery [CFB]), to probe several cognitivesubdomains from the NIH Toolbox CFB (overview in Table 1).

  9. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01

    to integrate their battery storage and internal vehicleOstergaard, J. (2009). Battery energy storage technology fora far smaller battery energy storage capacity than BEVs,

  10. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  11. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

  12. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optimizing better battery materials. A Battery of Tests for Better Batteries The prosaic battery has often been overlooked as little more than an afterthought in a consumer-driven...

  13. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  14. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  15. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing lithium with other metals with multiple charges could greatly increase battery capacity. But first researchers need to understand how to keep multiply charged...

  16. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Environmental Management (EM)

    batteries enable electric drive vehicles to consume less petroleum and produce less pollution than conventional vehicles. At full capacity, the EnerG2 plant will produce enough...

  17. Hierarchical nanosheet-constructed yolk–shell TiO? porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability

    E-Print Network [OSTI]

    Jin, Jun; Huang, Shao-Zhuan; Li, Yu; Tian, He; Wang, Hong-En; Yu, Yong; Chen, Li-Hua; Hasan, Tawfique; Su, Bao-Lian

    2015-06-26

    . Such a yolk–shell structure with a highly porous shell and dense mesoporous core is quite advantageous as an anode material for lithium ion batteries (LIBs). The outer, 2D nanosheet-based porous (15 nm) shell and the nanocrystal-based inner mesoporous (3...

  18. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  19. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  20. Extended abstracts: seventh battery and electrochemical contractors' conference

    SciTech Connect (OSTI)

    Sheppard, D.; Hurwitch, J. (comps.)

    1985-11-01

    Seventy-two papers are arranged under the following session headings: EPRI storage program, review of key program activities, sodium/sulfur battery development, advanced battery research (two sessions), flow battery development, sodium/sulfur battery research, systems analysis and technology transfer, performance and testing (two sessions), flow battery research, metal/air batteries, and fuel cells. (DLC)

  1. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  2. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Rodney Shane

    2011-09-30

    This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  3. California: Conducting Polymer Binder Boosts Storage Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a focus on enabling smaller,...

  4. Electrospun titania-based fibers for high areal capacity Li-ion battery Ethan C. Self, Ryszard Wycisk, Peter N. Pintauro*

    E-Print Network [OSTI]

    were prepared using electrospinning. Electrospun anodes demonstrate superior performance, as compared Electrospinning Areal capacity Thick electrode a b s t r a c t Electrospinning is utilized to prepare composite C. Electrospinning is also used to prepare ultra- thick anodes (>1 mm) with areal capacities up to 3

  5. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect (OSTI)

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  6. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    2000) Costs of Lithium-Ion Batteries for Vehicles. Report,for High-Power Lithium-Ion Batteries. J. Power Sources 128:in High-Power Lithium-Ion Batteries. J. Electrochem. Soc.

  7. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  8. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    Requirements for Products with Battery Charging Systems (Power Tools Slow Charger Battery Energy No load (stdby) FastWorkshop on Power Supply and Battery Test Procedures, San

  9. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  10. Power and capacity fade mechanism of LiNi0.8Co0.15Al0.0502 composite cathodes in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2003-01-01

    IN HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki andAFM Introduction Lithium-ion batteries are being seriously

  11. CENTRIFUGAL MODEL TESTS FOR ULTIMATE BEARING CAPACITY OF FOOTINGS ON STEEP SLOPES IN COHESIONLESS SOIL [abstract

    E-Print Network [OSTI]

    Gemperline, Mark

    1984-01-01

    Gemperline, Mark C. , Centrifugal ~odel Tests for UltimateDivision. ABSTRACTS II CENTRIFUGAL MODEL TESTS FOR ULTIMATE

  12. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  13. Engineering design factors in flowing electrolyte bipolar batteries

    SciTech Connect (OSTI)

    Grimes, P.; Bellows, R.; Malachesky, P.

    1984-08-01

    Flowing electrolyte bipolar batteries allow a system designer great flexibility in fitting the batteries to applications. A mathematical model has been developed describing flow battery characteristics to aid the designer. This model can be used to compute the interrelationships of power, energy, volume, number of cells, cell area, capacity, weight, etc. Examples from zinc bromine battery systems are given.

  14. Parametric behavior of the circulating zinc-bromine battery

    SciTech Connect (OSTI)

    Kantner, E.; Bellows, R.; Einstein, H.; Grimes, P.; Malachesky, P.; Newby, K.

    1981-01-01

    Graphs are presented depicting polarization data of bipolar batteries of varying capacity ratings, battery voltage vs c/d time of bipolar batteries of varying capacity ratings, Coulomb efficiency vs zinc loading, Coulomb efficiency vs c/d rate, voltage efficiency vs c/d rate, and energy efficiency vs c/d rate.

  15. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  16. A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications

    E-Print Network [OSTI]

    Arnold, Craig B.

    September 2013 Keywords: Off-grid renewables Lead-acid Lithium-ion Capacity fade Wind Variable charge a b phosphate) cells charged with wind-based charging protocols. Poor pulse charge acceptance, particularly have electricity away from the grid typically rely on diesel generators, renewable energy systems

  17. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Elspass, C.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-01-01

    The design, testing, operation, and state of development of zinc-bromine batteries are discussed. (LEW)

  18. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  19. 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice...

    Energy Savers [EERE]

    Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 2014-05-08 Test...

  20. The Seventh Cell of a Six-Cell Battery Delyan Raychev, Youhuizi Li and Weisong Shi

    E-Print Network [OSTI]

    Shi, Weisong

    --Increasing the capacity of existing battery technolo- gies could play an important role in today's mobile society]. Therefore, many applications use lithium-ion battery as their power supply, such as electrical vehicles to existing battery technologies comes with a significant trade-off: the more capacity a battery has

  1. ORNL, Industry to Collaborate in Advanced Battery Research |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new...

  2. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    The UC Davis Emerging Lithium Battery Test Project, Report3 for the advanced lithium battery chemistries are based onwith ultracapacitors, the LTO lithium battery should be

  3. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    -connected systems, Photovoltaic power, Electricity bill 1. INTRODUCTION The number and capacity of photovoltaic (PV}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources into account the limited battery capacity, power converter efficiency, battery's internal re- sistance and rate

  4. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  5. NEDO Research Related to Battery Storage Applications for Integration...

    Open Energy Info (EERE)

    NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity...

  6. Using neutrons to probe and understand battery interfaces | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to mitigate this reaction. Si anodes have nearly 8 times the capacity of standard graphite anodes, giving them high potential for use in electric vehicles batteries with...

  7. National Labs Leading Charge on Building Better Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department's Office of Science. Addthis Related Articles California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award Transformative Battery Technology...

  8. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intermetallic material for the negative electrode that offers a significantly higher volumetric and gravimetric capacity and improves battery stability and safety. PDF icon...

  9. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  10. Microporous Separators for Fe/V Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Liyu; Luo, Qingtao; Nie, Zimin; Wang, Wei; Li, Bin; Xia, Guanguang; Miller, Eric; Chambers, Jeff; Yang, Zhenguo

    2012-06-28

    The Fe/V redox flow battery has demonstrated promising performance that is advantageous over other redox flow battery systems. The less oxidative nature of the Fe(III) species enables use of hydrocarbon - based ion exchange membranes or separators. Daramic(reg. sign) microporous polyethylene separators were tested on Fe/V flow cells using the sulphuric/chloric mixed acid - supporting electrolytes. Among them, Daramic(reg. sign) C exhibited good flow cell cycling performance with satisfactory repeatability over a broad temperature range of 5 - 50 degrees C. Energy efficiency (EE) of C remains above 67% at current densities of 50 - 80 cm{sup -2} in the temperature range from room temperature to 50 degrees C. The capacity decay problem could be circumvented through hydraulic pressure balancing by applying different pump rates to the positive and negative electrolytes. Stable capacity and energy were obtained over 40 cycles at room temperature and 40 degrees C. These results manifest that the extremely low-cost separators ($10/cm2) are applicable in the Fe/V flow battery system at an acceptable sacrifice of energy efficiency. This stands for a remarkable breakthrough in significant reduction of the capital cost of the Fe/V flow battery system, and is promising to promote its market penetration in grid stabilization and renewable integration.

  11. Sandia Energy - Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMABasic

  12. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    for Li-ion batteries. Solid Electrolyte Interface (SEI)-athe formation of a solid electrolyte interface (SEI) onElectrolyte Solutions, Temperatures). Electrochem. and Solid-

  13. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  14. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  15. A monolithically integrated thermo-adsorptive battery

    E-Print Network [OSTI]

    McKay, Ian Salmon

    2014-01-01

    A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150 kJ/L) applications. In the thermal ...

  16. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean more battery power in a smaller space. However, to bring...

  17. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  18. Flexible fiber batteries for applications in smart textiles

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Flexible fiber batteries for applications in smart textiles Hang Qu1 , Oleg Semenikhin2 and Maksim as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be 10 mAh. We also detail assembly and optimization of the electrical circuitry

  19. Broadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter

    E-Print Network [OSTI]

    Ulukus, Sennur

    ) at the transmitter at random instants. The battery at the transmitter has a finite storage capacity, hence energy mayBroadcasting with a Battery Limited Energy Harvesting Rechargeable Transmitter Omur Ozel1 , Jing with a battery limited energy harvesting trans- mitter in a two-user AWGN broadcast channel. The transmitter has

  20. 2008 Nature Publishing Group High-performance lithium battery

    E-Print Network [OSTI]

    Cui, Yi

    © 2008 Nature Publishing Group High-performance lithium battery anodes using silicon nanowires in lithium batteries have shown capacity fading and short battery lifetime due to pulverization and loss December 2007; doi:10.1038/nnano.2007.411 There is great interest in developing rechargeable lithium

  1. Battery-Aware Power Management Based on Markovian Decision Processes

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Battery-Aware Power Management Based on Markovian Decision Processes Peng Rong and Massoud Pedram the problem of maximizing capacity utilization of the battery power source in a portable electronic system under latency and loss rate constraints. First, a detailed stochastic model of a power-managed, battery

  2. Battery-Aware Power Management Based on Markovian Decision Processes

    E-Print Network [OSTI]

    Pedram, Massoud

    Battery-Aware Power Management Based on Markovian Decision Processes Peng Rong Massoud Pedram prong the problem of maximizing the utilization of the battery capacity of the power source for a portable electronic system under a given performance constraint. A new stochastic model of a power-managed battery

  3. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  4. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  5. Silicon nanowire boost for rechargeable batteries Online Shop Contact us Advanced

    E-Print Network [OSTI]

    Cui, Yi

    Silicon nanowire boost for rechargeable batteries Online Shop Contact us Advanced search Chemistry batteries 17 December 2007 Scientists in the US have devised an easy way of using silicon nanowires to increase the capacity of lithium batteries - like those in laptops - by up to five times. A lithium battery

  6. Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications

    E-Print Network [OSTI]

    Pedram, Massoud

    Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun--Modern batteries (e.g., Li-ion batteries) provide high discharge efficiency, but the rate capacity effect in these batteries drastically decreases the discharge efficiency as the load current increases. Electric double

  7. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC...

  8. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical behaviors in lithium-ion batteries? · Current work ­ Mechanical behaviors the separator ­ How do we test

  9. Battery Emulation 150 0740-7475/05/$20.00 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Battery Emulation 150 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS in portable devices such as PDAs and celluar phones, batteries are quickly becoming a lim- iting factor. Recently, researchers have started develop- ing battery-aware power management techniques that exploit

  10. Advanced batteries for electric vehicle applications

    SciTech Connect (OSTI)

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  11. A Study of Lead-Acid Battery Efficiency Near Top-of-Charge

    Office of Scientific and Technical Information (OSTI)

    of charge for the specific battery under test. Specific charge versus state of charge information is particularly important for systems where a very large battery (that is, one...

  12. Field investigation of the relationship between battery size and PV system performance

    SciTech Connect (OSTI)

    Stevens, J.; Kratochvil, J. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S. [Ktech Corp., Albuquerque, NM (United States)

    1993-07-01

    Four photovoltaic-powered lighting systems were installed in a National Forest Service campground in June of 1991. These systems have identical arrays, loads and charge controllers. The only difference was in the rated capacity of the battery bank for each system. The battery banks all use the same basic battery as a building block with the four systems utilizing either one battery, two batteries, three batteries or four batteries. The purpose of the experiment is to examine the effect of the various battery sizes on the ability of the system to charge the battery, energy available to the load, and battery lifetime. Results show an important trend in system performance concerning the impact of charge controllers on the relation between array size and battery size which results in an inability to achieve the days of battery storage originally designed for.

  13. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  14. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

  15. It's getting hot in here : temperature gradients in lithium-ion battery packs

    E-Print Network [OSTI]

    Niewood, Benjamin

    2015-01-01

    A 5 channel, 40A battery cycler was constructed for the purpose of carrying out thermal studies on Lithium-ion battery packs. Boston Power Swing Key 442 battery blocks were tested to determine the magnitude of the temperature ...

  16. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  17. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  18. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE...

  19. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  20. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  1. Performance of the Lester battery charger in electric vehicles

    SciTech Connect (OSTI)

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  2. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  3. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  4. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  5. Structure, morphology and reaction mechanisms of novel electrode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Hua, Xiao

    2015-01-06

    transforming back to CuF2, leading to negligible capacities in subsequent cycles and making this material challenging to use in a rechargeable battery....

  6. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

  7. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  8. Defective graphene as promising anode material for Na-ion battery and Ca-ion battery

    E-Print Network [OSTI]

    Datta, Dibakar; Shenoy, Vivek B

    2013-01-01

    We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

  9. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore »with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  10. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  11. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  12. Automating Personalized Battery Management on Smartphones

    E-Print Network [OSTI]

    Falaki, Mohamamd Hossein

    2012-01-01

    3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

  13. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  14. High Performance Anode for Advanced Li Batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  15. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L. (Los Alamos, NM)

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  16. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  17. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,

    E-Print Network [OSTI]

    Cui, Yi

    Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance for higher specific energy lithium ion batteries for applications such as electric vehicles, next generation

  18. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries; Irreversible capacity; Anode material; Lithium-ion batteries 1. Introduction To ensure long cycle life for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

  19. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes

    E-Print Network [OSTI]

    Cui, Yi

    Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes Hui Wu, Guangyuan ABSTRACT: Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long materials for lithium-ion batteries (Li-ion).1,2 In particular, they have focused on conversion oxides,1

  20. The Binary Energy Harvesting Channel with a Unit-Sized Battery

    E-Print Network [OSTI]

    Ulukus, Sennur

    by the exogenous energy harvesting process, energy storage capacity of the battery, and the past channel inputs by an external energy harvesting process, the size of the battery, and the previous channel inputs. We consider1 The Binary Energy Harvesting Channel with a Unit-Sized Battery Kaya Tutuncuoglu1 , Omur Ozel2

  1. Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf August 30, 2010 Abstract Battery technology plays an important role in energy storage. In particular, lithium­ ion (Li-ion) batteries are of great interest, because of their high capacity, long cycle life

  2. Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries

    E-Print Network [OSTI]

    Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer

  3. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature,

    E-Print Network [OSTI]

    Cui, Yi

    capacity of 849 and 610 mAh/g at 2C and 4C, respectively. lithium sulfur battery | energy storage | long energy storage (1­4). To achieve a quantum leap in the batteries specific energy density, new electrodeHigh-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature

  4. Nanoparticle iron-phosphate anode material for Li-ion battery Dongyeon Son

    E-Print Network [OSTI]

    Park, Byungwoo

    density.1 The graphite generally used in lithium rechargeable batteries has a capacity of 372 mNanoparticle iron-phosphate anode material for Li-ion battery Dongyeon Son School of Materials rechargeable batteries. The electrochemical properties of the nanoparticle iron phosphates were characterized

  5. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials

    E-Print Network [OSTI]

    Cho, Jaephil

    Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials Hyesun materials for lithium batteries were prepared using KIT-6 and SBA-15 SiO2 templates as an anode material for lithium batteries due to its high capacity (>600 mAh gÀ1 ) compared with graphite

  6. Optimal and Adaptive Battery Discharge Strategies for Cyber-Physical Fumin Zhang and Zhenwu Shi

    E-Print Network [OSTI]

    Zhang, Fumin

    Optimal and Adaptive Battery Discharge Strategies for Cyber-Physical Systems Fumin Zhang and Zhenwu Shi Abstract-- We introduce a dynamic battery model that de- scribes the variations of the capacity of a battery under time varying discharge current. This model is input-output equivalent to the Rakhmatov

  7. `TVLSI-00029-2003.R1 An Analytical Model for Predicting the Remaining Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    `TVLSI-00029-2003.R1 1 An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng Rong, Student Member, IEEE and Massoud Pedram, Fellow, IEEE Abstract -- Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing

  8. Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes

    E-Print Network [OSTI]

    Cui, Yi

    Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes Hongbin Yao materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials

  9. Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks Frank Y. Fan1

    E-Print Network [OSTI]

    1 Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks Frank YKinley2 , W. Craig Carter1 , and Yet-Ming Chiang*1 Abstract A new approach to flow battery design shown poor capacity utilization and reversibility, and may thereby enable new flow battery designs

  10. Evaluation of Simplified Methods for Estimating Shear Capacity Using JNES/NUPEC Low-Rise Concrete Shear Wall Cyclic Test Data.

    SciTech Connect (OSTI)

    Nie,J.; Braverman, J.; Hofmayer, C.; Ali, S.

    2008-06-01

    The simplified methods in current codes for determining the shear capacity of reinforced concrete shear walls had mostly been validated using the test results of single-element shear walls. Recently available JNES/NUPEC test data of reinforced concrete shear walls under multi-directional cyclic loadings provided a unique opportunity to investigate the adequacy of the simplified methods for use in situations with strong interaction effects. A total of 11 test specimens with aspect ratios between 0.47 and 0.87 have been used in the assessment. Two simplified methods from the ACI 349-01 standard [1] and one from the ASCE 43-05 standard [2] have been evaluated. This paper also presents the development of an adjustment factor to consider the aspect ratio and the development of two approaches to consider interaction effects for one of the simplified methods. It concludes with the insights on the applicability of the code methods when interaction effects exist.

  11. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  12. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  13. Zinc-bromine batteries with improved electrolyte

    SciTech Connect (OSTI)

    Kantner, E.

    1985-01-01

    The coulombic efficiency of aqueous zinc bromine batteries can be increased if, in addition to the bromide ions required to be present in the electrolyte to charge the cell to rated capacity, chloride ions are added to the electrolyte in amounts sufficient to reduce the amount of free bromine present in the electrolyte during operation of the cell.

  14. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  15. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    Xiangyun Song helped me with battery experiments. I want toMesoporous Block Copolymer Battery Separators by DavidMesoporous Block Copolymer Battery Separators by David

  16. Monitoring apparatus and method for battery power supply

    DOE Patents [OSTI]

    Martin, Harry L. (Knoxville, TN); Goodson, Raymond E. (West Lafayette, IN)

    1983-01-01

    A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

  17. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27: Energy Conservation Program: Test Procedures for Battery Chargers, Notice of Proposed Rulemaking ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Battery...

  18. Stress evolution and capacity fade in constrained lithium-ion pouch cells

    E-Print Network [OSTI]

    Arnold, Craig B.

    Stress evolution and capacity fade in constrained lithium-ion pouch cells John Cannarella, Craig B 28 June 2013 Accepted 30 June 2013 Available online 13 July 2013 Keywords: Lithium-ion battery stress on lithium-ion battery life are investigated by monitoring the stack pressure and capacity

  19. Effect of Porosity on the Capacity Fade of a Lithium-Ion Godfrey Sikha,* Branko N. Popov,** and Ralph E. White***,z

    E-Print Network [OSTI]

    Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory Godfrey Sikha,* Branko N of a lithium-ion battery. It includes the changes in the porosity of the material due to the reversible the capacity fade in a lithium-ion battery based on the unwanted parasitic reaction that consumes Li along

  20. The influence of wearing the Oxylog instrument on estimated maximal aerobic capacity during a step test and heart rate in a lifting test 

    E-Print Network [OSTI]

    Bales, Dennis Wendell

    1996-01-01

    . Additionally, the influence of wearing the Oxylog mask, heart rate monitor, and Oxylog instrument versus that of just wearing a heart rate monitor on the heart rate of test participants in a graduated submaximal box lifting protocol was studied. Seventeen...

  1. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  2. On the Capacity Region of the Gaussian MAC with Batteryless Energy Harvesting Transmitters

    E-Print Network [OSTI]

    Ulukus, Sennur

    On the Capacity Region of the Gaussian MAC with Batteryless Energy Harvesting Transmitters Omur-user channel capacity with an energy harvesting transmitter of an unlimited battery is equal to the capacity work in [3] and address the capacity region of the Gaussian MAC with batteryless energy harvesting

  3. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance

    SciTech Connect (OSTI)

    Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

    2014-09-01

    A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

  4. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries

    SciTech Connect (OSTI)

    Tong, Xin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Xi'an 710069 (China); Wang, Hui, E-mail: huiwang@nwu.edu.c [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Xi'an 710069 (China); National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials and Application International Cooperation Base, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069 (China); Wang, Gang [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Xi'an 710069 (China); Wan, Lijuan; Ren, Zhaoyu; Bai, Jintao [National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials and Application International Cooperation Base, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069 (China); Bai, Jinbo [Lab. MSS/MAT, CNRS UMR 8579, Ecole Centrale Paris, 92295 Chatenay Malabry (France)

    2011-05-15

    High quality graphene sheets are synthesized through efficient oxidation process followed by rapid thermal expansion and reduction by H{sub 2}. The number of graphene layers is controlled by tuning the oxidation degree of GOs. The higher the oxidation degree of GOs is getting, the fewer the numbers of graphene layers can be obtained. The material is characterized by elemental analysis, thermo-gravimetric analysis, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and Fourier transform infrared spectroscopies. The obtained graphene sheets with single, triple and quintuplicate layers as anode materials exhibit a high reversible capacity of 1175, 1007, and 842 mA h g{sup -1}, respectively, which show that the graphene sheets with fewer layers have higher reversible capacity. -- Graphical abstract: The typical TEM images of the graphene sheets derived from GO3(a), GO2(b) and GO1(c). Display Omitted Highlights: {yields} With the oxidation degree of GO increasing, the numbers of graphene layers decreased. {yields} With the numbers of graphene layers decreasing, the reversible capacity improved. {yields} Graphene sheets with single-layer exhibit the best electrochemical performances.

  5. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  6. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01

    PG&E and Southern California Edison (SCE) are testing industrial battery chargers according to a California Energy Commission (CEC) approved test procedure. This test procedure, developed with charger manufacturer input as part of the CEC?s... possible by using the SCR controls. TEST PROCEDURE A test procedure was developed for the California Energy Commission?s (CEC) Codes and Standards process. This test procedure was developed with industry stakeholder input for battery and charger...

  7. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979. [165 Ah, 36. 5 Wh/kg

    SciTech Connect (OSTI)

    Bodamer, G.W.; Branca, G.C.; Cash, H.R.; Chrastina, J.R.; Yurick, E.M.

    1980-06-01

    Progress during the 1979 fiscal year is reported. All the tooling and capital equipment required for the pilot line production has been installed. A limited amount of plate production has been realized. A highly automated and versatile testing facility was established. The fabrication and testing of the initial calculated design is discussed. Cell component adjustments and the trade-offs associated with those changes are presented. Cells are being evaluated at the 3-hour rate. They have a capacity of 165 Ah and an energy density of 36.5 Wh/kg, and have completed 105 cycles to date. Experimental results being pursued under the advanced battery development program to enhance energy density and cycle life are presented. Data on the effects of different electrolyte specific gravity, separators, retainers, paste densities, battery additives and grid alloy composition on battery performance are presented and evaluated. Advanced battery prototype cells are under construction. Quality Assurance activities are summarized. They include monitoring the cell and battery fabrication and testing operations as well as all relevant documentation procedures. 12 figures, 28 tables.

  8. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001 1385 Improving Battery Performance by Using Traffic

    E-Print Network [OSTI]

    conditions is identified as a mechanism that can be exploited to enhance the capacity of a batteryIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001 1385 Improving Battery battery management techniques that exploit the charge recovery effect inherent to many secondary storage

  9. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    Mellor-Crummey, John

    The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have on their respective efficiencies. We will measure the current capacity of the Li-ion battery and the capacitance

  10. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Information ABSTRACT: Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical

  11. A dynamic battery model for co-design in cyber-physical systems Fumin Zhang, Zhenwu Shi

    E-Print Network [OSTI]

    Zhang, Fumin

    A dynamic battery model for co-design in cyber-physical systems Fumin Zhang, Zhenwu Shi School, Georgia 30332 Email: wolf@ece.gatech.edu Abstract We introduce a dynamic battery model that describes the variations of the capacity of a battery under time varying discharge current. This model supports a co

  12. Performance Analysis of Battery Power Management Schemes in Wireless Mobile Balakrishna J. Prabhu, A. Chockalingam and Vinod Sharma

    E-Print Network [OSTI]

    Sharma, Vinod

    Performance Analysis of Battery Power Management Schemes in Wireless Mobile Devices Balakrishna J Abstract--In this paper, we analyze the performance of battery power management schemes in wireless mobile devices using a queueing theory approach. We model the battery as a server with finite service capacity

  13. C Battery Corral 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    reliability. The total consumption of lead-acid batteries in the United States reported in 2008 is $2.9 billion per year and is growing at an annual rate of 8%. The utilization of Lithium-ion battery is growing rapidly. The possibility of lithium-ion... Energy Storage Parameters ............................................................................ 25 Table 2 Case I Cost Comparison ................................................................................ 27 Table 3 PHEV Battery...

  14. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  15. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  16. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  17. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  18. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,

    E-Print Network [OSTI]

    Cui, Yi

    Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

  19. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect (OSTI)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  20. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  1. Collecting battery data with Open Battery Gareth L. Jones1

    E-Print Network [OSTI]

    Imperial College, London

    Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

  2. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  3. Calcium/calcium chromate thermal battery and thermal battery assignment at the General Electric Neutron Devices Department

    SciTech Connect (OSTI)

    Neale, J.B.; Walton, R.D.

    1980-10-10

    A nontechnical overview of thermal battery design and fabrication methods is given, along with a description of the role of the General Electric Neutron Devices Department (GEND) in the Department of Energy's battery program. A thermal battery is a primary, reserve electrochemical power source; that is, it can be used only once and then for a relatively short period, measured in minutes. To energize the battery, an external electrical signal ignites a heat source in the battery to melt the electrolyte and initiate an electrochemical reaction. The battery is made up of several series-connected cells, each with an anode, a cathode, and a current collector. A cell's anode is calcium; its cathode is hexavalent chromium. The electrochemical reaction takes place when the electrolyte is melted by heat supplied from ignition of an iron-potassium perchlorate disk. Since no reaction occurs while the electrolyte is in the solid state, the battery does not deteriorate with time and has a shelf life exceeding 20 years. Presented are such critical battery operating characteristics as temperature, rise time, active life, current capacity, etc. Design factors described include size and shape, pellet density, ignition methods, anode construction, etc. These batteries are designed by Sandia National Laboratories, Albuquerque. GEND acts as a procurement agency and provides engineering support to suppliers. 18 figures.

  4. Lithium battery electrodes with ultra-thin alumina coatings

    DOE Patents [OSTI]

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  5. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  6. Graphene-based battery electrodes having continuous flow paths

    DOE Patents [OSTI]

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  7. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  8. Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics

    SciTech Connect (OSTI)

    Gaikwad, AM; Chu, HN; Qeraj, R; Zamarayeva, AM; Steingart, DA

    2013-02-10

    Compliant energy storage has not kept pace with flexible electronics. Herein we demonstrate a technique to reinforce arbitrary battery electrodes by supporting them with mechanically tough, low-cost fibrous membranes, which also serve as the separator. The membranes were laminated to form a full cell, and this stacked membrane reinforcement bears the loads during flexing. This technique was used to make a high energy density, nontoxic Zn-MnO2 battery with printed current collectors. The Zn and MnO2 electrodes were prepared by using a solution-based embedding process. The cell had a nominal potential of 1.5 V and an effective capacity of approximately 3 mA h cm(-2). We investigated the effect of bending and fatigue on the electrochemical performance and mechanical integrity of the battery. The battery was able to maintain its capacity even after 1000 flex cycles to a bend radius of 2.54 cm. The battery showed an improvement in discharge capacity (ca. 10%) if the MnO2 electrode was flexed to tension as a result of the improvement of particle-to-particle contact. In a demonstration, the flexible battery was used to power a light-emitting diode display integrated with a strain sensor and microcontroller.

  9. Utility battery storage systems program report for FY 94

    SciTech Connect (OSTI)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  10. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  11. Battery actuation of NITINOL at sub-zero temperatures

    SciTech Connect (OSTI)

    Goldstein, D.

    1989-04-01

    It is feasible to use batteries to produce rapid shape-memory response in NITINOL wires in sub-zero temperature ambients. Data are presented on lithium thionyl chloride batteries used to joule heat 10-mil-diameter wires of nominal transformation temperatures of 90-105 C. The batteries and wires were jointly tested in a -35C ambient air environment. The wire contracted 5% in length (0.4 inch) and lifted a 1 pound load in 1/2 second.

  12. Short-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes

    E-Print Network [OSTI]

    Yener, Aylin

    -term throughput of an energy harvesting transmitter node with power control and a limited energy storage capacity and the energy storage capacity of the node. A discrete model with packets of energy arrivals is considered that the harvested energy can be stored up to an energy level that we shall call the battery capacity. Energy beyond

  13. Nanomaterials for sodium-ion batteries

    DOE Patents [OSTI]

    Liu, Jun; Cao, Yuliang; Xiao, Lifen; Yang, Zhenguo; Wang, Wei; Choi, Daiwon; Nie, Zimin

    2015-05-05

    A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.

  14. Method and system for constructing a rechargeable battery and battery structures formed with the method

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN); Snyder, Jr., William B. (Knoxville, TN)

    1995-01-01

    A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.

  15. Enhanced Security-Constrained OPF With Distributed Battery Energy Storage

    SciTech Connect (OSTI)

    Wen, YF; Guo, CX; Kirschen, DS; Dong, SF

    2015-01-01

    This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.

  16. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  18. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  19. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  20. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  1. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    L. C. , R. , Costs of Lithium-Ion Batteries for Vehicles. Inpast two decades, lithium-ion batteries have emerged as anMore recently, lithium-ion batteries have been employed in

  2. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    of a Vanadium Redox-Flow Battery to Maintain Power Quality,"Fuel System Using Redox Flow Battery," ed: WO Patentand D. B. Hickey, "Redox Flow Battery System for Distributed

  3. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01

    and design of electricity capacity markets. Our work has twoMarkets for Electricity capacity markets, and so, when thesemain features of electricity capacity markets. We have used

  4. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  5. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  6. Capacity of the Energy Harvesting Channel with Energy Arrival Information at the Receiver

    E-Print Network [OSTI]

    Yener, Aylin

    Capacity of the Energy Harvesting Channel with Energy Arrival Information at the Receiver Omur Ozel- pacity is invariant to the non-causal knowledge of energy arrivals. Finally, we show that the capacity the battery energy at the transmitter is independent of the message. The capacity of this channel with only

  7. Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

    E-Print Network [OSTI]

    Yener, Aylin

    Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel1 to the available battery energy in that channel use. The capacity of this channel with only transmitter side, The Pennsylvania State University, University Park, PA 16802 Abstract--We determine the capacity of a discrete

  8. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    DOE Patents [OSTI]

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  9. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

  10. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

    E-Print Network [OSTI]

    Cui, Yi

    Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasing storage capacity (theoretical values of 4200 vs 372 mAh/g for graphite). How- ever, the insertion

  11. Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

    SciTech Connect (OSTI)

    2010-09-01

    BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

  12. A smart control system for electric vehicle batteries

    SciTech Connect (OSTI)

    Arikara, M.P.; Dickinson, B.E.; Branum, B.

    1993-12-31

    A smart control system for electric vehicle (EV) batteries was designed and its performance was evaluated. The hardware for the system was based on the Motorola MC68HC11ENB micro controller. A zinc bromide (Zn/Br{sub 2}) battery was chosen since it is a good candidate as an EV battery and has a large number of user variable parameters that affect its performance. The flexibility of the system arises from the fact that the system can be programmed to do a wide variety of jobs. The use of real time interrupts and other features makes the system safe for use along with the battery systems. Test data indicates that real time control of the different parameters can increase the performance of the battery by 15%. In addition to optimizing the performance of the battery the control system incorporates essential safety features.

  13. Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery

    E-Print Network [OSTI]

    Hua, Xiao; Robert, Rosa; Du, Lin-Shu; Wiaderek, Kamila M.; Leskes, Michal; Chapman, Karena W.; Chupas, Peter J.; Grey, Clare P.

    2014-06-11

    Conversion materials for lithium ion batteries have recently attracted considerable attention due to their exceptional specific capacities. Some metal fluorides, such as CuF2, are promising candidates for cathode materials owing to their high...

  14. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect (OSTI)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  15. Friction welded battery component

    SciTech Connect (OSTI)

    Bowen, G.K.; Zagrodnik, J.P.

    1990-07-31

    This patent describes a battery component for use in a flow battery containing fluid electrolyte. It comprises: first and second bond ribs disposed on opposite sides of and defining a channel and respective primary flash traps disposed adjacent the bond ribs opposite the channel.

  16. Facile and Green Preparation for the Formation of MoO2GO Composites as Anode Material for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    as an anode material for lithium-ion batteries, the MoO2-GO composites exhibited an improved storage capacity for lithium-ion batteries. 1. INTRODUCTION With the fast-growing demand on petroleum resources and gaseous cycling life, and environmental benignity, lithium- ion batteries (LIBs) have been regarded as one

  17. Improved lithiumsulfur batteries with a conductive coating on the separator to prevent the

    E-Print Network [OSTI]

    Cui, Yi

    Improved lithium­sulfur batteries with a conductive coating on the separator to prevent*ac Lithium­sulfur (Li­S) batteries are highly attractive for future generations of portable electronics novel electrodes and electrolytes have been tested to improve Li­S battery performance. However

  18. Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries

    E-Print Network [OSTI]

    Dutta, Indranath

    Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries 1. Shao Y, X Wang, MH storage in vanadium redox flow batteries." Journal of Power Sources 195(13):4375-4379. 2. Shao Y, MH nanotube electrodes for redox flow batteries." Electrochemistry Communications 11(10):2064-2067. doi:10

  19. Research, development, and demonstration of nickel-zinc batteries for electric-vehicle propulsion. Annual report for 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Progress in work at Exide in three main development areas, i.e., battery design and development, nickel cathode study, and electrochemical studies is reported. Battery design and development concentrated on the optimization of design parameters, including electrode spacing, charging methods, electrolyte concentration, the design and fabrication of prototype cells and modules, and testing to verify these parameters. Initial experiments indicated that an interelectrode spacing of 2.5 mm was optimum when normal (D.C.) charging is used. It was during these experiments that a high rate charging technique was developed to deposit a dense active zinc which did not shed during vibration. A 4 cell - 300 Ah experimental module was built and sent to NBTL for testing. Initial testing on this module and a 300 Ah cell are reported. Experiments on electrolyte concentration indicate that higher concentrations of KOH (8M, 9M or 10M) are beneficial to capacity maintenance. Available nickel cathodes were evaluated for possible use in the VIBROCEL. These included pocket, sintered plaque impregnated, nickel plated steel wool impregnated, plastic bonded and CMG (multifoil) electrodes. These electrodes have Coulombic densities ranging from 70 Ah/Kg for pocket plates to 190 Ah/Kg for CMG electrodes. Detailed test data are presented for each type including rate capability, effect of zincate on performance, and capacity maintenance with cycling. Work on zinc deposition emphasized the special charging technique. This is a deposition using special waveforms of charging current, to deposit dense crystalline zinc on the anode substrate.

  20. Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium

    E-Print Network [OSTI]

    Cui, Yi

    Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries Li lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core during lithium cycling and can function as a mechanical support and an efficient electron conducting

  1. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect (OSTI)

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  2. New insights from in-situ electron microscopy into capacity loss...

    Office of Scientific and Technical Information (OSTI)

    New insights from in-situ electron microscopy into capacity loss mechanisms in Li-ion batteries with Al anodes. Citation Details In-Document Search Title: New insights from in-situ...

  3. New insights from in-situ electron microscopy into capacity loss...

    Office of Scientific and Technical Information (OSTI)

    in-situ electron microscopy into capacity loss mechanisms in all-solid-state Li-ion batteries with Al anodes. Citation Details In-Document Search Title: New insights from in-situ...

  4. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    image. Chapter 2 – Relationship Between Morphology and Conductivity of Block- Copolymer Based Battery

  5. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect (OSTI)

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  6. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  7. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  8. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  9. Polymeric battery separators

    SciTech Connect (OSTI)

    Minchak, R. J.; Schenk, W. N.

    1985-06-11

    Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

  10. Wednesday, October 17th Bourns A265 1:40-2:30pm To realize the next generation rechargeable lithium batteries, it is critical to use novel electrode

    E-Print Network [OSTI]

    lithium batteries, it is critical to use novel electrode materials with higher lithium storage capacity. In this presentation, a number of novel lithium battery electrode materials including silicon anode, tin anode, and sulfur cathode will be presented. Silicon (Si) and tin (Sn) possess very high lithium storage capacities

  11. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  12. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  13. Battery charger and state of charge indicator. Final report

    SciTech Connect (OSTI)

    Latos, T.S.

    1984-04-15

    The battery charger has a full-wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches which are programmed to actively shape the input ac line current to be a mirror image of the ac line voltage. The power circuit is capable of operating at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state-of-charge software programs. The state-of-charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictated the use of high power NPN Darlington switching transistors. The power circuit topology developed is a three switch design utilizing a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

  14. Coated porous carbon cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Klett, James William [ORNL

    2008-01-01

    Coated porous carbon cathodes for automotive lithium batteries are being developed with the goal of overcoming the problems with capacity fade and poor thermal management in conventional polymer-bonded cathodes. The active cathode material (lithium iron phosphate nanoparticles) is carbon-bonded to the porous carbon support material. Cathodes have been developed with high specific energy and power and with good cycling behavior.

  15. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, and alkaline batteries. All batteries need to be sorted by battery type. Each battery type must be accumulated in a clearly labeled receptacle to identify the acceptable battery type. Batteries can be dropped off

  16. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  17. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  18. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  19. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  20. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  1. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  2. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  3. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  4. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  5. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  6. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery charging and discharging. Researchers first charged commercial-grade battery cells to 50% full in 30 minutes, mimicking real world conditions. Then, the battery cell...

  7. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  8. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    film lithium and lithium-ion batteries. Solid State Ionicselectrolytes for lithium-ion batteries. Advanced Materialsand side reactions in lithium-ion batteries. Journal of the

  9. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  10. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  11. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

  12. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  13. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks...

  14. Zinc bromide battery development. Final report

    SciTech Connect (OSTI)

    Leo, A.

    1986-01-01

    Earlier EPRI work demonstrated the potential of zinc bromide batteries to provide long-life, low-cost energy storage for utilities. The latest developments, summarized in this report, include improvements in electrode, separator, and other components, as well as successful testing of cell stacks.

  15. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  16. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  17. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  18. Milestone Report - Demonstrate Braided Material with 3.5 g U/kg Sorption Capacity under Seawater Testing Condition (Milestone M2FT-15OR0310041 - 1/30/2015)

    SciTech Connect (OSTI)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2015-01-01

    This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. The braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.

  19. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  20. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL|FacilityAbout »Faculty ProgramsFail

  1. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  2. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  3. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  4. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer battery, lithium-ion batteries, and lithium-basedElectrolyte For Lithium-Ion Rechargeable Batteries," LithiumK. Ozawa, "Lithium-ion Rechargeable Batteries with LiCo0 and

  5. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  6. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  7. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  8. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  9. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  10. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  11. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  12. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  13. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  14. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  15. Battery-Aware Selective Transmitters in Energy-Harvesting Sensor Networks: Optimal Solution and Stochastic Dual Approximation

    E-Print Network [OSTI]

    Marques, Antonio Garcia

    Battery-Aware Selective Transmitters in Energy-Harvesting Sensor Networks: Optimal Solution-Sueiro, Carlos III University of Madrid, Leganes, 28911, Madrid, SPAIN Abstract Energy-harvesting devices alleviate the problem of sensor nodes being powered by finite-capacity batteries. Since har- vested energy

  16. Safe battery solvents

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  17. Battery switch for downhole tools

    DOE Patents [OSTI]

    Boling, Brian E. (Sugar Land, TX)

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  18. Flow Batteries A Historical Perspective

    E-Print Network [OSTI]

    Flow Batteries A Historical Perspective Robert F. Savinell Case Western Reserve University Department of Chemical Engineering DOE Flow Battery Workshop March 2012 #12;2 OUTLINE ·The first flow cell? ·Review articles- documented progress ·Early NASA Work- some learning ·Fuel Cell and Flow Battery

  19. Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries Hyun diameters less than 10 nm and lengths of several micrometers. Galvanostatic battery testing showed that Li, lithium ion battery, LiMn2O4 nanowires, high power density, Jahn-Teller distortion T he high energy

  20. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio (>700 Wh/kg) cathode materials for lithium-ion batteries. 1 Introduction The widespread use of lithium compounds. Testing previously known lithium-containing compounds for battery properties can lead

  1. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  2. Utility battery storage systems. Program report for FY95

    SciTech Connect (OSTI)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  3. A miniature shock-activated thermal battery for munitions applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Kirby, D.L.; Reinhardt, F.W.

    1998-04-01

    The feasibility of a small, fast-rise thermal battery for non-spinning munitions applications was examined by studying the response of conventional thermal cells to impact (mechanical) energy to simulate a setback environment. This is an extension of earlier work that demonstrated that shock activation could be used to produce power from a conventional thermal-battery cell. The results of tests with both single and multiple cells are presented, along with data for a 5-cell miniature (5-mm diameter) thermal battery. The issues needing to be resolved before such a device can become a commercial reality are also discussed.

  4. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  5. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  6. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  7. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gapsmore »in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.« less

  8. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  9. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  10. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  11. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  12. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    SciTech Connect (OSTI)

    Denholm, Paul; Diakov, Victor; Margolis, Robert

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  13. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2006 PDF 2 Production Capacity of...

  14. Battery paste compositions and electrochemical cells for use therewith

    DOE Patents [OSTI]

    Olson, J.B.

    1999-02-16

    An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

  15. Battery paste compositions and electrochemical cells for use therewith

    DOE Patents [OSTI]

    Olson, John B. (Boulder, CO)

    1999-02-16

    An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

  16. Battery paste compositions and electrochemical cells for use therewith

    DOE Patents [OSTI]

    Olson, John B. (Boulder, CO)

    1999-12-07

    An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

  17. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  18. Shannon Capacity Ramsey Numbers

    E-Print Network [OSTI]

    Radziszowski, Stanislaw P.

    Shannon Capacity Ramsey Numbers Old links between Shannon and Ramsey New links between Shannon and Ramsey Bounds on Shannon Capacity and Ramsey Numbers from Product of Graphs Xiaodong Xu1 Stanislaw Institute of Technology, NY, USA March 2014 1/24 #12;Shannon Capacity Ramsey Numbers Old links between

  19. A Look Inside SLAC's Battery Lab

    SciTech Connect (OSTI)

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  20. A Look Inside SLAC's Battery Lab

    ScienceCinema (OSTI)

    Wei Seh, Zhi

    2014-07-21

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  1. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  2. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  3. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    SciTech Connect (OSTI)

    Pratt, Harry D [Sandia National Laboratories; Pratt, William R [Sandia National Laboratories; Fang, Xikui [Ames Laboratory; Hudak, Nicholas S [Sandia National Laboratories; Anderson, Travis M [Sandia National Laboratories

    2014-08-01

    A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34)2(OH)311?, cycled between (SiFe3W9(OH)3O34)2(OH)311?/(SiFe3W9(OH)3O34)2(OH)314?and (SiFe3W9(OH)3O34)2(OH)317?/(SiFe3W9(OH)3O34)2(OH)314? for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O194?, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194?had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W4O194?was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.

  4. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  5. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  6. A Lighting Solution using Discarded Laptop Batteries

    E-Print Network [OSTI]

    Toronto, University of

    UrJar A Lighting Solution using Discarded Laptop Batteries Vikas Chandan vchanda4@in.ibm.com IBM year 3 #12;Li-Ion Batteries Li-Ion batteries power laptops, tablets and phones, form a key constituent of e-waste IBM India produced ~10 tons of discarded laptop batteries (2013) Recycling Li-Ion batteries

  7. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  8. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  9. An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics

    E-Print Network [OSTI]

    Pedram, Massoud

    An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

  10. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  11. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  12. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  13. Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint

    SciTech Connect (OSTI)

    Pesaran, A.; Heon, G. H.; Smith, K.

    2011-01-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  14. Polymer graphite composite anodes for Li-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph analysis #12;TGA analysis of polymer composite SFG10 samples -0.0 150.0 300.0 450.0 600.0 750.0 900-discharge curves of polymer composite SFG10 samples 0 200 400 600 800 Specific Capacity (mAh/g) 0.0 1.0 2.0 3.0 4

  15. Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode

    SciTech Connect (OSTI)

    Howe, Jane Y; Meyer III, Harry M; Burton, David J.; Qi, Dr. Yue; Nazri, Maryam; Nazri, G. Abbas; Palmer, Andrew C.; Lake, Patrick D.

    2013-01-01

    We report the interfacial study of a silicon/carbon nanofiber (Si/CNF) nanocomposite material as a potentially high performance anode for rechargeable lithium ion batteries. The carbon nanofiber is hollow, with a graphitic interior and turbostratic exterior. Amorphous silicon layers were uniformly coated via chemical vapor deposition on both the exterior and interior surfaces of the CNF. The resulting Si/CNF composites were tested as anodes for Li ion batteries and exhibited capacities near 800 mAh g1 for 100 cycles. After cycling, we found that more Si had fallen off from the outer wall than from the innerwall of CNF. Theoretical calculations confirmed that this is due to a higher interfacial strength at the Si/Cedge interface at the inner wall than that of the Si/C-basal interface at the outer wall. Based upon the experimental analysis and theoretical calculation, we have proposed several interfacial engineering approaches to improve the performance of the electrodes by optimizing the microstructure of this nanocomposite.

  16. LG to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Energy Savers [EERE]

    Capacity Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After...

  17. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  18. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  19. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery...

  1. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atfor use in lithium-ion batteries. Thermal stabilities andFor rechargeable lithium-ion batteries, we require that any

  2. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    in High-Power Lithium-Ion Batteries for Use in Hybridas Cathodes for Lithium-Ion Batteries. Chem. Mater. 2011,seen in magnesium or lithium ion batteries would operate at

  3. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01

    battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  5. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

  6. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  7. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  8. Development of Industrially Viable Battery Electrode Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  9. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  10. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  11. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (USCAR). It also works directly with industry battery and material suppliers through competitive research and development awards. To learn how batteries are used...

  12. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  13. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  14. Revealing lithium-silicide phase transformations in nano-structured silicon based lithium ion batteries via in-situ NMR spectroscopy

    E-Print Network [OSTI]

    Ogata, K.; Salager, E.; Kerr, C. J.; Fraser, A. E.; Ducati, C.; Morris, A. J.; Hofmann, Stephan; Grey, Clare P.

    2014-02-03

    Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being...

  15. Flow Battery Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast(ER1)Flow Battery

  16. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  17. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  18. A Desalination Battery Mauro Pasta,

    E-Print Network [OSTI]

    Cui, Yi

    A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia Information ABSTRACT: Water desalination is an important approach to provide fresh water around the world demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

  19. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Alex A. Zozulya; Dana Z. Anderson

    2013-08-06

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

  20. Abuse Testing of High Power Batteries

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  1. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  2. Shaped Offset QPSK Capacity

    E-Print Network [OSTI]

    Sahin, Cenk

    2012-08-31

    In this work we compute the capacities and the pragmatic capacities of military-standard shaped-offset quadrature phase-shift keying (SOQPSK-MIL) and aeronautical telemetry SOQPSK (SOQPSK-TG). In the pragmatic approach, SOQPSK is treated as a...

  3. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  4. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  5. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect (OSTI)

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  6. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    in design of mobile embedded sys- tems today is the battery lifetime for a given size and weight in the energy densities of the battery technologies, estimating the lifetime and energy delivered by the battery applications. Stochastic battery models [6, 8] have also been proposed which are faster than to the PDE model

  7. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  8. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

  9. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  10. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Broader source: Energy.gov (indexed) [DOE]

    Testing to support Code & Standards Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing Vehicle...

  11. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  12. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  13. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  14. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  15. Hydrothermal synthesis of flowerlike SnO{sub 2} nanorod bundles and their application for lithium ion battery

    SciTech Connect (OSTI)

    Wen, Zhigang, E-mail: xh168688@126.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China); Zheng, Feng, E-mail: fzheng@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yu, Hongchun; Jiang, Ziran [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Kanglian [Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China)

    2013-02-15

    SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup ?1} up to 40th cycle at 0.1 C. - Highlights: ? The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ? SnO{sub 2} nanorod bundles with tunable size by controlling concentration of SnCl{sub 4}. ? A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.

  16. Utilization of sensitivity coefficients to guide the design of a thermal battery

    SciTech Connect (OSTI)

    Blackwell, B.F.; Dowding, K.J.; Cochran, R.J.; Dobranich, D.

    1998-08-01

    Equations are presented to describe the sensitivity of the temperature field in a heat-conducting body to changes in the volumetric heat source and volumetric heat capacity. These sensitivity equations, along with others not presented, are applied to a thermal battery problem to compute the sensitivity of the temperature field to 19 model input parameters. Sensitivity coefficients, along with assumed standard deviation in these parameters, are used to estimate the uncertainty in the temperature prediction. From the 19 parameters investigated, the battery cell heat source and volumetric heat capacity were clearly identified as being the major contributors to the overall uncertainty in the temperature predictions. The operational life of the thermal battery was shown to be very sensitive to uncertainty in these parameters.

  17. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  18. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  19. Stochastic capacity modeling to support demand/capacity gap planning

    E-Print Network [OSTI]

    Niles, Augusta (Augusta L.)

    2014-01-01

    Capacity strategy has established methods of dealing with uncertainty in future demand. This project advances the concept of capacity strategy under conditions of uncertainty in cases where capacity is the primary source ...

  20. High Performance Silicon Monoxide (SiO) Electrode for Next Generation Lithium Ion Batteries

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-02-27

    Berkeley Lab’s High Performance Silicon Monoxide Electrode has a capacity retention of more than 90% after ~500 cycles, which translates into a ~20% improvement over the limited energy density of conventional graphite anode-based lithium-ion batteries, enabling next-generation mobile electronics and electric/plug-in vehicles....

  1. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  2. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  3. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  4. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  5. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  6. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    microdiffraction. Lithium ion batteries have made a greatthose used in lithium-ion batteries. Dynamic potentiometricrechargeable lithium ion batteries consist of many layers of

  7. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    2000). Costs of Lithium-Ion Batteries for Vehicles, (ANL/Lithium ion Batteries 2.1.1 Lithium versus Lithium ion Batteries Lithium systems

  8. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  9. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

  10. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  11. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  12. Manufacturing of Protected Lithium Electrodes for Advanced Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A...

  13. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

  14. Psychometric properties of the penn computerized neurocognitive battery

    E-Print Network [OSTI]

    Moore, TM; Reise, SP; Gur, RE; Hakonarson, H; Gur, RC; Gur, RC

    2015-01-01

    a computerized neurocognitive battery in children age 8 –21.based neurocog- nitive battery. Therapeutic Hypothermia anda standardized neurocognitive battery. Neuropsychology, 28,

  15. Electroactive materials for rechargeable batteries

    SciTech Connect (OSTI)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  16. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  17. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  18. Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

  19. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  20. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  1. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  2. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  3. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  4. Development of alkaline zinc/ferricyanide battery

    SciTech Connect (OSTI)

    Hollandsworth, R.P.; Adams, G.B.; Webber

    1983-08-01

    The zinc/ferro-ferricyanide battery system is intended for utility load leveling and solar photovoltaic/wind applications with advantages of high cyclic efficiency, high cell voltage, random cycling without zinc strip cycles and with switching times of less than 5 ms from load to insolation or vice versa. Self-discharge has been measured at 1.6%/day. The system demonstrates excellent electrochemical performance. Cell voltages are 1.88 V OCV and 1.61 V discharge at 35 mA/cm/sup 2/ or 57 mW/cm/sup 2/ in 2N NaOH at 40/sup 0/C (Nafion N-125 separator). Cell polarization losses are almost entirely resistive and within the separator. Over 800 4-hr cycles have been demonstrated in cell of 60-cm/sup 2/ nominal area (70 mA.h/cm/sup 2/ capacity) with mean energy efficiency of 76.6 + or - 2.1 percent). Similarly, a 60-cm/sup 2/ cell has demonstrated over 220, 11 to 17 hour cycles (255 + or - 48 mA.h/cm/sup 2/ capacity) with a mean energy efficiency of 75.3 + or - 5.1 percent.

  5. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  6. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect (OSTI)

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  7. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  8. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  9. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  10. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  11. Preparation of ionic membranes for zinc/bromine storage batteries

    SciTech Connect (OSTI)

    Assink, R.A.; Arnold, C. Jr.

    1991-01-01

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance. 5 refs., 6 figs., 11 tabs.

  12. Project summaries: seventh battery and electrochemical contractors' conference

    SciTech Connect (OSTI)

    Not Available

    1985-11-01

    The overall goal of the United States' energy policy is to foster an adequate supply of energy at a reasonable cost. This policy recognizes that ''adequate supply'' requires flexibility in the energy system, with no reliance on any single source of supply. The Energy Storage Program of the Office of Energy Storage and Distribution is supporting this policy by providing the technology base and exploratory development required for the more effective use of electrochemical technologies, aimed at improved energy flexibility in transportation, electric utility, and industrial applications. This document represents a compilation of seventy-four project summaries of research supported by the US Department of Energy, Energy Storage Program. Sections included in this report are: Sodium Sulfur Research and Development, Flow Battery Research and Development, Advanced Battery Research, Systems Analysis, Performance and Testing, Metal Air Batteries, and Fuel Cells.

  13. Status of flow-battery research in the United States

    SciTech Connect (OSTI)

    Clark, R.P.; Chamberlin, J.L.; Saxton, H.J.; Symons, P.C.

    1982-01-01

    Flow batteries are defined as electrochemical energy storage devices in which at least one of the active materials is stored external to the power converting cell-stack, and in which this soluble active material is circulated via the electrolyte, through the cell-stack during system charge or discharge. Although intensive development of some of these systems has been underway for some time, they were only classified as a distinct category in the United States recently. Of the projects on flow batteries which are still being conducted, the work on the zinc/chlorine system (EDA) has been in progress since 1968; programs on zinc/bromine (Exxon, Gould), on iron/chromium Redox (NASA-Lewis Research Center), and on the iron/ferric-ferrous chloride system (NRG/GEL) have all been underway about seven years; research on the zinc/ferro-ferricyanide battery (Lockheed) has been conducted since 1978. The present paper, which reviews the 1982 status of these battery programs, appears timely since, except for the Lockheed system, the developments have all reached the stage where multi-kilowatt-hour batteries are under test.

  14. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  15. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  16. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  17. Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities

    E-Print Network [OSTI]

    Cao, Guozhong

    Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities By Dawei Liu, Betzaida Battalla Garcia, Qifeng Zhang, Qing Guo, Yunhuai Zhang, Saghar Sepehri and alkaline batteries for decades, is a well accepted electrode material for clean energy storage because

  18. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  19. Rechargeable alkaline zinc/ferricyanide battery, Phase III. Final report, 26 October 1981-18 September 1982

    SciTech Connect (OSTI)

    Adams, G.B.; Hollandsworth, R.P.; Webber, B.D.

    1983-02-01

    Project effort was concentrated primarily on technical advancement of the alkaline zinc/ferricyanide battery to meet goals of scale-up and demonstration of solid-reactant storage with 1000-cm/sup 2/ full-scale cells; development of a conceptual engineering design for a 50-kW solar-photovoltaic storage system; demonstration of solar acceptance random cycling; and determination of cycle life of cells operating at 70- and 200-mA.h/cm/sup 2/ capacity. These goals were met in the design, fabrication, and cyclic testing of a 1000-cm/sup 2/ cell having a flow aspect ratio of 2:1. After some design optimization, energy efficiency in 2N NaOH at 43/sup 0/C is 74 to 78 percent. Testing has been in conjunction with a crystallizer/reservoir designed with a capacity of 300 mA.h/cm/sup 2/ that delivers solids-free electrolyte to the cell. A conceptual engineering design for a 50-kW solar storage-battery system has been formulated with mass and thermal balances computed. Single-cell (60-cm/sup 2/) cycle life tests are in progress at 35 mA/cm/sup 2/ with 2N NaOH electrolyte with Nafion N-125 separator at 40/sup 0/C. Over 800 cycles at 70 mA.h/cm/sup 2/ capacity with mean energy efficiency of 76.6 +- 2.1 percent have been logged. Mean voltaic and coulombic efficiencies are 83.3 +- 1.8 percent and 92.0 +- 1.8 percent, respectively. Single-cell (60-cm/sup 2/) cycle life tests run under similar conditions at 249 +- 45 mA.h/cm/sup 2/ have logged over 220 cycles with mean energy efficiency of 75.3 +- 5.1 percent. Mean voltaic and coulombic efficiencies are 84.7 +- 2.0 and 89.0 +- 6.0, respectively.

  20. Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Yang, B; Prakash, GKS; Narayanan, SR

    2012-01-01

    Rechargeable iron-based alkaline batteries such as iron - air and nickel - iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.021301jes] All rights reserved.