Powered by Deep Web Technologies
Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Creating systems that effectively convert energy, such as efficient solar cells and electrochemical batteries, has been a  

E-Print Network [OSTI]

SEMTE abstract Creating systems that effectively convert energy, such as efficient solar cells stimuli, the solar energy from sunlight, and the mechanical motion is commonplace, indeed fundamental and electrochemical batteries, has been a longstanding scientific pursuit, especially given the global energy

Reisslein, Martin

2

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

3

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays  

E-Print Network [OSTI]

An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 harvest and storage processes. This power pack incorporates a series-wound dye- sensitized solar cell, nanostructures have been widely used in energy harvesting devices, such as dye-sensitized solar cells (DSSCs

Wang, Zhong L.

4

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

5

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

6

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

7

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

8

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

9

Diagnostic Studies on Lithium Battery Cells and Cell Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

10

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

11

Oxide nanowires for solar cell applications Qifeng Zhang, Supan Yodyingyong, Junting Xi, Daniel Myers and Guozhong Cao*  

E-Print Network [OSTI]

conversion and storage including solar cells, lithium-ion batteries, super- capacitors, and hydrogen storage

Cao, Guozhong

12

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

13

Propagation testing multi-cell batteries.  

SciTech Connect (OSTI)

Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

2014-10-01T23:59:59.000Z

14

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

15

Multi-cell storage battery  

DOE Patents [OSTI]

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

16

Design of a Novel, Battery-less, Solar Powered Wireless Tag for Enhanced Range Remote Tracking Applications  

E-Print Network [OSTI]

of a regulated battery supply. The design utilizes super capacitors, which are much cleaner to dispose output voltage. In the absence of batteries, the solar energy was to be collected in a capacitor (charge tank) for use by the tag. A higher solar cell output voltage across the capacitor would provide

Tentzeris, Manos

17

High power bipolar battery/cells with enhanced overcharge tolerance  

DOE Patents [OSTI]

A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

Kaun, Thomas D. (New Lenox, IL)

1998-01-01T23:59:59.000Z

18

Nanocrystal Solar Cells  

E-Print Network [OSTI]

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

19

Nighttime solar cell  

SciTech Connect (OSTI)

Currently photovoltaic (PV) cells convert solar energy into electrical energy at an efficiency of about 18%, with the maximum conversion rate taking place around noon on a cloudless day. In many applications, the PV cells are utilized to recharge a stand-by battery pack that provides electrical energy at night or on cloudy days. Increasing the utilization of the panel array area by producing electrical power at night will reduce the amount of required electrical energy storage for a given array size and increase system reliability. Thermoelectric generators (TEG) are solid state devices that convert thermal energy into electrical energy. Using the nighttime sky, or deep space, with an effective temperature of 3.5 K as a cold sink, the TEG presented here can produce electrical power at night. The hot junction is supplied energy by the ambient air temperature or some other warm temperature source. The cold junction of the TEG is insulated from the surroundings by a vacuum cell, improving its overall effectiveness. Combining the TEG with the PV cell, a unique solid state device is developed that converts electromagnetic radiant energy into usable electrical energy. The thermoelectric-photovoltaic (TEPV) cell, or the Nighttime Solar Cell, is a direct energy conversion device that produces electrical energy both at night and during the day.

Parise, R.J.

1998-07-01T23:59:59.000Z

20

1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries  

E-Print Network [OSTI]

1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers-controller of the proposed charger. Index Terms--Battery charger, maximum power point, solar. I. INTRODUCTION W of power [1] at 12 V. These new products make solar power available to hikers, campers, soldiers

Lehman, Brad

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

22

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

23

High power bipolar battery/cells with enhanced overcharge tolerance  

DOE Patents [OSTI]

A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.

Kaun, T.D.

1998-04-07T23:59:59.000Z

24

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 7, SEPTEMBER 2012 2925 Battery Cell Identification and SOC Estimation Using  

E-Print Network [OSTI]

battery technology employs cell- or module-level voltage sensors, with high costs for sensors observability for battery cell subsystems. Control strategies, estimation algorithms, and their key properties for electric vehicles (including hybrid electric, plug-in hybrid, fuel cell, and solar vehicles), renewable

Mi, Chunting "Chris"

25

Thermal Management of Solar Cells  

E-Print Network [OSTI]

cells by cooling and concentration techniques," inheat. Different techniques of cooling solar cells have been

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

26

Heterojunction solar cell  

DOE Patents [OSTI]

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

27

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

28

Thermal Management of Solar Cells  

E-Print Network [OSTI]

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

29

Solar Energy for Charging Fork Truck Batteries  

E-Print Network [OSTI]

this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial...

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

30

Negative Electrodes Improve Safety in Lithium Cells and Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability...

31

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network [OSTI]

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT vehicles (BEVs) and hydrogen fuel cell vehicles (FCVs). Hybrid solutions are also possible, such as battery electric vehicles equipped with range extenders (PHEVs), be they internal combustion engines or fuel cells

32

Thermal Management of Solar Cells  

E-Print Network [OSTI]

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

33

Solar cell array interconnects  

DOE Patents [OSTI]

Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

1995-11-14T23:59:59.000Z

34

Solar cell array interconnects  

DOE Patents [OSTI]

Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

1995-01-01T23:59:59.000Z

35

Photovoltaic solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

36

Photovoltaic solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

2014-05-20T23:59:59.000Z

37

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

38

Bipolar battery with array of sealed cells  

DOE Patents [OSTI]

A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.

Kaun, Thomas D. (New Lenox, IL); Smaga, John A. (Lemont, IL)

1987-01-01T23:59:59.000Z

39

Thermal Management of Solar Cells  

E-Print Network [OSTI]

ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

40

Thermal Management of Solar Cells  

E-Print Network [OSTI]

is the ratio of the solar cell output power to the incidentmaximum power output at: The fill factor of a solar cell FFsolar cell temperature by about 15癈, which increases the output power

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Broad spectrum solar cell  

DOE Patents [OSTI]

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

42

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 颅 Solar Cells Todd J. Kaiser 路 Lecture 06 路 Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies 路 A) Crystalline Silicon 路 B) Thin Film 路 C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

43

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

efficiency in dye-sensitized solar cells based on Tio2Conversion by Dye-Sensitized Photovoltaic cells. InorganicConversion by Dye-Sensitized Photovoltaic Cells. Inorganic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

44

Monolithic tandem solar cell  

SciTech Connect (OSTI)

It is an object of the invention to provide a monolithic tandem photovoltaic solar cell which is highly radiation resistant and efficient; in which the energy bandgap of the lower subcell can be tailored for specific applications; solar cell comprising layers of InP and GaInAsP (or GaInAs), where said photovoltaic cell is useful, for example, in space power applications; having an improved power-to-mass ratio; in which subcells are lattice-matches; and are both two terminal and three terminal monolithic tandem photovoltaic solar cells. To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, the monolithic tandem photovoltaic solar cell may comprise; (a) an InP substrate having an upper surface; (b) a first photoactive subcell on the upper surface of the InP substrate; wherein the first subcell comprises GaInAs (which could include GaInAsP) and includes a homojunction; and (c) a second photoactive subcell on the first subcell; wherein the second subcell comprises InP and includes a homojunction. The cell is described in detail. 5 figs., 2 tabs.

Wanlass, M.W.

1989-11-03T23:59:59.000Z

45

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

electrodes for dye? sensitizedsolar燾ells. 燦anosolar cells and dye-sensitized solar cells. Figure 1-3 The

Yengel, Emre

2010-01-01T23:59:59.000Z

46

Monolithic tandem solar cell  

DOE Patents [OSTI]

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

Wanlass, Mark W. (Golden, CO)

1991-01-01T23:59:59.000Z

47

Monolithic tandem solar cell  

SciTech Connect (OSTI)

This patent describes a single-crystal, monolithic, tandem, photovoltaic solar cell which includes an InP substrate having an upper and lower surfaces, a first photoactive subcell on the upper surface of the InP substrate, and a second photoactive subcell on the first subcell. The first photovoltaic subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two- terminal device or a three-terminal device.

Wanlass, M.W.

1991-05-28T23:59:59.000Z

48

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 颅 Solar Cells Todd J. Kaiser 路 Lecture 08 路 Solar Cell Characterization 1Montana State University: Solar Cells Lecture 8: Characterization Solar Cell Operation n Emitter p Base Rear completing the circuit 2Montana State University: Solar Cells Lecture 8: Characterization Solar Cell

Kaiser, Todd J.

49

Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells  

E-Print Network [OSTI]

Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved ...

Bradwell, David (David Johnathon)

2011-01-01T23:59:59.000Z

50

Fuel cell based battery-less ups system  

E-Print Network [OSTI]

emerged as one of the most promising sources for both portable and stationary applications. In this thesis, a new battery less UPS system configuration powered by fuel cell is discussed. The proposed topology utilizes a standard offline UPS module...

Venkatagiri Chellappan, Mirunalini

2008-10-10T23:59:59.000Z

51

2010 DOE, Li-Ion Battery Cell Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

otherwise restricted information" 2010 DOE, Li-Ion Battery Cell Manufacturing Kee Eun LG Chem Ltd.Compact Power Inc. Jun 8 th 2010 Project ID ARRAVT001 "This presentation does...

52

Bilevel contact solar cells  

SciTech Connect (OSTI)

This patent describes a solar cell. It comprises a body of semiconductor material having at least one P/N junction therein, the body including a front face having no electrodes thereon, and a bilevel elevation back face having at least one P-doped region at a first level interdigitated with at least one N-doped region at a second level, wherein the at least one P-doped region and the at least one N-doped region partially overlap to form at least one compensated region; and a positive electrode contacting the at lease one P-doped region and a negative electrode contacting the at least one N-doped region, both electrodes contacting the solar cell on the back face.

Sinton, R.A.

1991-10-01T23:59:59.000Z

53

Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1388颅1391 Bifacial configurations for CdTe solar We present a different back contact for CdTe solar cell by the application of only a transparent that acts as a free-Cu stable back contact and at the same time allows to realize bifacial CdTe solar cells

Romeo, Alessandro

54

Superlattice cascade solar cell  

SciTech Connect (OSTI)

This paper reports progress toward realization of a new cascade solar cell structure whose chief advantages over other present concepts are: use of silicon for the substrate and low bandgap cell; avoidance of the necessity of lattice matching; and incorporation of a GaAs/GaP superlattice to enhance efficiency and provide a low-resistance connecting junction. Details of the design and operation of an OMCVD system for growing this structure are presented. Results of experiments to optimize layer thickness, compositional uniformity, and surface morphology are described.

Wanlass, M.W.; Blakeslee, A.E.

1982-09-01T23:59:59.000Z

55

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

56

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

57

Solar cell module lamination process  

DOE Patents [OSTI]

A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

2002-01-01T23:59:59.000Z

58

Monolithic tandem solar cell  

DOE Patents [OSTI]

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, Mark W. (Golden, CO)

1994-01-01T23:59:59.000Z

59

Monolithic tandem solar cell  

DOE Patents [OSTI]

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

Wanlass, M.W.

1994-06-21T23:59:59.000Z

60

Thermal Management of Solar Cells.  

E-Print Network [OSTI]

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential solar-photovoltaic power systems: the need for battery storage  

SciTech Connect (OSTI)

Benefits of battery storage used in conjunction with residential solar photovoltaic (PV) power systems were evaluated for a representative set of utility service areas. The PV systems were assumed capable of exporting excess power to the utility grid, and the batteries sited at the substation level were operated as a form of load-leveling utility storage. A cost-allocation model, SIMSTOR, was employed to determine utility fuel and capital cost savings resulting from the addition of batteries as a function of PV system penetration level. These benefits were compared with the savings of batteries used alone without introduction of the PV systems. Battery storage capacities and discharge rates were varied to determine the battery configurations that maximize net utility savings as a function of battery costs. Installed (rated) PV device capacities up to 20 percent of the generation peak load in each service area were considered. Findings indicate that batteries and PV systems are complementary rather than competing technologies, when attached to the electric supply grid. The utility benefits of the PV systems are primarily fuel savings, while those of the battery are primarily due to savings in utility capacity. The economic rationale for batteries does not change significantly as the penetration level for the PV systems increases. In some of the service areas, the addition of the PV systems tended to sharpen rather than flatten the peaks in the utility's load curves, with the magnitude of the effect becoming more pronounced at the higher PV system penetration levels. As a result of these load shape changes, batteries with higher discharge rates and larger storage capacities were favored.

Mueller, R.O.; Cha, B.K.; Giese, R.F.; Maslowski, C.

1980-01-01T23:59:59.000Z

62

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents [OSTI]

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

Olson, J.B.

1999-02-16T23:59:59.000Z

63

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents [OSTI]

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-12-07T23:59:59.000Z

64

Battery paste compositions and electrochemical cells for use therewith  

DOE Patents [OSTI]

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

Olson, John B. (Boulder, CO)

1999-02-16T23:59:59.000Z

65

Battery system  

DOE Patents [OSTI]

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

66

The challenges of organic polymer solar cells  

E-Print Network [OSTI]

The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

Saif Addin, Burhan K. (Burhan Khalid)

2011-01-01T23:59:59.000Z

67

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

W黵fel燩. 燩hysics爋fsolar燾ells:爁rom爌rinciples爐o爊ew爂eneration photovoltaics: solar cells for 2020 and燬pitzer MB. INDIUM?PHOSPHIDE SOLAR?CELLS MADE BY ION?

Yengel, Emre

2010-01-01T23:59:59.000Z

68

Commercialization of Novel Organic Solar Cells  

E-Print Network [OSTI]

Commercialization of Novel Organic Solar Cells Master of Engineering Final Report Shanel C. Miller................................................................................................................... 12 2.1 How do Solar Cells Work?.................................................................................................. 12 2.2 Types of Solar Cells that Exist Today

Kassegne, Samuel Kinde

69

Nontoxic quantum dot research improves solar cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve...

70

Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CellPack Level Models for Automotive Li-Ion Batteries with Experimental Validation Development of CellPack Level Models for Automotive Li-Ion Batteries with Experimental...

71

ELECTROSPUN POLYMER-FIBER SOLAR CELL.  

E-Print Network [OSTI]

??A study of fabricating the first electrospun polymer-fiber solar cell with MEHPPV is presented. Motivation for the work and a brief history of solar cell (more)

Nagata, Shinobu

2011-01-01T23:59:59.000Z

72

Biomimetic Dye Molecules for Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as those used in solar cells. This requires close monitoring to obtain reproducible solar cells. The polarization dependence of the spectra reveals the orientation of the...

73

Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 90 (2006) 664颅677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba篓 tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

Romeo, Alessandro

74

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

75

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply  

E-Print Network [OSTI]

The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell...

Smith, Richard C.

2010-01-14T23:59:59.000Z

76

Cell Equalization In Battery Stacks Through State Of Charge Estimation Polling  

E-Print Network [OSTI]

stack storage capacity, shortening the battery lifetime and, eventually, permanently damaging the cellsCell Equalization In Battery Stacks Through State Of Charge Estimation Polling Carmelo Speltino but it reduces the computational load of multiple EKF for every cell in the stack. Keywords: Battery Equalization

Stefanopoulou, Anna

77

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect (OSTI)

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today抯 flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC抯 flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

None

2010-09-09T23:59:59.000Z

78

Module level solutions to solar cell polarization  

DOE Patents [OSTI]

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

79

Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells...

80

New Battery Design Could Help Solar and Wind Power the Grid  

Broader source: Energy.gov [DOE]

Researchers from the U.S. Department of Energy抯 (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life 揻low battery that could enable solar and wind energy to become major suppliers to the electrical grid.

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

2006-11-14T23:59:59.000Z

82

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

83

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

84

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1599颅1610 Improving solar cell efficiency using) solar energy conversion systems (or solar cells) are the most widely used power systems. However and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

Dowling, Jonathan P.

85

Dye-Sensitized Solar Cells  

Broader source: Energy.gov [DOE]

DOE supports research and development projects aimed at increasing the efficiency and lifetime of dye-sensitized solar cells (DSSCs). Below are a list of current projects, summary of the benefits,...

86

2/1/2014 New Micro-Windmill TechnologyTo Recharge Cell Phone Batteries http://www.technocrazed.com/new-micro-windmill-technology-to-recharge-cell-phone-batteries 1/4  

E-Print Network [OSTI]

2/1/2014 New Micro-Windmill TechnologyTo Recharge Cell Phone Batteries http://www.technocrazed.com/new-micro-windmill-technology-to-recharge-cell-phone manual winding or new batteries. It is the researchers' dream to recharge the cell phone batteries Micro-Windmill Technology To Recharge Cell Phone Batteries New Micro-Windmill Technology To Recharge

Chiao, Jung-Chih

87

Solar cell with back side contacts  

DOE Patents [OSTI]

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

88

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 颅 Solar Cells Todd J. Kaiser 路 Lecture 10 路 Summary 1Montana State University: Solar Cells Lecture 10: Summary Summer 2010 Class Montana State University: Solar Cells Lecture 10: Summary 2 Solar Cell Operation n Emitter p Base Rear Contact Antireflection coating Absorption of photon

Kaiser, Todd J.

89

A Fuel-Cell-Battery Hybrid for Portable Embedded Kyungsoo Lee, Naehyuck Chang  

E-Print Network [OSTI]

that of a Li-ion battery. The FC cannot respond to sudden changes in the load, and so a system powered solelyA Fuel-Cell-Battery Hybrid for Portable Embedded Systems Kyungsoo Lee, Naehyuck Chang Dept. of EECS on the development of a fuel cell (FC) and battery hybrid (FC- Bh) system for use in portable microelectronic systems

Kambhampati, Subbarao

90

Nanocrystal Solar Cells  

E-Print Network [OSTI]

research on organic photovoltaic cells since small molecule10 years prior (4). Photovoltaic cells with an active layerof the associated photovoltaic cells. 2.4 Charge transport

Gur, Ilan

2006-01-01T23:59:59.000Z

91

Overdischarge protection in high-temperature cells and batteries  

DOE Patents [OSTI]

Overdischarge indication and protection is provided in a lithium alloy - metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li.sub.0.1 Al.sub.0.9 and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged.

Redey, Laszlo (Downers Grove, IL)

1990-01-01T23:59:59.000Z

92

Solar cells with a twist Comments ( 35)  

E-Print Network [OSTI]

Solar cells with a twist Article Comments ( 35) JULIE STEENHUYSEN REUTERS OCTOBER 7, 2008 AT 9:58 AM EDT CHICAGO -- U.S. researchers have found a way to make efficient silicon-based solar cells of buildings as opportunities for solar energy," Prof. Rogers said in a telephone interview. Solar cells, which

Rogers, John A.

93

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

94

Solar Energy Materials & Solar Cells 78 (2003) 567595 Low-mobility solar cells: a device physics primer  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 78 (2003) 567颅595 Low-mobility solar cells: a device physics, Syracuse, New York 13244-1130, USA Abstract The properties of pin solar cells based on photogeneration for the solar conversion efficiency of amorphous silicon-based cells that are limited by valence bandtail

Schiff, Eric A.

95

California: TetraCell Silicon Solar Cell Improves Efficiency...  

Energy Savers [EERE]

California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award August 16, 2013 -...

96

Development of concentrator solar cells  

SciTech Connect (OSTI)

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01T23:59:59.000Z

97

Layered electrodes for lithium cells and batteries  

DOE Patents [OSTI]

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

98

Oligo and Poly-thiophene/Zno Hybrid Nanowire Solar Cells  

E-Print Network [OSTI]

ZnO Hybrid Nanowire Solar Cells Alejandro L. Briseno, Thomashybrid single nanowire solar cell. End-functionalized oligo-Individual nanowire solar cell devices exhibited well-

Briseno, Alejandro L.

2010-01-01T23:59:59.000Z

99

Solar cooking : the development of a thermal battery  

E-Print Network [OSTI]

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

100

(Melanin-Sensitized Solar Cell) : 696220016  

E-Print Network [OSTI]

the majority dye-sensitized solar cell research all uses the Ruthenium-complex as a light harvester. Dye-sensitized solar cell, DSSC 1991Gr盲tzelDSSC[1] DSSCGr盲tzel cellDSSC polypyridyl complexes (Melanin-Sensitized Solar Cell) : : : 696220016 #12; #12;#12; #12;I PLD

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

Not Available

2014-01-01T23:59:59.000Z

102

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 颅 Solar Cells Todd J. Kaiser 路 Lecture 05 路 P-N Junction 1Montana State University: Solar Cells Lecture 5: P-N Junction P-N Junction 路 Solar Cell is a large area P-N junction electron (hole) positive) 2Montana State University: Solar Cells Lecture 5: P-N Junction p-n Junction p n P

Kaiser, Todd J.

103

Process of making solar cell module  

DOE Patents [OSTI]

A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

Packer, M.; Coyle, P.J.

1981-03-09T23:59:59.000Z

104

Key Physical Mechanisms in Nanostructured Solar Cells  

SciTech Connect (OSTI)

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21T23:59:59.000Z

105

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Resources Board (CARB), battery and fuel cell EDVs are considered Zero Emission Vehicles (ZEV), hybrids for carrying power from hybrid and fuel cell vehicles to the grid. Implications for current industry directions

Firestone, Jeremy

106

J. Electrochem. Soc., in press (1998) MicroMacroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

, as well as various fuel cells, are widely used in consumer applications and electric vehicles materials and interface morphology and chemistry, has been developed for advanced batteries and fuel cells. Modeling and simulation of battery and fuel cell systems has been a rapidly expanding field, thanks in part

Wang, Chao-Yang

107

J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

, as well as various fuel cells, are widely used in consumer applications and electric vehicles and interface morphology and chemistry, has been developed for advanced batteries and fuel cells. Modeling and simulation of battery and fuel cell systems has been a rapidly expanding field, thanks in part

Wang, Chao-Yang

108

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

109

J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

to simulate batteries and fuel cells was described. The model is capable of incorporating interfacial non1 J. Electrochem. Soc., in press (1998) Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 2. Application to Nickel-Cadmium and Nickel-Metal Hydride Cells W.B. Gu and C.Y. Wang 1

Wang, Chao-Yang

110

J. Electrochem. Soc., in press (1998) MicroMacroscopic Coupled Modeling of Batteries and Fuel Cells  

E-Print Network [OSTI]

to simulate batteries and fuel cells was described. The model is capable of incorporating interfacial non1 J. Electrochem. Soc., in press (1998) Micro颅Macroscopic Coupled Modeling of Batteries and Fuel Cells Part 2. Application to Nickel颅Cadmium and Nickel颅Metal Hydride Cells W.B. Gu and C.Y. Wang 1

Wang, Chao-Yang

111

Overdischarge protection in high-temperature cells and batteries  

DOE Patents [OSTI]

Overdischarge indication and protection is provided in a lithium alloy metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li[sub 0.1]Al[sub 0.9] and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged. 8 figs.

Redey, L.

1990-06-19T23:59:59.000Z

112

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 颅 Solar Cells Todd J. Kaiser 路 Lecture 02 Microfabrication 颅 A combination 路 Photolithograpy 路 Depostion 路 Etching 1 Montana State University: Solar Cells Lecture 2: Microfabrication Flow Montana State University: Solar Cells Lecture 2: Microfabrication Questions 路 What is heat? 路 Heat

Kaiser, Todd J.

113

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 颅 Solar Cells Todd J. Kaiser 路 Lecture 09 路 Photovoltaic Systems 1Montana State University: Solar Cells Lecture 9: PV Systems Several types of operating modes 路 Centralized power plant or wanted Montana State University: Solar Cells Lecture 9: PV Systems 2 Residential Side Mounted Montana

Kaiser, Todd J.

114

Nanowire-based All Oxide Solar Cells  

E-Print Network [OSTI]

7: 471. 6) Rai, B.P. Solar Cells, 1988, 25, 265. 7) Minami,1999, 2) Green, M.A. , Solar Cells, 1982, Prentice-Hall,of ZnO nanowire array used in solar cells, prior to Cu 2 O

Yang, Peidong

2009-01-01T23:59:59.000Z

115

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 Solar Cells Todd J. Kaiser Lecture 04 Semiconductor Materials Chapter 1 1Montana State University: Solar Cells Lecture 4: Semiconductor Materials Semiconductor Bond Model Bohr electrons interact to form bonds 2Montana State University: Solar Cells Lecture 4: Semiconductor Materials

Kaiser, Todd J.

116

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 Solar Cells Todd J. Kaiser Lecture 03 Nature of Sunlight 1Montana State University: Solar Cells Lecture 3: Nature of Sunlight Wave-Particle Duality Light acts as Waves University: Solar Cells Lecture 3: Nature of Sunlight Properties of Light Sunlight contains photons of many

Kaiser, Todd J.

117

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film) solar

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

118

Ames Lab 101: Improving Solar Cell Efficiency  

SciTech Connect (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2011-01-01T23:59:59.000Z

119

Ames Lab 101: Improving Solar Cell Efficiency  

ScienceCinema (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2012-08-29T23:59:59.000Z

120

When Function Follows Form: Plastic Solar Cells | ANSER Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells...

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

electrodes for dye-sensitized solar cells, Nano Lett. 8 (electrodes for dye-sensitized solar cells, Nano Letters 8,

Shao, Qinghui

2009-01-01T23:59:59.000Z

122

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

SciTech Connect (OSTI)

Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

Kerr, John B.

2003-06-24T23:59:59.000Z

123

Mixed ternary heterojunction solar cell  

DOE Patents [OSTI]

A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

1992-08-25T23:59:59.000Z

124

NANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures  

E-Print Network [OSTI]

include dye-sensitized solar cells, quantum- dot-sensitized solar cells, and p-n junction solar cells their efficiencies more practical. Now the third-generation solar cells, such as dye-sensitized solar cells (DSSCsNANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures Kehan Yu ? Junhong Chen

Chen, Junhong

125

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect (OSTI)

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

126

Compensated amorphous silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

127

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization  

E-Print Network [OSTI]

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization Sanja Tepavcevic, Seth B-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples mobility of the photoactive layer can be enhanced. 1. Introduction Hybrid solar cells have been developed

Sibener, Steven

128

Solar Cells, 3 (1981) 337 -340 337 HIGH EFFICIENCY BIFACIAL BACK SURFACE FIELD SOLAR CELLS  

E-Print Network [OSTI]

. CUEVAS, A. LUQUE, J. EGUREN and J. DEL ALAMO Instituto de Energia Solar, Escuela Tdcnica Superior deSolar Cells, 3 (1981) 337 - 340 337 HIGH EFFICIENCY BIFACIAL BACK SURFACE FIELD SOLAR CELLS A solar cells are presented. Effi- ciencies of 15.7% and 13.6% were measured under front and back air mass

del Alamo, Jes煤s A.

129

Detailed balance analysis of nanophotonic solar cells  

E-Print Network [OSTI]

, "Demonstration of enhanced absorption in thin film si solar cells with textured photonic crystal back reflector. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar of surface textures for thin-film si solar cells," Opt. Express 19, A841颅A850 (2011). 15. A. Raman, Z. Yu

Fan, Shanhui

130

Three-junction solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

131

Spectral sensitization of nanocrystalline solar cells  

DOE Patents [OSTI]

This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

2002-01-01T23:59:59.000Z

132

Diagnostic studies on Li-battery cells and cell components  

Broader source: Energy.gov (indexed) [DOE]

cells Disassembly of New and Aged Cells Electrode Surface & Bulk Analyses (ANL, BNL, LBNL) Electrolyte & Separator study (ANL, LBNL) Electrochemistry (ANL) Reference Electrode...

133

Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)  

SciTech Connect (OSTI)

Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs梖or everything from manufacturing and transportation to air conditioning and charging cell phone batteries梚mproved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells梫ariations that are so small they are measured in billionths of a meter梚n order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.

Eisaman, Matthew [BNL, Sustainable Energy Technologies Department

2014-04-16T23:59:59.000Z

134

Solar Cell Modules With Improved Backskin  

DOE Patents [OSTI]

A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

Gonsiorawski, Ronald C. (Danvers, MA)

2003-12-09T23:59:59.000Z

135

Bypass diode for a solar cell  

DOE Patents [OSTI]

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13T23:59:59.000Z

136

Improved monolithic tandem solar cell  

SciTech Connect (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, M.W.

1991-04-23T23:59:59.000Z

137

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

organic, hybrid and dye sensitized solar cells took place insolar cells, dye-sensitized solar cells, solar inks using

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

138

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

139

Very High Efficiency Solar Cell Modules  

SciTech Connect (OSTI)

The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

2009-01-01T23:59:59.000Z

140

Pennsylvania Company Develops Solar Cell Printing Technology  

Broader source: Energy.gov [DOE]

The technology uses Plextronics conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

COLLOIDAL SEMICONDUCTOR NANOCRYSTALS BASED SOLAR CELLS  

E-Print Network [OSTI]

-II heterojunction bi-layer structure in solar-cells based on CdTe and CdSe nanocrystals. Submitted to ACS NANO. 2011

Tessler, Nir

142

Current and lattice matched tandem solar cell  

DOE Patents [OSTI]

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

143

Front contact solar cell with formed emitter  

SciTech Connect (OSTI)

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04T23:59:59.000Z

144

Front contact solar cell with formed emitter  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

145

EELE408 Photovoltaics Lecture 10 Solar Cell Operation  

E-Print Network [OSTI]

@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman P-N Junction Solar Cell of the number of carriers collected by the solar cell to the number of photons of a given energy incident energy is not utilized by the solar cell and instead goes to heating the solar cell 12 solar cell

Kaiser, Todd J.

146

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

147

Method for processing silicon solar cells  

DOE Patents [OSTI]

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

148

Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers  

E-Print Network [OSTI]

The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

Reusswig, Philip David

2014-01-01T23:59:59.000Z

149

Si concentrator solar cell development. [Final report  

SciTech Connect (OSTI)

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01T23:59:59.000Z

150

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

1.6 Schematic of a solar panel with PV cells connected inand installation cost of solar panels and enhance PV cell1.6 Schematic of a solar panel with PV cells connected in

Leow, Shin Woei

2014-01-01T23:59:59.000Z

151

Quantum Junction Solar Cells Jiang Tang,,  

E-Print Network [OSTI]

Quantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky, Sjoerd Hoogland, Xihua, 1037 Luoyu Road, Wuhan, Hubei 430074, China Department of Electrical and Computer Engineering-type and p-type materials to create the first quantum junction solar cells. We present a family

152

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network [OSTI]

development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perNitride/Silicon Tandem Solar Cell, Appl. Phys. Express 2

Ager, Joel W

2011-01-01T23:59:59.000Z

153

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells  

E-Print Network [OSTI]

91, 43. T. Markvart, Solar cell as a heat engine: energy朤iedje, Physical Limits to Solar Cell Efficiency, in EnergyThe Carnot Factor in Solar-Cell Theory. Solid State

Abrams, Zeev R.

2012-01-01T23:59:59.000Z

154

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

the intermediate band solar cell under nonideal space chargeInGaP/GaAs tandem solar cells, Appl. Phys. Lett. 70, 381 (band impact ionization and solar cell efficiency, J. Appl.

Shao, Qinghui

2009-01-01T23:59:59.000Z

155

Nanowire-based All Oxide Solar Cells  

SciTech Connect (OSTI)

We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

2008-12-07T23:59:59.000Z

156

Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint  

SciTech Connect (OSTI)

Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

2014-10-01T23:59:59.000Z

157

Close this window print this page MATSUSHITA BATTERY DEVELOPS NEW MICRO FUEL CELL  

E-Print Network [OSTI]

to miniaturize the system, improve the reliability and reduce the cost. Notes and Technology Details 1. Fuel cellClose this window print this page MATSUSHITA BATTERY DEVELOPS NEW MICRO FUEL CELL TECHNOLOGY for fuel cells powering portable devices that makes it possible to reduce the size of the fuel cell to one

158

Silicon point contact concentrator solar cells  

SciTech Connect (OSTI)

Experimental results are presented for thin high resistivity concentrator silicon solar cells which use a back-side point-contact geometry. Cells of 130 and 233 micron thickness were fabricated and characterized. The thin cells were found to have efficiencies greater than 22 percent for incident solar intensities of 3 to 30 W/sq cm. Efficiency peaked at 23 percent at 11 W/sq cm measured at 22-25 C. Strategies for obtaining higher efficiencies with this solar cell design are discussed. 8 references.

Sinton, R.A.; Kwark, Y.; Swirhun, S.; Swanson, R.M.

1985-08-01T23:59:59.000Z

159

Coating for Silicon Solar Cell by Using Silvaco Software  

E-Print Network [OSTI]

efficiency of SiO 2/Si3N 4silicon solar cell. The solar cell structure was modelled by using Silvaco software

A. Lennie; H. Abdullah; Z. M. Shila; M. A. Hannan

160

Understanding Collection-Related Losses in Organic Solar Cells...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Collection-Related Losses in Organic Solar Cells Home > Research > ANSER Research Highlights > Understanding Collection-Related Losses in Organic Solar Cells...

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Morphological Paradigm Uncovered in Organic Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive...

162

New Morphological Paradigm Uncovered in Organic Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paradigm Uncovered in Organic Solar Cells Print Wednesday, 27 April 2011 00:00 Organic solar cells are made of light, flexible, renewable materials; they require simple and...

163

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

164

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

solar insolation and the solar panel characteristics. Theinsolation on the assigned solar panel for a clear sky wassolar insolation on the solar panel varies with the change

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

165

Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information that can be  

E-Print Network [OSTI]

Figure 1. Schematic drawing showing the components of a Li-ion battery cell and the information Proposals In Situ Electron Microscopy and Spectroscopy Studies of Interfaces in Advanced Li-ion Batteries) such as Li-ion batteries are complex multi- component systems that incorporate widely dissimilar phases

166

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film)

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

167

Bypass diode for a solar cell  

DOE Patents [OSTI]

Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

2013-11-12T23:59:59.000Z

168

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31T23:59:59.000Z

169

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1994-01-01T23:59:59.000Z

170

Dye-sensitized solar cells  

DOE Patents [OSTI]

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. [Berkeley, CA

1980-03-04T23:59:59.000Z

171

Dye-sensitized solar cells  

DOE Patents [OSTI]

A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

Skotheim, T.A.

1980-03-04T23:59:59.000Z

172

Solar Energy Materials & Solar Cells 71 (2002) 261271 Photoelectric behavior of nanocrystalline TiO2  

E-Print Network [OSTI]

. A sandwich-type solar cell fabricated by this dye-sensitized nanocrystalline TiO2 film generated 6:1 mA cm?2; Nanocrystalline TiO2; Dye sensitized solar cell; Terpyridyl ruthenium dyes; Photoelectrochemical solar cells unmatched performance in dye staff studied as solar cell sensitizer before 1997. Only recently, a black dye

Huang, Yanyi

173

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

conversion efficiency (PCE) by %16 and %30, respectively.it is demonstrated that the PCE of the graphene based solarpower conversion efficiency (PCE). PCE of a solar cell is

Yengel, Emre

2010-01-01T23:59:59.000Z

174

Rational design of hybrid organic solar cells  

E-Print Network [OSTI]

In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

Lentz, Levi (Levi Carl)

2014-01-01T23:59:59.000Z

175

Colloidal cluster phases and solar cells  

E-Print Network [OSTI]

The arrangement of soft materials through solution processing techniques is a topic of profound importance for next generation solar cells; the resulting morphology has a major influence on construction, performance and ...

Mailer, Alastair George

2012-11-28T23:59:59.000Z

176

Texturization of multicrystalline silicon solar cells  

E-Print Network [OSTI]

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01T23:59:59.000Z

177

Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies  

E-Print Network [OSTI]

. Introduction Hybrid energy storage devices are more efficient than a battery in supplying the total powerCapacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads 颅 full words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge

Popov, Branko N.

178

Microstructured surface design for omnidirectional antireflection coatings on solar cells  

E-Print Network [OSTI]

to current crystalline silicon solar cells, as well as future thin film, quantum dot, and organic solar cells as the precise control of film thick- ness. In solar cell applications, a single layer thin film AR coating, e.g., silicon nitride SiNx thin film for silicon Si solar cells, is often used as a cost effective approach

Zhou, Weidong

179

Hybrid Silicon Nanocone-Polymer Solar Cells Sangmoo Jeong,  

E-Print Network [OSTI]

alternative energy solution. KEYWORDS: Nanotexture, solar cell, heterojunction, conductive polymer, light solar cell.1 Conventional Si solar cells have p-n junctions inside for an efficient extraction of lightHybrid Silicon Nanocone-Polymer Solar Cells Sangmoo Jeong, Erik C. Garnett, Shuang Wang, Zongfu Yu

Cui, Yi

180

Development efforts on silicon solar cells  

SciTech Connect (OSTI)

This report presents a summary of the major results from the silicon high-concentration solar cell program at Stanford University from the period 1983--1990. Following a detailed design study, efforts were focused upon experimental verification of the modeled results that predicted 28% efficiencies for a new 500X concentrator solar cell design. A history of the research progress is given detailing the critical experiments that enabled the demonstration of 19.6% cells in 1983, then subsequent improvements culminating in efficiencies over 28% by 1987. In addition to laboratory efficiency improvements, the report details advances in the understanding of the fundamental device physics and modeling of silicon solar cell operation. The latter stages of the program included the development of module-ready cells in large quantity for the EPRI prototype 500X concentrator modules. Several of these 48-cell modules are currently in the field under test.

Sinton, R.A.; Swanson, R.M. (Stanford Univ., CA (United States))

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network [OSTI]

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals for the diagnosis of electrochemical generators (batteries or fuel cell). It is now possible to acquire

Paris-Sud XI, Universit茅 de

182

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network [OSTI]

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger and Fuel Cell Electric Vehicle Symposium & Exhibition, Stavanger : Norway (2009)" #12;EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 that Discrete MDCM (Multi Criteria Decision

Boyer, Edmond

183

Battery Anodes > Batteries & Fuel Cells > Research > The Energy Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasic Batteries

184

Battery Cathodes > Batteries & Fuel Cells > Research > The Energy Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasic BatteriesCenter at

185

Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)  

E-Print Network [OSTI]

Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper) Pai H requiring battery replacement. This paper ex- amines technical issues with solar energy harvesting. First power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

Shinozuka, Masanobu

186

Limit of light coupling into solar cells  

E-Print Network [OSTI]

We introduce a limit for the strength of coupling light into the modes of solar cells. This limit depends on both a cell's thickness and its modal properties. For a cell with refractive index n and thickness d, we obtain a maximal coupling rate of 2c*sqrt(n^2-1)/d where c is speed of light. Our method can be used in the design of solar cells and in calculating their efficiency limits; besides, it can be applied to a broad variety of resonant phenomena and devices.

Naqavi, A; Ballif, C; Scharf, T; Herzig, H P

2013-01-01T23:59:59.000Z

187

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

by Dye-Sensitized Photovoltaic cells. Inorganic Chemistry,by Dye-Sensitized Photovoltaic Cells. Inorganic ChemistryThe characteristics of a photovoltaic cell. Generally,

Phuyal, Dibya

2012-01-01T23:59:59.000Z

188

New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575  

SciTech Connect (OSTI)

This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko [eds.

2000-07-01T23:59:59.000Z

189

EEE 498/EEE591: Solar Energy Instructor: C J Tracy  

E-Print Network [OSTI]

EEE 498/EEE591: Solar Energy Fall 2011 Instructor: C J Tracy Email: clarence.tracy@asu.edu Course solar energy through photovoltaics (PV), starting with the nature and variability of terrestrial solar are details of the solar cell device, cell manufacturing methods, solar modules, batteries, systems

Zhang, Junshan

190

Nanoscale Charge Transport in Excitonic Solar Cells  

SciTech Connect (OSTI)

Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

Venkat Bommisetty, South Dakota State University

2011-06-23T23:59:59.000Z

191

Plastic Schottky-barrier solar cells  

DOE Patents [OSTI]

A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

Waldrop, J.R.; Cohen, M.J.

1981-12-30T23:59:59.000Z

192

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

technologies. Silicon photovoltaic module cost have continuegeneration photovoltaic panels due to their low cost, easycost-efficient multiple junction solar devices with remarkably high efficiency should be the direction and objective of photovoltaic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

193

Solar Energy Materials & Solar Cells 88 (2005) 6573 Investigation of pulsed non-melt laser annealing  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 88 (2005) 65颅73 Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells Xuege Wanga , Sheng S. Lia,?, C time to modify near- surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells

Anderson, Timothy J.

194

Solar Energy Materials & Solar Cells 75 (2003) 307312 Extreme radiation hardness and light-weighted  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 75 (2003) 307颅312 Extreme radiation hardness and light-weighted thin-film indium phosphide solar cell and its computer simulation Guohua Lia, *, Qingfen Yanga+ -i-p+ InP solar cell is developed. The total thickness of its epitaxial layer is only 0.22 mm

Woodall, Jerry M.

195

* Corresponding author. Solar Energy Materials & Solar Cells 58 (1999) 209}218  

E-Print Network [OSTI]

* Corresponding author. Solar Energy Materials & Solar Cells 58 (1999) 209}218 A highly e solar cells based on the CdTe/CdS heterojunction still exhibits quite a few open problems$cient and stable CdTe/CdS thin "lm solar cell N. Romeo, A. Bosio, R. Tedeschi*, A. Romeo, V. Canevari Dipartimento

Romeo, Alessandro

196

Questions I will answer What is a solar cell?  

E-Print Network [OSTI]

grid 4 #12;5 #12;Solar panels on the Interna9onal Space Sta9on 6 #12;Area#12;Questions I will answer 路 What is a solar cell? 路 How are solar cells are solar cells made? 路 How do they work? 路 How efficient can they be? 路 How

McGehee, Michael

197

Investigating the efficiency of Silicon Solar cells at  

E-Print Network [OSTI]

Investigating the efficiency of Silicon Solar cells at different temperatures and wavelengths to study the characteristics of silicon photovoltaic cells (solar cells). We vary the wavelength of light as well as the temperature of the solar cell to investigate how the open voltage across the cell varies

Attari, Shahzeen Z.

198

Liquid cooled, linear focus solar cell receiver  

DOE Patents [OSTI]

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01T23:59:59.000Z

199

High-efficiency concentrator silicon solar cells  

SciTech Connect (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

200

Liquid cooled, linear focus solar cell receiver  

DOE Patents [OSTI]

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method of restoring degraded solar cells  

DOE Patents [OSTI]

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

Staebler, D.L.

1983-02-01T23:59:59.000Z

202

Method of restoring degraded solar cells  

DOE Patents [OSTI]

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

Staebler, David L. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

203

Method of fabricating a solar cell array  

DOE Patents [OSTI]

A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

Lazzery, Angelo G. (Oaklyn, NJ); Crouthamel, Marvin S. (Pennsauken, NJ); Coyle, Peter J. (Oaklyn, NJ)

1982-01-01T23:59:59.000Z

204

The numerical solution of a nickel-cadmium battery cell model using the method of lines  

E-Print Network [OSTI]

THE NUMERICAL SOLUTION OF A NICKEL-CADMIUM BATTERY CELL MODEL USING THE METHOD OF LINES A Thesis by TESHOME HAILU Submitted to the Office of Graduate Studies Texas Adi:M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THE NUMERICAL SOLUTION OF A NICKEL-CADMIUM BATTERY CELL MODEL USING THE METHOD OF LINES A Thesis by TESHOME HAILU Approved as to style and content by: Ralph E. White (Chairman...

Hailu, Teshome

1990-01-01T23:59:59.000Z

205

The Kanatzidis - Chang Cell: dye sensitized all solid state solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell Home > Research > ANSER Research Highlights > The Kanatzidis - Chang Cell: dye sensitized all solid state...

206

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

SciTech Connect (OSTI)

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

207

Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery  

E-Print Network [OSTI]

, such as fuel cells and secondary batteries. Here we report a coin-type Si nanowire NW half-cell Li-ion battery is the central research subject in various energy conversion systems, such as solar cells, fuel cells must be optimally coordinated.7 In this respect, Si nanowire NW arrays can serve as the high capacity

Jo, Moon-Ho

208

SOLAR-POWERED AUTONOMOUS UNDERWATER VEHICLE DEVELOPMENT James Jalbert, John Baker, John Duchesney, Paul Pietryka, William Dalton  

E-Print Network [OSTI]

batteries daily using solar panels to convert solar energy to electrical energy. #12;路 Operate at depthsSOLAR-POWERED AUTONOMOUS UNDERWATER VEHICLE DEVELOPMENT James Jalbert, John Baker, John Duchesney in such applications. The concept of a vehicle that would allow on-station recharging of batteries, using solar cells

209

Fabricating solar cells with silicon nanoparticles  

DOE Patents [OSTI]

A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

2014-09-02T23:59:59.000Z

210

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

211

Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals  

E-Print Network [OSTI]

polymer bulk heterojunction solar cells. Journal of PhysicalS. & Meissner, D. Hybrid solar cells based on nanoparticlesmodelling of organic solar cells: The dependence of internal

Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, Antonios G.; Alivisatos, A. Paul

2006-01-01T23:59:59.000Z

212

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Nanocrystalline dye-sensitized solar cell/copper indium3, pp. M. Gr鋞zel, 揇ye-sensitized solar cells, Journal ofefficiency solar cell based on dye- sensitized colloidal

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

213

EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques  

E-Print Network [OSTI]

;3 Screen Printed Solar Cells 路 Firing the contacts 颅 The furnace heats the cell to a high temperature by Efficiency 22 Rear Panel before Lamination 23 Buried Contact Solar Cells 路 High Efficiency 路 Laser groved1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser

Kaiser, Todd J.

214

Origami-enabled deformable silicon solar cells  

SciTech Connect (OSTI)

Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

2014-02-24T23:59:59.000Z

215

High throughput solar cell ablation system  

DOE Patents [OSTI]

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2012-09-11T23:59:59.000Z

216

High throughput solar cell ablation system  

DOE Patents [OSTI]

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2014-10-14T23:59:59.000Z

217

Solar cell contact formation using laser ablation  

DOE Patents [OSTI]

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David; Cousins, Peter

2012-12-04T23:59:59.000Z

218

Solar cell contact formation using laser ablation  

DOE Patents [OSTI]

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David D.; Cousins, Peter John

2014-07-22T23:59:59.000Z

219

Multi-junction solar cell device  

DOE Patents [OSTI]

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

220

November 21, 2000 PV Lesson Plan 1 Solar Cells  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 1 Solar Cells Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola University of Oregon Solar Radiation Monitoring Lab John Hocken South Eugene High School Gary Grace South Eugene High School In Schools #12;1 Solar Cells Lesson Plan Content

Oregon, University of

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Positive Energy From rechargeable batteries to fuel cells: electrochemical energy as one  

E-Print Network [OSTI]

of the fascinating and green alternatives to combustion engines Yaakov Vilenchik1 , David Andelman2 and Emanuel such as rechargeable batteries and fuel cells, which in the future could replace the combustion engine. We equally with oxygen in the air), which in turn is used to heat water into steam. Steam under high pressure has large

Andelman, David

222

An overview桭unctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect (OSTI)

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

223

Electrical overstress failure in silicon solar cells  

SciTech Connect (OSTI)

A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

1982-11-01T23:59:59.000Z

224

The Seventh Cell of a Six-Cell Battery Delyan Raychev, Youhuizi Li and Weisong Shi  

E-Print Network [OSTI]

propose an alternate method, called autonomous battery clusters (ABC), of building batteries and new ways to maximize the energy utilization of any devices that could be powered by Lithium Ion batteries. Experimental source. Index Terms--Energy Efficiency; Energy Management; Bat- tery Discharging I. INTRODUCTION Mankind

Shi, Weisong

225

Membranes > Batteries & Fuel Cells > Research > The Energy Materials Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells In This Section Battery

226

Plastic Schottky barrier solar cells  

DOE Patents [OSTI]

A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

Waldrop, James R. (Thousand Oaks, CA); Cohen, Marshall J. (Thousand Oaks, CA)

1984-01-24T23:59:59.000Z

227

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network [OSTI]

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit

Demir, Hilmi Volkan

228

High temperature investigations of crystalline silicon solar cell materials  

E-Print Network [OSTI]

Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

Hudelson, George David Stephen, III

2009-01-01T23:59:59.000Z

229

Metal electrode for amorphous silicon solar cells  

DOE Patents [OSTI]

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

230

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

颅 Unleashes electrical energy 颅 Unpredictable 颅 Destructive 路 Harnesses electrical energy for human路 Harnesses of Electrical Principles 路 Electric Charge 路 Electric Current 路 Electric Fields 路 Electric Potential Difference University: Solar Cells Lecture 7: EE Fundamentals Electric Potential Difference (Voltage) 路 Charges

Kaiser, Todd J.

231

Method of fabricating a solar cell  

DOE Patents [OSTI]

Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

Pass, Thomas; Rogers, Robert

2014-02-25T23:59:59.000Z

232

Assessing Possibilities & Limits for Solar Cells  

E-Print Network [OSTI]

What are the solar cell efficiencies that we can strive towards? We show here that several simple criteria, based on cell and module performance data, serve to evaluate and compare all types of today's solar cells. Analyzing these data allows to gauge in how far significant progress can be expected for the various cell types and, most importantly from both the science and technology points of view, if basic bounds, beyond those known today, may exist, that can limit such progress. This is important, because half a century after Shockley and Queisser (SQ) presented limits, based on detailed balance calculations for single absorber solar cells, those are still held to be the only ones, we need to consider; most efforts to go beyond SQ are directed towards attempts to circumvent them, primarily via smart optics, or optoelectronics. After formulating the criteria and analyzing known loss mechanisms, use of such criteria suggests - additional limits for newer types of cells, Organic and Dye-Sensitized ones, and th...

Nayak, Pabitra K; Cahen, David

2011-01-01T23:59:59.000Z

233

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents [OSTI]

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

234

ZnO Nanotube Based Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

ZnO Nanotube Based Dye-Sensitized Solar Cells Alex B. F. Martinson,, Jeffrey W. Elam, Joseph T templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition of the best dye- sensitized solar cells (DSSCs) is the product of a dye with moderate extinction

235

Solar Cells DOI: 10.1002/anie.200904492  

E-Print Network [OSTI]

* Renewable and green energy are the technological drivers of the future economy. Solar cells (SCs) are one-sensitized solar cells (DSSCs) that have a significantly enhanced energy conversion efficiency. The ZnO NWs grow. This research demonstrates a new approach from 2D to 3D solar cells with advantages of high efficiency, expanded

Wang, Zhong L.

236

Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli  

E-Print Network [OSTI]

Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli #12;Summary Photovoltaics solar cell is reduced, due to incomplete absorption of light. In this thesis, we investigate new ways of enhancing light absorption in Si solar cells by using nanostructures that show resonant interaction

van Rooij, Robert

237

Solar cell efficiency enhancement via light trapping in printable resonant  

E-Print Network [OSTI]

Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically the absorber, junction, and passivation layers. Recently, a number of innovative solar cell light

Atwater, Harry

238

Dielectric nanostructures for broadband light trapping in organic solar cells  

E-Print Network [OSTI]

Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501 (2007). 8. M@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next

Fan, Shanhui

239

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells  

E-Print Network [OSTI]

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke in thin film solar cells. In particular, the ability of plasmonic structures to localize light sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated

Atwater, Harry

240

Solar cell efficiency enhancement via light trapping in printable resonant  

E-Print Network [OSTI]

Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid

Grandidier, Jonathan

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

27. 5-percent silicon concentrator solar cells  

SciTech Connect (OSTI)

Recent advances in silicon solar cells using the backside point-contact configuration have been extended resulting in 27.5-percent efficiencies at 10 W/sq cm (100 suns, 24 C), making these the most efficient solar cells reported to date. The one-sun efficiencies under an AM1.5 spectrum normalized to 100 mW/sq cm are 22 percent at 24 C based on the design area of the concentrator cell. The improvements reported here are largely due to the incorportation of optical light trapping to enhance the absorption of weakly absorbed near bandgap light. These results approach the projected efficiencies for a mature technology which are 23-24 percent at one sun and 29 percent in the 100-350-sun (10-35 W/sq cm) range. 10 references.

Sinton, R.A.; Kwark, Y.; Gan, J.Y.; Swanson, R.M.

1986-10-01T23:59:59.000Z

242

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

plasmon-enhanced dye- sensitized solar cells through metalnanostructure- based or dye-sensitized solar cells represent

Mariani, Giacomo

2013-01-01T23:59:59.000Z

243

Method of fabricating a solar cell with a tunnel dielectric layer  

DOE Patents [OSTI]

Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David; Waldhauer, Ann

2012-12-18T23:59:59.000Z

244

Method of fabricating a solar cell with a tunnel dielectric layer  

DOE Patents [OSTI]

Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David D; Waldhauer, Ann

2014-04-29T23:59:59.000Z

245

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26-28 2013 ABSTRACT QUESTIONNAIRE  

E-Print Network [OSTI]

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26 Other Marketing analysis Standards and regulations #12;IV Iberian Symposium on Hydrogen, Fuel Cells PEM fuel cells X Numerical simulation SO fuel cells New materials Other fuel cells New processes

Batlle, Carles

246

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells  

E-Print Network [OSTI]

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

Deng, Xunming

247

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell Operation  

E-Print Network [OSTI]

is lost as heat. energy Eg 2 31 Absorption process #12;ELEG620: Solar Electric Systems UniversityELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell and shunt resistance). #12;ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C

Honsberg, Christiana

248

E-Print Network 3.0 - area solar cells Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 THE BURIED EMITTER SOLAR CELL CONCEPT Summary: back contacted solar cell...

249

Seismic-fragility tests of new and accelerated-aged Class 1E battery cells  

SciTech Connect (OSTI)

The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

1987-01-01T23:59:59.000Z

250

Compensated amorphous-silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

251

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by  

E-Print Network [OSTI]

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials颅2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should also be considered. This project would examine the proposed solar cell materials and designs and create

Iglesia, Enrique

252

US polycrystalline thin film solar cells program  

SciTech Connect (OSTI)

The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

1989-11-01T23:59:59.000Z

253

WORKING QUANTUM EFFICIENCY OF CDTE SOLAR CELL Zimeng Cheng  

E-Print Network [OSTI]

in -Si thin film solar cells because there are more defects and surface effects. Figure 1. The diode darkWORKING QUANTUM EFFICIENCY OF CDTE SOLAR CELL Zimeng Cheng 1 , Kwok Lo 2 , Jingong Pan 1 , Dongguo Chen 1 , Tao Zhou 2 , Qi Wang 3 , George E. Georgiou 1 , Ken K. Chin 1 1 Apollo CdTe Solar Energy

254

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

logistical problems associated with solar energy. One of theor environmental problems. 1.2 Solar Energy As being thephotovoltaic solar energy all suffer from the problem of not

Yengel, Emre

2010-01-01T23:59:59.000Z

255

Solar Energy Materials & Solar Cells 71 (2002) 511522 In situ Raman spectroscopy of the  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 71 (2002) 511颅522 In situ Raman spectroscopy. In this situation, a low energy excitation (e.g. visible light) is needed to excite an electron to a neighboring

Nabben, Reinhard

256

Improved cell design for lithium alloy/metal sulfide battery  

DOE Patents [OSTI]

The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

Kaun, T.D.

1984-03-30T23:59:59.000Z

257

Cell design for lithium alloy/metal sulfide battery  

DOE Patents [OSTI]

The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

Kaun, Thomas D. (New Lennox, IL)

1985-01-01T23:59:59.000Z

258

Test Series 2: seismic-fragility tests of naturally-aged Class 1E Exide FHC-19 battery cells  

SciTech Connect (OSTI)

The seismic-fragility of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and their thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the ''end-of-life'' of a battery if subjected to a seismic event. This report, the second in a test series of an extensive seismic research program, covers the testing of 10-year old lead-calcium Exide FHC-19 cells from the Calvert Cliffs Nuclear Power Station operated by the Baltimore Gas and Electric Company. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, both rigidly and loosely mounted; and multicell (three-cell) tests, mounted in a typical battery rack. A total of six electrically active cells was used in the two different cell configurations.

Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J.; Tulk, J. D.; Janis, W. J.; Black, D. A.; Paulsen, G. D.; Aucoin, B. D.

1985-03-01T23:59:59.000Z

259

Evaluation of concentration solar cells for terrestrial applications  

E-Print Network [OSTI]

Solar energy has become a hot prospect for the future replacement of fossil fuels, which have limited reserves and cause environmental problems. Solar cell is such a device to directly generate electricity from this clean ...

An, Tao, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

260

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

efficiency of solar panels and power to weight ratio insolar cells, there exist two basic processes to convert sunlight power topower to a load connected when charged by Sun. The typical output voltage of a silicon based solar

Shao, Qinghui

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar module having reflector between cells  

DOE Patents [OSTI]

A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.

Kardauskas, Michael J. (Billerica, MA)

1999-01-01T23:59:59.000Z

262

TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH  

SciTech Connect (OSTI)

Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon???庐 enabled solar cells.

Glatkowski, P.J.; Landis, D.A.

2013-04-16T23:59:59.000Z

263

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

264

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

SciTech Connect (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

265

Test Series 4: seismic-fragility tests of naturally-aged Exide EMP-13 battery cells  

SciTech Connect (OSTI)

This report, the fourth in a test series of an extensive seismic research program, covers the testing of a 27-year old lead-antimony Exide EMP-13 cells from the recently decommissioned Shippingport Atomic Power Station. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, rigidly mounted; and multicell (five-cell) tests, mounted in a typical battery rack. A total of nine electrically active cells was used in the two different cell configurations. None of the nine cells failed during the actual seismic tests when a range of ZPAs up to 1.5 g was imposed. Subsequent discharge capacity tests of five of the cells showed, however, that none of the cells could deliver the accepted standard of 80% of their rated electrical capacity for 3 hours. In fact, none of the 5 cells could deliver more than a 33% capacity. Two of the seismically tested cells and one untested, low capacity cell were disassembled for examination and metallurgical analyses. The inspection showed the cells to be in poor condition. The negative plates in the vicinity of the bus connections were extremely weak, the positive buses were corroded and brittle, negative and positive active material utilization was extremely uneven, and corrosion products littered the cells.

Bonzon, L.L.; Hente, D.B.; Kukreti, B.M.; Schendel, J.; Tulk, J.D.; Janis, W.J.; Black, D.A.; Paulsen, G.D.; Aucoin, B.D.

1985-03-01T23:59:59.000Z

266

Solare Cell Roof Tile And Method Of Forming Same  

DOE Patents [OSTI]

A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

Hanoka, Jack I. (Brookline, MA); Real, Markus (Oberberg, CH)

1999-11-16T23:59:59.000Z

267

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

268

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

of degradation of solar cells, since a material structure,higher effect on the solar cell抯 stability and performance.en.wikipedia.org/wiki/Solar_cell_efficiency, accessed 10) J.

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

269

Enhancing solar cells with plasmonic nanovoids  

E-Print Network [OSTI]

E (2.13) Here m? is an approximation of the effective mass of each electron incor- porating the effects of the lattice potential and electron-electron interactions alongside ? the characteristic damping term. Considering a harmonic in- cident electric... of plasmonic electric field enhance- ments at 3.3 eV (a) and 2.5 eV (b) in spherical silver nanovoids surrounded by a non-absorbing dielectric. Nanovoid plasmonic solar cells are placed on top of these silver structures, harnessing the electric field...

Lal, Niraj Narsey

2012-07-03T23:59:59.000Z

270

Method of fabricating bifacial tandem solar cells  

DOE Patents [OSTI]

A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

2014-10-07T23:59:59.000Z

271

Seismic fragility testing of naturally-aged, safety-related, class 1E battery cells. [PWR; BWR  

SciTech Connect (OSTI)

The concern over seismic susceptibility of naturally-aged lead-acid batteries used for safety-related emergency power in nuclear power stations was brought about by battery problems that periodically had been reported in Licensee Event Reports (LERs). The Turkey Point Station had reported cracked and buckled plates in several cells in October 1974 (LER 75-5). The Fitzpatrick Station had reported cracked battery cell cases in October 1977 (LER 77-55) and again in September 1979 (LER 79-59). The Browns Ferry Station had reported a cracked cell leaking a small quantity of electrolyte in July 1981 (LER 81-42). The Indian Point Station had reported cracked and leaking cells in both February (LER 82-7) and April 1982 (LER 82-16); both of these LERs indicated the cracked cells were due to expansion (i.e., growth) of the positive plates.

Bonzon, L.L.; Hente, D.B.; Kukreti, B.M.; Schendel, J.S.; Black, D.A.; Paulsen, G.D.; Tulk, J.D.; Janis, W.J.; Aucoin, B.D.

1984-01-01T23:59:59.000Z

272

Fuel Cell and Battery Electric Vehicles Compared | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel CellStakeholderand

273

Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Highlight describes research into a more precise technology for measuring efficiency of concentrating solar cells, which will enable the industry to advance.

Not Available

2015-01-01T23:59:59.000Z

274

Solution-Processed Solar Cells using Colloidal Quantum Dots ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physical understanding, and performance-oriented engineering of colloidal quantum dot solar cells and light sensors. Bio: Ted Sargent received the B.Sc.Eng. (Engineering...

275

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thin films of semiconducting polymers as a possible alternative to silicon-based solar cells. Such devices would have the advantages of being cheap to produce,...

276

Putting together the full solar tandem cell | Center for Bio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Putting together the full solar tandem cell 24 Oct 2012 Ben...

277

arsenide solar cells: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

278

arsenide solar cell: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pankaj J Edla; Dr. Bhupendra Gupta 92 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

279

alloy solar cells: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pankaj J Edla; Dr. Bhupendra Gupta 91 Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics University of...

280

Simple Method Quantifies Recombination Pathways in Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

NREL's analytic equation uses open-circuit voltage data to determine how much recombination occurs via different channels in a solar cell.

Not Available

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Energy Materials & Solar Cells 77 (2003) 319330 Structure and photoelectrochemical properties  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 77 (2003) 319颅330 Letters Structure and photoelectrochemical a promis- ing strategy for solar energy conversion, with energy conversion efficiency as high monochromatic photon to current conversion efficiency, overall energy conversion yield (Z) and transient

Huang, Yanyi

282

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

283

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network [OSTI]

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global ClimateWatt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went provide 20 % of that. It takes a panel rated at 5 W, to average 1 W of power through the day and year, sog

McGehee, Michael

284

Efficiency limits of quantum well solar cells  

E-Print Network [OSTI]

The quantum well solar cell (QWSC) has been proposed as a flexible means to ensuring current matching for tandem cells. This paper explores the further advantage afforded by the indication that QWSCs operate in the radiative limit because radiative contribution to the dark current is seen to dominate in experimental data at biases corresponding to operation under concentration. The dark currents of QWSCs are analysed in terms of a light and dark current model. The model calculates the spectral response (QE) from field bearing regions and charge neutral layers and from the quantum wells by calculating the confined densities of states and absorption coefficient, and solving transport equations analytically. The total dark current is expressed as the sum of depletion layer and charge neutral radiative and non radiative currents consistent with parameter values extracted from QE fits to data. The depletion layer dark current is a sum of Shockley-Read-Hall non radiative, and radiative contributions. The charge neu...

Connolly, J P; Barnham, K W J; Bushnell, D B; Tibbits, T N D; Roberts, J S

2010-01-01T23:59:59.000Z

285

Reducing the Cost of Solar Cells  

SciTech Connect (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

286

Preprint of a paper to be presented at UUVS 2005, Southampton, Sept 2005 Cost vs. performance for fuel cells and batteries within AUVs  

E-Print Network [OSTI]

that secondary lithium batteries offer the lowest energy cost. PEM fuel cells should produce energy at a lower integrators, we are in a position to make estimates of the cost of energy from a marinised fuel cell for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography Centre, Southampton

Griffiths, Gwyn

287

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Sources .1 1.2 Solar Energy..sources available are largely covered by hydropower, biomass energy, solar energy,Solar Energy As being the largest among carbon-neutral energy source,

Yengel, Emre

2010-01-01T23:59:59.000Z

288

Lithium battery management system  

DOE Patents [OSTI]

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

289

25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org352 Tanks for the BatteriesThe need to store energy from wind, solar, and other renewable energy sources  

E-Print Network [OSTI]

from wind, solar, and other renewable energy sources could spark a revival of a dormant battery25 APRIL 2014 VOL 344 SCIENCE www.sciencemag.org352 Tanks for the BatteriesThe need to store energy technology NEWSFOCUS CREDIT:MATTBEARDSLEY/SLACNATIONALACCELERATORLABORATORY EVERY LARGE-SCALE ENERGY SOURCE

Cui, Yi

290

Laser beam apparatus and method for analyzing solar cells  

DOE Patents [OSTI]

A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

Staebler, David L. (Lawrenceville, NJ)

1980-01-01T23:59:59.000Z

291

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect (OSTI)

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

292

A Review of Thin Film Silicon for Solar Cell Applications  

E-Print Network [OSTI]

A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

293

Emerging High-Efficiency Low-Cost Solar Cell Technologies  

E-Print Network [OSTI]

. A Manufacturing Cost Analysis Relevant to Photovoltaic Cells Fabricated with IIIEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute

McGehee, Michael

294

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network [OSTI]

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

295

Design and Characterization of a Novel Battery-less, Solar Powered Wireless Tag for Enhanced-Range  

E-Print Network [OSTI]

a simplified protocol in the absence of a regulated battery supply. The design utilizes super capacitors, which

Tentzeris, Manos

296

Hierarchically structured photoelectrodes for dye-sensitized solar cells  

E-Print Network [OSTI]

Hierarchically structured photoelectrodes for dye-sensitized solar cells Qifeng Zhang and Guozhong or one-dimensional assemblies. Introduction Dye-sensitized solar cells (DSCs) are a category Cao* DOI: 10.1039/c0jm04345a This paper highlights several significant achievements in dye-sensitized

Cao, Guozhong

297

Radial Electron Collection in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Radial Electron Collection in Dye-Sensitized Solar Cells Alex B. F. Martinson,, Jeffrey W. Elam photoelectrode architecture consisting of concentric conducting and semiconducting nanotubes for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is employed to grow indium tin oxide (ITO) within a porous

298

CRADA Final Report: Process development for hybrid solar cells  

SciTech Connect (OSTI)

TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

Ager, Joel W

2011-02-14T23:59:59.000Z

299

CURRENT NEWS Sandwich Solar Cells May See Off Silicon  

E-Print Network [OSTI]

CURRENT NEWS Sandwich Solar Cells May See Off Silicon May 24, 2010 A new manufacturing technique of devices using GaAs chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cells. The authors also provide a detailed cost comparison. Another advantage of the multilayer

Rogers, John A.

300

Fundamental limit of nanophotonic light trapping in solar cells  

E-Print Network [OSTI]

Fundamental limit of nanophotonic light trapping in solar cells Zongfu Yu1 , Aaswath Raman and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping) Establishing the fundamental limit of nanophotonic light-trapping schemes is of paramount importance

Fan, Shanhui

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

SciTech Connect (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

302

FABRICATION AND CHARACTERIZATION OF 3-D ALL POLYMER FLEXIBLE SOLAR CELL  

E-Print Network [OSTI]

....................................................................................3 2 LITERATURE SURVEY ON THIN FILM ANDORGANIC/TANDEM SOLAR CELL........................................................................7 2.3 Thin Film Solar CellFABRICATION AND CHARACTERIZATION OF 3-D ALL POLYMER FLEXIBLE SOLAR CELL _______________ A Thesis

Kassegne, Samuel Kinde

303

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

304

In Situ X-Ray Scattering Helps Optimize Printed Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

305

The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells  

E-Print Network [OSTI]

J. The physics of solar cells; Imperial College Press,for organic polymer solar cells investigated to date. Thebulk heterojunction organic solar cells, blends of a p-type

Armstrong, Paul Barber

2010-01-01T23:59:59.000Z

306

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network [OSTI]

Towards efficient hybrid solar cells based on fully polymerSariciftci, N. S. Hybrid solar cells, Inorg. Chim. Acta 361,Y. , Warta, W. , Dunlop, E.D. Solar cell efficiency table (

Mariani, Giacomo

2013-01-01T23:59:59.000Z

307

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

Huang, Jianqiao

2012-01-01T23:59:59.000Z

308

ADOPT-A-CELL PROGRAM Help support the success of the CalSol solar team by  

E-Print Network [OSTI]

ADOPT-A-CELL PROGRAM Help support the success of the CalSol solar team by adopting a small part. $20: Solar Encapsulation High-tech solar lamination improves solar energy collection and increases the durability of solar cells. The money will go towards laminating one single solar cell. $50: Solar Cell Solar

Mofrad, Mohammad R. K.

309

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

SciTech Connect (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

310

Review paper: Toward highly efficient quantum-dot-and dye-sensitized solar cells  

E-Print Network [OSTI]

Review paper: Toward highly efficient quantum-dot- and dye-sensitized solar cells Hongsik Choi Interface control Light harvesting Tandem solar cell a b s t r a c t Dye- and quantum-dot-sensitized solar technologies of silicon-based solar cells should be resolved [7]. Dye-sensitized solar cells (DSSCs) have been

Park, Byungwoo

311

NANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1  

E-Print Network [OSTI]

for solar energy conversion. NANOSTRUCTURED SOLAR CELLS Nanostructured solar cells offer several advantages to contribute to high efficiency devices NEW CONCEPTS FOR SOLAR CELLS An important advantage for nanostructuredNANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1 , Allen M

Honsberg, Christiana

312

Amorphous silicon/crystalline silicon heterojunctions: The future of high-efficiency silicon solar cells  

E-Print Network [OSTI]

;5 Record efficiencies #12;6 Diffused-junction solar cells Diffused-junction solar cell Chemical passivation to ~650 mV #12;7 Silicon heterojunction solar cells a-Si:H provides excellent passivation of c-Si surface Heterojunction solar cell Chemical passivation Chemical passivation #12;8 Voc and silicon heterojunction solar

Firestone, Jeremy

313

Solar cells incorporating light harvesting arrays  

DOE Patents [OSTI]

A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: ##EQU1## wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S.; Meyer, Gerald J.

2003-07-22T23:59:59.000Z

314

Solar cells incorporating light harvesting arrays  

DOE Patents [OSTI]

A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC); Meyer, Gerald J. (Baltimore, MD)

2002-01-01T23:59:59.000Z

315

Efficiency of silicon solar cells containing chromium  

DOE Patents [OSTI]

Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

1982-01-01T23:59:59.000Z

316

Battery Charger Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple battery banks * The dominant batteries in...

317

The analysis and optimization of a spherical silicon solar cell  

E-Print Network [OSTI]

silicon solar cell has been estimated using a cylindrical solar cell with some modifications as an approximate model. Calculations were made for both the cylindrical model and the conventional planar cell with the aid of a Fortran IV computer program... ln the p nnd n layers, respect lvely (cm I) N(X) monochromatic photon flux incident on the solar cell (cm g sec ~ o ) N 0 number of photons/cm sec with wavelengths shorter than l. lp (cm sec ) n po' no thermal equilibrium concentration...

McKee, William Randall

1976-01-01T23:59:59.000Z

318

E-Print Network 3.0 - aluminium arsenide solar cells Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing technique holds Summary: arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cells... the photovoltaic cells that solar...

319

Solar Energy Materials & Solar Cells 58 (1999) 199}208 The behaviour of Na implanted into Mo thin "lms  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 58 (1999) 199}208 The behaviour of Na implanted into Mo thin, As ngstro( m Solar Center, P.O. Box 534, SE-751 21 Uppsala, Sweden Department of Materials Science Mo thin "lms used as back contacts for Cu(In,Ga)Se solar cells. The samples were analysed

Rockett, Angus

320

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network [OSTI]

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effects of cell area on the performance of dye sensitized solar cell  

SciTech Connect (OSTI)

Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell抯 area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell抯 electron lifetime was influenced significantly by the cell抯 area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

Khatani, Mehboob, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Mohamed, Norani Muti, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Hamid, Nor Hisham, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Sahmer, Ahmad Zahrin, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Samsudin, Adel, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia)

2014-10-24T23:59:59.000Z

322

Materials for electrochemical energy storage and conversion II -- Batteries, capacitors and fuel cells. Materials Research Society symposium proceedings, Volume 496  

SciTech Connect (OSTI)

Our energy-hungry world is increasingly relying on new methods to store and convert energy for portable electronics, as well as new, environmentally friendly modes of transportation and electrical energy generation. The availability of advanced materials is linked to the commercial success of improved power sources such as batteries, fuel cells and capacitors with higher specific energy and power, longer cycle life and rapid change/discharge rates. The papers in this symposium were heavily weighted toward lithium batteries. The proceedings volume is organized into six sections highlighting: general papers on a wide variety of rechargeable battery technologies; new approaches to modeling of Li batteries; advances in fuel-cell technology; new work on Li battery cathodes; anodes and electrolytes; and work on super-capacitors. The authors think the volume is an excellent snapshot of the current state of the art in energy storage and conversion technologies, many of which will make a significant impact on society. Separate abstracts were prepared for most papers in this volume.

Ginley, D.S.; Doughty, D.H.; Scrosati, B.; Takamura, T.; Zhang, Z.J. [eds.

1998-07-01T23:59:59.000Z

323

Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform  

E-Print Network [OSTI]

of Energy Technology, Aalborg University. Keywords: characterization, experiment based, modelling, solar (MSc and PhD level) taught at the Department of Energy Technology, Aalborg University. SOLAR CELL S. V. Spataru, D. Sera, T. Kerekes, R. Teodorescu Department of Energy Technology Aalborg University

Sera, Dezso

324

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network [OSTI]

Battery cycle life (cycles) c Battery calendar life (years) Battery costin the battery during its life cycle in kWh, C B is cost ofBattery cycle life (cycles) Battery calendar life (years) Maximum electrical power output to motor (kW) Battery cost

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

325

The Shockley-Queisser limit for nanostructured solar cells  

E-Print Network [OSTI]

The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a new class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of 42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non- concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration.

Xu, Yunlu; Munday, Jeremy N

2014-01-01T23:59:59.000Z

326

Solar Energy Materials & Solar Cells 91 (2007) 17261732 Optical and structural properties of Ta2O5CeO2 thin films  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 91 (2007) 1726颅1732 Optical and structural properties of Ta2O5

Thirumalai, Devarajan

327

Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications  

E-Print Network [OSTI]

1 Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications D the negative impact of wind power grid integration on the power system stability, which is caused. INTRODUCTION Future wind power plants (WPPs) are intended to function like todays conventional power plants

Teodorescu, Remus

328

Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Ziga, Angel Abusleme and Daniel Soto  

E-Print Network [OSTI]

Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Z煤帽iga, Angel Vehicles (EVs) is the scarce capacity of conventional electrical energy storage systems. Although Abusleme and Daniel Soto Abstract One of the major problems for the massive applicability of Electric

Catholic University of Chile (Universidad Cat贸lica de Chile)

329

Current- and lattice-matched tandem solar cell  

DOE Patents [OSTI]

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

Olson, J.M.

1985-10-21T23:59:59.000Z

330

Strongly Correlated Electron Systems Functionalized for Solar Cells and Memristors  

E-Print Network [OSTI]

" #12;Grand Energy Challenge Gap between production and demand: ~14TW by 2050 Install one 1GW new power Demand total industrial developing US ee/fsu Energy source World Capacity Solar Geothermal Biomass Hydro Optimization of gap: max efficiency: 31% (Shockley Queisser 1961) In real PV cells 80-85% of incident solar

331

Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells  

E-Print Network [OSTI]

Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells Kai Zhu a,1 , E Solar, Toano, VA 23168, USA Abstract We report infrared depletion modulation spectra for near an infrared modulation spectroscopy technique that probes the optical spectra of dopants and defects

Schiff, Eric A.

332

Test series 1: seismic-fragility tests of naturally-aged Class 1E Gould NCX-2250 battery cells  

SciTech Connect (OSTI)

The seismic-fragility response of naturally-aged, nuclear station, safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds; and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the end-of-life of a battery, given a seismic event. This report covers the first test series of an extensive program using 12-year old, lead-calcium, Gould NCX-2250 cells, from the James A. Fitzpatrick Nuclear Power Station operated by the New York Power Authority. Seismic tests with three cell configurations were performed using a triaxial shake table: single-cell tests, rigidly mounted; multi-cell (three) tests, mounted in a typical battery rack; and single-cell tests specifically aimed towards examining propagation of pre-existing case cracks. In general the test philosophy was to monitor the electrical properties including discharge capacity of cells through a graduated series of g-level step increases until either the shake-table limits were reached or until electrical failure of the cells occurred. Of nine electrically active cells, six failed during seismic testing over a range of imposed g-level loads in excess of a 1-g ZPA. Post-test examination revealed a common failure mode, the cracking at the abnormally brittle, positive lead bus-bar/post interface; further examination showed that the failure zone was extremely coarse grained and extensively corroded. Presently accepted accelerated-aging methods for qualifying batteries, per IEEE Std. 535-1979, are based on plate growth, but these naturally-aged 12-year old cells showed no significant plate growth.

Bonzon, L. L.; Hente, D. B.; Kukreti, B. M.; Schendel, J. S.; Tulk, J. D.; Janis, W. J.; Black, D A; Paulsen, G. D.; Aucoin, B. D.

1984-09-01T23:59:59.000Z

333

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

energy sources, the potential of solar energy is the mostuse of solar cells as an energy source [2]. Therefore, thinspread use of solar cells as a renewable energy source [2].

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

334

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

335

Simulation of iron impurity gettering in crystalline silicon solar cells  

E-Print Network [OSTI]

This work discusses the Impurity-to-Efficiency (12E) simulation tool and applet. The 12E simulator models the physics of iron impurity gettering in silicon solar cells during high temperature processing. The tool also ...

Powell, Douglas M. (Douglas Michael)

2012-01-01T23:59:59.000Z

336

The renaissance of hybrid solar cells: progresses, challenges, and perspectives  

E-Print Network [OSTI]

Solution-processed hybrid solar cells, a blend of conjugated polymers and semiconducting nanocrystals, are a promising candidate for next-generation energy-conversion devices. The renaissance of this field in recent years has yielded a much deeper...

Feng, Gao; Ren, Shenqiang; Jianpu, Wang

2013-06-12T23:59:59.000Z

337

New functional polymers for sensors, smart materials and solar cells  

E-Print Network [OSTI]

Organic polymers can be used as the active component of sensors, smart materials, chemical-delivery systems and the active layer of solar cells. The rational design and modification of the chemical structure of polymers ...

Lobez Comeras, Jose Miguel

2012-01-01T23:59:59.000Z

338

Nanostructured architectures for colloidal quantum dot solar cells  

E-Print Network [OSTI]

This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

Jean, Joel, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

339

Enhanced light absorption of solar cells and photodetectors by diffraction  

DOE Patents [OSTI]

Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

Zaidi, Saleem H.; Gee, James M.

2005-02-22T23:59:59.000Z

340

Pokeberries Provide Boost for Solar Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EERE What are the key facts? When the red dye from the pokeberries is spread over solar cells, it acts as a light absorber, boosting the technology's efficiency by about...

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Light trapping limits in plasmonic solar cells: an analytical investigation  

E-Print Network [OSTI]

We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and ...

Sheng, Xing

342

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

343

Organic Solar Cells: Absolute Measurement of Domain Composition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

00:00 This front cover represents the morphology and resulting device dynamics in organic solar cell blend films of PTB7 and PC71BM, as revealed by combined resonant x-ray...

344

One-sun, single-crystalline silicon solar cell research  

SciTech Connect (OSTI)

The point-contact solar cell design, the most efficient silicon concentrator solar cell design to date, is explored for use in one-sun applications. The necessary modifications to backside-contact concentrator cell design for operation at one-sun are explored and implemented. Large-area, point-contact solar cells were fabricated on n- and p-type substrates in low-level injection (LLI). The characteristics of these LLI cells were compared to those of four different architectures of cells with substrates in high-level injection (HLI). Both types of cell achieved open-circuit voltages over 700 mV at one-sun, LLI cells had higher fill factors, and HLI cells had substantially higher short-circuit currents. The mechanisms responsible for these observations are discussed. The high V{sub oc} and J{sub sc} of the HLI cells combine to make them more efficient than the LLI cells, with efficiencies measured at Sandia up to 22.7% for a 37.5-cm{sup 2} cell at one sun. This is the highest one-sun efficiency for a silicon cell larger than 4 cm{sup 2}. Simplified, backside-contact solar cell processes were also developed, which have nearly 100% yield. Over 80 such cells, each with a 35-cm{sup 2} area or greater, were delivered to Sandia. Cells made with these simplified processes had efficiencies up to 21.3% for a 37.5-cm{sup 2} cell. The recombination properties of Si{sub 3}N{sub 4} layers over SiO{sub 2} were characterized, since Si{sub 3}N{sub 4} is an excellent antireflection coating for cells laminated under glass. Several prototype flat-plate modules of backside-contact cells were built, with up to 24 cells and efficiencies up to 19%. 26 refs., 16 figs., 4 tabs.

King, R.R.; Sinton, R.A.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1991-06-01T23:59:59.000Z

345

BatteryConscious Task Sequencing for Portable Devices Including Voltage/Clock Scaling  

E-Print Network [OSTI]

power sources: a battery and a solar panel. The objective was to utilize the solar panel (the ''free

Kambhampati, Subbarao

346

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

solar cell lead to a higher fill factor, therefore resulting in greater efficiency value, and bringing the cell's output power

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

347

Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells  

E-Print Network [OSTI]

Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells H. Kim,a) G. P颅20 m thick) layers incorporated in dye-sensitized solar cells. Laser direct-write is a laser techniques to produce porous nc- TiO2 films required for dye-sensitized solar cells. The dye solar cells

Arnold, Craig B.

348

Planar Waveguide-Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Planar Waveguide-Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells Yaguang Wei, Chen to fabricate three-dimensional (3D) dye-sensitized solar cells (DSSCs) by integrating planar optical waveguide cells that can be expanded to organic- and inorganic-based solar cells. KEYWORDS Dye-sensitized solar

Wang, Zhong L.

349

Increased light harvesting in dye-sensitized solar cells with energy relay dyes  

E-Print Network [OSTI]

Increased light harvesting in dye-sensitized solar cells with energy relay dyes Brian E. Hardin1 factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible pathway to develop more efficient dye-sensitized solar cells. D ye-sensitized solar cells (DSCs) work

McGehee, Michael

350

The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes  

E-Print Network [OSTI]

The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous Available online 24 October 2014 Keywords: Tandem solar cell Selective etching Dye-sensitized solar cell Nanoporous electrode a b s t r a c t A tandem dye-sensitized solar cell (tandem-DSSC) was synthesized

Park, Byungwoo

351

Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes with  

E-Print Network [OSTI]

Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes,a Bailiang Xue,b Wei Liu,c Zhiqun Lina and Yulin Deng*bc A uniquely structured dye-sensitized solar cell tandem solar cells, leading to higher power conversion efficiency. Dye-sensitized solar cells (DSSCs

Lin, Zhiqun

352

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes  

E-Print Network [OSTI]

-called third generation of solar cells including dye-sensitized solar cells, DSCs2,3 and organic phoEnhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 nanotubes can be effectively controlled for the suitable use for a hybrid solar cell by varying the diameter

Cao, Guozhong

353

Organic solar cells: An overview focusing on active layer morphology Travis L. Benanti & D. Venkataraman*  

E-Print Network [OSTI]

Review Organic solar cells: An overview focusing on active layer morphology Travis L. Benanti & D/acceptor blend, morphology, photovoltaic devices, plastic solar cells, thin films Abstract Solar cells heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief

Venkataraman, Dhandapani "DV"

354

RANDOM DEPOSITION MODEL OF CDS LAYER IN CDS/CDTE THINFILM SOLAR CELLS  

E-Print Network [OSTI]

THESIS RANDOM DEPOSITION MODEL OF CDS LAYER IN CDS/CDTE THIN颅FILM SOLAR CELLS Submitted by Lei Chen LAYER IN CDS/CDTE THIN颅FILM SOLAR CELLS BE AC- CEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE MODEL OF CDS LAYER IN CDS/CDTE THIN颅FILM SOLAR CELLS Thin颅film solar cells are developing dramatically

Sites, James R.

355

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

Sites, James R.

356

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

Sites, James R.

357

Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene  

E-Print Network [OSTI]

as the electron acceptor in some BHJ solar cells but not in others. We first determine the solar cell performanceMolecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene States *S Supporting Information ABSTRACT: We compare the solar cell performance of several polymers

McGehee, Michael

358

Microstructured anti-reflection surface design for the omni-directional solar cells  

E-Print Network [OSTI]

Microstructured anti-reflection surface design for the omni-directional solar cells Li Chen for the formation of hemispherical structures as an omni-directional anti-reflection (omni-AR) coating in solar cell current in such hemispherical solar cells hence enhanced to 1.5 times of bulk silicon solar cells

Zhou, Weidong

359

DISSERTATION Investigation of Spatial Variations in Collection Efficiency of Solar Cells  

E-Print Network [OSTI]

DISSERTATION Investigation of Spatial Variations in Collection Efficiency of Solar Cells Submitted BY JASON F. HILTNER ENTITLED INVESTIGATION OF SPATIAL VARIATIONS IN COLLECTION EFFICIENCY OF SOLAR CELLS OF SOLAR CELLS In an effort to investigate spatial variations in solar cells, an apparatus which is capable

Sites, James R.

360

Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells  

E-Print Network [OSTI]

Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning to obtain ultrathin patterned solar cells. Keywords: Photonic crystals; Epitaxial crystalline silicon; Thin

Paris-Sud XI, Universit茅 de

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DESIGN APPROACHES AND MATERIALS PROCESSES FOR ULTRAHIGH EFFICIENCY LATTICE MISMATCHED MULTI-JUNCTION SOLAR CELLS  

E-Print Network [OSTI]

-JUNCTION SOLAR CELLS Melissa J. Griggs 1 , Daniel C. Law 2 , Richard R. King 2 , Arthur C. Ackerman 3 , James M heterostructures grown in a multi-junction solar cell-like structure by MOCVD. Initial solar cell data are also of the minority carrier lifetime. INTRODUCTION High efficiency triple junction solar cells have recently been

Atwater, Harry

362

Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by  

E-Print Network [OSTI]

: Three of central challenges in solar cells are high light coupling into solar cell, high light trappingUltrathin, high-efficiency, broad-band, omni- acceptance, organic solar cells enhanced by plasmonic and demonstration of a new ultra-thin high- efficiency organic solar cell (SC), termed "plasmonic cavity

363

X-ray absorption spectroscopy of biomimetic dye molecules for solar cells Peter L. Cook,1  

E-Print Network [OSTI]

X-ray absorption spectroscopy of biomimetic dye molecules for solar cells Peter L. Cook,1 Xiaosong November 2009 Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate

Himpsel, Franz J.

364

Recent technological advances in thin film solar cells  

SciTech Connect (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

365

Nanoantennas for enhanced light trapping in transparent organic solar cells  

E-Print Network [OSTI]

We propose a light-trapping structure offering a significant enhancement of photovoltaic absorption in transparent organic solar cells operating at infrared while the visible light transmission keeps sufficiently high. The main mechanism of light trapping is related with the excitation of collective oscillations of the metal nanoantenna arrays, characterized by advantageous field distribution in the volume of the solar cell. It allows more than triple increase of infrared photovoltaic absorption.

Voroshilov, Pavel M; Belov, Pavel A

2014-01-01T23:59:59.000Z

366

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

367

Thermodynamics of photon-enhanced thermionic emission solar cells  

SciTech Connect (OSTI)

Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures.

Reck, Kasper, E-mail: kasper.reck@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345E, Kgs. Lyngby 2800 (Denmark); Hansen, Ole, E-mail: ole.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345E, Kgs. Lyngby 2800 (Denmark); CINF Center for Individual Nanoparticle Functionality, Technical University of Denmark, Kgs. Lyngby 2800 (Denmark)

2014-01-13T23:59:59.000Z

368

Fabrication and Characterization of Organic Solar Cells  

E-Print Network [OSTI]

processable爌olymer爌hotovoltaiccells燽y爏elf?organization燩hotodiodes, and Photovoltaic Cells. Applied燩hysics燜, Heeger AJ. Polymer Photovoltaic Cells ? Enhanced

Yengel, Emre

2010-01-01T23:59:59.000Z

369

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells and durabilityand durability  

E-Print Network [OSTI]

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells PV coatings based on CdTe. ...for transparent window PV:...for transparent window PV: , p g 路 The X26 for ultrathin CdTe 路 X26 PV window coatings (250 500 nm of CdTe) are attractive very low cost and路 X26 PV window

Rollins, Andrew M.

370

Parallel flow diffusion battery  

DOE Patents [OSTI]

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

371

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect (OSTI)

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

372

An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer  

SciTech Connect (OSTI)

An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li{sub 4}Ti{sub 5}O{sub 12} anode and LiMn{sub 2}O{sub 4} cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na{sub 0.84}Fe{sub 0.56}Mn{sub 0.44}O{sub 2})

Shen, Yanbin; Pedersen, Erik E.; Christensen, Mogens; Iversen, Bo B., E-mail: bo@chem.au.dk [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus (Denmark)

2014-10-15T23:59:59.000Z

373

The mission of the UC Davis Solar Collaborative is simple: to find ways to make solar cells more efficient. Even in theory, the efficiency of conventional solar cells is limited to a disappointing 31%. However, this limit is based  

E-Print Network [OSTI]

Mission The mission of the UC Davis Solar Collaborative is simple: to find ways to make solar cells more efficient. Even in theory, the efficiency of conventional solar cells is limited to a disappointing 31%. However, this limit is based on the traditional operation of solar cells, where an incoming

374

Novel Cell Design for Combined In Situ Acoustic Emission and X-ray Diffraction of Cycling Lithium Ion Batteries  

SciTech Connect (OSTI)

An in situ acoustic emission (AE) and X-ray diffraction (XRD) cell for use in the study of battery electrode materials has been devised and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk which acts as both an X-ray window and a current collector. In this manner the use of beryllium and its associated cost and hazard is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles which were previously studied by the AE technique were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

Rhodes, Kevin J [ORNL; Kirkham, Melanie J [ORNL; Meisner, Roberta Ann [ORNL; Parish, Chad M [ORNL; Dudney, Nancy J [ORNL; Daniel, Claus [ORNL

2011-01-01T23:59:59.000Z

375

Novel cell design for combined in situ acoustic emission and x-ray diffraction study during electrochemical cycling of batteries  

SciTech Connect (OSTI)

An in situ acoustic emission (AE) and x-ray diffraction cell for use in the study of battery electrode materials has been designed and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk, which acts as both an x-ray window and a current collector. In this manner, the use of beryllium and its associated cost and hazards is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles, which were previously studied by the AE technique, were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells, while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

Rhodes, Kevin; Meisner, Roberta; Daniel, Claus [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., MS 6083, Oak Ridge, Tennessee 37931-6083 (United States); Materials Science and Engineering Department, University of Tennessee, 434 Dougherty Hall, Knoxville, Tennessee 37996-2200 (United States); Kirkham, Melanie; Parish, Chad M.; Dudney, Nancy [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., MS 6083, Oak Ridge, Tennessee 37931-6083 (United States)

2011-07-15T23:59:59.000Z

376

Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells  

DOE Patents [OSTI]

A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.

Carrie, Peter J. (Toronto, CA); Chen, Kingsley D. D. (Markham, CA)

2000-10-24T23:59:59.000Z

377

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

378

Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core-Shell-Shell Nanostructures  

E-Print Network [OSTI]

Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core- Shell-Shell Nanostructures Stafford and demonstrate near-field plasmonic enhancement of dye-sensitized solar cells (DSSCs) incorporating them being researched, dye-sensitized solar cells (DSSCs) are a promising alternative to traditional solar

379

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070 Stable Dye-Sensitized Solar Cell,* and Udo Bach* Dye-sensitized solar cells (DSCs) can be fabricated from low- cost components with simple fields, including renewable energy research focusing on DSCs and solar-driven hydrogen generation from

380

NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify  

E-Print Network [OSTI]

and Characterization team examined local junction breakdown in silicon and thin-film solar cells by electroluminescenceNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Identification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells  

E-Print Network [OSTI]

cells [4]. The problem of shadowing of solar panels has been studied for quite some time; however of a solar cell, showing the dark and light current components. (b) The series connection in a solar panelIdentification, Characterization, and Implications of Shadow Degradation in Thin Film Solar Cells

Alam, Muhammad A.

382

The ultra-thin solar cells that could generate power through windows  

E-Print Network [OSTI]

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

383

Light trapping in solar cells at the extreme coupling limit Ali Naqavi,1,2,  

E-Print Network [OSTI]

Light trapping in solar cells at the extreme coupling limit Ali Naqavi,1,2, * Franz-Josef Haug,1.1950, 130.2790. 1. INTRODUCTION Enhancing light absorption in solar cells has been a topic of research to enhance absorption in the solar cells and the extent to which they can increase light absorption in solar

Petitpierre, Claude

384

CARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT  

E-Print Network [OSTI]

-n junction solar cell theory predicts that the total solar cell current in the light, JLCARRIER COLLECTION IN THIN-FILM CDTE SOLAR CELLS: THEORY AND EXPERIMENT A.E. Delahoy, Z. Cheng and K.K. Chin Department of Physics, Apollo Solar Energy Research Center, New Jersey Institute

385

ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission  

E-Print Network [OSTI]

ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission angle Emily D Kosten1 solar cell under direct sunlight, light is received from the solar disk, but is re-emitted isotropically.1038/lsa.2013.1; published online 4 January 2013 Keywords: detailed balance; GaAs solar cell; light

Atwater, Harry

386

1. INTRODUCTION Polycrystalline CdTe thin films solar cells have shown long  

E-Print Network [OSTI]

to the solar panel that can be adapted to any kind of shape and is easy to deploy in space. We have developed1. INTRODUCTION Polycrystalline CdTe thin films solar cells have shown long term stable performance for the solar cell, therefore high specific power (ratio of out- put power to the weight) solar cells

Romeo, Alessandro

387

Electronic structure of QD arrays: Application to intermediate-band solar cells  

E-Print Network [OSTI]

)Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK Abstract-Intermediate band solar cells (IBSC) have the thermodynamic efficiency limits of solar energy conversion. While tandem solar cells can the- oretically exceedNUSOD 2007 Electronic structure of QD arrays: Application to intermediate-band solar cells S

388

Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications  

DOE Patents [OSTI]

Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

2014-11-11T23:59:59.000Z

389

Fabrication of ultra thin CdS/CdTe solar cells by magnetron sputtering.  

E-Print Network [OSTI]

?? CdTe is a nearly perfect absorber material for second generation polycrystalline solar cells because the bandgap closely matches the peak of the solar spectrum, (more)

Plotnikov, Victor

2009-01-01T23:59:59.000Z

390

E-Print Network 3.0 - alingap solar cell Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Radiation Monitoring Laboratory Summary: an electrical current when illuminated by light- also called a solar cell Photovoltaic Module A group... produced when plotting...

391

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents [OSTI]

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

Kaschmitter, J.L.

1996-07-23T23:59:59.000Z

392

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents [OSTI]

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

Kaschmitter, James L. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

393

Laminated photovoltaic modules using back-contact solar cells  

DOE Patents [OSTI]

Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-09-14T23:59:59.000Z

394

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network [OSTI]

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

395

Doped surfaces in one sun, point-contact solar cells  

SciTech Connect (OSTI)

This letter reports two new types of large-area (>8.5 cm/sup 2/), backside, point-contact solar cells with doped surfaces, designed for use in unconcentrated sunlight. One type was fabricated on an intrinsic substrate with an optimized phosphorus diffusion on the sunward surface. The apertured-area efficiency was independently measured to be 22.3% at 1 sun (0.100 W/cm/sup 2/), 25 /sup 0/C, the highest reported for a silicon solar cell. The other type is constructed on a doped substrate, and has an apertured-area efficiency of 20.9%, the highest reported for a point-contact solar cell with a base in low-level injection. Both cells have record open-circuit voltages above 700 mV.

King, R.R.; Sinton, R.A.; Swanson, R.M.

1989-04-10T23:59:59.000Z

396

Single nanowire solar cells beyond the Shockley-Queisser limit  

E-Print Network [OSTI]

Light management is of great importance to photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal pn-junction combined with an optimal light absorption can lead to a solar cell efficiency above the Shockley-Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate. At one sun illumination a short circuit current of 180 mA/cm^2 is obtained, which is more than one order of magnitude higher than what would be predicted from Lambert-Beer law. The enhanced light absorption is shown to be due to a light concentrating property of the standing nanowire as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III-V based nanowire solar cells under one sun illumination.

Krogstrup, Peter; Heiss, Martin; Demichel, Olivier; Holm, Jeppe V; Aagesen, Martin; Nygard, Jesper; Morral, Anna Fontcuberta i

2013-01-01T23:59:59.000Z

397

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network [OSTI]

.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www.TheHydrogenCompany.com Hydrogen Fuel Cell Improve Your Fuel Economy 20 to 50% Begin Saving Fuel Now www.SaveMoreWithHydrogenMicrobial Fuel Cells - Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6

Lovley, Derek

398

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

as coal or oil. The photovoltaic cells which constitute mostand conventional inorganic photovoltaic cells is that lightand Characterization Photovoltaic (PV) cells convert solar

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

399

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

for efficient photovoltaic cells. , Nature Nanotechnology,Part II Photovoltaic Cell I-V Characterization Theory andof the photovoltaic effect in the 19 th century, solar cells

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

400

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

402

Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)  

SciTech Connect (OSTI)

The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

Not Available

2010-12-01T23:59:59.000Z

403

Electron Transfer Dynamics in Efficient Molecular Solar Cells  

SciTech Connect (OSTI)

This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

Meyer, Gerald John

2014-10-01T23:59:59.000Z

404

Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby  

DOE Patents [OSTI]

A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

Gonzalez, Franklin N. (Gainesville, FL); Neugroschel, Arnost (Gainesville, FL)

1984-02-14T23:59:59.000Z

405

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network [OSTI]

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

Atwater, Harry

406

A model to determine financial indicators for organic solar cells  

SciTech Connect (OSTI)

Organic solar cells are an emerging photovoltaic technology that is inexpensive and easy to manufacture, despite low efficiency and stability. A model, named TEEOS (Technical and Economic Evaluator for Organic Solar), is presented that evaluates organic solar cells for various solar energy applications in different geographic locations, in terms of two financial indicators, payback period and net present value (NPV). TEEOS uses SMARTS2 software to estimate broadband (280-4000 nm) spectral irradiance data and with the use of a cloud modification factor, predicts hourly irradiation in the absence of actual broadband irradiance data, which is scarce for most urban locations. By using the avoided cost of electricity, annual savings are calculated which produce the financial indicators. It is hoped that these financial indicators can help guide certain technical decisions regarding the direction of research for organic solar cells, for example, increasing efficiency or increasing the absorptive wavelength range. A sample calculation using solar hats is shown to be uneconomical, but a good example of large-scale organic PV production. (author)

Powell, Colin; Bender, Timothy; Lawryshyn, Yuri [Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering and Applied Science, University of Toronto, 200 College Street, Toronto, Ont. (Canada)

2009-11-15T23:59:59.000Z

407

Method of making a back contacted solar cell  

DOE Patents [OSTI]

A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.

Gee, J.M.

1995-11-21T23:59:59.000Z

408

Method of making a back contacted solar cell  

DOE Patents [OSTI]

A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.

Gee, James M. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

409

batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries batteries Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

410

Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells  

SciTech Connect (OSTI)

In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20?mm??20?mm??2?mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

Mart韓ez D韊z, Ana Luisa, E-mail: a.martinez@itma.es [Fundaci髇 ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avil閟 (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David G髆ez [Fundaci髇 ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avil閟 (Spain)

2014-10-21T23:59:59.000Z

411

Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report  

SciTech Connect (OSTI)

Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

NONE

1990-02-28T23:59:59.000Z

412

Structured SWNTs and Graphene for Solar Cells Kehang Cui, Takaaki Chiba, Xiao Chen, Shohei Chiashi and Shigeo Maruyama*  

E-Print Network [OSTI]

of heterojunction solar cells and dye-sensitized solar cells (DSSCs). The structure of SWNTs was controlled nanotubes, Micro-honeycomb, SWNT-Si solar cell, Dye-sensitized solar cell, Graphene 1. Introduction Single and structural simplicity. Dye-sensitized solar cells (DSSCs)6 have the advantages of relatively high PCE values

Maruyama, Shigeo

413

Limiting Emission Angle for Improved Solar Cell  

E-Print Network [OSTI]

cooling, waste heat recovery and solar electricity generation, low values of the thermoelectric figure. Phase Transition Enhanced Thermoelectrics While thermoelectric materials can be used for solid state of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects

414

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

M=Mn, Ni, Co) in Lithium Batteries at 50癈. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

Doeff, Marca M

2011-01-01T23:59:59.000Z

415

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

416

Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.  

SciTech Connect (OSTI)

The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

Swain; Greg M.

2009-04-13T23:59:59.000Z

417

Copper doped polycrystalline silicon solar cell  

DOE Patents [OSTI]

Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

1981-01-01T23:59:59.000Z

418

Light-trapping in dye-sensitized solar cells Stephen Foster* and Sajeev John  

E-Print Network [OSTI]

Light-trapping in dye-sensitized solar cells Stephen Foster* and Sajeev John We demonstrate numerically that photonic crystal dye-sensitized solar cells (DSSCs) can provide at least a factor of one researched is the dye-sensitized solar cell (DSSC). These cells are inexpensive to make and boast power

John, Sajeev

419

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?  

E-Print Network [OSTI]

are introducing a new solar cell design: the Passivated Emitter and Rear Cell (PERC), which features a full-PERT (Passivated Emitter, Rear Totally Diffused) solar cells with a processing sequence based on an industrialN-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? Bianca

420

Preprint 24th EU PVSEC, 2009, Hamburg FITTING OF LATERAL RESISTANCES IN SILICON SOLAR CELLS  

E-Print Network [OSTI]

Preprint 24th EU PVSEC, 2009, Hamburg FITTING OF LATERAL RESISTANCES IN SILICON SOLAR CELLS cell from electroluminescence (EL) is introduced. A two-dimensional model of the solar cell screen printed monocrystalline silicon solar cell are shown and the influence of lateral diffusion

Junk, Michael

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nanodome Solar Cells with Efficient Light Management and Self-Cleaning  

E-Print Network [OSTI]

Nanodome Solar Cells with Efficient Light Management and Self-Cleaning Jia Zhu, Ching-Mei Hsu Nanocone, nanodome, solar cell, light trapping, photovoltaics S olar cells of nanostructures 94305 ABSTRACT Here for the first time, we demonstrate novel nanodome solar cells, which have periodic

Cui, Yi

422

Solar Cell Light Trapping beyond the Ray Optic Limit Dennis M. Callahan,* Jeremy N. Munday,  

E-Print Network [OSTI]

Solar Cell Light Trapping beyond the Ray Optic Limit Dennis M. Callahan,* Jeremy N. Munday: Photovoltaic cell, solar cell, local density of optical states (LDOS), light trapping, plasmonic, nanophotonic light trapping, as the solar cell absorber layer thickness is reduced, absorption is also reduced

Atwater, Harry

423

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

is ter for PEM fuel cells: thinner membranes cost less andPEM fuel cells, the extra yearly mineproduc- ciency, environmental impacts and Iife-cycle costcost air-separation or COz- removal methods are found, alkaline fuel cells could prove to be superior to PEM

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

424

Fabrication of solar cells with counter doping prevention  

DOE Patents [OSTI]

A solar cell fabrication process includes printing of dopant sources over a polysilicon layer over backside of a solar cell substrate. The dopant sources are cured to diffuse dopants from the dopant sources into the polysilicon layer to form diffusion regions, and to crosslink the dopant sources to make them resistant to a subsequently performed texturing process. To prevent counter doping, dopants from one of the dopant sources are prevented from outgassing and diffusing into the other dopant source. For example, phosphorus from an N-type dopant source is prevented from diffusing to a P-type dopant source comprising boron.

Dennis, Timothy D; Li, Bo; Cousins, Peter John

2013-02-19T23:59:59.000Z

425

Thin film solar cell including a spatially modulated intrinsic layer  

DOE Patents [OSTI]

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

426

Process Development for High Voc CdTe Solar Cells  

SciTech Connect (OSTI)

This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

Ferekides, C. S.; Morel, D. L.

2011-05-01T23:59:59.000Z

427

Substrate for thin silicon solar cells  

DOE Patents [OSTI]

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

Ciszek, T.F.

1995-03-28T23:59:59.000Z

428

Substrate for thin silicon solar cells  

DOE Patents [OSTI]

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

Ciszek, Theodore F. (Evergreen, CO)

1995-01-01T23:59:59.000Z

429

Solar Cell Simulation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage 禄 SearchEnergyDepartmentScoping Study |4 Solar Background Document 4

430

Highly Mismatched Alloys for Intermediate Band Solar Cells  

SciTech Connect (OSTI)

It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

2005-03-21T23:59:59.000Z

431

Moon's Radiation Environment and Expected Performance of Solar Cells during Future Lunar Missions  

E-Print Network [OSTI]

Several lunar missions are planned ahead and there is an increasing demand for efficient photovoltaic power generation in the moon. The knowledge of solar cell operation in the lunar surface obtained during early seventies need to be updated considering current views on solar variability and emerging space solar cell technologies. In this paper some aspects of the solar cell performance expected under variable lunar radiation environment during future space missions to moon are addressed. We have calculated relative power expected from different types of solar cells under extreme solar proton irradiation conditions and high lunar daytime temperature. It is also estimated that 2-3 % of annual solar cell degradation is most probable during the future lunar missions. We have also discussed photovoltaic power generation in long term lunar bases emphasizing technological needs such as sunlight concentration, solar cell cooling and magnetic shielding of radiation for improving the efficiency of solar cells in the l...

Girish, T E

2010-01-01T23:59:59.000Z

432

Moon's Radiation Environment and Expected Performance of Solar Cells during Future Lunar Missions  

E-Print Network [OSTI]

Several lunar missions are planned ahead and there is an increasing demand for efficient photovoltaic power generation in the moon. The knowledge of solar cell operation in the lunar surface obtained during early seventies need to be updated considering current views on solar variability and emerging space solar cell technologies. In this paper some aspects of the solar cell performance expected under variable lunar radiation environment during future space missions to moon are addressed. We have calculated relative power expected from different types of solar cells under extreme solar proton irradiation conditions and high lunar daytime temperature. It is also estimated that 2-3 % of annual solar cell degradation is most probable during the future lunar missions. We have also discussed photovoltaic power generation in long term lunar bases emphasizing technological needs such as sunlight concentration, solar cell cooling and magnetic shielding of radiation for improving the efficiency of solar cells in the lunar environment.

T. E Girish; S Aranya

2010-12-03T23:59:59.000Z

433

SIMULATION OF GEOMETRY AND SHADOW EFFECTS IN 3D ORGANIC POLYMER SOLAR CELLS  

E-Print Network [OSTI]

levels of Solar panels and new production capacity is driving solar PV prices lower and thereby, bringingSIMULATION OF GEOMETRY AND SHADOW EFFECTS IN 3D ORGANIC POLYMER SOLAR CELLS OF THE THESIS Simulation of Geometry and Shadow Effects in 3D Organic Polymer Solar Cells by Mihir Prakashbhai

Kassegne, Samuel Kinde

434

Enabling Thin Silicon Solar Cell Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cracking problem in silicon cell technology," says Budiman. "The ALS provides us with a light that allows us to measure and characterize molecular stress in a very quantitative...

435

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

436

Design criteria for Si point-contact concentrator solar cells  

SciTech Connect (OSTI)

Design criteria for concentrator solar cells are presented for the highly three-dimensional case of backside point-contact solar cells. A recent new experimental result, a 28-percent efficient cell (25/sup 0/C, 15-Wcm/sup 2/ incident power) is used as a case study of the dependences of the recombination components and the carrier density gradients on the geometrical design parameters. The optimum geometry is found to depend upon the intended design power density as well as the attainable physical parameters allowed by the fabrication techniques utilized. Modeling projections indicate that an ultimate efficiency of 30.6 percent (36 Wcm/sup 2/, 300 K) is achievable using the diffused emitters presently employed on these cells. Incorporation of results from the study pf polycrystalline emitters could improve these efficiencies toward 31.7 percent.

Sinton, R.A.; Swanson, R.M.

1987-10-01T23:59:59.000Z

437

Optical system for determining physical characteristics of a solar cell  

DOE Patents [OSTI]

The invention provides an improved optical system for determining the physical characteristics of a solar cell. The system comprises a lamp means for projecting light in a wide solid-angle onto the surface of the cell; a chamber for receiving the light through an entrance port, the chamber having an interior light absorbing spherical surface, an exit port for receiving a beam of light reflected substantially normal to the cell, a cell support, and an lower aperture for releasing light into a light absorbing baffle; a means for dispersing the reflection into monochromatic components; a means for detecting an intensity of the components; and a means for reporting the determination.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

438

Research highlights potential for improved solar cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories 禄Submitter A B C D E F G H I JDefenseandPotential

439

Development of low-temperature solution-processed colloidal quantum dot-based solar cells  

E-Print Network [OSTI]

Solution-processed solar cells incorporating organic semiconductors and inorganic colloidal quantum dots (QDs) are potential alternatives to conventional solar cells fabricated via vacuum or high-temperature sintering ...

Chang, Liang-Yi, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

440

Impurity and back contact effects on CdTe/CdS thin film solar cells.  

E-Print Network [OSTI]

??CdTe/CdS thin film solar cells are the most promising cost-effective solar cells. The goal of this project is to improve the performance for CdS/CdTe devices (more)

Zhao, Hehong

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design of Zinc Oxide Based Solid-State Excitonic Solar Cell with Improved Efficiency  

E-Print Network [OSTI]

Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low temperature solution...

Lee, Tao Hua

2012-02-14T23:59:59.000Z

442

a-si solar cells: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the development of amorphous Si solar cells Seung May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We Park, Byungwoo...

443

a-si solar cell: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the development of amorphous Si solar cells Seung May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We Park, Byungwoo...

444

NREL Success Stories - Quest for Inexpensive Silicon Solar Cells  

ScienceCinema (OSTI)

Scientists at the National Renewable Energy Laboratory (NREL) share their story about a successful partnership with Oak Ridge National Laboratory and the Ampulse Corporation and how support from the US Department of Energy's Technology Commercialization & Deployment Fund has helped it and their silicon solar cell research thrive.

Branz, Howard

2013-05-29T23:59:59.000Z

445

Polyaniline on crystalline silicon heterojunction solar cells Weining Wanga  

E-Print Network [OSTI]

-Si have long been of fundamental interest, and amorphous silicon a-Si:H /c-Si heterojunctions are now is about the current limit achieved with a-Si:H/c-Si heterojunctions. The largest VOC we ob- tained was 0Polyaniline on crystalline silicon heterojunction solar cells Weining Wanga and E. A. Schiff

Schiff, Eric A.

446

MORPHOLOGY DEPENDENT SHORT CIRCUIT CURRENT IN BULK HETEROJUNCTION SOLAR CELL  

E-Print Network [OSTI]

of the coupled exciton/electron/hole flow in the disordered polymer network, but also guarantees to connect kinetics appears complex and final structure is randomly interpenetrating clusters of polymer and fullerene, West Lafayette, Indiana, USA ABSTRACT Polymer based bulk heterostructure (BH) solar cell offers

Alam, Muhammad A.

447

Enhanced regeneration of degraded polymer solar cells by thermal annealing  

SciTech Connect (OSTI)

The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

2014-05-12T23:59:59.000Z

448

Unraveling the Role of Morphology on Organic Solar Cell Performance  

E-Print Network [OSTI]

Polymer based organic photovoltaic (OPV) technology offers a relatively inexpensive option for solar energy conversion provided its efficiency increases beyond the current level (6-7%) along with significant improvements in operational lifetime. The critical aspect of such solar cells is the complex morphology of distributed bulk heterojunctions, which plays the central role in the conversion of photo-generated excitons to electron-hole pairs. However, the fabrication conditions that can produce the optimal morphology are still unknown due to the lack of quantitative understanding of the effects of process variables on the cell morphology. In this article, we develop a unique process-device co-simulation framework based on phase-field model for phase separation coupled with self-consistent drift-diffusion transport to quantitatively explore the effects of the process conditions (e.g., annealing temperature, mixing ratio, anneal duration) on the organic solar cell performance. Our results explain experimentally observed trends of open circuit voltage and short circuit current that would otherwise be deemed anomalous from the perspective of conventional solar cells. In addition to providing an optimization framework for OPV technology, our morphology-aware modeling approach is ideally suited for a wide class of problems involving porous materials, block co-polymers, polymer colloids, OLED devices etc.

Biswajit Ray; Pradeep R. Nair; Muhammad A. Alam

2010-11-03T23:59:59.000Z

449

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells  

E-Print Network [OSTI]

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response work by our group has shown that macroscopic Si wire arrays (>1 cm2 in area) suitable for photovoltaic

Atwater, Harry

450

EELE408 Photovoltaics Lecture 11: Solar Cell Parameters  

E-Print Network [OSTI]

mV Commercial silicon solar cells 500-600 mV 11 Power & IV Curve Power (Watts) is the rate The power output by a source is the product of the current supplied and the voltage at which the current was supplied 12 Power output = Source voltage x Source current P=V x I (Watts = Joules/second) = (Volts

Kaiser, Todd J.

451

Aerogel tempelated ZnO dye-sensitized solar cells.  

SciTech Connect (OSTI)

Atomic layer deposition is employed to conformally coat low density, high surface area aerogel films with ZnO. The ZnO/aerogel membranes are incorporated as photoanodes in dye-sensitized solar cells, which exhibit excellent power efficiencies of up to 2.4% under 100 mW cm{sup -2} light intensity.

Hamann, T. W.; Martinson , A. B. E.; Elam, J. W.; Pellin, M. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

2008-01-01T23:59:59.000Z

452

1. INTRODUCTION CdTe/CdS solar cells are among the most promising  

E-Print Network [OSTI]

Te/CdS SOLAR CELLS A.Romeo, A.N. Tiwari, and H. Zogg Thin Films Physics Group, Institute of Quantum ElectronicsTe/CdS thin film solar cells. The merits of different TCOs and the properties of the CdTe/CdS solar cells1. INTRODUCTION CdTe/CdS solar cells are among the most promising devices for low cost and high

Romeo, Alessandro

453

Panoramic view of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM)  

E-Print Network [OSTI]

Photodiodes from Interpenetrating Polymer Networks. NaturePolymer Solar Cells with Nanoscale Control of the Interpenetrating Network

2014-01-01T23:59:59.000Z

454

High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells  

SciTech Connect (OSTI)

Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

2014-08-19T23:59:59.000Z

455

Manufacturing-Friendly Advance Seen in CIGS Solar Cell Processing (Fact Sheet)  

SciTech Connect (OSTI)

Scientists developed a robust, high-performance amorphous InZnO transparent contact for CIGS solar cells.

Not Available

2011-05-01T23:59:59.000Z

456

Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report  

SciTech Connect (OSTI)

This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

NONE

1996-05-30T23:59:59.000Z

457

21.9% efficient silicon bifacial solar cells  

SciTech Connect (OSTI)

This paper reports the efficiency of bifacial silicon solar cells and mini-modules fabricated at SunPower Corp. The best cell has AM1.5G front efficiency of 21.9% and rear efficiency of 13.9%. The mini-modules, each containing 20 bifacial cells, attain efficiency as high as the average efficiency of their individual cells. The best module has AM1.5G front efficiency of 20.66% and rear efficiency of 10.54%. Optical properties of the bifacial cells have also been measured and analyzed. The results show that bifacial cells, compared to monofacial cells, absorb less infrared light and thus they can operate at lower temperature in space.

Zhou, C.Z.; Verlinden, P.J.; Crane, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (United States); Sinton, R.A. [Sinton Consulting, San Jose, CA (United States)

1997-12-31T23:59:59.000Z

458

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

459

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

460

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

462

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

463

SOLAR CELL BASED PYRANOMETERS: EVALUATION OF THE DIFFUSE RESPONSE Frank Vignola  

E-Print Network [OSTI]

260 SOLAR CELL BASED PYRANOMETERS: EVALUATION OF THE DIFFUSE RESPONSE Frank Vignola Department The responsivity to diffuse radiation of a solar cell based pyranometer is studied. Diffuse measurements are made of the LiCor pyranometer is presented. Implication of the spectral dependence of the solar cell based

Oregon, University of

464

CVD growth control and solar cell application of single-walled carbon nanotubes  

E-Print Network [OSTI]

demonstrated the air-stable SWNT/Si solar cells with power conversion efficiency (PCE) approaching 11% for the first time. The PCE of the solar cell slightly increases after 10-month ambient #12;ii exposure-HN to the SWNT-Si solar cell results in both high PCE and high fill factor. Note that the achieved PCE

Maruyama, Shigeo

465

Intermediate-band solar cells based on quantum dot supracrystals Q. Shao and A. A. Balandina  

E-Print Network [OSTI]

parameter in the photovoltaic PV solar cell technology. It is defined as = FFVocJsc Pin , 1 where FFIntermediate-band solar cells based on quantum dot supracrystals Q. Shao and A. A. Balandina Nano to implement the intermediate-band solar cell with the efficiency exceeding the Shockley-Queisser limit

466

Advancing beyond current generation dye-sensitized solar cells Thomas W. Hamann,ab  

E-Print Network [OSTI]

Advancing beyond current generation dye-sensitized solar cells Thomas W. Hamann,ab Rebecca A The most efficient dye-sensitized solar cells (DSSCs) have had essentially the same configuration on the fabrication and character- ization of new architectures for dye-sensitized solar cells. He now holds

467

Spectroscopy of Donor--Acceptor Porphyrins for Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Spectroscopy of Donor--Acceptor Porphyrins for Dye-Sensitized Solar Cells Ioannis Zegkinoglou improvement in the design of dye- sensitized solar cells has been the combination of light- absorbing the energy conversion efficiency. INTRODUCTION Dye-sensitized solar cells (DSSCs) are promising alternatives

Himpsel, Franz J.

468

Hydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Hydroxamate Anchors for Improved Photoconversion in Dye- Sensitized Solar Cells Timothy P. Brewster-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight materials such as dye-sensitized solar cells (DSSCs) made of sensitized nano- particulate thin-films.4 Since

469

Nanomaterials-Enabled Dye-Sensitized Solar Cells and Jun Lou1  

E-Print Network [OSTI]

O-7 Nanomaterials-Enabled Dye-Sensitized Solar Cells Pei Dong1 and Jun Lou1 1 sensitized solar cells (DSCs), the third generation of solar cells, have attracted more and more attention Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas, U.S.A. Dye

470

New Architectures for Dye-Sensitized Solar Cells Alex B. F. Martinson,[a, b  

E-Print Network [OSTI]

New Architectures for Dye-Sensitized Solar Cells Alex B. F. Martinson,[a, b] Thomas W. Hamann of magnitude such as depicted in Figure 1. Abstract: Modern dye-sensitized solar cell (DSSC) tech- nology steadily climbing, one class--dye-sensi- tized solar cells (DSSCs)--has notably plateaued. After

471

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201104786  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201104786 Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High- Efficiency Dye-Sensitized Solar Cells** Xukai Xin, Ming He, Wei Han, Jaehan Jung, and Zhiqun Lin* Dye-sensitized solar cells (DSSCs) are among the most promising photovoltaic devices for low

Lin, Zhiqun

472

Dye-Sensitized Solar Cells DOI: 10.1002/anie.200704919  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.200704919 Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells** Qifeng Zhang, Tammy P. Chou, Bryan Russo, Samson A system consisting of a dye-sensitized semiconductor film and an electrolyte, dye-sensitized solar cells

Cao, Guozhong

473

Determining the locus for photocarrier recombination in dye-sensitized solar cells  

E-Print Network [OSTI]

Determining the locus for photocarrier recombination in dye-sensitized solar cells Kai Zhua) and E and infrared transmittance measurements on dye-sensitized solar cells based on a mesoporous titania (TiO2. 漏 2002 American Institute of Physics. DOI: 10.1063/1.1436533 Dye-sensitized solar cells based

Schiff, Eric A.

474

Graphene Materials and Their Use in Dye-Sensitized Solar Cells Joseph D. Roy-Mayhew,  

E-Print Network [OSTI]

Graphene Materials and Their Use in Dye-Sensitized Solar Cells Joseph D. Roy-Mayhew, and Ilhan A References 6345 1. INTRODUCTION Dye-sensitized solar cells (DSSCs) have taken up broad interest. Graphene Applications in Other Types of Solar Cells 6343 7. Conclusions and Outlook 6343 Author Information

Aksay, Ilhan A.

475

Dye-sensitized solar cells using laser processing techniques A. Piqu, a  

E-Print Network [OSTI]

Dye-sensitized solar cells using laser processing techniques H. Kim,a A. Piqu茅, a G. P. Kushto,a R in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used

Arnold, Craig B.

476

Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

) electrodes were tested for catalytic performance in dye-sensitized solar cells (DSSCs). By using ethyl) this residue must not disperse in the electrolyte. KEYWORDS: graphene, dye-sensitized solar cell, cobalt redox mediator, triiodide, sacrificial binder 1. INTRODUCTION Dye-sensitized solar cells (DSSCs

Aksay, Ilhan A.

477

ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells  

E-Print Network [OSTI]

ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells Supan for dye-sensitized solar cell DSC with NW arrays to serve as a direct pathway for fast electron transport Institute of Physics. doi:10.1063/1.3327339 Dye-sensitized solar cells DSCs have attracted a lot

Cao, Guozhong

478

Dye Sensitized Solar Cells Efforts at Ris National Laboratory Matteo Biancardo, Keld West, Frederik C. Krebs  

E-Print Network [OSTI]

Dye Sensitized Solar Cells Efforts at Ris酶 National Laboratory Matteo Biancardo, Keld West solar cells (http://www.risoe.dk/solarcells/). In this contribution we address optimizations of Dye Sensitized Solar Cells (DSSCs) through the combination of important issues like semitransparency, quasi

479

Eumelanin Dye-sensitized Solar Cell Grown with Matrix-assisted Pulsed Laser  

E-Print Network [OSTI]

Eumelanin Dye-sensitized Solar Cell Grown with Matrix-assisted Pulsed Laser Evaporation~4 DHICA DHICA #12; III Abstract At present the majority dye-sensitized solar cell research all, and besides provides and does not have other uses for the dye-sensitized solar cell use. In order to improve

480

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3 be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly

McGehee, Michael

Note: This page contains sample records for the topic "batteries solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bulk Heterojunction Organic Solar Cells utilizing a Benzothiadiazole-based Oligomer  

E-Print Network [OSTI]

Advantages over silicon solar cells 路 Roll-to-roll manufacturing lowers costs through a faster rate cells, which have issues of their own, will remain the dominant solar energy provider and the world to find a viable option to alleviate global energy concerns. One proposed solution, the organic solar cell

Collins, Gary S.

482

Hierarchically Structured ZnO Nanorods-Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells  

E-Print Network [OSTI]

). This hierarchical structure had two advantages in improving the power conversion efficiency (PCE) of the solar cells. INTRODUCTION The establishment of low-cost and high-performance solar cells for sustainable energy sourcesHierarchically Structured ZnO Nanorods-Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells

Cao, Guozhong

483

Nanowire Solar Cells Erik C. Garnett, Mark L. Brongersma, Yi Cui,  

E-Print Network [OSTI]

, nanoscience, light trapping, energy, solar cells Abstract The nanowire geometry provides potential advantages of vertical nanowires with radial junctions take advantage of all these effects, although solar cells madeNanowire Solar Cells Erik C. Garnett, Mark L. Brongersma, Yi Cui, and Michael D. McGehee Department

Cui, Yi

484

Hybrid solar cells based on porous Si and copper phthalocyanine derivatives  

E-Print Network [OSTI]

Hybrid solar cells based on porous Si and copper phthalocyanine derivatives I. A. Levitskya 25 October 2004) We demonstrate a solar cell based on n-type nanoporous Si (PSi) filled with copper of the PSi structure and pore filling on the solar cell performance is discussed. 2004 American Institute

Euler, William B.

485

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165掳C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell hal-00749873,version1-25Nov shortage until 2010. Research on epitaxial growth for thin film crystalline silicon solar cells has gained

486

Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*  

E-Print Network [OSTI]

1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

487

CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE-CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS  

E-Print Network [OSTI]

CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE- CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS. The heterojunction solar cell was fabricated by dry depositing the SWNT film to the 3 mm by 3 mm n-type silicon solar cells. We proposed a water-vapor treatment to build up SWNTs to a self-assembled micro- honeycomb

Maruyama, Shigeo

488

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells  

E-Print Network [OSTI]

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

Pulfrey, David L.

489

Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films  

E-Print Network [OSTI]

1 Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films Kehang-3-5800-6983. #12;2 ABSTRACT We present the single-walled carbon nanotube/silicon (SWNT/Si) solar cells approaching, the PCEs of the fabricated solar cells slightly increased after six-month exposure in air without any

Maruyama, Shigeo

490

The novel usage of spectroscopic ellipsometry for the development of amorphous Si solar cells  

E-Print Network [OSTI]

May 2010 Keywords: a-Si:H Thin film Si solar cell Spectroscopic ellipsometry (SE) a b s t r a c t We analyzed with relation to structural and electrical properties of a-Si:H thin film for solar cell and faster methodology to develop a-Si:H thin film for thin film Si solar cells using SE measurements

Park, Byungwoo

491

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells  

E-Print Network [OSTI]

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

Van Stryland, Eric

492

Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena  

E-Print Network [OSTI]

Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

Peale, Robert E.

493

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165掳C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell #12;2 1. Introduction: martin.labrune@polytechnique.edu ABSTRACT We report on heterojunction solar cells whose thin intrinsic

494

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic颅4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

495

METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

Peale, Robert E.

496

Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells  

E-Print Network [OSTI]

applications. However, one of the most persistent issues in solar cell design continues to be how to most and integration of active and passive media in solar cells. Myriad photonic structures containing sub of semiconductor nanostructures have inspired a host of new solar cell structures, including designs based

Yu, Edward T.

497

GEOMETRIC CHARACTERIZATION AND OPTIMIZATION OF 3D ORGANIC FLEXIBLE SOLAR CELLS  

E-Print Network [OSTI]

GEOMETRIC CHARACTERIZATION AND OPTIMIZATION OF 3D ORGANIC FLEXIBLE SOLAR CELLS Characterization and Optimization of 3D Organic Flexible Solar Cells by Ashish K. Gaikwad Master of Science of flexible organic solar cells, micro-fabricated using novel microfabrication procedures. A fully functional

Kassegne, Samuel Kinde

498

Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells  

E-Print Network [OSTI]

Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells Emily, emphasizing the optical nature of the effect. 1 Introduction For ideal solar cells where all recombination. Despite this theoretical prediction, until recently even the highest efficiency solar cells were not close

Faraon, Andrei

499

Engineering metal-impurity nanodefects for low-cost solar cells  

E-Print Network [OSTI]

LETTERS Engineering metal-impurity nanodefects for low-cost solar cells TONIO BUONASSISI1 online: 14 August 2005; doi:10.1038/nmat1457 A s the demand for high-quality solar-cell feedstock exceeds in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive

500

How much can guided modes enhance absorption in thin solar cells?  

E-Print Network [OSTI]

How much can guided modes enhance absorption in thin solar cells? Peter N. Saeta,1,2 Vivian E-backed solar cells caused by dipole scatterers embedded in the absorbing layer is studied using a semi limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510519 (1961). 2. C. H. Henry

Atwater, Harry